Math 500 - Fall 2001 Homework 4

1) Let $X = [0,1], A = \{0,1\} \subset X$ and Y = [4,5]. Define the map $f : A \to Y$ by f(0) = 4 and f(1) = 5. Show that $X \cup_f Y$ is homeomorphic to S^1 .

2) Let $X = \mathbb{R}^2 \setminus \{(0,0)\}$. Show that the decomposition space of X defined as

$$\mathcal{D} = \{S_r | r > 0\},\$$

where $S_r = \{(x, y) | x^2 + y^2 = r^2\}$, is homeomorphic to \mathbb{R} .

3) Given a collection of topological spaces $\{X_{\alpha}\}_{\alpha \in J}$ show that the product topology on $\prod_{\alpha \in J} X_{\alpha}$ is the smallest topology for which each of the projection maps is continuous.

Let ρ be a bounded metric on $X = \mathbb{R}^n$ (by bounded I mean there is some constant C so that $\rho(x, y) < C$ for all $x, y \in X$). Given two sets A and B in X define

$$\rho(x, A) = \inf\{\rho(x, y) | y \in A\},\$$

$$d_A(B) = \sup\{\rho(x, A) | x \in B\}$$

and

$$d(A, B) = \max\{d_A(B), d_B(A)\}.$$

Note: $d(\{x\}, \{y\}) = \rho(x, y)$.

4) Let \mathcal{F} be the set of all nonempty closed and bounded sets in X. Show d is a metric on \mathcal{F} . This metric is called the Hausdorff metric on \mathcal{F} .

5) Given A and B in \mathcal{F} show that $d(A, B) < \epsilon$ if and only if $A \subset U_{\rho}(B, \epsilon)$ and $B \subset U_{\rho}(A, \epsilon)$ where $U_{\rho}(A, \epsilon) = \{x \in X | \rho(x, A) < \epsilon\}.$