Math 500 - Fall 2001 Homework 2

- 1) Chapter 2 section 17 problem 12.
- 2) Chapter 4 section 31 problem 5.
- 3) Let (X, \mathcal{T}) be a topological space, U an open set and A an arbitrary set.
 - 1. Show \overline{A} is the intersection of all closed sets containing A.
 - 2. Show that if A is closed then $U \setminus A$ is open.
- 4) Show \mathbb{R}^n with its standard topology is Hausdorff.

5) Let X be any set with the finite complement topology. When is this space Hausdorff? (Hint: this depends on the cardinality of X.)

- 6) A set S in a topological space (X, \mathcal{T}) is called **dense** if $\overline{S} = X$.
 - 1. Let X be any infinite set with the finite complement topology. Let S be an infinite subset of X. Show that S is dense in X.
 - 2. Let $f, g: X \to Y$ be two continuous functions from X to Y. If Y is a Hausdorff space and f(x) = g(x) on some dense set in X then show that f = g on all of X.

7) Let $Y = \{0, 1\}$ with the discrete topology. Let X be any topological space. Show the following are equivalent:

- 1. X has the discrete topology,
- 2. every function $f: X \to Y$ is continuous,
- 3. every function $f: X \to Z$, where Z is any topological space, is continuous.