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Pocricaredualitytt
. Statement and Consequence

amanifolddimension is a topological space M that is

Hausdorff and locally Euclidean- -

T T
points can be each point x c-M has an
separated by
disjoint open sets open neighborhood homeomorphic

to Rn
,
such a nbhd called a coordinate

note : we don't require M to be second countable as some chart

definitions do .

a mani-hboundaryofdiniensco.mn is a space M that is

Hausdorff and every point has an open neighborhood
homeomorphic to IR

"

or IRI = {Ix. . . . . xn) l xa Zo )

3M = {x c- M that don't have nbhd homeo to IR
"

}

in 't M = { x c-M that do have nbhd homeo to 117
"}

exercise: 213Mt -0

hit@M)= 2M

2 ( in 't m ) -0

2M is an Cn- 1)dimensional manifold

we say M is closed it M is compact and on =0

examples :-
1) Surfaces are 2-manifolds

⑤ . . .

2) S
"

c IR
" "

is an n-manifold

3) products ofmanifolds are manifolds : eg
5×5

4) IRP
"
=
Rn" - Ho. . - - 434,2- go, is a closed n- manifold

epn =
En"- Ho. - --0% - go, is a closed 2n -manifold



Tnt
-

let R be a ring
1) M a closed connected manifold of dimension n

M is R - orientableiffHnlm;R) = R
2) M a compact connected n -manifoldwithboundary

M is R- orientable iff HNCMDM;R) IR

Renard: I ) we will define R- orientations and prove that in next

section
2)
allmanifolds are Zh -orientable

} ) the
"

standard
"

definition of oneirtable (say from

differential topology) Is equivalent to Z -onentable4)a choice of generator for Hn (M;R ) Is called afundamentalcladof M
,
Is denoted [M]

,

and determines an orientation

similarly for a generator [M,2M] of Hn (M,2M; R)
Thaz

.

÷

incareDuali#
: it M is a closed connected R.oriented n-mainfoldwith

fundamental class [M]
,
then

HPCM;R)-Hn.plm; R)
[M]n .

is an Isomorphism .Poincaretefschetzduality: it M is a compact connected R. oriented

n . manifold with boundary and [MDM] is a
fundamentalclass

,
then

2 [MDM] =@M)

where 2 : Hulm,2M;R)→Hn .dam;R) comes from the

long exact sequence of the pair (MRM)

moreover
. . .

→ Hp
' '

IM) → HP"bn)→ HPIMDM)→ HMM )→ . . .

f[Minn
. it [2M]n 'f[MDM)n . if [Mismn .

i. .
→ An.p+!MRml→Hn.plan)→ Hn.p(M)→ Hn.p(MDM)→ . .

.

commutes (up to sign) and vertical maps are Isomorphism s .



we prove this later , for now we consider some consequences

core:

let M be a closed compact oriented n -manifold
the cap product pairing

(HMM)for) x ft
n-

Payton) → Zni:÷:::÷÷÷i÷÷÷÷÷÷÷÷÷
Proof : Universal Coefficients Theorem says

O→ Tor ( Hp-dm),Z) → HMM; #t Hom(Hplml, E)→ O
L l- lola) lot = xco)

so
HMMYfor ¥ Hom (Hp(m), Z) = Hom ( HP 'n'for , Z)

Poincare Duality says
P

H lmyfor = Hn- rhyton
x 1-3 [m] nd

i
. Hmm)for

¥ Hom ( Hn
-

Pintor 's Z) an isoumomprops.h.io?of ¢ and
a 1- ( Ha

-

Plmyfor→ E) P
. D.⇒

is a local Ccm] np) = xccm) np)
= put (CMT)

so puke m)) -- o Hp ⇒ Ik) -
-

o ⇒ x so

now it a a generator of HP(XHor then I a
homomorphism 4 : HMX) → Z St. 4121--1
by nondegeneracy of u , Hom ( Hr(x), 7) E Hn

-PCx)

so Ip set. OCH=pur (cm] ) so put generals Hncx)L#



"

#IneahomdogYYj%:÷=#xy*ywheredeg
Proofs : earlier we saw EP

"
= (o -cell) u (2-cell) u . . -

v kn -cell)

so Hk ( Eph; z ) E
Z k -- 0,2, . . - zu{0 otherwise

we have the inclusion 2 : EP
" - '
→ GP

"

epyepn.ie 5
"

the long exact sequence of a pair gives y

kczn Os Hh(Ep"
,
EP
" - t) → Hh(epn ) Hkcap"') → Hh"(cap; epa

-

y = o

so it an isomorphism on Hh tf k s 2n

statement in theorem clearly true for n =L : H
*

Cap
'

) I #We,
now if true for EP

" "
then

X E H'(EP" ") set. xh generates H'46Pa
-') tf ki 1,2 . . - in-i

so I
*KIK generates HUC cap ") t ka n

i. by her 3 , 1*4) u I *Cd)
" "
must generate H

"
Capa) L#

W5Tmyhomofopyequ.ua/enceQP2n-7Gpupreseroesorientaf
Prod : such an f induces an isomorphism on H

-

cap
") = Z

so f
*

(x) = Ix

i
. f
*

( x
" ) = (f

*

(x))
"
= ⇐x )
"

= x
"

so f
't
takes a fundamental class to itself i. preserves or

"

#
(by universal weft.

Cord: theorem)

M a closed oriented n-manifold

Free Hn
-html = Free Hulu).n÷::::÷÷÷÷÷".

if n -- 4M -12 then
x(m) even



Prod : 1st part is just Poincare
'

duality and Universal Coefficients

it dini M = Zmtl,
then

xin

enirq.n.iti-E.enib.IE#ibi=I..oeisib
,

+ I.oath
"' iban

, .i

= Iof-is'
'

b
,
+¥of,y

-i
b
,
?OshieFree HE Free Ham. ,.h

it dim m even then same computation gives
Xlml = but even number

it denim = 4M -12 then XCM) even⇐ bzm+ , even

her 3 ⇒ It
'm"

Imya, x
HZM"(myeon →z

a non -degenerate skew-symmetric pairing

linear algebra fact :-
If V an k - dimensional vector space

of : V x
V→ IR

is a non -degenerate shew - symmetric pairing
then k is even

exercise: Prove this hint it W subspace of V
and Wt = {v EV: qtr,4--0 ifWEW)

then dim V-- dim Wedin Wt

(wtf = w

so fact ⇒ X IM ) even. L#

Cor 7i.
let Mu -- TV

""
with Y compact , orientable, and M connected

then rank C Hn Int) is even and

dim ( her ht : HnlmsHnlms dim I im#: HW)→ Hnlms)) -- I dim Hmm)

moreover any two classes in image it Cup to
zero



Proot: HMV) Hn In) Hn
-"

Haa)

[my . I =IfLynda
. by Poincare - Lefschetz

Hnlm) Hnk) duality

so[M] n Cini2 't) = EM] nlker 8*1 = her ↳

and rank it = drinkin
't) -- dim (her a.) = din Halm) - rank z

= dim HIM) - rank it

t
since Lita

,
c > = 4*414--217*4=44,1*4

:. di in Hn IM)

=L
rank i't so z

't

, I* are adjoint :. have same

rank he. rank ofmatrix and transpose
are equal.)

now it a
, p e HMV) then ←

since 8*02*-0

8*(1*4) up
't

IBD = 8*02*12up ) = O

but H
"

Im) H'"
"

IYM)

totem lion and ↳ injective : 5 injective

so itCNU 2*10=0
#

Core:

If M -M connected and V compact and orientable

then XIM) even

Proot: if dim M odd then XIN) -- O V

it din's M = 4mt2 then Xin) even by Cor 6

it dim M = 4M
,
then proof of Corb ⇒ ( XIM) even ⇒ bun even)

but Cor 7 says it is even #



¥ "

gpu
is not the boundary of a compact

oriented (4nth.manifold .

B
.

Fundamental classes of manifolds
-

let M be a manifold and R a ring with identity Iusually Z or Eh)
if x c- M and U open nbhd of x that is homeo. to IR

"

then by excision

Halm ,
M- Ix); R) Z Hn (U, U-Ix);R) = Hnl IR

"

,
IR
"
-

ftp.RT
abuse of
notation

'

, really
image ofxtummy

"
"

under homeo
.

the long exact sequence of the pair (IR
"

,
IR
"
- HI) gives

no i Hn Clan) → Hn cnn.IR
'
- fxl; R) → Ha , CIN- lol; R) → Hn -IIR

" )

It 511 "

o o
An -is

" "

i R)
11 S

so Hn IM
,
M- 1×3 '

,
RI = R H x eM R

we call a generator of HnlM,
m-1×3 '

, R ) a local

Reorientation
ofthat±

and denote it by Mx

note: if R= Z then every point has twolocal orientations

It R=Z4z u it one u
''

exercise: It you know another definition of orientation at x show

it is equivalent to a Z-orientation at x

now it B is an open ball in a coordinate chart U,thenas above

HnlM , M - B; R ) I R
i

moreover the inclusion (M ,
M -IBD→ (m

,
M - IxD for xe B

induces an isomorphism ↳
HnlM

,
M- B;R) → HnlM

,
M - 1×3;R)

thus a generator for either group determines one for the other



so It x. y are in
a ball B in a coordinate chart U in M

then
Hnlm ,Mtxl;R)= Hnlm, M- B ;R) = Hnlm , M- {y3; R)

and Isomorphisms induced by inclusion

so a local orientation at × determines one at y
-

an Rorientaton on M Is a choice of local R-orientations µ× for all XEM

St
.
for all open balls B in coordinate charts ofM , F µB a generator

of Hn(M,M- B;R) st. µ×=7*lµB ) HXEB Iwhere i : In ,M-B)→ (M, M- A}))

He. a consistent choice of local R -orientations)

it an R. orientation exists on M, we say M is Rorientable
,
it R=E

,
we

say M is orientals

exercise: If you know another definition of orieutable , show It

Is equivalent to this definition

lemma 10-

all manifolds have a uniqueZtk
orientation

Proof : ltxem
, µ, must be the uniquegenerator of 742

similarly µB for any open ball in a coordinate chart

'

'

' 1*1MB )=µ× Hx e B
Et

lemma "

÷
oppose M is R- orientable and connected

it two R-orientations agree at some x EM ,
then they are the same .

he
.
if M is R. orientable

,
then an R. orientation Is determined

by a choice of local R-orientation at any point x EM)

Proofs. let {µ×l×€m and {µ~×}×en be two R- orientations on M.

assume Fxo EM st
. µ×o=~µ×o

let S= {xem : µ×=F× }

st0 since xoes



Sisopen: x e S then I open ball B st
.
xeBc U ←

word. chart

let µB begenerator of Hnlm ,
M- B ;M st 1*lµB)=µ×

MI " "
"

' ' 1*1%1 = µI

since n* isomorphism ,
and µ×=et× we have µB=µI

now for any y E B we have my =1×lµBl=1*lµTp = A.,
soB c S

-1

Similarly S is closed

so S=M since M connected
,
and orientations agree .

for the parenthetical statement :
let {µ×}×eµ be an R - orientation

let µ~×o be a choice of generator for Hn (MM- fxol;R)

so F r E R H
. F×o=rµ×

.

and r a unit

.:{ rµ×)×eµ an R- orientation on M determined byµ~xoL#
6=12

if M is orientable and connected , then

M has exactly two orientations.

Proof : Z has two units +1 and -1 L#

The 13 '

-

let M be a closed connected n -manifold

1) it M is R- orientable then the map 1:(M,0)→ (M, M
. {xD

induces an Isomorphism

lx : Hnlm;R )→ Hnlmm- sx3;R)=R

for all x EM

2) it M is not R - orientable the inclusion above
-

induceses anindiemap
lx : Hnlm;R )→ Hnlm,Mtx3;R)

with image = {reR : 2r=O} for all x EM



3) H
;
IM; R) = 0 H z >n

an element [M] e Hnlm; R) whose image in Hn (M
,
M-N;R ) Is a

generator for all x EM is called a fundamental clay of M
with coefficients in R

.

note: by lemma 11, for connectedM ,
the fundamental classes of M

are in one- to - one correspondence with 12- orientations
.

for R- orcentable manifolds M a choice of generator for Hnlm;R)
is sometimes called an themon M .

6=14:

i) it M is a closed
,
connected

,
orientable n -manifold

then
Hnlm ;z) EE

Hn (mi ZHDEZTZ

2) it M is a closed
,
connected n-manifold that Is not- orcentable

then
Hnlm ;Zt) = 0

Hn (mi 2M¥Eh
Proof : clear from lemma 10 and theorem 13 L#

to prove theorem we need some preliminary work

let Me {xxlxem , xxe Hnlmmtxl ;R)}

we put a topology on MR as follows

for each open ball B in a coordinate
chart of M

and each xt Hnlm ,M-B;R)

let UK
,
B) = { M* (x) }×€,

where M : IMM - B)→ (min- {x}) is inclusion

exercise : , ) Show this is a basis for a topology on MR
2) Mrtm :&×l→× is a covering map (MR might be

disconnected )



3) if o :M→MR Is continuous st. Too = idm

(we call such a map a sewof MR )

and ttx
,
olx) is a generator of Hn (M,M- {x}; R)

then or defines an R-orientationon M

similarly an R. orientation on M gives a 0 as above .

lemma 15-
let M be an n -manifold and ACM a compact subset.

1) it 0: M → MR is a section of MR ,
then 31

. class xae Hnlmm- A ; R)

whose image in HNIMM
- 1×3;R) Is olx) Hxe A .

2) Helm ,
M-A ;R) = 0 He > n

Proof of That 13-

If A =M in
' lemma 15 then The 13 part 3) follows from lem 15 part 2)

for part 1) of The 13

let PR = { sections ofMR }

note: , ) sum of two sections Is a section

2) it o a section and reR
,
then ro a section

SO PR is an R. module

lemma 15part 1) ⇒ F a well-defined map of R
-modules

0

Pr→ Hnlm ;R)

Claim: 01 an Isomorphism
X

indeed
,
it XE Hn (M ;R)

,

then define

0×1×1=1*1×1
where

y
: m→ (M, M

- {xD

exercised of a section and 1010×1=2

:
. 10 onto

.nowit otrr and 10107=0 e Hnlm;R)

then 0 (x) = 0 Hxem
,

:. 0=0 in rr
so 4 injecting



just as in the proof of lemma 11
,
it M connected

,
then

two sections of MR are the same it they agree
at one point.
:
.

if
we fix % EM the map

pp→ R = T
'
'

lxo) = Hnlm ,
M- {x}; R)

oh ocxD

Is Injective
it M is R - orientable , F a section 0, st. olxo) a generator

of Hn (M, M- {xD ; R)

.:above map onto.
and Halm :NI Pr II,

for part 2) of That see Hatcher (or work it out yourself ! ) #.

Prootoflemmal

Claimed It lemma true for A and B and AAB
,
then true for AUB

Claim: It lemma true for M= IR
"

,
then true for all manifolds

Claim: lemma Is true for IR
"

Clearly lemma follows from claims.
ProototClaim=: note IM, M- (AUBD = In , CM-A)n(M-B))

soMayer-ketorisgives
H ;t.IM, M- AnB))→It ; (M M

- IAUBD → H
,.IM,
n-A)toHilm,

M-B)
11 11 11

1>1 0 0 0

so Him , M
- CAUB)) = 0 1 > n

for 1=n

O→Hnlm, M - IAUBD#Hnlm,
M-A)to H IM

,
M-B)¥H (M, M - (ANBDn n

where I Ia. f) =

x-p
and § 121 = 1d. x)

now suppose 0 Isa section of MR



by assumption 7! da C- Hn (M, M-A) and

9BE Hn 1M , M-B)

st
. 11 Ida ) = ocxl = M* I XB ) V. XEA or B

so I ( da , LB ) Is the class in HNCM, M-CANBD corresponding
to the section F that Is always 0
so it Is 0

by exactness F daub £ Hn (M
,
M- HUBD st

. OIHAUB ) = (

%B
, Guts )

.
: l×* ( daub ) = 01×7 H × EAUB

= (da , ×B )

to see

&auB
unique , note that

it I was another such

class
,
then if ldau, - E) =o Hx EAUB

:
. Xanz

- £ as a class in HNIM, M -A) or HNIM , M- B)

also has this property
. : by uniqvness for A and B Xauts I

= 0 in

Hn (MM. A ) and Hnlm, M-B)

thus ingenuity of I ⇒ ×auB - II,

Proofof(1aim=: it A c M compact , then we can write A
= A. u . . u Ah

where A; are compact and each Is in a coordinate chart U;

Hjlm ;M-Ae) I H
,We,Ue -Ae) F H

,
11179,1172 Ae )

texcision

so it lemma true for compact subsets of IR
"

then true

for (M ,A;) and (M
,
A,nAj)
Estill in IR

"

:
. by Claim 1 true for (M, A. u Az)

since (A.UADNA
,
c U
, can continue inductively

so lemma true for (MAI

Proofofclainii: it A is convey then IR
"

-A and IR
"
. {×} both

retract onto a sphere centered at x



.

'

. Hi (IRYIR
"

-A) = H
;.fm.A) = H,. , (sn

' ') =Hulk
"
- s×})

I H; (IN, IR
"
- {x })

so part 2) of lemma clear

exercised: IRK = lR^xR (R has discrete topology)

so sections of Mnr are constant and .: i) also true .

by Claim' I , lemma now true for A = finite unions of convex sets

now let A beanycompact set in M
"

let Z be a cycle that represents a E H; (IN, IR
"
-A ; R)

thus ZZ E 4. , ( IR
"
-A)

let ( = Union of images of siinplicies in ZZ
since ( ,A are compact F some r 3.t.dk ,y) > r Fx E( any y EA

0

•"k8¥ze.⇐2Z

by compactness of A we can find finitely many closed r - balls B. , ... ,Bn
that cover A and Cn B. = 0

let K= UB;
note Z defines an element xk £ H

; 1 IR
"

,
IR
"
-k) that maps

to a E H
,
1 IR? IR".A) by inclusion

since B, are convex
,
if 1> n

,
then 4<=0 :

. x=o

if n=n and 0 a section of IR"R then Fdk EHNIIRYIR"- k )
st

. l×*lxk)= old txtk

but HIM,
R
"
-k )#Hn 1Mn, M"-A)¥Hn (IR? IR"- sxD
÷

*

so &=1*l&k ) is desired element



now suppose x. a
'
are two such elements

then M
*
1x. d) = 0 HxtA

it ye K then F some B; and xe AnB; st. Y E B;

then
Hnunn,RYx};R ) HNIIRYR

"
- {yl;R)

PTE¥ y
* *

Halim
,
Rn. B

.
;R)

so it (d. x ' ) = if 1¥5
'

101=0

.

'

. 14*12 - L ' ) = 0 H y EK

: from above X -21=0 and we have uniqueness
#

Remote a fundamental class [Miami] can similarly be considered
for compact manifolds with boundary

C. Algebraic limits and Proof of Duality
.

a set I Is a diieckdset it F a partial order 1 er
' defined

on certain pairs in I st. He, ,
'
C-I
, Fz "EI st. 112

"

and 1
'
± 2

"

example: , ) I = subsets of a set X

E given by inclusion

2) I = Z with E standard Inequality

now suppose {M, },# is a family of R-modules indexed by a directed
set I st

.

tier '
,
F a homomorphism

4
;
:M
,
→M

,
,

st
. ¢, "

no
of
, ; ,

= ¢
,"
,
,
it 1=2 't 7

"

and 4h = idm
;

this Is called a directedsystem#modulesthedirectLimeof {Mi }, . I is a module M together with homomorphisms
4
,
:m
,
→n



st. oh , of = 0
;

H iei

"
it

and for any module N and maps Yi :M, →N satisfying 4, ,°¢,, ,

,=4
;

F ! homeomorphism 4 :M→NS.t. 4=4001;

4./
'FY#

$2
,

$32
M

,
→Mz→M3→ .

. .

⇒ J ! 4 :MtN*that } " '

M

exercised any two direct limits are Isomorphic

we denote the direct limit by hmj Mi

lemmal=
direct limits exist

t.ro#letM+=0Mi
and lost : M,→ Mt

xt I- tuple with 7th cpt=x others 0

letJ=submodules of Mt generated by { olio4, 1×1-loilx} Fxem;in
and 1. n 'tI

setm=m%-and ¢, = too,t where T:M+→M is the quotient map

exercise: check (M, oh.) is the direct product L#

exercises.

÷F M; are all submodules of M and nee
'⇒ an . in,→M, , is inclusion

then l±
,
M
,
= UM

;

2) it JMEI st. gem He eI
,
then 4mi. Mm→ line M; Is an Isomorphism

3) suppose FitI, Me
=MOP; and

01in
=

Yni
,

@

fin
tie ' '

let N= lim
,
Nn. , P= limp, , M= lim, M,

then we get 4: Ntn and p : P→ M st
.

404
,
= oh In , pop. = 4, lp



and YOP : Nop→M Is an Isomorphism

4) a subset JCI Is called final if th EI , F) EJ st. kj

applying definition to 4
,
:M
,
→M we get a homomorphism

t : ¥ M
,
→ line, M;

Show X Is an Isomorphism

5) it {A
,
}
,# ,
{B
,
}
,← ± ,
{(, },# are directed systems and ti we have

A.EiB.eci@s.t
.
the ' '

A;
G B

,

¥ G '
.

totalthintorii
Is commutative

A
,
,#By#(n '

then in the limit weget homomorphisms

limit , ''→l⇒B,I# G. #
show if @ is exact at B, ti, then # Is exact

lemma 17'

÷
- {4 } be a directed system of subsets of X st. any compact

set KCX Is in some Ux
Then

1in
,
H
;
(Ux ;R)= It;lX; R )

Promote Clearly we have inclusion maps Hilua;Rl → It, (x ;R) to
i. get map 1in H.lk ;m→ H

,
lX;R)

it [o ] EH
,
(X;R) then in o C Ux , some d '

so Hyun ; R)→ It,l×iR) hits [o]

but H.lk ;R)- H
.
lx;R)

\v
°

17

hm→HilUxiR) so map svrjectiie

exercise: check inyechie (similar) at



now if M is an n-manifold

let I={all compact subsets of M } directed by inclusion

note: KEK
' ⇒ (M, M

- K
'

) -22 (

mm
- K) Inclusion

z*
⇒ HMM

,
M-Kim → H9 1m

,
M- K

'

; R )

:
. { HMM, M-K;R)} Is a directed system of R -modules

define H ! (M;R) = he, HMM,
M-K ; R)

note: 1) it M is compact, then M is trial in
'

I

:
. Hot (m ;R)E HE

CMIR
)

2) you can think of elements ofHYLMIR) as cochairs that

vanish off of some compact subset of M

so we call HYCMIR) theEdgy.net#tsupp=

fix an R- orientation onM

recall this means a section o :M→ Mr st. 01×1 generates

Hnlm, M- {x} )

let K be a compact set in
' M

then lemma 15 gives a class xk c- HNIMM -K;R)

st
. M* (g.)= ocx) where M : (M

,
M-k) → (M

,
mtx})

the cap product gives

Hnlm
,
M-K;R)× HPCM,M-K ;R)→

Hnplm
;Rl

so xkn . gives a mapHPIMM
-Kim → Hn

.

plMiR)
r i- ×k^8

if KCK '
then

HPIM
, M

- K ;R )
44 '

\, why ? think
f Hn.plmi R) f about lean 15

Hplmn .Kim +
akin .

Is commutative

so we get a map
HP
.
(µ;m#An.plMIR)



Tha18 IPoincare
' Duality Revised ) :

.if M is an R-oriented n -manifold, then

Dm
:Hpc(M)→ Hn .plm )

is an Isomorphism

Clearly The 2 part 1) follows from this since it M compact HPDM;RKHMM;R)
and map is given one since xµ= [m]

Proof
÷epI_: If thetrue for open sets V.V , and Unv in M then true for Uuy

Steph let {U
,
} be a system of open sets totally ordered by inclusion

set U= Uui . It the true for all U, then true for U

Stephie : tha true for any open U c coordinate chart of M.

once we have established StepsI-# we are done as follows :

recall Zornislemma : if P is a partially ordered set such that every

,cnhalnhas an upper bound , then P has a

totally ordered maximalelementsome elt greater than (or equal to)subset all elts in chain
this Is equivalent to the
axcoin of choice

now by StepI and Zorn 's lemma there Is a maximal element U

in
' M for which that is true

it M¥U , then let x €M -U

F an open set V st. x E V C X- U st
.
V is In a word. chart IIR

"

:
. the true for UUV by Step I XO maximality of U

: U=M and we are done

step# Is heart ofproof
Proof ofStep

#
suffices to prove for open set in IR

"

÷

A-
: let U be convex open set in IR

"

exercise: vhomeomorphic YIM##Ia #¥€



so by naturally of everything just need to check for IR
"

letKrbe the closed (compact) ball of radius r in M
"

(centered at 0)

{ Kr }
, do,•)

is final in all compact sets in 117
"

: Hiram = lying HPAM,IN . kr )
and each HPCM.IR'. Kr ) = O tptn

: . Hpc (Mn ) = 0 for ptn

also Hn .path
" ) = 0 H pt n :

.
the true it pen

for pin we get Hne CRYER and Ho (ME R

now consider xkp. : HNCIM
,
#Kr ) → HOUR

")

recall Hnl IN
,
IN-Kr) × HYIRYR

'
-Kr ) → Holm

")

(x
, p ) 1- p(nd ) =p(&)

teval on front n - face
now xkr is a generator of Hn (IN, R?kr)

(or couldn't map a generator OCD

of Hn (IN, IR
"
. {xD)

: it dual B in HOMIHNURHR'
. Kr); R) I Hnl IN, lpekr )

evaluates to 1 on &kr
so p generates Hnl IN, IN - Kr )

and &k
,

n . Is an Isomorphism : D an isomorphism,
Cased General open VCR

let { b, } be a countable dense set in U

let U
,
be balls centered at bi contained in U

so U = Uui

set V
,
= U

,
and 14=14. , UU; V 2>1

tha true for each V; by following claim

Claim : tha true for any finite Union of convex sets



Proofofclaim: induct on number of convex sets

true for 1 set by CaseA

assume true for Union of any 1 convex sets for 2<k

now given Ai , ... , Ak
We know tha true for AN ...

uAh. , by induction

Ah by CaseA

and Ann (A. v.. .uAh. , )=(AfA, )u . "KahnAnd
- -

each convex

only kt sets
so by induction

:
. StepI ⇒ that true for AN . .

.uAny
now the true for U by Step E-,

Proof of Step#
-

:

from lemma 17 III
,
Hn.p(4) → Hn.PIU ) induced by inclusion Is

an Isomorphism

similarly it UCV;
and Kc U

, compact , then excision gives anIsomorphismHPW;,U; -H → HPCU
, ,u,
. k)

the inverse gives maps Hrlu
, .u.
. k) → H%

,
,u,
-k) → HECU;)

.: we get a map H! lu, ) → HE w, )

Claim: h÷; HIM = HEw) and Du=l÷gDu;

note that given the claim
since Du

,

: HE (4) → Hnp (y ) an

Isomorphism Vi , Du : HE Lu) → Hnp (D an isomorphism too ✓

Prootofclaim: as above we get maps HE(ud → HE (u)
: we have a map

I;mj Hpdu;)

I
HECU )

now for any compact set K c U F , st. KCY He zj

p
so we get a map H (Yu-H→ HPCY ,U, .k)→ HE(4)

→ h÷, Hrecu. )



.

'

. we have a map H !Cut'→k=, H ? (v.)exercise: show 6 and H are inverses of eachother.

also check claim about D=,
Proof of Step I
-

:

let K be any compact set in U

L " ii V

set B= UNV and Y= UUV

note: (Y, Y - (Knl)) = (Y, Y -Nu (YIY - L)

( Y, Y - (Kul)) = (Y, Y-k) 1

IYY
- L)

so Mayer -Vietor's for (Y ,u -k ) andIY, V. c) giveHPCY
,
4-And) →HMY,y -k) toHPIYIY-k) →HPCY, Y - (Kul))

§
HM' I Y

.
4- (Kul))

be t± t :

HPCB
, B- Ikm)→ Hpluiu.Ho HPCYV- L) §an . Ha '( B. B- Ckm)

f&kun. I did '

Odd
' f ×knn '

2

Hn .plB) → Hn.pw ) to Hn .pm
→ Hn.pk ) → Hnp., (B)

exercise: i) first two squares commute (easy since all maps are inclusions
or cap products)

2) last square commutes uplo sign

Hint: a) recall 2 is defined as follows :

÷a#19 given ZE Hn
-p
(Y) you can write Z = atb

then 2 [Z] = [ za]

for a € (
n.p(↳ c

b C-Cnp (k)

b) as in
' proof of That II. 11 can use Lebesgue number and

barycentric subdivision to find chains
&
K )

&
LKKNL sit

. ×kuL = Xkt 4 + &knL

you can now compute 2 ° (×ku< n . )

similarly compute (×kn<n ' ) ° S

note any compact set in
' B=UnV Is KNL for some K&L as above

and similarly for Y=UuV



so above gives the following diagram commutes upto sign

HPDB)#HEwomen#HPCCY)#HPYCB)
isomorphismI¥pYa¥HnpIY.FI?paa#antnYenIKYnbyassompnonClaim : Dy is isomorphism

indeed it XEHPCY) andDyx=Othen 0=2DX=DSa ⇒ 82=0
Y B

.
:F (a.b) st. ICa.b)=x

and I
'

(

Dua
,

Du
b) =D
,
Il(aid =D

,

,a=o
.

'

. Fc st
.
OIIC):(Da , Db)

v "

and C
'

st
.
Do

'
= C

B

now DoD#(c ' ))= $
'

1Do ') = (Dua. Dub)U V B

and Fcc't (a. b) since DoD an =
U V

finally x=I( a. b) = I(Icc 'D=O and D injectiveY

exercise: Show Dy svgeitiie,



Next steps in algebraictopology
-

I)

HOMIE
a homotopy

classes of based maps

recall Tin (X. xo) = [ 5, X ]o
and f :X→ Y induces a homomorphism f* : In (X, %)→ TalY, flxo)) Fn

•

whitehead-hm_l.it
f:X→ Y is a map between

CW complexes and

f* : Tia (X) → In IY) an Isomorphism V. a

then f is a homotopy equivalence !

• for nzz
,
Tin IX. Xo) is an abelian group

• hard to compute in general
9 t.mil#z4z5z*I8zEEsi.

• Given any abelian group G
and integer n , F a space KCG, n ) such that

Th (KIG, n)) = { 6
k=u

0 ktn

for such a space we have

HYX; G) ± [ X, kcgn)]
Brown representation the

relates homotopy and cohomology!

•

Hythe
: it In 1×1=0 F k< n , then Eh(H=O then

and In (X) I Hn (X)

• a map p :
E→ B is a fibrotic if it has the homotopy lifting property
ie. it ft:X→B is a homotopy and Fo is a lift of to

then F a lift ft for all t
all fiber bundles are fibrations

if p : E→ B a fihrahin
,
then there Is a long exact sequence

. . .

→ Th IF
,
xo ) → In leixo)¥In (B

, pho) )→ In . ,(F.xD→ ...

where XOEE
,F=p

' '(pho))

I)

Spectralsequences
computing the homology of a titration Is much harder !



a group (or module) is bigradded is a collection of groups E
-
- {Est)

indexed by pairs of integers
a map d '

. E→ E has bidegree.la#itdlEs.t)cEsea.ttbHs.t
if d

'
-
- o
,
then it is called a differential

and we can consider its homology

Hs
, t
(E
,
d) = testates

mi {d '. Es-a. t-b→ Est )

a specials ,
is a sequence { Er, d

') set.

1) each Er is a bimodule
,
d ' a differential of degree C- r

,
r- D

2) Er
"
= H (Er)

e "

÷÷¥÷÷:
"

Lerayttirshthm if p : E→B a fibration

B simply connected CW complex
then I a spectral sequence with E's,

= Hs (B 's Ht IED

and
"

Ed
"

more or less giving H
*
CE)

can use spectral sequences for many other things too

# obslructiontheory-adeharacterislicclao.se

given a fibration p : E-713

there are many problems that can be phrased as the existence
of a section (e.g. does a manifold have a smooth structure . . .)

it B is a CW complex then there is a systematic' way to try to

construct a section skeleton by skeletal

Obstruction theory says : given a section f : Bk
-"
→ E there is a

cocycle off ) E Ch(B; Tim, ff)) set. offto

⇒

Cherne:
"

primary
"obstruction f extends over BK)

to a G n-htt frame over (here F is p
- '(pts)

2h skeleton of B (here E a El - bundle)

these are called characteristic classes (also have Stiefel-Whitney , Pontryagin
classes

. . . )


