I Poincaré Duality

A Statement and Consequences

a manifold of dimension n is a topological space M that is Hausdorff and locally Euclidean points can be each point x & M has on separated by open neighborhood homeomorphic disjoint open sets to R", such a ubbd called a coordinate note: we don't require M to be second countable as some chart definitions do. a manifold with boundary of dimension r is a space M that is Hausdorff and every point has an open neighborhood homeomorphic to \mathbb{R}^n or $\mathbb{R}^n_+ = \{(x_1, \dots, x_n) \mid x_n \ge 0\}$ DM = {x e M that don't have noted homes to R"} int M = { × € M that do have ubbd homeo to R } exercise: 2 (2M)=Ø int (DM)= DM $\partial(int M) = \emptyset$ DM is on (n-1) dimensional monitold we say M is closed if M is compact and DM=Ø examples: 1) Surfaces are 2-monitolds (\cdots) (\frown) (~~) 2) Sⁿ C Rⁿ⁺¹ is an n-manifold 3) products of manifolds are manifolds: eg 5 x 5 m

4) $\mathbb{R}p^{n} = \mathbb{R}^{n+1} - \{(o, \dots, o)\}/\mathbb{R} - \{o\}\}$ is a closed n-manifold $\mathbb{C}p^{n} = \mathbb{C}^{n+1} - \{(o, \dots, o)\}/\mathbb{C} - \{o\}\}$ is a closed zn-manifold $\frac{Th^{m}}{R} = \frac{1}{R}$ let R be a ring
1) M a closed connected manifold of dimension n
M is R-orientable iff $H_n(M;R) \cong R$ 2) M a compact connected n-manifold with boundary
M is R-orientable iff $H_n(M;M;R) \cong R$

<u>Remarks</u>: 1) we will define R-orientations and prove the in next section 2) all manifolds are 21/2 - orientable 3) the "standard" definition of orientable (say from differential topology) is equivalent to Z-orientable 4) a choice of generator for Hn (MjR) is called a fundamental class of M, is denoted [M], and determines an orientation similarly for a generator [M, ZM] of H, (M, ZM; R) Th 2: _ Poincaré Duality: if M is a closed connected R-oriented n-mainfold with tundamental class [M], then $H^{P}(M;R) \xrightarrow{} H_{n-p}(M;R)$ is an isomorphism. Poincaré-Lefschetz duality: if M is a compact connected R-oriented n-manifold with boundary and [M, 2M] is a fundamental class, then 9[M, 3M] = 53M] where $\partial: H_n(M, \partial M; R) \rightarrow H_{n-1}(\partial M; R)$ comes from the long exact sequence of the pair (MiDM) moreover ... $\rightarrow H^{p-1}(M) \rightarrow H^{p-1}(\partial M) \rightarrow H^{p}(M, \partial M) \rightarrow H^{p}(M) \rightarrow ...$ [[M, JM] n. [[JM] n. [[M, JM] n. [[M, JM] n. ... $\rightarrow H_{n-p+1}(M_{i}\partial M) \rightarrow H_{n-p}(\partial M) \longrightarrow H_{n-p}(M) \longrightarrow H_{n-p}(M_{i}\partial M) \rightarrow ...$ commutes (up to sign) and vertical maps are isomorphisms.

we prove this later, for now we consider some consequences (or 3: let M be a closed compact oriented n-manifold the cup product pairing $\left(H^{P}(M)/_{tor}\right) \times \left(H^{P}(X)/_{tor}\right) \longrightarrow \mathscr{Z}$ (α, β) → αυβ ([M]) is non degenerate and it & generator, then 3 p $(1e. (\alpha \cup \beta) [M] = 0 \forall \beta \Rightarrow \alpha = 0)$ 5t dup a generator of $\mathcal{Z} \cong H^{n}(X)$ Universal Coefficients Theorem says Proof: $0 \longrightarrow T_{0}(H_{p-1}(M), \mathbb{Z}) \longrightarrow H^{P}(M; \mathbb{Z}) \xrightarrow{\Phi} H_{0}(H_{p}(M), \mathbb{Z}) \longrightarrow 0$ $\longrightarrow \phi(\alpha)(\sigma) = \alpha(\sigma)$ 50 $H^{P(M)}/for \cong Hom(H_{P}(M), \mathbb{Z}) \cong Hom(H_{P}(M)/for, \mathbb{Z})$ Poincare Duality says $H^{P}(M)/for \cong H_{n-p}(M)/for$ ~ I) [M] NK : H^P(M) (H^{n-P}(M)/tor; Z) an isomorphism (composition of ϕ and $P.D.\cong$) $\times \longmapsto \left(H^{n-p}(m)/_{for} \to \mathcal{Z} \right)$ $\beta \longmapsto \phi(\alpha)([m] \land \beta) = \alpha([m] \land \beta)$ = BV2([M]) 50 Bud([M))=0 ∀B ⇒ \$(x)=0 → x=0 now it & a generator of H (X) tor then] a homomorphism of: H1(X) -> Z st. o(a)=1 by nondegeneracy of U, Hom (H°(X), Z) = H^{n-p}(X) 50] & st. \$(x)= BUX [[M]) SO BUD generalts H^(X)

$$\frac{(ar 4!)}{(kp^{n}; \mathbb{Z})} = \frac{\mathbb{Z}[x_{1}]}{(x^{n+1})} \quad \text{where deg } x=2$$

Proof: earlier we saw $Gf^{n} = (0 - cell)v(2 - cell)v \dots v(2n - cell)$

so $H^{k}(Sf^{n}; \mathbb{Z}) \cong \begin{cases} \mathbb{Z} \quad k = 0, 1, \dots = n \\ 0 \quad \text{otherwise} \end{cases}$

we have the unduscin 2: $Gf^{n-1} \rightarrow Gf^{n}$

the long exact sequence of a pair gives

 $k = 2n \quad 0 = H^{k}(Gf^{n}; Gf^{n-1}) \rightarrow H^{k}(Gf^{n-1}) \rightarrow H^{k+k}(Gf^{n}; Gf^{n-1}) = 0$

so 1^{n} an isomorphism on $H^{k} \forall k < 2n$

takement in theorem clearly true for $n = 1 : H^{n}(Gf^{n}) \cong \mathbb{Z}[x_{1}]_{(x^{k})}$

now if true for Cf^{n-1} then

 $x \in H^{2}(Gf^{n-1}) \text{ st. } x^{k} \text{ generates } H^{2k}(Gf^{n-1}) \forall k = 1, 2 \dots, n-1$

so $1^{n}(k)^{k}$ generates $H^{2k}(Sf^{n}) \forall k < n$

 \therefore by $(cr 3, 1^{n}(k) \cup 1^{n}(k)^{n-1} \text{ must generate } H^{2n}(Gf^{n})$

for $5!$

any homotogy equivalence $Cf^{2n-3} \in f^{k-n}$ preserves orientation

Proof: Such on f induces on isomorphism on $H^{2}(Gf^{k-n}) \cong \mathbb{Z}$

so $f^{*}(x) = 1x$

 $\therefore f^{*}(x^{k-n}) = (f^{*}(x))^{k-n} = (xx)^{k-n} = x^{2n}$

so $f^{*}(x) = tr$

 $f^{*}(x^{k-n}) = (f^{*}(x))^{k-n} = (xx)^{k-n} = x^{2n}$

so f^{*} takes a fundamental class to (isolf : preserves or a

 $f^{*}(ar^{k-n}) \cong Free H_{k}(M)$

 $free H_{n-k}(M) \cong Free H_{k}(M)$

if n is odd then $f^{k-n} = f^{k-n}(h)$

if $n = 4m+2$ then $\chi(M)$ even

Proof: 1st part is just Poincaré duality and Universal Coefficients if dim M = 2m+1, then $\chi(M) = \sum_{l=0}^{2m+i} (-1)^{i} \operatorname{rank}_{i} H_{i} = \sum_{l=0}^{m} (-1)^{i} b_{l} + \sum_{l=m+i}^{2m+i} (-1)^{i} b_{i}^{i}$ $= \sum_{i=0}^{m} (-1)^{i} b_{i} + \sum_{i=0}^{m} (-1)^{i} b_{2m+1-i} \\ \sum_{i=0}^{m} (-1)^{i} b_{2m+1-i}$ $= \sum_{j=0}^{m} (-1)^{j} b_{j} + \sum_{k=0}^{m} (-1)^{j-1} b_{i} = 0$ since Free $H_{k} = Free H_{2m+1-k}$ if dim M even then same computation gives $\chi(M) = b_{n_{A}} + even number$ if dim M = 4m +2 then N(M) even ⇒ b2m+1 even Cor 3 → H^{2 m+1}(M) × H^{2m+1}(M)/ → Z tor tor tor > Z a non-degenerate skew-symmetric pairing linear algebra fact: If V on k-dimensional vector space $q: V \times V \longrightarrow \mathbb{R}$ is a non-degenerate shew-symmetric pairing then k is even exercise: Prove this hint: it w subspace of V and $W^{\perp} = \{ v \in V : q(v, w) = 0, \forall w \in W \}$ then dim V= dim W+ dim WL $(W^{\perp})^{\perp} = W$ so fact $\Rightarrow \chi(M)$ even. let $M^{2n} = \frac{\partial V^{2n+1}}{\partial V}$ with V compact, orientable, and M connected then rank (Hⁿ(M)) is even and $\operatorname{dim}(\operatorname{ker} 1_* \colon H_n(M) \to H_n(V)) = \operatorname{dim}(\operatorname{im}(1^* \colon H^n(V) \to H^n(M))) = \pm \operatorname{dim} H^n(M)$

moreover any two classes in image 1* cup to Zero

Cor 9: CP²ⁿ is not the boundary of a compact oriented (4n+1)-manifold.

B. <u>Fundamental classes of manifolds</u>

let M be a manifold and R a ring with identity (usually
$$\mathbb{Z}$$
 or $\mathbb{Z}/2$)
if $x \in M$ and U open nobod of x that is homeo. to \mathbb{R}^{n} then by excision
 $H_{n}(M_{1}M-ix_{3}^{2};R) \cong H_{n}(U, U-ix_{3}^{2};R) \cong H_{n}(\mathbb{R}^{n}, \mathbb{R}^{n}-ix_{3}^{2};R)$ abuse of
 $h_{n}(M_{1}M-ix_{3}^{2};R) \cong H_{n}(U, U-ix_{3}^{2};R) \cong H_{n}(\mathbb{R}^{n}, \mathbb{R}^{n}-ix_{3}^{2};R)$ abuse of
 $h_{n}(M_{1}M-ix_{3}^{2};R) \cong H_{n}(U, U-ix_{3}^{2};R) \cong H_{n}(\mathbb{R}^{n}, \mathbb{R}^{n}-ix_{3}^{2};R)$ abuse of
 $h_{n}(M_{1}M-ix_{3}^{2};R) \cong H_{n}(\mathbb{R}^{n}, \mathbb{R}^{n}-ix_{3}^{2};R) \xrightarrow{H_{n-1}(\mathbb{R}^{n})} H_{n-1}(\mathbb{R}^{n}-ix_{3}^{2};R) \xrightarrow{H_{n-1}(\mathbb{R}^{n})} H_{n-1}(\mathbb{R}^{n})$
 $H_{n}(\mathbb{R}^{n}, \mathbb{R}^{n}-ix_{3}^{2};R) \cong \mathbb{R} \quad \forall x \in M$
 $H_{n}(M_{1}M-ix_{3}^{2};R) \cong \mathbb{R} \quad \forall x \in M$

<u>exercise</u>: If you know another definition of orientation at x show it is equivalent to a Z-orientation at x

now if B is an open ball in a coordinate chart U, then as above $H_n(M, M-B; R) \cong R$ moreover the inclusion $(M, M-\{B\}) \xrightarrow{i} (M, M-\{x\})$ for $x \in B$ incluses an isomorphism $H_n(M, M-B; R) \xrightarrow{1_*} H_n(M, M-\{x\}; R)$

thus a generator for either group determines one for the other

so it x, y are in a ball B in a coordinate chart U in M then H_n(M, M-fx];R) = H_n(M, M-B;R) = H_n(M, M-fy);R) and isomorphisms induced by inclusion so a local orientation at x determines one at y
an <u>R-orientation</u> on M is a choice of local R-orientations µ_x for all x cM st. for all open balls B in coordinate charts of M, J µ_B a generator of H_n(M, M-B;R) st. µ_x = 1_x(M_B) ∀x ∈ B (where 1: (M, M-B) → (M, M-fx))) (1e. a consistant choice of local R-orientations)
if an R-orientation exists on M, we say M is <u>R-orientable</u>, if R=2, we say M is <u>orientable</u>.

is equivalent to this definition

lemma 10:

Proof: $\forall x \in M$, μ_x must be the unique generator of \mathbb{Z}_2 Similarly μ_B for any open ball in a coordinate chart $\therefore \mathbb{P}_x(\mu_B) = \mu_x \quad \forall x \in B$

<u>lemma II:</u>

Suppose M is R-orientable and connected if two R-orientations agree at some x & M, then they are the same (1.e. if M is R-orientable, then an R-orientation is determined by a choice of local R-orientation at any point x & M)

Proof: let
$$\{\mu_{x}\}_{x \in M}$$
 and $\{\widetilde{\mu}_{x}\}_{x \in M}$ be two R-orientations on M.
assume $\exists x_{0} \in M$ st. $\mu_{x_{0}} = \widetilde{\mu}_{x_{0}}$
let $S = \{x \in M : \mu_{x} = \widetilde{\mu}_{x}\}$
 $\leq \neq \emptyset$ since $x_{n} \in S$

let M be a closed connected n-manifold
1) if M is R-orientable then the map
$$1:(M, \emptyset) \rightarrow (M, M - \{x\})$$

induces an isomorphism
 $1_{k}: H_{n}(M; R) \rightarrow H_{n}(M, M - \{x\}; R) \cong R$
for all $x \in M$
2) if M is not R-orientable the inclusion above
induceses an injective map
 $1_{k}: H_{n}(M; R) \rightarrow H_{n}(M, M - \{x\}; R)$
with image = $\{r \in R : 2r = 0\}$ for all $x \in M$

3) $H_{i}(M;R) = 0 \quad \forall _{1} > n$

an element
$$[M] \in H_n(M; R)$$
 whose image in $H_n(M, M \cdot \{x\}; R)$ is a
generator for all $x \in M$ is called a fundamental class of M
with coefficients in R .
note: by lemma II, for connected M, the fundamental classes of M
are in one-to-one correspondence with R -orientations.
for R -orientable manifolds M a choice of generator for $H_n(M; R)$
is sometimes called an R -orientation on M .

(or 14:
1) if M is a closed, connected, orientable n-manifold
then $H_n(M; Z) \cong Z$
 $H_n(M; Z_n) \cong Z/2$
2) if M is a closed, connected n-manifold that is not-orientable
 $H_n(M; Z_n) \cong O$
 $H_n(M; Z_n) \cong Z/2$

Proof: clear from lemma 10 and theorem 13

to prove theorem we need some preliminary work

let
$$M_R = \{ \alpha_x \mid x \in M, \alpha_x \in H_n(M, M - \{x\}; R) \}$$

we put a topology on
$$M_R$$
 as follows
for each open ball B in a coordinate chart of M
and each $w \in H_n(M, M-B; R)$
 $let U(w, B) = \{ 2_x^*(w) \}_{x \in B}$ where $1^x : [M, M-B] \rightarrow (M, M-\{x\})$ is inclusion
exercise: i) Show this is a basis for a topology on M_R
2) $M_R \xrightarrow{\pi} M : A_x \mapsto x$ is a covering map $(M_R \text{ might be} disconnected}$

3) if
$$\sigma: M \rightarrow M_R$$
 is continuous s.t. $T \circ \sigma = id_M$
(we call such a map a section of M_R)
and $\forall x, \sigma(x)$ is a generator of $H_n(M_1M \cdot \{x\}; R)$
then σ defines an R -orientation on M
similarly an R -orientation on M gives a σ as above.
lemma 15:
let M be an n -manifold and $A \subset M$ a compact subset.
i) if $\sigma: M \rightarrow M_R$ is a section of M_R , then $\exists ! class \propto_A \in H_n(M, M - A; R)$
whose image in $H_n(M_1M \cdot \{x\}; R)$ is $\sigma(x) \forall x \in A$.

2)
$$H_1(M, M-A; R) = 0 \quad \forall 1 > N$$

If
$$A = M$$
 is lemma 15 then $Th \stackrel{\text{de}}{=} 13 \text{ part } 3$ follows from lem 15 part 2)
for part 1) of $Th \stackrel{\text{de}}{=} 13$
let $\Gamma_R = \{\text{sections of } M_R^3\}$
note: i) sum of two sections is a section
2) if σ a section and $r \in R$, then $r\sigma$ a section
50 Γ_R is an R-module
lemma 15 part 1) $\Rightarrow \exists a$ well-defined mop of R-modules
 $\Gamma_R \stackrel{\phi}{\to} H_n(M;R)$
Claim: ϕ an isomorphism
indeed, if $\alpha \in H_n(M;R)$, then define $\sigma_n(\alpha) = 1^*_n(\alpha)$
where $f: M \rightarrow (M, M - \{x\})$
 $exercise: \sigma_{\alpha}$ a section and $\phi(\sigma_{\alpha}) = \alpha$
 $\therefore \phi$ onto.
now if $\sigma \in \Gamma_R$ and $\phi(\sigma) = 0 \in H_n(M;R)$
then $\sigma(\alpha) = 0 \quad \forall \alpha \in M, \therefore \sigma = 0 \text{ in } \Gamma_R$
so ϕ injective f

just as in the proof of lemma II, if M connected, then
two sections of MR are the same if they agree
at one point:

$$\therefore$$
 if we fix $\chi_{0} \in M$ the map
 $\Gamma_{R}^{r} \longrightarrow R = \pi^{-r}(x_{0}) = H_{n}(M, M \cdot ix_{0}^{2}; R)$
 $\sigma \mapsto \sigma(x_{0})$
 is injective
if M is R-orientable, \exists a section σ , st. $\sigma(x_{0})$ a generator
of $H_{n}(M, M \cdot ix_{0}^{2}; R)$
 \therefore above map onto:
and $H_{n}(M; R) \equiv \Gamma_{R} \equiv R_{-}$
for part 2) of Th²⁰4 see Hatcher (or work it out your self!)
Proof of lemma 15:
Claim 1: If lemma true for A and B and AAB, then true for AUB
Claim 2: If lemma true for $M = R^{n}$, then true for all manifolds
Claim 3: lemma is true for R^{n}
Clearly lemma follows from claims.
Proof of Claim 1: note $(M, M - (AUB)) = (M, (M - A) \cap (M - B))$

so Mayer-Vietoris gives

$$H_{i+1}(M, M-(A \land B)) \rightarrow H_i(M, M-(A \cup B)) \rightarrow H_i(M, M-A) \oplus H_i(M, M-B)$$

$$H_{i+1}(M, M-(A \land B)) \rightarrow H_i(M, M-(A \cup B)) \rightarrow H_i(M, M-A) \oplus H_i(M, M-B)$$

for 1 = n $O \rightarrow H_n(M, M-(A \cup B)) \xrightarrow{\Psi} H_n(M, M-A) \oplus H_n(M, M-B) \xrightarrow{\Psi} H_n(M, M-(A \cap B))$ where $\Psi(\alpha, \beta) = \alpha - \beta$ and $\overline{\Psi}(\alpha) = (\alpha, \alpha)$ now suppose σ is a section of M_R

 $\therefore H_{i}(\mathbb{R}^{n},\mathbb{R}^{n}-A) \cong H_{i-i}(\mathbb{R}^{n}-A) \cong H_{i-1}(s^{n-i}) \cong H_{i-1}(\mathbb{R}^{n}-\{x\})$ $\cong H_{i}(\mathbb{R}^{n},\mathbb{R}^{n}-\{x\})$ so part 2) of lemma clear $\underbrace{exercise}: \mathbb{R}^{n}_{\mathbb{R}} = \mathbb{R}^{n} \times \mathbb{R} \quad (\mathbb{R} \text{ has discrete topology})$ so sections of $\mathbb{R}^{n}_{\mathbb{R}}$ are constant and \therefore 1) also true.
by Claim 1, lemma now true for A = finite unions of convex setsnow let A be any compact set in \mathbb{R}^{n} let Ξ be a cycle that represents $x \in H_{i}(\mathbb{R}^{n}, \mathbb{R}^{n}-A; \mathbb{R})$ thus $\exists \Xi \in C_{i-1}(\mathbb{R}^{n}-A)$ let (-1) union of images of simplicies in $\exists \Xi$ since $(A = \text{compact} \exists \text{ some } r \text{ st. } d(x,y) > r \quad \forall x \in (-n, y \in A)$

by compactness of A we can find finitely many closed r-balls
$$B_{1,...,B_{k}}$$

that cover A and $(AB_{1} = B)$
let $K = UB_{1}$
note E defines an element $\alpha_{K} \in H_{1}(\mathbb{R}^{n}, \mathbb{R}^{n} - K)$ that maps
to $\alpha \in H_{1}(\mathbb{R}^{n}, \mathbb{R}^{n} - A)$ by inclusion
since B_{1} are convex, if $1 > n$, then $\alpha_{K} = 0 :: \alpha = 0$
if $1 = n$ and σ a section of \mathbb{R}^{n}_{R} then $\exists \omega_{K} \in H_{n}(\mathbb{R}^{n}, \mathbb{R}^{n} - K)$
 $\leq t. 1^{*}_{*}(\alpha_{K}) = \sigma(X) \quad \forall x \in K$
but $H_{n}(\mathbb{R}^{n}, \mathbb{R}^{n} - K) \xrightarrow{t_{*}} H_{n}(\mathbb{R}^{n}, \mathbb{R}^{n} - \frac{1}{2})$
 $\leq 0 \quad \alpha = 1_{*}(\alpha_{K})$ is desired element

Now suppose
$$\alpha_{i} \alpha'$$
 are two such elements
then $1^{*}_{*}(\alpha \cdot \alpha') = 0 \quad \forall \pi \in A$
if $\gamma \in K$ then \exists some B_{i} and $\pi \in A \land B_{i}$ st $\gamma \in B_{i}$
then $H_{n}(\mathbb{R}^{n},\mathbb{R}^{n} \cdot \{x\};\mathbb{R})$
 $I^{*}_{*} = 2 \int_{e_{x}}^{2} f_{e_{x}}^{*}$
 $H_{n}(\mathbb{R}^{n},\mathbb{R}^{n} \cdot B_{i};\mathbb{R})$
 $50 \quad 1^{\vee}_{*}(\alpha \cdot \alpha') = 1^{\vee}_{*}(1^{*}_{*})^{-1}(0) = 0$
 $\therefore \quad 1^{\vee}_{*}(\alpha \cdot \alpha') = 0 \quad \forall \gamma \in K$
 \therefore from above $\alpha \cdot \alpha' = 0$ and we have uniqueness

a set I is a directed set if
$$\exists a partial orden 1 \leq 1'$$
 defined
on certain pairs in I st. $\forall 1,1' \in I, \exists 1'' \in I \quad st. 1 \leq 1'' \quad and 1' \leq 1''$
examples: i) $I = subsets of a set X$
 $\leq given by inclusion$
2) $I = \exists uith \leq standard inequality$

Now suppose {M, }, is a family of R-modules indexed by a directed set I st. VIEI', 3 a homomorphism

$$\begin{split} & \phi_{i} : \mathcal{M}_{q} \to \mathcal{M}_{2}, \\ & 5.t. \quad \phi_{i',i'} \circ \phi_{i',i} = \phi_{i'',i} \quad \text{if } 1 = 2' = 1'' \\ & \text{and} \quad \phi_{i,1} = id_{\mathcal{M}_{i'}} \end{split}$$

this is called a <u>directed</u> system of <u>modules</u> the <u>direct limit</u> of $\{M_i\}_{i \in I}$ is a module M together with homomorphisms $\phi_i: M_i \rightarrow M$ 5.t. $\phi_1 \circ \phi_1 = \phi_i \quad \forall i \leq i'$ and for any module N and maps $Y_i : M_1 \to N$ satisfying $Y_1 \circ \phi_{1,i'} = Y_i$ $\exists !$ homeomorphism $\Psi : M \to N$ s.t. $Y_1 = \Psi \circ \phi_1$

exercise: ony two direct limits are isomorphic we denote the direct limit by <u>limi</u> Mi

lemma 16: _____ direct

Proof: let
$$M^{+} = \bigoplus M_{i}$$

and $\phi_{1}^{+} : M_{i} \rightarrow M^{+}$
 $\chi \mapsto I$ -tuple with $1^{\underline{H}} \operatorname{cpt} = \chi$ others O
let $J = \operatorname{svbmodule}$ of M^{+} generated by $\{\phi_{1}^{+} \circ \phi_{1}^{-} (\chi) - \phi_{1}^{+} (\chi)\} \forall \chi \in M_{i}$
set $M = M^{+}/J$
and $\eta_{i} \eta' \in I$
and $\phi_{1} = \pi \circ \phi_{1}^{+}$ where $\pi : M^{+} \rightarrow M$ is the quotient map
exercise: check (M, ϕ_{i}) is the direct product fff

exercises:

i) if
$$M_i$$
 are all submodules of M and $1 \le 1' \Rightarrow P_{1,1'}: M_1 \to M_1$, is inclusion
then $\lim_{i \to \infty} M_1 = U M_i$.

2) if
$$\exists m \in I$$
 s.t. $1 \leq m \quad \forall i \in I$, then $\Phi_m \colon M_m \rightarrow \varinjlim M_i$ is an isomorphism
3) suppose $\forall i \in I$, $M_i = M_i \oplus P_i$ and $\Psi_{i,1} = \Psi_{i,1} \oplus P_{i,1} \quad \forall i \leq i'$
let $N = \varinjlim N_i$, $P = \varinjlim P_i$, $M = \varinjlim M_i$
then we get $\Psi \colon N \rightarrow M$ and $P \colon P \rightarrow M$ s.t.
 $\Psi \circ \Psi_i = \Phi_i |_N$, $P \circ P_i = \Phi_i |_P$

and $\Psi \oplus \rho : N \oplus \rho \to M$ is an isomorphism 4) a subset JCI is called final if VIEI, 3, EJ St. 15j applying definition to $\phi_i: M_i \to M$ we get a homomorphism $\lambda: \lim_{T \to M_{j}} M_{j} \longrightarrow \lim_{T \to M_{j}} M_{j}$ Show X is an isomorphism 5) if {A, }, it, {B, }, it, {C, }, are directed systems and Vi we have $A_{a} \xrightarrow{\lambda_{i}} B_{a} \xrightarrow{P_{i}} C_{i} \otimes$ $\begin{array}{cccc} A_{i} & \xrightarrow{\lambda_{i}} & B_{j} & \xrightarrow{P_{i}} & C_{j}, \\ \varphi_{ij}^{A} & & & & \downarrow & \varphi_{ii}^{B} & & \downarrow & \varphi_{ii}^{C} \\ A_{i'} & \xrightarrow{\lambda_{i'}} & B_{j'} & \xrightarrow{f_{i'}} & C_{j'} \end{array}$ 5f. ∀1 51' then in the limit we get homomorphisms ling An -> ling By -> ling Ci (**) Show if @ is exact at B, Vi, then @ is exact emma 17: let {Va} be a directed system of subsets of X st. any compact set KCX is in some U_{α} Then $\lim_{K \to \infty} H_i(V_{\alpha}; R) \cong H_i(X; R)$ Proof: Clearly we have inclusion maps Hi (Ua;R) -> Hi (X;R) Va $\therefore get map \lim_{n \to \infty} H_n(V_k; R) \to H_n(X; R)$

So
$$H_1(U_{a'}; R) \rightarrow H_1(X; R)$$
 hits $[\sigma]$

if [o] & H, (X; R) then in o CU, some d'

but
$$H_1(U_k; R) \longrightarrow H_1(X; R)$$

 $\searrow \circ \mathscr{I}$
 $\lim_{K \to K} H_1(U_k; R)$ so map surjective

now if
$$M$$
 is an n-manifold
let $I = \{all \ compact subsets of $M\}$ directed by inclusion
note: $K \leq K' \Rightarrow (M, M-K)^{T} \Rightarrow (M, M-K)$ indusion
 $\Rightarrow H^{T}(M, M-K; R)^{T} \Rightarrow H^{T}(M, M-K'; R)$
 $\therefore \{H^{P}(M, M-K; R)\}$ is a directed system of R -modules
define $H^{T}_{c}(M; R) = \lim_{n \to \infty} H^{T}(M, M-K; R)$
note: 1) if M is compact, then M is final in I
 $\therefore H^{P}(M; R) \cong H^{T}_{c}(M; R)$
 $?)$ you can think of elements of $H^{T}_{c}(M; R)$ as cochains that
vanish off of some compact subset of M
so we call $H^{T}_{c}(M; R)$ the g-cohomology with compact support
fix an R -orientation on M
recall this means a section $\sigma: M \rightarrow M_{R}$ st. Ow generates
 $H_{n}(M, M-K; R)$
let K be a compact set in M
then lemma 15 gives a class $w_{K} \in H_{n}(M, M-K; R)$
 $st. T^{T}_{m}(w_{K}) = otx$ where $t^{x}:(M, M-K) \rightarrow (M, M-K; R)$
 $K = cop product gives$
 $H_{n}(M, M-K; R) \rightarrow H_{n-p}(M; R)$
 $so w_{K} \land gives a map$
 $H^{P}(M, M-K; R) \rightarrow H_{n-p}(M; R)$
 $K = KcK' then$
 $H^{P}(M, M-K; R) \rightarrow H_{n-p}(M; R)$
 $K = Commutation H^{P}(M, M-K; R) \rightarrow H_{n-p}(M; R)$
 $K = Commutation H^{P}(M, M-K; R) \rightarrow H_{n-p}(M; R)$
 $K = Commutation H^{P}(M, M-K; R) \rightarrow H_{n-p}(M; R)$
 $K = Commutation H^{P}(M, M-K; R) \rightarrow H_{n-p}(M; R)$
 $K = Commutation H^{P}(M, M-K; R) \rightarrow H_{n-p}(M; R)$
 $K = Commutation H^{P}(M; R) \rightarrow H_{n-p}(M; R)$$

 $\frac{Th^{m} 18 (Poincaré Duality Revised)}{\text{If } M \text{ is an } R \text{-oriented } n \text{-manifold, then}}$ $D_{m} \colon H^{P}_{c}(M) \longrightarrow H_{n-p}(M)$ is an isomorphism

clearly $Th^{\frac{m}{2}} 2$ part 1) follows from this since if M compart $H_c^{P}(M;R) \cong H^{P}(M;R)$ and map is given one since $M_m = [M]$

Proof:

<u>StepI</u>: If th^m true for open sets U, V, and UAV in M then true for UVV <u>StepII</u>: let {U₁} be a system of open sets totally ordered by inclusion set U=UU₁. If th^m true for all U₁ then true for U <u>StepII</u>: th^m true for any open U C coordurate chart of M.

once we have established Steps I-II we are done as follows:

recall <u>Zorn's lemma</u>: if P is a portially ordered set such that every chain has an upper bound, then P has a totally ordered maximal element some elt greater than lor equal to) subset this is equivalent to the all elts in chain

now by Step II and Zorn's lemma there is a moximal element U in M for which th^M is true

if M±U, then let x ∈ M-U ∃an open set V st. x ∈ V ⊂ X-U st. V is in a coord. chart ≡ Rⁿ : th^m true for UuV by Step I & maximality of U : U=M and we are done

StepIII is heart of proof <u>Proof of StepIII</u>: suffices to prove for open set in Rⁿ <u>Case A</u>: let U be convex open set in Rⁿ <u>exercisé</u>: U homeomorphic to Rⁿ <u>Huit</u>:

So by naturality of everything just need to check for Rⁿ
let K_r be the dosed (compart) ball of radius r in Rⁿ (centered at 0)

$$[K_r]_{relowd}$$
 is final in all compact sets in Rⁿ
 \therefore H_c^P(Rⁿ) \cong h_K^m H^P(Rⁿ, Rⁿ-K_r)
and each H^P(Rⁿ, Rⁿ-K_r) \equiv 0 \forall p ± n
 \therefore H_c^P(Rⁿ) = 0 for p ± n
also H_{n-p}(Rⁿ) = 0 \forall p ± n \therefore th² true if p ± n
for p = n we get Hⁿ_c(Rⁿ) \equiv R and H₀(Rⁿ) \equiv R
now consider $\alpha_{K_r} \cap :$ H⁰(Rⁿ, Rⁿ-K_r) \rightarrow H₀(Rⁿ)
recall H_n(Rⁿ, Rⁿ-K_r) × H⁰(Rⁿ, Rⁿ-K_r) \rightarrow H₀(Rⁿ)
(a, b) $\longmapsto \beta(R^n) = \beta(\alpha)$
 $=$ now v_K is a generator of H_n(Rⁿ, Rⁿ-K_r)
(or couldn't map to generator otiol
of H_n(Rⁿ, Rⁿ-K_r)
 $=$ its dual β in Hom(H₀(Rⁿ, Rⁿ-K_r))
 \approx its dual β in Hom(H₀(Rⁿ, Rⁿ-K_r))
 $=$ now v_K is a n isomorphism \therefore D an isomorphism γ
(ase B: General open U < R
let {b₁} be a countable dense set in U
let U₁ be balls centered at b; contained in U
 \leq o U = Uv;
 \leq the for each V₁ by following clam
Claum¹: th³ true for any finite union of convex sets

: we have a map $H_c^{P}(v) \xrightarrow{H} \lim_{\to} H_c^{P}(v)$ <u>exercise</u>: show G and H are inverses of eachother. also check claim about $D_{v_{-1}}$

Proof of Step I: let K be any compact set in U L " V set B= Unv and Y= Uuv <u>note:</u> (Y,Y-(KnL)) = (Y,Y-K) ~ (Y,Y-L) $(Y, Y - (K \cup L)) = (Y, Y - K) \Lambda (XY - L)$ 50 Mayor-Vietoris for (Y,U-K) and (Y,V-L) gives $H^{\ell}(Y,Y-(knl)) \to H^{\ell}(Y,Y-k) \oplus H^{\ell}(Y,Y-k) \to H^{\ell}(Y,Y-(kul)) \xrightarrow{\delta} H^{\ell}(Y,Y-(kul))$ ¥ ا <u>ا</u> ۲ $H_{n-p}(B) \longrightarrow H_{n-p}(v) \oplus H_{n-p}(v) \longrightarrow H_{n-p}(Y) \xrightarrow{\forall} H_{n-p-r}(B)$ exercisé: 1) first two squares commute leasy since all maps are inclusions or cap products) 2) last square commutes upto sign Hint: a) recall 2 is defined as follows: THE given ZE Hn-p (Y) you can write Z = 9+6 for $a \in ((v), b \in (n-p)$ then 2[2] = [2a] b) as in proof of Th # II. 11 can use Lebesgue number and barycentric subdivision to find chains K, WLIWKAL S.t. KKUL = XK + XL + KAL you can now compute do («KUL n.) Similarly compute («KAL n.) . S note any compact set in B=UNV is KAL for some KBL as above and similarly for Y=UUV

50 above gives the following diagram commutes up to sign

$$H_{c}^{0}(B) \xrightarrow{\Phi} H_{c}^{0}(U) \oplus H_{c}^{0}(V) \xrightarrow{\Phi} H_{c}^{0}(Y) \xrightarrow{\Phi} H_{c}^{0}(B)$$

$$\cong \bigcup D_{B} \xrightarrow{I} \cong \bigcup D_{D}^{0} D_{V} \xrightarrow{\Psi^{1}} \bigcup D_{Y} \cong \bigcup D_{B} \qquad \text{isomorphism} \\ H_{n-p}(B) \xrightarrow{\Phi} H_{n-p}(U) \oplus H_{n-p}(V) \xrightarrow{\Phi} H_{n-p+1}(B) \qquad \text{by assumption} \end{cases}$$
Claim: D_{Y} is isomorphism
indeed if $x \in H_{c}^{0}(Y)$ and $P_{Y} x = 0$
then $0 = \partial D_{Y} x = D_{S} x \Rightarrow S d = 0$
 $\therefore \exists (a_{1}b) st. \ \Psi(a_{b}) = a$
and $\Psi'(D_{a}, D_{b}) = D_{Y} \Psi(a_{b}y) = D_{x} x = 0$
 $\therefore \exists c s.t. \ \Phi'(c) = (D_{a}, D_{b})$
and $c' st. D_{c}c' = c$
 $now \ D_{U} \oplus D_{v}(\Psi(c')) = \ \Phi'(D_{c}c) = (D_{U}a, D_{U}b)$
 $and \ \Psi(c') = (a, b) = \ F(\Psi(c)) = 0 \quad \text{and} \quad D_{Y} \text{ injective}$
 $finially x = \Psi(a, b) = \ \Psi(\Psi(c)) = 0 \quad \text{and} \quad D_{Y} \text{ injective}}$

Next steps in algebraic topology

- I) <u>Homotopy Groups</u> recall $T_n(X, x_0) = [S^n, X]_o$ and $f: X \to Y$ induces a homomorphism $f_n: T_n(X, x_0) \to T_n(Y, f(x_0))$ $\forall n$
 - <u>Whitehead The</u>: if $f: X \to Y$ is a map between CW complexes and $f_*: T_n(X) \to T_n(Y)$ an isomorphism $\forall n$ then f is a homotopy equivalence !
 - for n=2, The (X, Xo) is an abelian group

 - Given any abelian group G and integer n, $\exists a space K(G,n)$ such that $\pi_{k}(K(G,n)) \cong \begin{cases} G & k=n \\ O & k\neqn \end{cases}$

for such a space we have 11°(x, c) = 5 x use of Brown representation the

 $H^{(X;G)} \cong [X, K(G,n)]$ relates homotopy and cohomology!

- <u>Hurewitz $Th^{\underline{m}}$ </u>: if $\pi_{k}(x) = 0 \forall k < n$, then $\widetilde{H}_{k}(x) = 0 \forall k < n$ and $\pi_{n}(x) \cong H_{n}(x)$
- a map p: E→B is a fibration if it has the homotopy lifting property
 1.e. if f_i: X→B is a homotopy and f_o is a lift of f_o
 then I a lift f_i for all t
 all fiber bundles are fibrations

if $p: E \to B$ a fibration, then there is a long exact sequence $\dots \to T_n(F, x_0) \to T_n(E, x_0) \xrightarrow{P_*} T_n(B, p(x_0)) \to T_{n-1}(F, x_0) \to \dots$ where $x_0 \in E, F = p^{-1}(p(x_0))$

I) Spectral sequences

computing the homology of a fibration is much harden!

a group (ar module) is bigradded is a collection of groups
$$E = \{E_{s,t}\}$$

indexed by pairs of integers
a map di $E \rightarrow E$ has biologree (a.b) if $d(E_{s,t}) \in E_{s+a,t+b}$ $\forall s,t$
if $d^* = 0$, then it is colled a differential
and we can consider its homology
 $H_{a,t}(E,d) = \frac{ker[d:E_{s,t} \rightarrow E_{s+a,t+b}]}{init[d:E_{s+a} \rightarrow E_{s,t}]}$
a spectrol sequence, is a sequence $\{E',d'\}$ st
i) each E' is a bimodule, of a differential of degree (-r, r-1)
z) $E'^{*1} = H(E')$
 E° $H(E')$
 $and "E^{o''}$ more or less giving $H_{a}(E)$
can use spectral sequences for many other things too
II Obstruction Theory (and characteristic classes)
given a fibration $p: E \rightarrow B$
there are many problems that can be phrased os the existence
of a sectron (eq. does a montide have a smooth stractive...)
if B is a CW complex then there is a systemation way to try to
construct a sectron skeleta by skeleta
Obstruction theory says : given a sectron $f: B^{(n)} \rightarrow E$ there is a
 $cocycle o(f) \in C^{k}(B; \pi_{k-1}(F))$ st. $\sigma(f)=D$
Chern classes: "primary "obstruction
 f a scattor of B (here $E = C^{\circ}$ -bundle
there F is primary "obstruction
 f a control be (here $E = C^{\circ}$ -bundle
there F is primary "obstruction f extends over $B^{(n)}$
 f a construct F (burger F is F° -bundle
 f a construct F (burger F is F° -bundle
 F is F° -bundle