Math 501 - Spring 2002
 Homework 1

PART I

Work 5 of the 8 problems in this section.

1. Give a formula for the arc length along an ellipse. Look up the integral in a standard table. What is the integral called? Any guesses as to why? What does this mean concerning parameterizing the ellipse by arc length?
2. Let $\alpha(t)=\left(a \cos ^{2} t, a \sin t \cos t, a \sin t\right)$. Find the curvature of α.
3. Compute the curvature and torsion of the curve $\beta(s)=\left(\frac{1}{\sqrt{2}} \cos s, \sin s, \frac{1}{\sqrt{2}} \cos s\right)$. Identify the curve.
4. Find the curvature of the ellipse: $\alpha(t)=(a \cos t, b \sin t)$.
5. Give a formula, in terms of $x(t)$ and $y(t)$ and their derivatives, for the curvature for a curve in \mathbb{R}^{2} given by $\alpha(t)=(x(t), y(t))$.
6. Give a formula, in terms of f and its derivative, for the curvature of a curve in \mathbb{R}^{3} given by $\{(x, y, z): y=x, z=f(x)\}$.
7. Let $\beta(s)=\left(\frac{(1+s)^{3 / 2}}{3}, \frac{(1-s)^{3 / 2}}{3}, \frac{s}{\sqrt{2}}\right)$ for $s \in[-1,1]$. Show that β is unit speed. Find the curvature and torsion of β.
8. Find the parameterization by arc length $\beta(s)$ of a plane curve with $\kappa(s)=\frac{1}{1+s^{2}}$ and $\beta(0)=(0,0)$.

PART II

Work 4 of the 7 problems in this section.
9. Let l_{p} be the tangent line to a curve C and p. Let L be a line perpendicular to l_{p} and a distance d from p. Let h be the length of the line segment on L between l_{p} and $C(h$ is the height of C relative to l_{p}). See Figure Below. Prove

$$
\kappa(p)=\lim _{d \rightarrow 0} \frac{2 h}{d^{2}}
$$

10. Let C be a plane curve parameterized by arc length by $\alpha(s), T(s)$ its unit tangent vector and $N(s)$ be its unit normal vector. Show

$$
\frac{d}{d s} N(s)=-\kappa(s) T(s)
$$

11. Let C be a plane curve contained in a disk of radius R. Show there is a point on C at which the curvature is $\geq \frac{1}{R}$.
HINT: You can assume the disk is centered at the origin, then think about the largest r for which the circle of radius r intersects C. You might also find Problem 8. useful here.

12. Let $\alpha(t)$ parameterize a simple closed curve C. Assume that $0<K(t) \leq c$ where c is some constant. (Recall K is the signed curvature of a plane curve.) Prove

$$
\text { length } C \geq \frac{2 \pi}{c} \text {. }
$$

13. Show that if α is a parameterization by arc length of a curve lying on a sphere of radius R about the origin in \mathbb{R}^{3} then

$$
R^{2}=\left(\frac{1}{\kappa}\right)^{2}+\left(\left(\frac{1}{\kappa}\right)^{\prime} \frac{1}{\tau}\right)^{2}
$$

HINT: Write $\alpha(s)=a(s) T(s)+b(s) N(s)+c(s) B(s)$ (where T, N, B are the unit tangent, normal and binormal vectors) and try to determine what a, b, c are. To do this consider $\alpha \cdot \alpha=R^{2}$. Differentiate this several time and see what relations you get.
14. Show that if α is a parameterization by arc length of a curve and $\kappa^{\prime}(s) \neq 0 \tau(s) \neq 0$ and they satisfy the previous equation for some R then the image of α lies on some sphere of radius R. HINT: Think about your solution to the last problem.
15. Let $\alpha(s)$ and $\beta(s)$ be two unit speed curves. Assume
$\alpha(0)=\beta(0)$,
$\alpha^{\prime}(0)=\beta^{\prime}(0)$,
$\kappa_{\alpha}(s)=\kappa_{\beta}(s)$ and
$\tau_{\alpha}(s)=\tau_{\beta}(s)$.
Let

$$
D(s)=T_{\alpha}(s) \cdot T_{\beta}(s)+N_{\alpha}(s) \cdot N_{\beta}(s)+B_{\alpha}(s) \cdot B_{\beta}(s) .
$$

Show
a) $D(0)=3$,
b) $D(s)=3$ implies the Frenet frames of α and β agree at s,
c) $D^{\prime}(s)=0$ (and thus $D(s)=3$),
d) $\alpha(s)=\beta(s)$ for all s.

Note you have just shown that a (biregular) curve in \mathbb{R}^{3} is uniquely determined (up to translation and rotation) by its curvature and torsion.

