III. Submanitolds

A. Immersions and Submanifolds

an immersion is a smooth map $f: M \rightarrow N$ such that dfp: TpM -> Tfp N is injective for all pEM a (smooth) embedding of M into N is a smooth map $f: M \to N$ such that 1) f is an immersion and z) f is a homeomorphism $\mathcal{M} \to f(\mathcal{M})$ where f(M) is given the subspace topology examples:

1) $\forall : \mathbb{R} \to M$ is an immersion if $\forall'(t) \neq 0 \quad \forall t$ where $\forall'(t) = d \forall_t (\frac{2}{2t}) \in T_{\chi(t)} M$

$$e_{g}:$$

$$z) f: M \to M \times N$$

$$p \mapsto (p, q_{*})$$

$$odf_{p}(r) = (v, o) \in T_{p} M \times T_{q_{*}} N = T_{(p,q_{*})}(M \times N)$$
so f is an immersion
$$cleorly "f is o homeomorphism onto M \times \{p_{*}\}$$
so f is an embedding
$$z) consider$$

$$f: \mathbb{R} \to S' \times S'$$

$$t \mapsto (e^{2\pi i \omega t}, e^{2\pi i \beta t})$$
where $\alpha_{i} \beta \in \mathbb{R}$ st. α'_{β} irrational
clearly $df \neq 0$ so f is an immersion
also f is injective since
$$f(t_{i}) = f(t_{2}) \Rightarrow \alpha(t_{i}^{-} t_{2}) \in \mathbb{Z}$$
so $t_{i} = t_{2} + \frac{n}{\omega}$
and $\beta(t_{2} + \frac{n}{\omega} - t_{2}) = m$
so $\beta_{\omega} = m'_{n} \gg$

<u>exercise</u>: in(f) is dense in 5'x5' <u>remark</u>: we will see later an embedding of positive codim can't have dense image So f is an injective immersion that is not an embedding 4) another injective immersion that is not an embedding (look at sequence in IR going to ∞) exercise: if f: M -> N is an injective immersion, then it is an embedding it any one of the following are true 1) f an open map z) f a closed map 3) M is compact

let M" be a manifold SCM is a submanifold of dimension k if for each point pES, 3 a coord. chart $\phi(S \land U) = \vee \land (\{\circ\} \times \mathbb{R}^k)$ R^-kxRk = R

such a chart is called a <u>slice chart</u> for S (if dM # & then allow slice charts in \mathbb{R}^n_{zo} too) (n-k) is called the <u>codimension</u> of S in M and M is called the <u>ambient manifold of S</u>

<u>exercise</u>: 1) Such an S is a k-dimensional manifold (possibly ^w/ boundary)

 $\frac{lemma 1}{if f: N \rightarrow M} \text{ is a smooth embedding}}$ Men f(N) is a submanifold of M

<u>Remark</u>: so submanifolds are the same as the images of smooth embeddings

Proof: let f: N→M be an embedding
so rank dfp = dim N ∀p
so df has maximal rank
now given pe f(N) eM ∃! g eN s.t. f(g) = p
∴ Th[#]II.7 part ① ∃ coord. charts

$$\phi: U \to V$$
 about 9
 $\widehat{\phi}: \widehat{U} \to \widehat{V}$ about p
st. $\widehat{\phi} \circ f \circ \phi^{-1}(x'_{1}...,x^{n}) = (x'_{1}...,x^{n}, g,..., 0)$
 $\stackrel{V}{\longleftarrow} \stackrel{f}{\longleftarrow} \stackrel{V}{\longleftarrow} \stackrel{V}{\to} \stackrel{V}{\to}$

...

 $f: \mathcal{N} \to f(\mathcal{N})$ plies f(n) n û R^x{o] n Ŷ fter possibly shrinking û) B. <u>Submersions</u>:

a <u>submersion</u> is a smooth map f: M→N such that dfp: TpM→ Tfip) N is <u>surjetive</u> ∀ peM call peM a <u>regular point</u> if dfp is <u>surjetive</u> '' a <u>critical point</u> if dfp is <u>not</u> '' " geN is a <u>regular value</u> if dfp is <u>surjective</u> ∀ p ef (g) and a <u>critical point</u> if not <u>note</u>: f a <u>submersion</u> ⇐ all peN regulor values

<u>Proof</u>: given a point $p \in f^{-1}(q)$ Th^mII.7 part @ gives coord. charts $\phi: U \rightarrow V$ for p in M $\hat{\phi}: \hat{U} \rightarrow \hat{V}$ for q = f(p) in N

<u>examples:</u>

1)
$$f: \mathbb{R}^{n+1} \to \mathbb{R}$$

 $(x'_{j...,x}^{n+1}) \mapsto \sum_{i=1}^{n+1} (x^{i})^{2}$
 $df_{x} = [zx' \dots zx^{n+1}]$ Ix(nti) matrix
so if $(x'_{j...,y} x^{n+1}) \neq 0$, then rank $df_{x} = 1$

So any
$$a > 0$$
 is a regular value
and $f'(a) = 5^{n}$ a manifold (sphere) of dim n
 $T_{x} 5^{n} = ker df_{x} = \{v \in R^{n+1} s.t. [(x',...,x^{n})]v = 0\}$
2) recall $M(n;R) = n \times n$ matricies $\cong R^{n^{2}}$
 $GL(n,R) = invertable n \times n$ matrix
 $earlier$ we saw this is an open subset of $M(n;R)$
so also a smooth n^{2} -manifold
now set
 $orthogonal$ $O(n) = \{A \in GL(n,R) : A A^{T} = I\}$
 $group$
 $= \{linear maps that preserve standard$
 $inner product on R^{n}\}$
special
 $orthogonal$ $SO(n) = \{A \in O(n) : det A = 1\}$
 $exercise:$
 $a) det : $M(n;R) \rightarrow R$ is smooth$

a)
$$def: M(n; R) \rightarrow R$$
 is smooth
b) f Sym $(m) = \{A \in M(n; R) : A = A^{T}\} \cong R^{\frac{n(n+1)}{2}}$
then show
 $f: M(n; R) \rightarrow Sym(n)$
 $A \longmapsto AA^{T}$
is smooth

50
$$O(n)$$
 is a manifold of dim
 $n^{2} - \frac{(n+1)n}{2} = \frac{n(n-1)}{2}$
d) show $df_{I}(B) = B + B^{T}$
more generally: $df_{A}(B) = B^{T}A + A^{T}B$
hight: if $B \in T_{A}M(n;R)$ then $Y(t) = A + tB$
represents B
so $T_{I}O(n) = \ker df_{I} = \{A \in M(n;R) \ s.t. \ A = -A^{T}\}$
f
shew-symmetric matricies
e) $det: O(n) \rightarrow \{\pm 1\}$ is an open subset of $O(n)$
(connected component of I)
3) $\det M(n;C) = n \times n$ matricies "dentries in C
 $\cong C^{n^{2}}$
 $GL(n,C) = invertable elts of $M(n;C)$
unitary group $U(n) = \{A \in GL(n,C) : A\overline{A}^{T} = I\}$
special unitary $SU(n) = \{A \in U(n) : det A = 1\}$
precisie:$

a) Show U(n) is a manifold of diminsion $2(n^2) - (2 \frac{C-1)n}{2} + n) = n^2$ $A = \overline{A}^T$

b) $T_I U(n) = \{A \in GL(n, C) : A = -\overline{A}^T\}$ skew Hermetian

c)
$$SU(n)$$
 is a manifold of dimension $n^{2}-1$
d) $T_{I} SU(n) = \{A \in GL(n; C): A = -\overline{A}^{T}, tr A = 0\}$
 $\underbrace{Hint}_{I}: Show d(det) (B) = det A tr(\overline{AB})$
 A
 $for A \in GL(n; C) and B \in M(n, C)$

Remark: The above are examples of Lie groups.
A Lie group is a smooth manifold G equipped with
a group structure such that multiplication

$$G \times G \longrightarrow G : (g, h) \longmapsto g \cdot h$$

and inversion
$$G \rightarrow G: g \rightarrow g^{-1}$$

c) SU(n) is a manifold of dimension
$$n^{2}-1$$

d) T_{I} SU(n) = {A \in GL(n; C): A = -A, trace
Hint: Show $d(del)_{A}(B) = del A tr(AB)_{A}(B) = del A tr(BB)_{A}(B) = del A t$

Lie algebra. A Lie algebra is a vector space V
and a binary operation
$$[\cdot, \cdot]: V \times V \rightarrow V$$

called the Lie brachet that satisfies

i) bilinearity [av+bw,u] = a[v,u]+b[w,u][u,av+bw] = a[u,v]+b[u,w]

c) anticommutative $\{v, u\} = -\{u, v\}$ 3) Jacobi identity $\{u, \{v, w\}\} + \{w, [u, v]\} + \{v, [v, u]\} = 0$ later we will see how to give $T_I G$ such a structure we see regular values are useful, but how common are they? a subset $A \in \mathbb{R}^n$ is said to have <u>measure zero</u> if for any $\delta > 0, A$ can be covered by a countable collection of open cubes/balls, the sum of whose volumes is < δ

$$A \subset M$$
 has measure zero if \forall coordinate charts
 $\phi: U \rightarrow V, \phi(A)$ has measure zero in \mathbb{R}^n

<u>errercise:</u>

i) a countable mion of sets of measure zero has measure zero
if A C M has measure zero then M-A is dense in M (if not, A contains on open set...)
3) Q C R has measure zero Sard's Thm:

if $f: M \rightarrow N$ is a smooth map, then the set of critical values has measure zero in N (so regular values are dense)

we will not prove this since the proof has a very different "flavor" to the rest of the class (see book it interested)

Kemarks: 1) Continuous and Smooth maps are very different recall $\exists a \text{ continuous } \underline{surjection}$ $f: [0,1] \rightarrow [0,1] \times [0,1]$ space filling but if f is smooth, $\exists \text{ regular value } g \in [0,1] \times [0,1]$ and if $p \in f^{-1}(g)$ then $df_p: T_p[0,1] \rightarrow T_q([0,1] \times [0,1])$ R R2) image of an immersion $f: N^m \rightarrow M^m$ with $n \leq m$ has measure zero (since $im(f) \in \{critical values\}$)

C. Whitney's Embedding Thm

we now prove Thm3 (Whitney's Embedding Thm): every compact manifold M embeds in R^k for k sufficiently large

<u>Remarks:</u> 1) don't need compact z) later we will see, we can take k= 2ntl, n=dim M 3) can actually take h= 2n and can immerse M in R²ⁿ⁻¹ (these results much harder) 4) given a manifold M it is interesting to see minimal k such that M C Rk eg. 5" C R "+1 any orientable surface CR if n = 2k then M" embeds in R²ⁿ⁻¹ $if n = 2^{k} \text{ then } \mathbb{R}p^{n} \text{ does } \underline{not} \text{ embed}$ $in \mathbb{R}^{2n-1}$

<u>Proof</u>: for each $p \in M$ let $\phi_p: \mathcal{V}_p \to \mathcal{V}_p$ be a coord chart about p

recall I bump function for M-R

such that
$$\exists open sets \ p \in O_{p} \subset O' \subset U_{p}$$

and $f_{p} = \begin{cases} 1 & on \ Q_{p} \\ 0 & outside \ Q_{p}' \end{cases}$
note: $\{ \mathcal{P}_{p} \}_{p \in M}$ a cover of M
 $M \ compact \ so \ \exists a \ finite \ subcover \ \{ \mathcal{P}_{p}, ..., \mathcal{P}_{p} \}$
note: $f_{p_{i}}(x) \not p_{p_{i}}(x) : M \rightarrow \mathbb{R}^{n}$
 $x \mapsto \{ f_{p_{i}}(x) \not p_{p_{i}}(x) : M \rightarrow \mathbb{R}^{n}$
 $x \mapsto \{ f_{p_{i}}(x) \not p_{p_{i}}(x) : x \in \mathcal{O}_{p_{i}} \\ x \mapsto \{ f_{p_{i}}(x) \not p_{p_{i}}(x) : x \in \mathcal{O}_{p_{i}} \\ x \mapsto (f_{p_{i}}(x) \not p_{p_{i}}(x) , ..., f_{p_{d}}(x) \not p_{p_{d}}(x), ..., f_{p_{d}}(x) \end{pmatrix}$
Claim: $\overline{P} \ is \ injective$
 $if \ \overline{P}(x) = \overline{P}(y), then \ \exists i \ st. \ f_{p_{i}}(x) = p_{i}(x)$
 $if \ \overline{P}(x) = \overline{P}(x) \not p_{p_{i}}(x) = f_{p_{i}}(y) \not p_{p_{i}}(y) = \phi(y)$
 $but \ \varphi_{i}: U_{i} \rightarrow V_{p_{i}} \ a \ diffeomorphism$
 $\therefore \ injective \ and \ we \ see \ x = y.$
Claim: $\overline{P} \ an \ immersion$
 $given \ p \in M, \ \exists i \ st. \ p \in \mathcal{O}_{p_{i}}$
 $thus \ d(f_{p_{i}}, \varphi_{p_{i}})_{p} = d(\varphi_{p_{i}})_{p_{i}} \ e^{-rauk} \ n \ (invertable)$

:.
$$d \mathbb{P}_{p}$$
 which contains $(d \phi_{p})_{p}$ has a
rank n factor :: its rank $\geq n$
but dim $M = n$ so rand $d \mathbb{P}_{p} = n$
 $2e$ $d \mathbb{P}_{p}$ is injective
note: $\mathbb{P} : M \rightarrow \mathbb{P}(M)$ is a continuous map
from a compact space to a Hausdorff space
this implies \mathbb{P} a homeomorphism
:. \mathbb{P} an embedding \mathbb{H}
 $Th^{\underline{m}} \Psi$ (Strongler) Whitney Embedding $Th^{\underline{m}}$):
every compact manifold M of dimension n
 $embeds$ in \mathbb{R}^{2n+1}

Proof: from $Th \stackrel{m}{=} 3$ we know $M \subseteq \mathbb{R}^{N}$ as a smooth submitted given a vector $v \in \mathbb{R}^{N}$ with $v \neq 0$ $k \notin v^{\perp} = \{ w \in \mathbb{R}^{N} : w \cdot v = 0 \} \cong \mathbb{R}^{N-1}$ and $T_{v} : \mathbb{R}^{N} \to \mathbb{R}^{N-1} = v^{\perp}$ $w \mapsto w - (\underbrace{v \cdot w}{w \cdot w}) v$ orthogonal projection $onto v^{\perp}$ $so T_{v}|_{M} : M \to \mathbb{R}^{N-1}$ is a smooth map we will show that if N > 2n+1 then we

can find
$$v$$
 (a dense set of v !) s.t. $T_{v} \mid_{M}$
is an embedding
(this clearly finishes the proof)
first note that $T_{v} = T_{w}$ if $vR = wR$
 $R [v] = [w] \in RP^{N-1}$
so we show there is a dense set of points in RP^{N-1}
st. corresponding $T_{v} \mid_{M}$ is an embedding
 $T_{v} \mid_{M} \frac{|n| \operatorname{ective}}{|m|} = T_{v} (y) \Leftrightarrow (x-y)$ in span of v
 $\Leftrightarrow (x-y) = \lambda v$
so consider
 $g: [(M \times M) \setminus \Delta] \rightarrow RP^{N-1}$
 $v \mapsto (x,y) \mapsto 2v = \sqrt{n}$
 $(x,y) \mapsto 2v = \sqrt{n}$
 $(x,y) \mapsto x-y$
and
 $R^{N} = \{o\} \rightarrow RP^{N-1} \text{ projection}$
 $f p \in RP^{N-1}$ is a regular value then

$$g^{-1}(p) \text{ is a submanifold of}$$

$$dimension = 2n - (N-1)$$

$$< 2n - (2n-1) + 1 = 0$$

$$S0 \quad g^{-1}(p) = \emptyset$$

$$ne. \text{ there is no } x_{i} y \in M, x \neq y \text{ st. } [x-y] = p$$

$$\therefore \text{ rf } [v] = p, \text{ then } T_{v}|_{M} : M \to \mathbb{R}^{N-1}$$

$$is \text{ nijective}$$

$$by \text{ Sard's } Th \stackrel{\text{def}}{=} \text{ there is a dense set of}$$

$$p's \text{ so that } p = [v] \text{ then } T_{v}|_{M} \text{ is } in'_{j}(p)$$

$$T_{v}|_{M} \text{ Immersion:}$$

$$note: T_{v}: \mathbb{R}^{N} \to \mathbb{R}^{N-1} \text{ is a linear map}$$

$$exercise: d(T_{v})_{p}: T_{p}\mathbb{R}^{N} \to T_{v}(p)\mathbb{R}^{N-1} \text{ is } T_{v}$$

$$(more generally: the derivative of a linear map)$$

$$so T_{v} \text{ is an immersion of } M \text{ at } p$$

$$\bigoplus \forall v \neq 0 \text{ in } T_{p}M, T_{v}(w) \neq 0$$

$$\iff v \neq span v \forall w \neq 0 \text{ in } T_{p}M$$

$$ext TM = U T_{p}M$$

$$this is called the tangent space of M$$

we will study this later, but it is a
2u-dimensional manifold and we have
the smooth map

$$h: (TM-2) \rightarrow RP^{N-1}$$

 $\psi \longmapsto Ew$
where $Z = \{w \in T_p M : p \in M, w = 0\}$
note: $w \in TM-2 \Rightarrow w \in TR^N-2$
 $\Rightarrow w \in T_p R^N - \{o\}$
 $\Rightarrow w \in R^N - \{o\}$
 $\Rightarrow (w) \in RP^{N-1}$ well-def!

if
$$p \in \mathbb{RP}^{N-1}$$
 is a regular value,
then as above $h^{-1}(p) = p$

so there are no vectors in TM-2 st. [v] =p thus if vep we have [v] =[w] U veTM-2 and there for To (M is an immersion the set of critical values of g & h are both of measure 200, so there is a dense set of pe IRP^{N-1} that are regular values for g & h this gives a p st. vep has To (M is injective and an immersion : since M is compact To (M is an embedding