Math 501 - Spring 2002
 Homework 4

Work 7 of the 10 problems.

1. Let Σ be a regular, compact, orientable surface in \mathbb{R}^{3} which is not homeomorphic to a sphere. Prove that there are points on Σ where the Gaussian curvature is positive, negative and zero.
2. Show that the equations of the geodesics in geodesic polar coordinates are given by

$$
\begin{gathered}
\rho^{\prime \prime}-\frac{1}{2}\left(g_{22}\right)_{\rho}\left(\theta^{\prime}\right)^{2}=0 \\
\theta^{\prime \prime}-\frac{\left(g_{22}\right)_{\rho}}{g_{22}} \rho^{\prime} \theta^{\prime}+\frac{1}{2} \frac{\left(g_{22}\right)_{\theta}}{g_{22}}\left(\theta^{\prime}\right)^{2} .
\end{gathered}
$$

3. If p is a point of regular surface Σ prove that

$$
K(p)=\lim _{r \rightarrow 0} \frac{12}{\pi} \frac{\pi r^{2}-A}{r^{4}}
$$

where $K(p)$ is the Gaussian curvature of Σ at p, r is the intrinsic radius of a circle $S_{r}(p)$ centered in p, and A is the area of the region bounded by $S_{r}(p)$.
HINT: Use Taylor expansion.
4. Show that in a system of normal coordinates centered at p all the Christoffel symbols are zero at p. (Recall normal coordinates are the image of Cartesian coordinates under the exponential map.)
5. Let $p \in \Sigma$ and $S_{r}(p)$ be the geodesic circle with center p and radius r. Let L be the length of $S_{r}(p)$. Prove that

$$
L=2 \pi r-\frac{2 \pi K(p)}{6} r^{3}+R
$$

where

$$
\lim _{r \rightarrow 0} \frac{R}{r^{3}}=0
$$

6. Let $p \in \Sigma$ and $S_{r}(p)$ be the geodesic circle with center p and radius r. Let L be the length of $S_{r}(p)$ and A the area of the region bounded by $S_{r}(p)$. Prove that

$$
4 \pi A-L^{2}=\pi^{2} K(p) r^{4}+R
$$

where

$$
\lim _{r \rightarrow 0} \frac{R}{r^{4}}=0
$$

Note this says that if $K(p)>0$ the for small circles $4 \pi A-L^{2}>0$ and similarly for $K(p)<0$.
7. Prove the following formula for the Christoffel symbols in an arbitrary coordinate system u_{1}, u_{2} (recall, the formulas in class were in an orthogonal coordinate system).

$$
\Gamma_{i j}^{k}=\frac{1}{2} \sum_{l=1}^{2} g^{k l}\left(\frac{\partial g_{j l}}{\partial u_{i}}+\frac{\partial g_{i l}}{\partial u_{j}}-\frac{\partial g_{i j}}{\partial u_{l}}\right),
$$

where the matrix $\left(g^{i j}\right)$ is the inverse of the matrix defining the metric $\left(g_{i j}\right)$.
8. Determine the Christoffel symbols of a surface represented in the form $z=f(x, y)$. (You can use the formula in problem 7)
9. Denote by H, \mathbb{R}^{2} with the metric from Homework 3 with Gauss curvature -1 and denote by E, \mathbb{R}^{2} with its normal metric (curvature 0).
a) Is it possible to have a rectangle in H with geodesic edges such that the sum of the interior angles is 2π ?
b) Is it possible to have an n sided polygon in E with geodesic edges such that the sum of the interior angles is 2π ?
c) Show that it is possible to have an n sided polygon in H with geodesic edges such that the sum of the interior angles is any preassigned, small number?
d) Is it possible to have an n sided polygon in H with geodesic edges such that the sum of the interior angles is 2π ?
10. In local coordinates write down the equations geodesics must satisfy in S^{2} with the standard round metric (use stereographic coordinates). Do the same for H (as in problem 8).

