Math 618 - Fall 2004 Homework 4

- 1. Let M be a closed oriented n manifold. Show $H_{n-1}(M;\mathbb{Z})$ is torsion free.
- 2. If M is a closed orientable 3 manifold with $H_1(M; \mathbb{Z}) = 0$ show $H_*(M; \mathbb{Z}) = H_*(S^3; \mathbb{Z})$ (that is show M is a homology sphere). If you prefer a little challenge show that a closed oriented 3 manifold with $\pi_1(M) = 1$ is a homotopy sphere.
- 3. Let M be a compact orientable 3 manifold with boundary having $H_1(M)$ finite. Show ∂M is a union of spheres.
- 4. If M is a closed orientable 4k manifold then the cup product pairing on $H^{2k}(M;\mathbb{Z})$ is a symmetric nondegenerate paring. Picking a basis for $H^{2k}(M)$ the pairing can be represented by a matrix. Such a symmetric matrix can be diagonalized over \mathbb{R} . After diagonalizing the number of positive elements down the diagonal is called b^{2k}_+ and the number of negative elements is b^{2k}_- . The signature of the pairing is $\sigma(M) = b^{2k}_+ - b^{2k}_-$. Prove that if $M = \partial W$ for a compact oriented 4k + 1 manifold then $\sigma(M) = 0$.
- 5. Is $\mathbb{C}P^2 \# \mathbb{C}P^2$ the boundary of a compact oriented 5 manifold? For a challenge what about $\mathbb{C}P^2 \# \mathbb{C}P^2$? Where $-\mathbb{C}P^2$ is $\mathbb{C}P^2$ with the reversed orientation.
- 6. Let W be a k-disk bundle over N, where N is a manifold. Show

$$H_p(N) = H_{k+p}(W, \partial W).$$

- 7. Compute the cohomology group of the loop spaces ΩS^2 and ΩS^3 . (Hint: Use the path space fibration.)
- 8. Compute the cohomology ring of $\mathbb{R}P^{\infty}$. (Hint: Use the S^1 fibration of $\mathbb{R}P^{\infty}$ over $\mathbb{C}P^{\infty}$. You also might need to explicitly compute the first couple of cohomology groups by hand.)
- 9. Compute the first six cohomology groups of $K(\mathbb{Z}_2, 2)$.
- 10. Suppose $\{E_r, d_r\}$ is a first quadrant spectral sequence (*i.e.* $E_r^{s,t} = 0$ if s or t is less than zero), of cohomological type, converging to H^* . If $E_2^{s,t} = 0$ unless s = 0 or s = n for some $n \ge 2$, then show

$$\cdots \to H^k \to E_2^{0,k} \to E_2^{n,k-n+1} \to H^{k+1} \to E_2^{0,k+1} \to \cdots$$

What does this say about fibrations over S^n ? This long exact sequence is called the Wang sequence.