Math 618 - Fall 2004
 Homework 4

1. Let M be a closed oriented n manifold. Show $H_{n-1}(M ; \mathbb{Z})$ is torsion free.
2. If M is a closed orientable 3 manifold with $H_{1}(M ; \mathbb{Z})=0$ show $H_{*}(M ; \mathbb{Z})=H_{*}\left(S^{3} ; \mathbb{Z}\right)$ (that is show M is a homology sphere). If you prefer a little challenge show that a closed oriented 3 manifold with $\pi_{1}(M)=1$ is a homotopy sphere.
3. Let M be a compact orientable 3 manifold with boundary having $H_{1}(M)$ finite. Show ∂M is a union of spheres.
4. If M is a closed orientable $4 k$ manifold then the cup product pairing on $H^{2 k}(M ; \mathbb{Z})$ is a symmetric nondegenerate paring. Picking a basis for $H^{2 k}(M)$ the pairing can be represented by a matrix. Such a symmetric matrix can be diagonalized over \mathbb{R}. After diagonalizing the number of positive elements down the diagonal is called $b_{+}^{2 k}$ and the number of negative elements is $b_{-}^{2 k}$. The signature of the pairing is $\sigma(M)=b_{+}^{2 k}-b_{-}^{2 k}$. Prove that if $M=\partial W$ for a compact oriented $4 k+1$ manifold then $\sigma(M)=0$.
5. Is $\mathbb{C} P^{2} \# \mathbb{C} P^{2}$ the boundary of a compact oriented 5 manifold? For a challenge what about $\mathbb{C} P^{2} \#-\mathbb{C} P^{2}$? Where $-\mathbb{C} P^{2}$ is $\mathbb{C} P^{2}$ with the reversed orientation.
6. Let W be a k-disk bundle over N, where N is a manifold. Show

$$
H_{p}(N)=H_{k+p}(W, \partial W) .
$$

7. Compute the cohomology group of the loop spaces ΩS^{2} and ΩS^{3}. (Hint: Use the path space fibration.)
8. Compute the cohomology ring of $\mathbb{R} P^{\infty}$. (Hint: Use the S^{1} fibration of $\mathbb{R} P^{\infty}$ over $\mathbb{C} P^{\infty}$. You also might need to explicitly compute the first couple of cohomology groups by hand.)
9. Compute the first six cohomology groups of $K\left(\mathbb{Z}_{2}, 2\right)$.
10. Suppose $\left\{E_{r}, d_{r}\right\}$ is a first quadrant spectral sequence (i.e. $E_{r}^{s, t}=0$ if s or t is less than zero), of cohomological type, converging to H^{*}. If $E_{2}^{s, t}=0$ unless $s=0$ or $s=n$ for some $n \geq 2$, then show

$$
\cdots \rightarrow H^{k} \rightarrow E_{2}^{0, k} \rightarrow E_{2}^{n, k-n+1} \rightarrow H^{k+1} \rightarrow E_{2}^{0, k+1} \rightarrow \cdots
$$

What does this say about fibrations over S^{n} ? This long exact sequence is called the Wang sequence.

