Math 6452 - Fall 2014 Homework 3

Work all these problems and talk to me if you have any questions on them, but carefully write up and turn in only problems 3, 5, 8, 9, 12. Due: In class on October 17.

- 1. Prove that TS^1 is diffeomorphic to $S^1 \times \mathbb{R}$.
- 2. If S^k is the unit sphere in \mathbb{R}^{k+1} show that S^k has a non-zero vector field if k is odd. Hint: For k=1 you can use the vector field $v(x^1,x^2)=(-x^2,x^1)$. Here we are thinking of $S^1 \subset S^2$ and $T_xS^1 \subset T_x\mathbb{R}^2 = \mathbb{R}^2$.
- 3. A rank k vector bundle $p: E \to M$ is called trivial if $E = M \times \mathbb{R}^k$. (Here "rank k" means the fiber of the bundle is a k dimensional vector space). Show that E is trivial if and only if there are k sections $\sigma_1, \ldots, \sigma_k$ of E such that at each point $x \in M$ the vectors $\sigma_1(x), \ldots, \sigma_k(x)$ form a basis for $p^{-1}(x)$.
- 4. Suppose E and \widehat{E} are two rank k vector bundles over M. Suppose that $\{U_{\alpha}\}_{{\alpha}\in A}$ is an open cover of M such that both E and \widehat{E} have local trivializations over the U_{α} and their transition functions are $\tau_{\alpha\beta}: U\alpha \cap U_{\beta} \to GL(k,\mathbb{R})$ and $\widehat{\tau}_{\alpha\beta}: U\alpha \cap U_{\beta} \to GL(k,\mathbb{R})$, respectively. Show that there is a smooth bundle isomorphism

$$\begin{array}{ccc} E & \stackrel{f}{\longrightarrow} & \widehat{E} \\ \downarrow^p & & \downarrow^{\widehat{p}} \\ M & \stackrel{Id_M}{\longrightarrow} & M \end{array}$$

if and only if there are smooth maps $\sigma_{\alpha}: U_{\alpha} \to GL(k,\mathbb{R})$ for all $\alpha \in A$ such that

$$\widehat{\tau}_{\alpha\beta}(x) = \sigma_{\alpha}^{-1}(x)\tau_{\alpha\beta}(x)\sigma_{\beta}(x)$$

for all $x \in U_{\alpha} \cap U_{\beta}$.

- 5. Stereographic coordinates provide a local trivialization of the tangent bundle of S^2 . Compute the transition functions for the tangent bundle to S^2 using the trivializations determined by stereographic coordinates.
- 6. Let v be a vector field on M and $f: M \to \mathbb{R}$ a positive function. If $\gamma: \mathbb{R} \to M$ is a flow line of v show there is a function g with positive derivative such that the reparameterization $\gamma \circ g$ of γ is a flow line of fv.
- 7. Let A be an $n \times n$ symmetric real matrix and $b \in \mathbb{R}$ a nonzero real number. Show that

$$M = \{x \in \mathbb{R}^n : x^t A x = b\}$$

is a manifold of dimension n-1.

8. Let

$$H(m,n) = \{(z,w) \in \mathbb{C}P^m \times \mathbb{C}P^n : \sum_{i=0}^m z^i w^i = 0\}$$

is a manifold of dimension 2(m+n-1), where $m \leq n$ and $z = [z^1 : \cdots : z^m]$ and $w = [w^1 : \cdots : w^n]$ are homogeneous coordinates.

- 9. Given a submanifold N of M we say a smooth map $f: W \to M$ is transverse to N if for every $p \in f^{-1}(N)$ we have $T_{f(p)}M$ being spanned by vectors in $T_{f(p)}N$ and the image of df_p . Note: a point $p \in M$ is a regular value of f if and only if f is transverse to p. So this notion of transversallity generalized the notion of a regular value. Show that if $f: W \to M$ is transverse to the submanifold N of M then $f^{-1}(N)$ is a submanifold of W whose codimension is the same as the codimension of N in M.
- 10. If S_1 and S_2 are two submanifolds of M then we say they are transverse if for all $p \in S_1 \cap S_2$ we have $T_p M$ spanned by $T_p S_1$ and $T_p S_2$. Note if $I_i : S_i \to M$ is the inclusion map then S_1 is transverse to S_2 if and only if I_1 is transverse to S_2 if and only if I_2 is transverse to S_1 . If S_1 and S_2 are transverse submanifolds in M show that $S_1 \cap S_2$ is a submanifold of dimension $dim(S_1) + dim(S_2) dim(M)$ (said another way the codimension of $S_1 \cap S_2$ is the sum of the codimensions of S_1 and S_2).
- 11. Let $f: M \to \mathbb{R}^k$ be a smooth map and $N \subset \mathbb{R}^k$ a submanifold. Show that for any $\epsilon > 0$ there is a vector v with $||v|| < \epsilon$ such that the map $M \to \mathbb{R}^k : x \mapsto f(x) + v$ is transverse to N.
 - Hint: consider the map $M \times N \to \mathbb{R}^k : (x, y) \mapsto y f(x)$.
- 12. Given a function $f: M \to \mathbb{R}$ and a vector field v on M, show that $\mathcal{L}_v f = 0$ if and only if f is constant on the flow lines of v. (Here $\mathcal{L}_v f$ means the Lie derivative of f along v.)