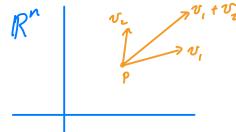
I Tangent Space and Linearization

A. Tangent Space we want to generalize the definition of derivative to functions $f: M \rightarrow N$ but def " from calculus uses the linear structure on \mathbb{R}^n $D_{v}f(\rho) = \lim_{h \to 0} \frac{f(\rho + hv) - f(\rho)}{h}$ but M and N don't have such linear structure and what is to for a manifold! so we first try to understand a vector v at a point p E R" recall from calculus it was useful to consider the space of vectors based at a point pER"



these for a vector space that we denote R_p we would like to generalize this to a manifold M since we don't have a linear structure on M we need another way to think about vectors "judge a vector by its actions"

to this end we define
a derivation at
$$p \in \mathbb{R}^{n}$$
 is a linear map
 $D: C^{\infty}(\mathbb{R}^{n}, \mathbb{R}) \to \mathbb{R}$
such that
 $D(fg) = (Df)g(p) + f(p)(Dg)$ product
rule
lemma 1:
1) for any $v \in \mathbb{R}^{n}_{p}$ the directional derivative
of f at p in the direction v
 $D_{v}f(p) = \lim_{h \to 0} \frac{f(p+hv) - f(p)}{h}$
 $= d f(p+tv)|_{t=0}$
is a derivation.
2) if $D: C^{\infty}(\mathbb{R}^{n}, \mathbb{R}) \to \mathbb{R}$ is a derivation at p
then there is a vector $v \in \mathbb{R}^{n}_{p}$ st. $D = D_{v}$

Proof: 1)
$$D_v$$
 is clearly linear and satisfies the product
rule from calculus
2) let $x'_{,...,x^n}$ be the coordinate functions
 $x^i: \mathbb{R}^n \to \mathbb{R}: (x'_{,...,x^n}) \mapsto x^i$
set $v^i = Dx^i \in \mathbb{R}$
given any function $f: \mathbb{R}^n \to \mathbb{R}$, then
 $f(x+p) - f(p) = \int_0^t \frac{d}{dt} f(p+tx) dt$

$$= \int_{0}^{t} \frac{d}{dt} f(p^{i} + tx_{j}^{i} \dots, p^{n} + tx^{n}) dt$$

$$= \int_{0}^{t} \sum_{i=1}^{n} x^{i} \frac{2f}{2x^{i}} (p + tx) dt$$

$$= \sum_{i=1}^{n} x^{i} \int_{0}^{t} \frac{2f}{2x^{i}} (p + tx) dt$$

$$= \sum_{i=1}^{n} x^{i} g_{i}(x)$$

$$So f(x+p) = f(p) + \sum_{i=1}^{n} x^{i} g_{i}(x)$$
and $f(x) = f(p) + \sum_{i=1}^{n} (x^{i} - p^{i}) g_{i}(x-p)$
note: $Dc = cD1 = cD(1 \cdot 1)$

$$= c ((D1) \cdot 1 + 1 \cdot (D1))$$
function $= c (z(D1)) = z(Dc)$

so Dc = O

thus

$$Df = D(f(\rho)) + D\sum_{i=1}^{n} (x^{i} - \rho^{i}) g_{i}(x - \rho)$$

$$= \sum_{i=1}^{n} (D x^{i} - D\rho^{i}) g_{i}(0) + (p^{i} - \rho^{i}) Dg_{i}(x - \rho)$$

$$= \sum_{i=1}^{n} v^{i} g_{i}(0)$$
if we set $v = \begin{bmatrix} v' \\ \vdots \\ v' \end{bmatrix}$ then as above

$$D_{v} f(\rho) = \dots = \sum v^{i} g_{i}(0) = Df$$

50 D = D_r ∰

let $T_p R^n = \{ \text{set of derivations at } p \}$ <u>note</u>: $T_p R^n$ is a vector space $D_{i}, D_2 \in T_p R^n$ then define $(D_i + D_2)f = D_i f + D_2 f$ and $(r D_i)f = r (D_i f)$

exercise: these are derivations

the map $R_{p}^{n} \longrightarrow T_{p}R^{n}$ $v \longmapsto D_{v}$ is an isomorphism.

<u>Proof</u>: from calculus we know this is a linear map $D_{(w+aw)}f = D_{w}f + a D_{w}f$

> lemma 1 says the map is onto. to see the map is injective suppose $D_{\sigma}f = 0$ for all $f \in C^{\infty}(\mathbb{R}^{n})$ let $\upsilon = \begin{bmatrix} \upsilon^{i} \\ \vdots \\ \upsilon^{n} \end{bmatrix}$ consider the i^{th} coordinate function $x^{i} \colon \mathbb{R}^{n} \to \mathbb{R} : (x'_{i}, ..., x^{n}) \mapsto x^{i}$

then
$$0 = D_{V} x^{i} = \sum_{j=1}^{p} v^{j} \frac{1}{2x^{j}} x^{i} = v^{j}$$

so $v = 0$
now given a manifold M and a point $p \in M$
a derivation at p is a linear map
 $D: C^{\infty}(M) \rightarrow R$
such that
 $D(fg) = (Df) g(p) + f(p)(Dg)$
Set $T_{p} M = \{ derivations at p \}$
as above $T_{p} M$ is a vector space
 $T_{p} M$ is called the tangent space of M at p
You should think of elements of $T_{p} M$ as "directional
derivatives" and hence "tangent vectors"
(and they are for $M = R^{n}$)
now if we have a smooth map
 $f: M \rightarrow N$
then we get a map
 $df_{p}: T_{p} M \rightarrow T_{p(p)} N$
as follows
 $if v \in T_{p} M$ and $g \in C^{\infty}(N)$

then
$$g \circ f \in C^{\infty}(M)$$

so $v(g \circ f) \in \mathbb{R}$
thus we set
 $df_{p}(v)(g) = v(g \circ f)$

note: 1)
$$df_{p}(v)(g_{i}+g_{k}) = v(g_{i}+g_{k})\circ f)$$

 $= v(g_{i}\circ f+g_{k}\circ f)$
 $\lim_{of v} = v(g_{i}\circ f) + v(g_{k}\circ f)$
 $= df_{p}(v)(g_{i}) + df_{p}(v)(g_{k})$
 $\lim_{of v} |df_{p}(v)(ag) = a df_{p}(v)(g)$
2) $df_{p}(v)(gh) = v((gh)\circ f) = v((g\circ f)(h\circ f))$
 $product = [df_{p}(v)(g)] h(f(p)) + (g\circ t(p))(v(h\circ f))$
 $role for v = [df_{p}(v)(g)] h(f(p)) + g(f(p))[df_{p}(v)(h)]$
 $so df_{p}(v) \in T_{f(p)}N$
 $call df_{p} the defferential of f at p.$
exercise: 1) $df_{p}: T_{p}M \to T_{f(p)}N$ is a linear map
2) $f: M \to N, g: N \to W, then$
 $d(g\circ f)_{p} = (dg_{f(p)})\circ(df_{p})$ chain rule!

3)
$$id_{M}: M \to M$$
 then
 $d(id_{M})_{P} = id_{T_{P}M}$
4) $f: M \to N$ a diffeomorphism, then
 df_{p} an isomorphism

$$\begin{array}{c|c} \hline Th \stackrel{o}{\rightarrow} 3: \\ \hline let U \subseteq M \ be \ an \ open \ set, \ then \\ i: U \rightarrow M \\ the inclusion \ map, \ induces \ an \ is \ omorphism \\ dip: Tp U \rightarrow Tp M \\ for \ all \ p \in U \end{array}$$

note: from the Theorem we can compute the dimension
of
$$T_p M$$
. To see this let $\phi: U \rightarrow V$ be a
coordinate chart for M about p
 $T_p M \cong T_p U \cong T_{\phi(p)} V \cong T_{\phi(p)} \mathbb{R}^n \cong \mathbb{R}^n_{\phi(p)} = \mathbb{R}^n$
 $T_h \cong 3 \qquad \text{exercise} \qquad T_h \cong 3 \qquad T_h \cong 2$
50
dimension of $T_p M = n$

to prove the theorem we need

lemma 4:

If $f, g \in C^{\infty}(M)$ and f=g on an open set containing p then for all $v \in T_p M$ vf = vg

<u>Proof</u>: let h=f-g

there is some open set 0 st. $p \in 0$ and h=0 on 0from the end of last section there is a "bump function" $\Psi \in C^{\infty}(M)$ such that $\Psi = 1$ -bump function from last section i) $\Psi = 0$ on a neighborhood of p z) $\Psi = 1$ outside 0so $\Psi h = h$ since $\Psi = 1$ where $h \neq 0$

 $v(h) = v(\Psi h) = (\Psi \Psi) h(p) + \Psi(p)(w h) = 0$

<u>Proof of Thm3</u>: we know dip is a lineor map so we just need to show it is bijective <u>Injective</u>: suppose $v \in T_p U$ and dip(v) = 0 in $T_p M$

so dip(v): C[∞](M) → R is the tero map

we want to show
$$\tau: C^{\infty}(U) \rightarrow \mathbb{R}$$
 is also zero map
given $f \in C^{\infty}(U)$ we need to extend it to M
to do this we use bump functions!
ne there are open sets $Q_{p} \in Q_{p}' \subset U$
st. $p \in O_{p}$ and there is a
function $\Psi: M \rightarrow \mathbb{R}$ st.
 $\Psi = 1$ on \overline{O}_{p} and 0 outside Q_{p}'
now set
 $\overline{F} = \begin{cases} \Psi.f & \text{on } U \\ 0 & \text{outside } U \end{cases}$
 $clearly \quad \overline{F} \in C^{\infty}(M)$
 $rf = r(\overline{f}|_{U}) = r(\overline{f} \cdot i) = di_{p}(r)(\overline{f}) = 0$
 $Ierma + snie$
 $agree on O_{p}$
since $f \in C^{\infty}(U)$ was arbitrary, $r = 0$
 $Surjective: let r \in T_{p}M$
for any $f \in C^{\infty}(U)$ let \overline{f} be as above
and define $\overline{r}f = r\overline{f}$
it is clear $\overline{r}: C^{\infty}(U) \rightarrow \mathbb{R}$ is a derivation
 $\Gamma = rot clear check it!$
and note for all $g \in C^{\infty}(M)$

$$di_{p}(\overline{v})g = \overline{v}[g \cdot i]$$

$$= \overline{v}[gl_{v}] = v(\overline{gl}_{v})$$

$$= vg$$

$$\int_{lemma \ u \ since} g_{j}gl_{v} \ gree \ on \ g_{v}$$

$$thus \ di_{p}(\overline{v}) = v \ and \ di_{p} \ is \ surjective$$

$$\underbrace{Iocal \ coordinate \ representation \ of \ vectors}$$

$$recall \ Th^{eq} 2 \ says \ for \ any \ D \in TpR^{n} \ there \ is \ a$$

$$vector \ v \in R_{p}^{n} \ s.t. \ D = D_{v} \qquad directional \ derivative$$

$$thus \ given \ coordinants \ (x',...,x^{n}) \ on \ R^{n}$$

$$we \ get \ a \ basis \ \{\frac{2}{9x'},...,\frac{2}{9x^{n}}\} \ for \ R_{p}^{n}$$
and we can write $v = \sum_{n=1}^{n} v^{i} \frac{2}{9x'}$

$$now \ given \ a \ coordinate \ chart \ \phi: U \rightarrow V \ for$$

$$a \ manifold \ M$$

$$for \ any \ p \in U \ and \ v \in T_{p} \ M$$

$$we \ can \ consider \ d\phi_{p}(v) \in T_{\phi(p)} \ R^{n} \cong R_{\phi(p)}^{n}$$

$$\int_{v=1}^{n} v^{i} \frac{2}{9x'}$$

for some vielR

and

 $V = \sum_{i=1}^{n} \sigma^{i} d(\phi^{-1})_{\phi(\rho)} \left(\frac{\partial}{\partial x^{i}} \right)$

we will abuse notation and denote this oxi 50 =xi can mean a vector in RA(p) or in Tp M depending on context but recall & identifies U and V so we really should not disfinguish things in U and V (but recoll we need \$ for this) it we want to emphasize as a vector in TpM we write "] x?"

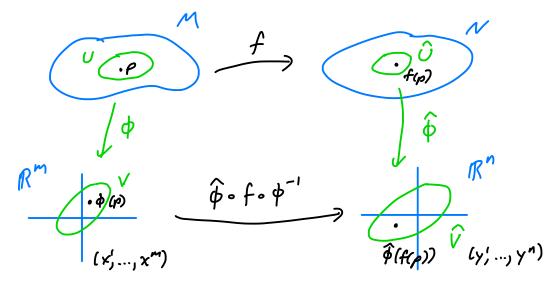
50 [Jx', ..., Jxn } is a basis for Tp M USING the chart $\phi: U \rightarrow V$ now suppose $\hat{\phi}: \hat{U} \rightarrow \hat{V}$ is another coordinate chart for M near p φ̂ ο φ⁻¹

a vector
$$x \in T_{p} M$$
 can be written
 $x = \sum_{i=1}^{n} x^{i} \frac{2}{2x^{i}}$ using ϕ
and
 $x = \sum_{i=1}^{n} \hat{v}^{i} \frac{2}{2y^{i}}$ using $\hat{\phi}$
how do these representations relate?
note: $\hat{\phi} \circ \hat{\phi}^{-1}(x'_{i},...,x^{n}) = (y'(x'_{i},...,x^{n}),...,y''(x'_{i},...,x^{n}))$
each $y^{i}: \hat{\phi}(U_{n}\hat{U}) \rightarrow R$ is
the i^{th} wordinate function
recall that to find the coefficients of a vector
 $w = \sum w^{i} \frac{2}{2y^{i}}$
we just see how w acts" on the coordinate
functions
 $w(y_{j}) = \sum_{i=1}^{n} w^{i} \frac{2}{2y^{i}} (y^{j}) = w^{j}$
so consider
 $(d(\hat{\phi} \circ \phi^{-1})_{\phi(p)} \frac{2}{2x^{i}} (y^{j}) = w^{j}$
directional
 $= \frac{D_{2}}{2x^{i}} (y^{j} (x'_{i}...,x^{n}))|_{\phi(p)}$
 $= \frac{2}{2x^{i}} (\phi(p))$

$$\int_{A}^{SD} d(\hat{\phi} \circ \hat{\phi}^{-1})_{(\Phi,p)} \frac{1}{2} i = \sum_{j=1}^{p} \frac{2\gamma_{j}}{2\gamma_{j}} i(\hat{\phi}(R)) \frac{1}{2\gamma_{j}} i$$
this shows how to 'change bases' from
$$\frac{1}{2\gamma_{k}} i \quad \tau_{0} = \sum_{j=1}^{p} v^{j} \frac{2}{2\gamma_{j}} i (in \phi \text{ coords})$$
then $v = \sum_{j=1}^{p} v^{j} \frac{2}{2\gamma_{j}} i (in \phi \text{ coords})$
where
$$\begin{bmatrix} v_{j} = \sum_{j=1}^{p} \frac{2\gamma_{j}}{2\gamma_{k}} v^{j} \\ w^{j} = \sum_{j=1}^{p} \frac{2\gamma_{j}}{2\gamma_{k}} v^{j} \end{bmatrix} \begin{pmatrix} v_{j} \\ \vdots \\ v_{j} \end{pmatrix} \int_{acbian} d\phi \phi^{-1} \int_{acbian} d\phi \phi^{-$$

now let's see what df_p is in local coordinates given $f: M \rightarrow N$ a smooth function

let $\phi: \mathcal{V} \rightarrow \mathcal{V}$ be a coord chart for \mathcal{M} about ρ and $\hat{\phi}: \hat{\mathcal{U}} \rightarrow \hat{\mathcal{V}}$ be a coord chart for \mathcal{N} about $f(\rho)$



if $v \in T_p M$ then $df_p(v) = d\left(\hat{\phi}^{-i}\left(\hat{\phi} \circ f \circ \phi^{-i}\right) \circ \phi\right)_p v$ $= \left[d\hat{\phi}^{-i}_{\hat{\phi}(\mu)} \circ d\left(\hat{\phi} \circ f \circ \phi^{-i}\right)_{\phi(p)} \circ d\phi_p\right](v)$ $= d\hat{\phi}^{-i}_{\hat{\phi}(f(\omega))} \circ d\left(\hat{\phi} \circ f \circ \phi^{-i}\right)_{\phi(p)} \left(\sum_{r=i}^{m} v^{i} \frac{2}{\partial x^{i}}\right)$ as above given a function $g: \mathbb{R}^{m} \to \mathbb{R}^{n}$ $dg_p: T_p \mathbb{R}^{m} \to T_{g(\omega)} \mathbb{R}^{n}$ is given by the total derivative of g

from vector calc/analysis

$$dg_{p} = \bigcup_{j \in I} (p) = \left(\frac{\Im Y^{j}}{\Im x^{i}}\right)$$

$$\int_{0}^{10} f_{al} \int_{0}^{10} f_$$

and

$$df_{p}\left(\sum_{i=1}^{m} v^{i} \left(\sum_{j=1}^{m} v^{i}\right) = \sum_{j} \left(\sum_{i} v^{i} \frac{\partial y^{j}}{\partial x^{i}} \left(\phi(p)\right)\right) \left(\sum_{j=1}^{m} v^{j}\right)$$

that is

$$df_{p} = \left(\frac{\partial y^{j}}{\partial x^{i}}(\varphi(p))\right)$$
in local coordinates

so dfp is a generalization of the total derivative from calculus to manifolds!

Alternate definition of tangent vectors

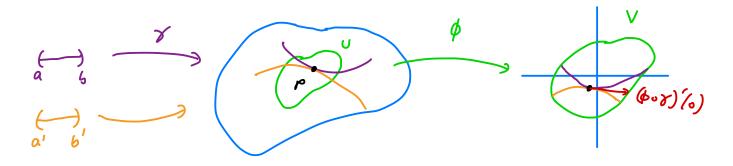
such that

a curve in M is a smooth map

$$\delta: (a, b) \to M$$

(we can always reparameterize δ so that
 $o \in (a, b)$ and $\delta(o)$ is any preassigned
point in image of δ)
let $\mathcal{P}_{p} = \{\delta: (a, b) \to M \mid \delta(o) = p\}$
set of curves through p
If $\delta_{1} \delta \in \mathcal{P}_{p}$ we say $\delta \sim_{p} \delta$ if $\exists a$ coord. chart
 $\phi: U \to V$ about p

$$\frac{d}{dt} (\phi \circ \delta) \Big|_{t=0} = \frac{d}{dt} (\phi \circ \delta) \Big|_{t=0}$$
curves in Rⁿ



exercise: 1) this is true in one coord chart about p (=) true in all coord charts about p 2) this is an equivalence relation

now define TpM = Pp/~p

exercise: Use a coordinate chart to show $\widetilde{T}_{\rho}M$ is a vector space (and vector space structure is independent of the coord chart).

 $7 h^{\underline{m}} 5:$ The map $\overline{f}: \widetilde{T}_{p} \mathcal{M} \longrightarrow T_{p} \mathcal{M}$ $[\mathcal{X}] \longmapsto \mathcal{D}_{g}$ is an isomor phism, where $D_{g}: C^{\underline{m}}(\mathcal{M}) \longrightarrow \mathcal{R}$ $f \longmapsto \frac{\partial}{\partial t} f \circ \mathcal{Y}|_{t=0}$

<u>Proof</u>:

one can easily check Dy is a derivation and (using the exercise above) \$ is linear so we just need to check it is bijective Mective:

Suppose Dy = Dy given a coordinate chart $\phi: U \rightarrow V$ about p $(write \phi(p) = (x'(p), ..., x'(p)))$

then
$$D_{g}(x^{i}) = D_{g}(x^{i})$$

 $\frac{d}{dt} x^{i} \delta x|_{t=0}$
 $\frac{d}{dt} x^{i} \delta |_{t=0}$
 $\int \frac{d}{dt} (x^{i} \delta)|_{t=0} = \int \frac{d}{dt} (x^{i} \delta)|_{t=0}$
 $= \int \frac{d}{dt} (x^{i} \delta)|_{t=0} = \frac{d}{dt} (\phi \delta)|_{t=0}$
 $= \int \frac{d}{dt} (x^{i} \delta)|_{t=0} = \frac{d}{dt} (\phi \delta)|_{t=0}$
and $\delta \sim \delta$
surjective:
given $U \in T_{p}M$
 $|_{et} \phi : (U \rightarrow V \ be \ a \ coordinate \ chort \ about \ p$
 $set \ \delta(t) = \phi(p) + (d \phi_{p}(w)) t$
 $e T_{\phi(p)}R^{n} = R^{n}_{\phi(p)} = R^{n}$
 $dg_{0}(\frac{2}{5t}) \in T_{g(0)}R^{n} = R$
 $\int U = V(x)$
 $v \mapsto V(x)$
 $v \mapsto V(x)$
 $v \mapsto V(x)$

so we think of
$$dg_{0}(\frac{2}{\delta t}) \in R$$
 by
 $dg_{0}(\frac{2}{\delta t}) = \frac{d}{dt}(x \cdot g)|_{t=0} = \frac{d}{dt}g|_{t=0}$
NOW
 $D_{8}f = \frac{d}{dt}(f \cdot T)|_{t=0} = d(f \cdot T)_{0}(\frac{2}{\delta t})$
 $= d(f \cdot \phi^{-1} \circ \tilde{T})_{0}(\frac{2}{\delta t})$
 $= df_{p} \circ d\phi_{p(p)}^{-1}(d\phi_{p}(T))$
 $= df_{p} \circ d\phi_{p(p)}^{-1}(d\phi_{p}(T))$
Some as
 $= df_{p}(T) \in T_{f(p)}R$
 $= v \cdot f$
So \overline{P} onto
 M
 $now if f: M \to N$ is a smooth function, then
 $df_{p}: \overline{T}_{p}M \to \overline{T}_{f(p)}N$
 $[T] \mapsto [f \cdot T]$
is simple! (this can make computations
 $easier)$

<u>exercise</u>: Show this agrees with $df_{p}: T_{p}M \longrightarrow T_{sw}N$ using E.

3 ways to think of T, M

(1) derivations on (^{con}(M) 2 paths through p (3) coord. charts

there are many other ways

B. Linearization and local behavior of functions

$$\frac{Key \ Idea:}{the} \cdot given \ f: M \rightarrow N \ smooth$$

$$\frac{Key \ Idea:}{the} \cdot given \ f: M \rightarrow N \ smooth$$

$$\frac{Key \ Idea:}{the} \cdot T_p M \rightarrow T_{f(p)} N$$

$$\frac{Key \ Idea:}{the} \cdot T_p M \rightarrow T_{f(p)} N$$

$$\frac{Key \ Idea:}{the} \cdot T_p M \rightarrow T_{f(p)} N$$

$$\frac{Key \ Idea:}{the} \cdot T_p M \rightarrow T_{f(p)} N$$

$$\frac{Key \ Idea:}{the} \cdot T_p M \rightarrow T_{f(p)} N$$

$$\frac{Key \ Idea:}{the} \cdot T_p M \rightarrow T_{f(p)} N$$

$$\frac{Key \ Idea:}{the} \cdot T_p M \rightarrow T_{f(p)} N$$

$$\frac{Key \ Idea:}{the} \cdot T_p M \rightarrow T_{f(p)} N$$

$$\frac{Key \ Idea:}{the} \cdot T_p M \rightarrow T_{f(p)} N$$

$$\frac{Key \ Idea:}{the} \cdot T_p M \rightarrow T_{f(p)} N$$

$$\frac{Key \ Idea:}{the} \cdot T_p M \rightarrow T_{f(p)} N$$

$$\frac{Key \ Idea:}{the} \cdot T_p M \rightarrow T_{f(p)} N$$

$$\frac{Key \ Idea:}{the} \cdot T_p M \rightarrow T_{f(p)} N$$

$$\frac{Key \ Idea:}{the} \cdot T_p M \rightarrow T_{f(p)} N$$

$$\frac{Key \ Idea:}{the} \cdot T_p M \rightarrow T_{f(p)} N$$

$$\frac{Key \ Idea:}{the} \cdot T_p M \rightarrow T_{f(p)} N$$

$$\frac{Key \ Idea:}{the} \cdot T_p M \rightarrow T_{f(p)} N$$

$$\frac{Key \ Idea:}{the} \cdot T_p M \rightarrow T_{f(p)} N$$

$$\frac{Key \ Idea:}{the} \cdot T_p M \rightarrow T_{f(p)} N$$

$$\frac{Key \ Idea:}{the} \cdot T_p M \rightarrow T_{f(p)} N$$

$$\frac{Key \ Idea:}{the} \cdot T_p M \rightarrow T_{f(p)} N$$

$$\frac{Key \ Idea:}{the} \cdot T_p M \rightarrow T_{f(p)} N$$

$$\frac{Key \ Idea:}{the} \cdot T_p M \rightarrow T_{f(p)} N$$

$$\frac{Key \ Idea:}{the} \cdot T_p M \rightarrow T_{f(p)} N$$

$$\frac{Key \ Idea:}{the} \cdot T_p M \rightarrow T_{f(p)} N$$

$$\frac{Key \ Idea:}{the} \cdot T_p M \rightarrow T_{f(p)} N$$

$$\frac{Key \ Idea:}{the} \cdot T_p M \rightarrow T_{f(p)} N$$

$$\frac{Key \ Idea:}{the} \cdot T_p M \rightarrow T_{f(p)} N$$

$$\frac{Key \ Idea:}{the} \cdot T_p M \rightarrow T_{f(p)} N$$

$$\frac{Key \ Idea:}{the} \cdot T_p M \rightarrow T_{f(p)} N$$

$$\frac{Key \ Idea:}{the} \cdot T_p M \rightarrow T_{f(p)} N$$

Thm 6 (linearization Thm):-

given
$$f: M \to N^n$$
 smooth map
if $df_p: T_p M \to T_{f(p)} N$ has maximal rank
(ne. rank $df_p = \min\{m, n\}\}$)
then there are coord. charts
 $\phi: V \to V$ about p
 $\hat{\phi}: \hat{U} \to \hat{V}$ about $f(p)$
such that
 \hat{U} if $m \leq n$, then
 $\hat{\phi} \circ f \circ \hat{\phi}(x', ..., x^m) = (x', ..., x'', 0, ..., 0)$
[so f looks like standard inclusion $\mathbb{R}^m \to \mathbb{R}^m$)

2 if m2n, then $\widehat{\phi} \circ \widehat{f} \circ \widehat{\phi}^{-1}(x', ..., x^m) = (x', ..., x^n)$ (so f boks like standard projection R"->R")

This theorem fallows from Thm7 (Rank Thm): if f: M " > N" is a smooth map and dfp: TpM -> Tfip N has constant rank k for all points p in some open set O then for all pE O, I wordinate charts $\phi: U \rightarrow V$ about p and $\hat{\boldsymbol{G}}: \hat{\boldsymbol{U}} \rightarrow \hat{\boldsymbol{V}}$ about $\boldsymbol{f}(\boldsymbol{p})$ such that $\hat{\phi} \circ f \circ \phi^{-1}(x', ..., x'') = (x', ..., x', o, ..., o)$ (standard projection RM -> Rk followed by stanandard inclusion IRK -> R")

Proof of Thm 6 given Thm 7:

we just need to see that if dfp has maximal rank at p then there is a neighborhood O of p st. dfx has constant rank for xEO

This follows from

lemma 8: let $\Psi: S \rightarrow Mat(n,m;R)$ be a continuous function from some space S to n×m matricies Then rank $\Psi: S \longrightarrow \mathbb{R}: \rho \mapsto \operatorname{rank}(\Psi(\rho))$ is lower semi-contrinuous (1e. if rank (p) = k then I noted O of p st ranh (1x) = k V x EQ)

Proof of lemma 8:

let <u>Ψ</u>: Mat(n,m; R) → R
 A → det(this hrh-submatrix)
 <u>exercise</u>: show <u>E</u> is continuous
 40 <u>Ψ</u>•Ψ: S → R is continuous and <u>Ψ</u>•Ψ(ρ) =0

thus
$$\exists$$
 an open set $O \subset S$ around p st.
 $I \circ Y(x) \neq o$ $\forall x \in O$
 $\therefore x \in O \ni rank Y(x)$ is at least k

to prove the rank theorem we need

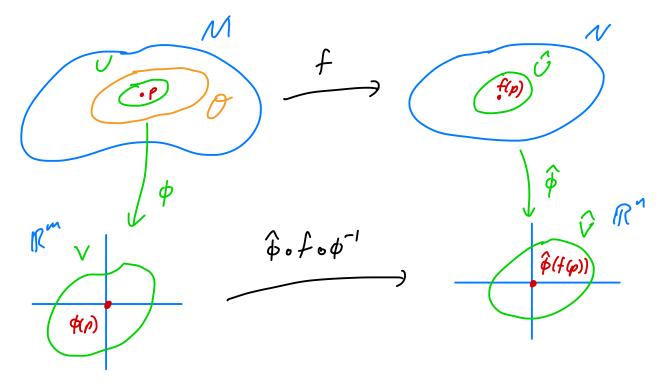
Inverse function theorem:

$$\begin{aligned}
f & f: M \rightarrow N \text{ is a smooth function and} \\
& df_p: T_p M \rightarrow T_{f(p)} N \\
& \text{ is an isomorphism} \\
& \text{ then } f \text{ is a local diffeomorphism near } p \\
& (n.e. \exists an open set U c M st. f|_U: U \rightarrow f(U) \\
& \text{ is a diffeomorphism} \\
& \text{ moreover} \\
& (df^{-1})_{f(p)} = (df_p)^{-1}
\end{aligned}$$

Proof of Th 7 (Rank Thm):

assume rank
$$df_x = k \quad \forall x \in O$$

for $p \in O$ let $\phi: U \rightarrow V$ be chart about $p \quad (U \subset O)$
 $\hat{\phi}: \hat{U} \rightarrow \hat{V}$ be chart about $f(p)$
(we may assume w.l.o.g. that $\phi(p) = 0 = \hat{\phi}(f(p))$)



$$set \ F = \hat{\phi} \circ f \circ \phi^{-1}$$

$$note \ F(o) = 0$$

$$write \ F(x'_{1}, ..., x^{m}) = (F'(x), ..., F''(x))$$

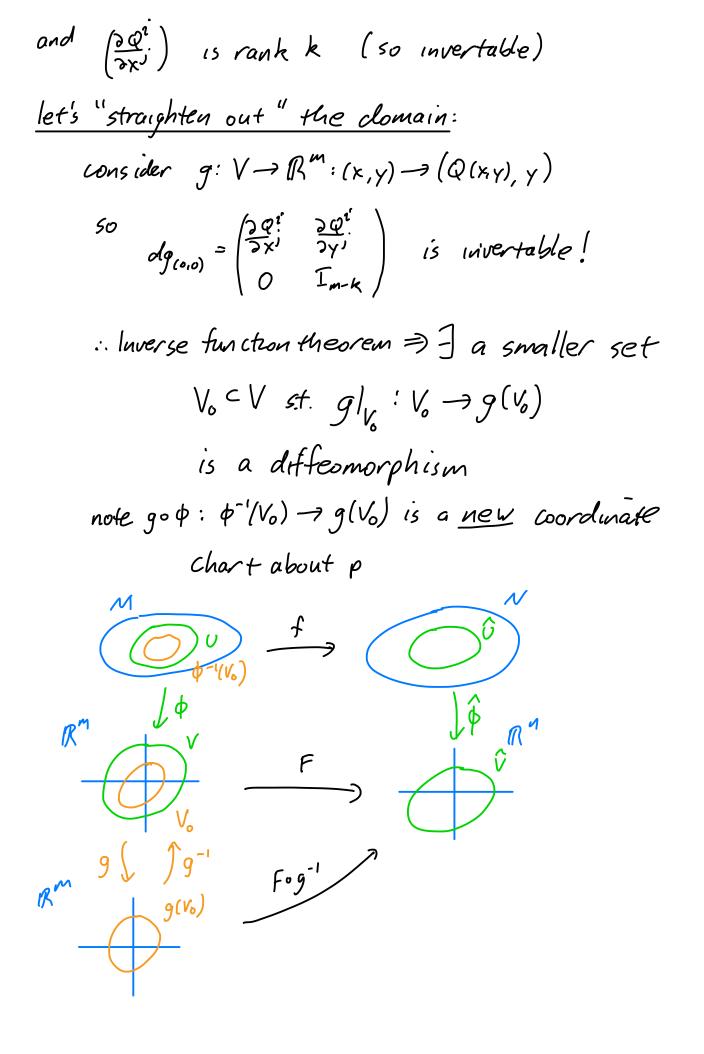
$$where \ x = (x'_{1}, ..., x^{m})$$

we can reorder F's and x's (ne rechoose word charts)

S.F.
$$\begin{pmatrix} \frac{\partial E'}{\partial x'} & \cdots & \frac{\partial E'}{\partial x'k} \\ \vdots & \ddots & \vdots \\ \frac{\partial E^{k}}{\partial x'} & \cdots & \frac{\partial F^{k}}{\partial x'k} \end{pmatrix}$$
 is rank k

now write the coordinates $(x, y) = (x', ..., x^{k}, y', ..., y^{m-k})$ and let $Q(x, y) = (F', ..., F^{k})$ and $R(x, y) = (F^{k+i}, ..., F^{n})$

50 F(x,y) = (Q(x,y), R(x,y))



50 $(x,y) = g \circ g^{-1}(x,y) = g(A(x,y), B(x,y))$ = (Q(A(x,y), B(x,y)), B(x,y)) $\therefore B(X,Y) = Y$ for all (X,Y)50 $9^{-1}(x,y) = (A(x,y), y)$ and Q(A(x,y), y) = x $\therefore F \circ g^{-'}(x, y) = \left(Q(A(x, y), y), R(A(x, y), y) \right)$ 11 ii ii X R(K,Y) and $d(F \cdot g^{-1})_{(x_i y)} = \begin{pmatrix} I_k & O \\ \frac{\partial \tilde{R}^i}{\partial x_i} & \frac{\partial \tilde{R}^i}{\partial x_i} \end{pmatrix}$ df dg-'(x,y) invertable 50 d(Fog-1) has same rank as dF which is h thus $\frac{\partial \tilde{R}^{i}}{\partial Y^{j}} = 0$ for all (x, y) constant rank Lomes in) so Ri is only a function of x, not y!

so set
$$S(x) = R(x, o) = R(x, y)$$

Note: $F \circ g^{-1}(x, y) = (x, S(x))$
now we straighten out "range:
set $\hat{g}: \hat{V} \longrightarrow R^n$
 $((v'_1, ..., v^h), (v'_1, ..., v^{n-h})) \mapsto (u, v - S(u))$
 $u \quad v$
 $d\hat{g}_o = \begin{pmatrix} I_h & 0 \\ 2S^* & I_{n-h} \end{pmatrix}$ has rank n so
is invertable
thus IFT $\Rightarrow \exists \hat{V}_o \in \hat{V}$ such that
 $\hat{g}: \hat{V}_o \rightarrow \hat{g}(\hat{V})$ is defeomorphism
note: $\hat{g} \circ F \circ g^{-1}(x, y) = \hat{g}(x, S(x))$
 $= (x, S(x) - S(x)) = (x, o)$
so setting $\Psi: \phi^{-1}(v_o) \rightarrow g(v_o): q \mapsto g \circ \phi(q)$

 $\hat{\varphi}:\hat{\varphi}^{-1}(\hat{v}_{o})\rightarrow \hat{g}(\hat{v}_{o}):q\mapsto\hat{g}\circ\hat{\varphi}(q)$

we get $\hat{\psi} \circ f \circ \psi^{-1}(\pi, \gamma) = \hat{g} \circ (\hat{\phi} \circ f \circ \phi^{-1}) \circ g^{-1}(\chi, \gamma) = (\chi, \sigma)$