Math 501 - Spring 2002 Homework 2

PART I

Work 4 of the 7 problems in this section.

- 1. Describe the region of the unit sphere covered by the image of the Gauss map of the following surfaces:
 - a) The paraboloid: $\{(x, y, z) \in (R)^3 : z = x^2 + y^2\},\$
 - b) The torus: the image of the map $f(u, v) = (a + r \cos u) \cos v, (a + r \cos u) \sin v, r \sin u),$
 - c) The Cateniod: $\{(x, y, z) \in (R)^3 : x^2 + y^2 = \cosh^2 z\}.$
- 2. Compute the Gauss and mean curvatures of the hyperboloid z = axy at (0, 0, 0).
- 3. Compute the principal, Gauss and mean curvatures of the Enneper surface: that is the image of the map $\mathbf{x}(u, v) = (u \frac{u^3}{3} + uv^2, v \frac{v^3}{3} + vu^2, u^2 v^2).$
- 4. Let $\Gamma_f = \{(x, y, f(x, y)) : x, y \in \mathbb{R}\}$ be the graph of a function $f : \mathbb{R}^2 \to \mathbb{R}$. Show

$$H = \frac{(1+f_y^2)f_{xx} - 2f_xf_yf_{xy} + (1+f_x^2)f_{yy}}{(1+f_x^2 + f_y^2)^2},$$

and

$$K = \frac{f_{xx}f_{yy} - f_{xy}^2}{(1 + f_x^2 + f_y^2)^2}.$$

- 5. Given a (regular) curve C in the xy-plane we can parametrize it by $\alpha(u) = (g(u), h(u), 0)$. If we rotate C about the x-axis then the we will get a surface Σ , called the surface of revolution. A parameterization of Σ is given by $\mathbf{x}(u, v) = (g(u), h(u) \cos v, h(u) \sin v)$. Find formulas for the Gauss and mean curvatures in terms of g, h and their derivatives.
- 6. Let S^2 be the unit two sphere in \mathbb{R}^3 . We define a map from $S^2 \setminus \{N\}$ to \mathbb{R}^2 , where N = (0, 0, 1) is the north pole. Given any point $p \in S^2$ let L_p be the line containing the points p and N. The line L_p will intersect the xy-plane in a unique point q. We define f(p) = q and call the map $f: S^2 \setminus \{N\} \to \mathbb{R}^2$ stereographic projection.
 - a) If we write p = (x, y, z) find a formula for L_p .
 - b) Find a formula for f(p) = f(x, y, z), in terms of x, y, z.
 - c) Let $g(u, v) = f^{-1}(u, v)$. Find a formula for g(u, v).
 - d) Note g is a coordinate chart for S^2 . Compute the Gauss curvature using this coordinate chart.
 - e) Compute the components of the first fundamental form in this coordinate chart.

Note if we also defined stereographic projection from the south pole we would be able to cover S^2 but two coordinate charts instead of the six we needed in class.

7. Let $\alpha(t) = (\cos t + \log(\tan \frac{t}{2}), \sin t)$ be a curve in \mathbb{R}^2 , here $t \in (0, \pi)$. Let S be the surface of revolution of α . Show that K = -1.

PART II

Work 3 of the 4 problems in this section.

8. Let $h : \Sigma \to \mathbb{R}$ be a smooth function on Σ and $p \in \Sigma$. Recall the derivative of h is $Dh_p : T_p\Sigma \to \mathbb{R}$ is just D_vh for $v \in T_p\Sigma$ (i.e. Dh is just the directional derivative of h in directions tangent to Σ). The point p is a critical point if $Dh_p = 0$. Assume p is a critical point, now take a vector $v \in T_p\Sigma$ and let $\alpha : (-\epsilon, \epsilon) \to \Sigma$ be a parameterized curve with $\alpha(0) = p$ and $\alpha'(0) = v$. Now set

$$H_ph(v) = \frac{d^2(h \circ \alpha)}{dt^2}|_{t=0}.$$

a) Let $\mathbf{x}: V \to \Sigma$ be a coordinate chart for Σ at p, and show that

$$H_p h(a\mathbf{x}_u + b\mathbf{x}_v) = h_{uu}a^2 + 2h_{uv}ab + h_{vv}b^2.$$

Note this implies that H_ph is a well defined map from $T_p\Sigma$ to \mathbb{R} . This map is called the Hessian of h at p.

b) Let $h: \Sigma \to \mathbb{R}$ be the height function of Σ relative to $T_p\Sigma$, that is $h(q) = (q-p) \cdot N(p)$ for $q \in \Sigma$. Show p is a critical point of h. Then show

$$H_p h(v) = \kappa_p(v).$$

9. Suppose that $\mathbf{x}(u, v)$ is an isothermal coordinate chart for Σ . Recall this means that $E = G = \lambda(u, v)$ and F = 0. Show that

$$K = \frac{1}{2\lambda} \Delta(\log \lambda),$$

where $\Delta f = \frac{\partial^2 f}{\partial u^2} + \frac{\partial^2 f}{\partial v^2}$ is the Laplacian of f.

10. Suppose that $\mathbf{x}(u, v)$ is an isothermal coordinate chart for Σ . Show that

$$H = \frac{1}{2\lambda} \Delta \mathbf{x}.$$

11. Show that the mean curvature of Σ at a point p is given by

$$H = \frac{1}{2\pi} \int_0^{2\pi} \kappa(\mathbf{v}(\theta)) d\theta,$$

where $\mathbf{v}(\theta)$ is the unit tangent vector in $T_p\Sigma$ obtained from a fixed vector \mathbf{v}_0 by rotation θ counterclockwise.