Math 500 - Fall 2001 Homework 8

1) Show there is a Cantor set C in the plane so that the graph of any continuous function from [0, 1] to [0, 1] intersects C.

2) Let D be a disk and I be an interval in ∂D . If Σ is a surface and $f: I \to \partial \Sigma$ is an embedding, then show the surface

 $\Sigma \cup_f D$

is homeomorphic to Σ . HINT: it might be good to try to show that the space obtained from two disks by gluing them along intervals in their boundary is homeomorphic to a disk.

3) Let S_1 be a surface of genus $g, g \ge 1$, and S_2 be a surface that is the connected sum of $n, n \ge 1$, projective planes. Let S_i^0 be S_i with two disjoint disks removed. Define Σ to be $S_1^0 \cup S_2^0$ with ∂S_1^0 glued to ∂S_2^0 . What is the surface Σ ?

4) Show that for any surface Σ and points p and q in Σ there is a homeomorphism $h: \Sigma \to \Sigma$ such that h(p) = q.