Differential Topology

Differential topology is about studying the most general" spaces on which you can "do calculus" that is : differentiate functions integrate functions (and other things) solve differential equations ... We will study manifolds which are roughly spaces that look locally like Euclidean space In particular R° is a manifold (R° means n-dimensional Euclidean space) So differential topology is in some sence the ultimate generalization of vector calc. Why study manifolds ! Manitolds are everywhere they show up allower mathematics, the sciences, and engineering for example · Solutions to "most "equations e.g. $\chi^2 + \gamma^2 - z^2 = t$ manifold manifold てつの t < 0

I <u>Manifolds</u>

A Topological Manifolds

a topological space M is a <u>manifold of dimension n</u> (also known as an <u>n-manifold</u>) if

> (1) M is Hausdorff and 2^{ad} countable and (2) M is 'locally Euclidean", that is for each point $p \in M$ there is an open nbhd U of p in M, an open set V in R, and a homeomorphism $\phi: U \rightarrow V$

 $\phi: U \rightarrow V$ is called a <u>coordinate chart</u> around p

<u>Remark</u>: Items 1) and M being a topological space can be replaced by M is a subset of IR^k, some k. (we will prove this later) this is psychologically satisfying, but make examples and proofs much harder <u>exercise</u>: Show in item 2) one could say that V = open ball in Rⁿ $and <math>\phi(p) = 0$ and we would have an equivalent definition (similarly, could take V = Rⁿ)

<u>examples</u>:

1) any open subset of \mathbb{R}^n is an *n*-manifold (e.g. \mathbb{R}^n) 2) $S^n \subset \mathbb{R}^3$ unit sphere is a 2-manifold

$$\begin{aligned} |et \ U_{2^{+}} &= \left\{ (x,y,z) \in S^{2} \mid z > 0 \right\} \\ V_{2^{+}} &= \left\{ (x,y) \in \mathbb{R}^{2} \mid x^{2} + y^{2} < 1 \right\} \\ \phi &: U_{2^{+}} \rightarrow V_{2^{+}} : (x,y,z) \mapsto (x,y) \\ \phi^{-1} &: V_{2^{+}} \rightarrow U_{2^{+}} : (x,y) \mapsto (x,y, \sqrt{1-x^{2}-y^{2}}) \\ these are clearly continuous so ϕ a homeomorphism
so $\phi : U_{2^{+}} \rightarrow V_{2^{+}}$ is a coordinate chart \end{aligned}$$

similarly get $U_{x^{\pm}} \rightarrow V_{x^{\pm}}, U_{y^{\pm}} \rightarrow V_{y^{\pm}}, U_{z^{-}} \rightarrow V_{z^{-}}$ so S^2 is a Z-manifold (note: Hausdorff and Z^{nd} countable since \mathbb{R}^3 is and subsets inherit these property)

can prove 52 a 2-manifold in a different way

<u>Stereographic Coordinates</u>

 $let N = (0,0,1) \in 5^{2}$ $U = 5^{2} - \{N\}$ $- and V = R^{2} = xy - plane$ $b(p) \quad given p \in U \quad let$ $L_{p} = line through N \quad and p$

Lp Λxy -plane in one point, call it $\Phi(p)$ this defines a function $\Phi: U \rightarrow V$

let's work out a formula for
$$\phi$$

given $p = (x_i y_i z)$ the line lp is parameterized by
 $r(t) = t(0,0,1) + (1-t)(x_i,y_i,z)$
to see where $lp \land xy$ -plane we need to find t
such that z -coordinate of $\phi(t)$ is 0

i.e. t + (l-t) = 0 (l-z)t = -z $t = \frac{z}{z-1}$ $l-t = \frac{-1}{z-1}$ So $r\left(\frac{z}{z-1}\right) = (0, 0, \frac{z}{z-1}) + \left(\frac{-x}{z-1}, \frac{-y}{z-1}, \frac{-z}{z-1}\right)$ $= \frac{1}{z-1}(-x, -y, 0)$ and $\phi(x, y, z) = \left(\frac{x}{1-z}, \frac{y}{1-z}\right)$

exercise:
$$\phi_i$$
 is one-to-one and onto
 ϕ_i is continuous
 ϕ_i^{-1} is continuous
so ϕ_i is a coordinate chart

so RPⁿ is an n-manifold (Uo, ..., Un cover RPⁿ) actually not! need

exercise: RP" is Hausdorff and 2nd countable

<u>Remark</u>: this is the first example that is not obviously a subset of R^k, some k. the above exercise is some what hard but would be harder to get embedding

<u>exercise</u>: Show $\tilde{f}: S^2 \rightarrow \mathbb{R}^4: (x, y, z) \mapsto (y z, x z, x y, x^2 + 2y^2 + 3z^2)$ induces an embedding $f: \mathbb{R}P^2 \rightarrow \mathbb{R}^4$

exercise:
i) CPⁿ = Cⁿ⁺¹-{(0,...,0)}/C-{0} <u>complex projective space</u> is a Zn-monifold
2) Show CP' is homeomorphic to S²
+) Products of an n-manifold and an m-manifold is an (h+m)-manifold
exercise: Prove this

50, for example, T'= 5'×5' is a Z-manifold

B. Smooth Manifolds topological manifolds are interesting but to "do calculus" we need more structure we begin with: given an n-manifold M and two coordinate charts $\phi_1: U_1 \rightarrow V_1 \text{ and } \phi_2: U_2 \rightarrow V_2$ φ_z R $\phi_1(u, nV_r)$ $\phi_z \circ \phi_i^{-1}$ we say they are smoothly compatible if

have continuous partial derivatives of all orders at all points

a smooth atlas for M is a collection of coordinate
charts
$$A = \{\Phi_{A}: U_{A} \rightarrow V_{A}\}_{A \in A}$$
 such that
i) $\{U_{A}\}_{A \in A}$ covers M (i.e. $M = \bigcup_{a \in A} U_{A}$) and
z) all charts are smoothly compatible
Remark: could similarly define
 $\binom{k}{-atlas}$ (for $\psi_{a} \circ \psi_{a}^{-1}$ k-times continuously diff.)
 $\binom{\omega}{-atlas}$ (for $\psi_{a} \circ \psi_{a}^{-1}$ k-times continuously diff.)
 $\binom{\omega}{-atlas}$ (for $\psi_{a} \circ \psi_{a}^{-1}$ and $\psi_{a} \circ \psi_{a}^{-1}$ complex analytic)
complex atlas (for $V_{a} \in \mathbb{C}^{n}$ and $\psi_{a} \circ \psi_{a}^{-1}$ complex analytic)
 C° -atlas any topological manifold has this!
We want to say that a smooth atlas gives a smooth structure
on M, but this leads to problems
e.g. given $\psi: U \rightarrow V$ in an atlas A for M
M M M M M M M M M M M M M M M M M
pick any open U' = U then let
 $A' = A \cup \{\psi_{a}|_{U}: U' \rightarrow \psi(U')\}$
this is also a smooth othas for M
different from A!
so we would get infinitely many smooth structures
on M if we just used a smooth atlas to
define them

lemma 1:

M a manifold 1) every smooth atlas for M is contained in a unique maximal smooth atlas 2) two smooth atlases for M determine the same maximal atlas their union is a smooth at las

Proof: 1) given an smooth atlas A for M let A = { all coordinate charts for M smoothly compatible with all charts in A } Claim: A is an atlas for M Indeed, if $\phi_i: U_i \to V_i$ and $\phi_2: U_2 \to V_2$ are in $\overline{\mathcal{A}}$ for any pE U, NUz there is a chart \$:U-V in A s.t. pEU M φ, ¢ Φ V, $\phi_{1}(V_{1}nV_{2})$ $\phi_1(v_1 \cap v_2)$ **(**() \$ • \$ -1 φ(*P*) φ2 ° φ1

So
$$\phi_{2} \circ \phi_{1}^{-1} = (\phi_{2} \circ \phi^{-1}) \circ (\phi \circ \phi_{1}^{-1})$$

smooth at smooth at $\phi_{1}(P)$ by $\phi_{1}(P)$ by hypothesis hypothesis
so $\phi_{2} \circ \phi_{1}^{-1}$ is smooth at $\phi_{1}(P)$ by the chain rule
since p was any point in $U, \Lambda U_{2}$ we see
 $\phi_{2} \circ \phi_{1}^{-1}$ is smooth at all points of $\phi_{1}(U, \Omega_{2})$
proof of 2 is an exercise
We define a smooth monifold to be a manifold M together
with a maximal smooth at las
we also say a maximal smooth at las for M is a smooth
structure on M
We can easily describe smooth structures by giving
a smooth at las.
 $examples:$
1) $M = R^{n}$
 $A = E id: R^{n} \to R^{n} B$

gives a smooth structure on IR"

2) 5² can be given a smooth structure with stereographic coordinates.

exercise: show the transition function between
the two charts is

$$\phi: (\mathbb{R}^{2} - \{(o, o)\} \rightarrow (\mathbb{R}^{2} - \{(o, o)\})$$

 $(x, y) \longmapsto (\frac{x}{x^{2}y^{2}}, \frac{y}{x^{2}y^{2}})$
ond similarly S^{n} is a smooth manifold via
stereographic coordinates
3) \mathbb{RP}^{n} has coordinate charts
 $\phi_{i}: U_{i} \longrightarrow V_{i}$
 $\{[x^{i}, ..., x^{n}]\} = [x'_{i}, ..., x'_{ki}], x'_{ki}]$
 $\phi_{i}^{-1}(x'_{i}, ..., x^{n}) = [x': ...: 1: ..., x^{n}]$
 $f(U_{i}, ..., x^{n}) = [x': ..., 1: ..., x''_{ki}], x^{i} + o]$
 $\therefore \phi_{i} \circ \phi_{j}^{-1}(x'_{i}, ..., x^{n}) = (x'_{ki}, ..., x''_{ki})$
 $aud \phi_{j}(U_{i} \wedge U_{j}) = \{(x'_{i}, ..., x^{n}) \mid x^{i} \neq o\}$
 $\therefore \phi_{i} \circ \phi_{j}^{-1}$ is smooth
and \mathbb{RP}^{n} has a smooth structure
4) If N is an open subset of a smooth manifold M
 $it gets a smooth structure$
 $2.e given A for M let$
 $A_{N} = \{\phi|_{U_{NN}}: UnN \rightarrow \phi(UnN)$
 $for all \phi: U \rightarrow V \text{ in } A\}$

5)
$$Mat(n,m;R) = \{n \times m \text{ matricies } \forall real \text{ coefficients} \}$$

note: $Mat(n,m;R) = R^{n \times m}$ so it is a smooth
monifold
6) $GL(n,R) = \{invertable n \times n \text{ matricies} \}$
recall $GL(n,R) = det^{-1}(R - \{o\})$
note: $det: Mat(n,n;R) \rightarrow R$ is continuous (smooth)
e.g. $det: Mat(2,2;R) \rightarrow R$
 $R^{n} = (a, b, c, d) \rightarrow ad - bc$
 $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$
by induction
 $det M = \sum_{z=1}^{r} a_{1z}(-)^{z} det M_{1z}$
is smooth
so $GL(n,R)$ is an open subset of $Mat(n,n;R)$
 \therefore a smooth manifold (of dimension n^2)

see book(s) for more examples, but first

<u>worrisome example:</u>

consider
$$M = \mathbb{R}$$
 and $B = \{f: \mathbb{R} \to \mathbb{R}\}$
 $x \mapsto x^3$

<u>note</u>: B is not compatible with $A = \{id: R \rightarrow R\}$ since $x \mapsto x^{\prime\prime 3}$ is not differentiable at 0

so A and B are different smooth structures on R! but note $g: \mathbb{R} \to \mathbb{R}: x \to x^3$ takes ided to $f \in \mathcal{B}$ idog <u>exercise</u>: let A, B be the maximal atlases associated to & and B, then $\{\phi: U \rightarrow V\} \in \widetilde{\mathcal{A}}$ $\{ \varphi_{\circ}g : g^{-1}(\upsilon) \to V \} \in \overline{B}$ so the smooth structures on R are really "isomorphic" (that is related by a bijection) the term we use for this is "diffeomorphic" two smooth manifolds (M, L) and (N, B) are diffeomorphic if there is a homeomorphism f: M -> N such that ¢ ∈ B iff ø of ∈ A < wouldn't work if didn't take we will come back to this later but first moximal atlas Interesting Facts (way beyond this course) 1) if M is a topological n-manifold, then a) n=3, M has a smooth structure (n=1 "easy" n=2 Rådo n=3 Moise)

C. Manifolds with boundary

5)
$$i\bar{n} + (\partial M) = \partial M$$

6) (int M) $\Lambda \partial M = \emptyset$

to discuss smooth manifolds with boundary we need: if A c R" is an arbitrary subset and f: A -> R k is a function then f is smooth if for each xEA] an open neighborhood U of x in R" and a smooth function $F: U \rightarrow \mathbb{R}^k$ such that Fluna = fluna note: if x e open set CA, then this is the ordinary def to of smooth function now a smooth structure on a manifold with boundary M is a maximal atlas of smoothly compatible coordinate charts.

D. <u>Smooth Maps</u> let M and N be smooth manifolds $f: M \rightarrow N$ a map

f is <u>smooth at $p \in M$ </u> if there is i) a coordinate chart $\phi: U \rightarrow V$ about p in Mz) a coordinate chart $\phi: U' \rightarrow V'$ about f(p) in N

$$\Psi' \circ f \circ \Psi^{-1} = (\Psi' \circ (\phi')^{-1}) \circ (\phi' \circ f \circ \phi^{-1}) \circ (\phi \circ \Psi^{-1})$$

smooth at smooth at smooth at all points $\phi(\rho) = \phi(\psi'(\psi(\rho)))$ all points since charts by hypoth. Since charts compatible compatible

so $\Psi' \circ f \circ \Psi''$ smooth at $\Psi(p)$ by the chain rule $f: M \rightarrow N$ is <u>smooth on an open set</u> $U \subset M$ if it is smooth at all points $p \in U$ it is <u>smooth</u> if it is smooth at all $p \in M$ *exercise*: $f: M \rightarrow N$ is smooth on M $i \neq i$ for any atlas A for M and B for N $\psi \circ f \circ \Psi^{-1}$ is smooth (where defined) for $\psi \in B$ and $\Psi \in A$

examples: 1) since an atlas for \mathbb{R}^{k} is $\{id: \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}\}$ a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is smooth $\iff it$ is smooth in the calculus sense! 2) $f: M \rightarrow \mathbb{R}^{k}$ is smooth \iff for every chart $\phi: U \rightarrow V$ of M, $fo \phi^{-1}: V \rightarrow \mathbb{R}^{k}$ is smooth. exercises:

i) f: M - N a smooth map, then f is continuous

2) compositions of smooth maps are smooth

notation:
$$\binom{\infty}{M,N} = \{ set of smooth maps $M \to N \}$
 $\binom{\infty}{M} = \binom{\infty}{M,R} = note this is a$$$

a map
$$f: M \rightarrow N$$
 is a diffeomorphism if it is a homeomorphism and both f and f^{-1} are smooth

example:
$$\mathbb{R}$$
 with its "standard" smooth structure
 $f: \mathbb{R} \to \mathbb{R} : x \mapsto x^3$

is () a homeomorphism and c) smooth

but f' is not smooth so f not a diffeomorphism

<u>Remark</u>: as mentioned above, diffeomorphism is the fundamental equivalence in the study of smooth manifolds

exercise: Show this definition of diffeomorphism agrees with the one in Section B. examples of smooth maps:

1) let
$$i: S^2 \rightarrow \mathbb{R}^3$$
: $(x,y,z) \mapsto (x,y,z)$ be the inclusion map
Recall we have $\phi: (S^2 - \{N\}) \rightarrow \mathbb{R}^2$
 $(x,y,z) \longmapsto (\frac{x}{1-z}, \frac{y}{1-z})$

and

$$\phi^{-1}: \mathbb{R}^2 \longrightarrow (S^2 - \{N\})$$

$$(X, Y) \longmapsto \frac{1}{1 + X^2 + Y^2} (2X, 2Y, X^2 + Y^2 - 1)$$

$$\begin{array}{ccc} & & & i \circ \phi^{-1} \colon \mathbb{R}^2 \longrightarrow \mathbb{R}^3 \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & &$$

similarly for the other coordinate chart
so i is smooth
(similarly for
$$5^n \rightarrow \mathbb{R}^{n+1}$$
)

2)
$$\pi : \left([\mathbb{R}^{n+i} - \{(0, \dots, 0)\}] \right) \rightarrow [\mathbb{R}^{p}]^{n}$$

$$(x_{i}^{0}, \dots, x^{n}) \longmapsto [x^{0}: \dots: x^{n}]$$

$$local charts \quad U_{i} = \{ [x^{0}: \dots: x^{n}] \mid x^{i} \neq 0 \}$$

$$V_{i} = \mathbb{R}^{n}$$

$$\phi_{i} ([x^{0}: \dots: x^{n}]) = (\chi_{x^{i}}^{0}, \dots, \chi_{x^{j}}^{0}, \dots, \chi_{x^{i}}^{n})$$

$$50$$

$$\begin{split} & \phi_i \circ \mathcal{T} : (\mathbb{R}^{n+i} - \{(0, \dots, 0)\}) \to \mathbb{R}^n \\ is smooth at on & \mathcal{T}^{-1}(U_i) = \{(x_i^*, \dots, x^n) \mid x^i \neq 0\} \\ so & \mathcal{T} \text{ smooth at all points of } \mathbb{R}^{n+i} - \{(0, \dots, 0)\} \\ \vdots & \mathcal{T} \text{ is smooth.} \end{split}$$

set
$$\Psi_{y,r}: \mathbb{R}^m \to \mathbb{R}: x \mapsto \Psi_r(\|x-y\|)$$

now given
$$p \in M$$
 let $\phi: (U \rightarrow V$ be a coordinate
chart about p and say $\gamma = \phi(p)$
there is some $r_0 > 0$ s.t. $B_2(\gamma) \subset V$
set $f_p: M \rightarrow R: x \mapsto \begin{cases} \Psi_{\gamma,r_0} \circ \phi(x) & x \in U \\ 0 & x \notin U \end{cases}$

note: 1)
$$f$$
 is smooth
z) given any open set O containing P
we could have arranged that \exists
open sets O_p and O_p' s.t
 $p \in O_p \subset O_p' \subset O$ and
 $f_p(x) = 1 \Leftrightarrow x \in O_p$ and $f_p(x) = 0 \Leftrightarrow x \notin O_p'$

$$f_p$$
 is a bump function at p
so any manifold has lots of non-constant
smooth functions, that is $C^{\infty}(M)$ is big!