Vector Fields and Flows

A. Vector fields

a <u>vector field</u> v on a manifold M is a smooth section of the tangent bundle TM $TM \int v \qquad pov(x)=0$ M ne. a choice of vector at each point of M

 $\frac{note:}{in} R'', \quad TR'' = R' \times R''$ $50 \quad v: R'' \longrightarrow R'' \times R''$ $(x'_{,...,x''}) \mapsto ((x'_{,...,x''}), (v'(x)_{,...,v''}(x)))$ $x = (x'_{,...,x''})$

or we can write

$$\begin{aligned}
& \quad \forall f(\mathbf{x}) = \sum_{i=1}^{n} \mathcal{U}^{i}(\mathbf{x}) \frac{\partial}{\partial \mathbf{x}} i \\
& \quad \text{so } \mathcal{U} \text{ is determined by a function} \\
& \quad F_{v}(\mathbf{x}) = (\mathcal{V}^{i}(\mathbf{x}), \dots, \mathcal{V}^{n}(\mathbf{x})) \\
& \quad F_{v}($$

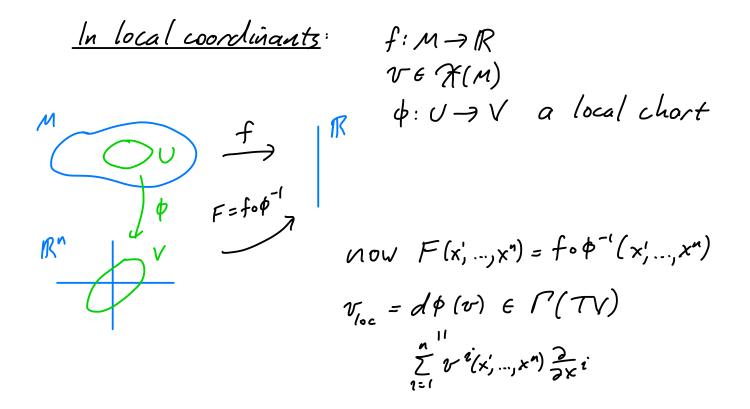
We denote the set of vector fields by

$$\chi(M) = \int^{n} (TM)$$

exercise: show $\chi(M)$ is a vector space
no given a vector field $v \in \chi(M)$ and a function
 $f: M \rightarrow R$
then
 $v \cdot f: M \rightarrow R$
 $x \mapsto v(w) \cdot f$
 $derivation at x$
is again a function on M check!
so $v \in \chi(M)$ gives a linear map
 $v: C^{\infty}(M) \rightarrow C^{\infty}(M)$
and $v \cdot (tg) = (v \cdot f)g + f(v \cdot g)$
we say v is a derivation on M
exercise: vector fields are in one-to-one
correspondence with derivations on M
 $note: df(v): M \rightarrow R$
 $\chi \mapsto df_{\pi}(v(x)) \in T_{x+y}R \in R$
 $\chi \mapsto df_{\pi}(v(x)) \in T_{x+y}R \in R$

and the local coord. computation of

$$df$$
 from Section II says
 $df(v)(x) = v \cdot f(x)$



recall
$$dF_{x}(\frac{\partial}{\partial x^{i}}) = \frac{\partial F}{\partial x^{i}}(x)$$

so $v \cdot f = df(v) = dF(v_{loc}) = \sum_{i=1}^{n} v^{i}(x) \xrightarrow{\geq F}_{\geq x^{i}}(x)$ now given another vector $w = \sum w^{i}(x) \xrightarrow{\geq x^{i}}_{\geq x^{i}}(x)$

then note
$$w \cdot (\tau, f) = w \cdot \sum_{i} v^{i}(x) \frac{\partial F}{\partial x^{i}}(x)$$

= $\sum_{i,j} w^{j} \left(\frac{\partial v^{i}}{\partial x^{j}} \frac{\partial F}{\partial x^{i}} + v^{i} \frac{\partial^{2} F}{\partial x^{i}} \right)$

and

$$w.(v.f) - v.(v.f) = \sum \left(w^{j} \frac{\partial v^{j}}{\partial x^{j}} - v^{j} \frac{\partial w^{j}}{\partial x^{j}} \right) \frac{\partial F}{\partial x^{i}}$$
so if we set $X = \sum_{v,j=1}^{n} \left(w^{j} \frac{\partial v^{j}}{\partial x^{j}} - v^{j} \frac{\partial w^{j}}{\partial x^{j}} \right) \frac{\partial}{\partial x}$
then X is a vector field in these local words.
exercise: X is independent of local words.
so X is well-defined on M and only depends
on $v.w$ we denote if $Ev.w$ and
coll if the Lie bracket
 $E\cdot, \cdot]: X(M) \times X(M) \rightarrow X(M)$
Properties: $f.g \in C^{\infty}(M), v.v.u \in X(M), a, b \in \mathbb{R}$
shew-symmetric i) $[v.w] = -Ev.v.]$
 $v.) [fv.gw] = fg[v.w] + f(v.g)w-g(u.f)v$
linear
 $s) [av+bu,w] = a[v.w] + b[u.w]$
duobi identity Ψ $[Ev.w],v] + [[u.v],v] + [[w.v],u] = o$
 $recall a vector space V with a bilinear pairing$
 $E\cdot, \cdot]: V \times V \rightarrow \mathbb{R}$ satisfying 1) and 4) is called
 $a Lie algebra$
 $so (X[M], E, :]) is a Lie algebra$

example: in local coordinates in
$$\mathbb{R}^n$$

$$\begin{bmatrix} \frac{2}{2}x^i, \frac{3}{2}x^j \end{bmatrix} f = \frac{2}{2x^i} (\frac{2}{2}x^j f) - \frac{2}{2}x^i (\frac{2}{2}x^i f) = 0$$

$$(cf \ f \ is \ smooth)$$

$$so \ \begin{bmatrix} \frac{2}{2}x^i, \frac{2}{2}x^j \end{bmatrix} = 0$$

$$from \ this \ and \ the \ properties \ above \ we \ can$$

$$compute \ any \ Lie \ brachef$$

$$e.g. \ r = \frac{2}{2y} \qquad u = y \frac{2}{2x} + \frac{2}{2z}$$

$$\begin{bmatrix} \mathcal{T}_1 \ u \end{bmatrix} = \begin{bmatrix} \frac{2}{2y}, y \ \frac{2}{2x} + \frac{2}{2z} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{2}{2y}, (y \ \frac{2}{2x}) \end{bmatrix} + \begin{bmatrix} \frac{2}{2y}, \frac{2}{2z} \end{bmatrix}$$

$$= y \begin{bmatrix} \frac{2}{2y}, \frac{2}{2x} \end{bmatrix} + \frac{21}{2y} \frac{21}{2y}$$

$$= \frac{2}{2x}$$

$$\frac{Th^{m}1}{\varepsilon}$$
let M be a manifold without boundary and
 $v \in \mathcal{X}(\mathcal{M})$ a vector field
then there exist positive continuous functions
 $\varepsilon, \delta: \mathcal{M} \rightarrow (0, \infty]$
and a unique smooth function

Remarks:
1) if we set
$$\chi^{P}(t) = \overline{\Phi}(\rho, t)$$
 then
 $\chi^{P}: (-\epsilon(\rho), \delta(\rho)) \rightarrow M$
is a curve such that
 $\chi^{P}(0) = \rho$ and
 $(\chi^{P})'(t) = (d\chi^{P})_{\chi(e)}^{(\frac{2}{2t})} = \nabla(\chi(t))$
 χ^{P} is called a flow line or integral curve of \mathcal{T}
through p
2) any map $\overline{\Phi}: W_{\epsilon,s} \rightarrow M$ satisfying
 $\cdot \overline{\Phi}(\overline{\Phi}(\rho,s), \epsilon) = \overline{\Phi}(\rho, s+t)$
 $\cdot \overline{\Phi}(\rho, 0) = \rho$

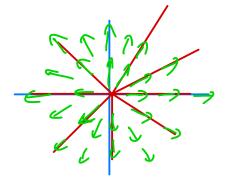
is called a flow on M or a dynamical system on M given a flow Φ set $v(p) = d\Phi_{(p,0)}(\frac{d}{d})$ exercise: U: M -> TM is a smooth section this gives a vector field associated to E called the velocity field of F note: The says associated to v is a flow \$\overline{P}' and uniqueness => E= E' 3) fix t c (-min E, min S) and set $\phi^t: \mathcal{M} \to \mathcal{M}: \rho \mapsto \overline{\varPhi}(\rho, t)$ this is a smooth map and if t, -t e(-min E, min E) then $\phi^{t} \circ \phi^{-t}(\rho) = \overline{\mathcal{P}}\left(\overline{\mathcal{P}}(\rho, -t), t\right)$ $= \oint (\rho, o) = \rho$ 50 $\phi^{+}\phi^{-t} = id_{\mathcal{M}} = \phi^{-f}\phi^{+}\phi^{+}$ 5 similarly thus \$t is a diffeomorphism! this is a very good way to build diffeomorphisms $I) \quad \overline{P} : \mathbb{R}^2 \times \mathbb{R} \longrightarrow \mathbb{R}^2$

-

examples: $((x,y),t) \longmapsto (x+t,y)$

$$d \overline{\Psi}_{((x,y),+)} \begin{pmatrix} \overline{\partial} \\ \overline{\partial} \\ \overline{\partial} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
so $\mathcal{V} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ is the velocity field of the flow $\overline{\Psi}$

$$Z) \quad \underline{\Phi} : \mathbb{R}^{2} \times \mathbb{R} \to \mathbb{R}^{2}$$
$$((X, Y), t) \longmapsto (e^{t} \times, e^{t} Y)$$



$$d\overline{F}_{((x,y),t)}(\widehat{F}_{t}) = \begin{bmatrix} e^{t} & 0 & e^{t} \\ 0 & e^{t} & e^{t} \\ 0 & e^{t} & e^{t} \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} e^{t} \\ e^{t} \\ y \end{bmatrix}$$

so $v = \begin{bmatrix} xe^{t} \\ ye^{t} \end{bmatrix}$ is the velocity field of the flow Φ

For the proof of the theorem we need

Fundamental Theorem of ODE:

$$U \subset \mathbb{R}^n$$
 open set
 $F: U \to \mathbb{R}^n$ a smooth function
for $a \in \mathbb{R}$ and $x_o \in U$
Existence: \exists an open set J_o containing a and
an open set $U_o \subset U$ containing x_o such that
 $\forall p \in U_o \exists x_p: J_o \to U$ such that

$$\begin{aligned} & \forall_{p}'(t) = F(Y_{p}(t)) \quad \forall t \in \mathcal{J}_{o} \\ & \forall_{p}(a) = p \end{aligned}$$

Uniqueness: if \mathcal{X}, \mathcal{X} both satisfy \bigotimes and $\mathcal{Y}(a) = \mathcal{F}(a)$ then $\mathcal{Y}(t) = \mathcal{F}(t)$ on common domain Smoothness: if $\mathcal{J}_0, \mathcal{U}_0$ as a above then the map $\Gamma: \mathcal{U}_0 \times \mathcal{J}_0 \longrightarrow \mathcal{U}$ $(p,t) \longmapsto \mathcal{X}_p(t)$ is smooth

the proof of this is standard in an analysis course or advanced ODE course Proof of Th=1: given pEM, let \$: U -> V be a coordinate chart about p dø(r) is a vector field on V < R" so can be represented as a function $F: V \rightarrow \mathbb{R}^n$ so $d\phi(v)(x) = CX, F(x)) \in V \times R^{n} = \overline{C}V$ by ODE theorem, I an interval Jo (containing 0) and Vo CV and function $\widetilde{\varGamma}^{:} \vee_{\mathfrak{s}} \star \mathcal{J}_{\mathfrak{s}} \to \vee$ $(x, \epsilon) \mapsto \widetilde{Y}_{r}(\epsilon)$

where
$$\tilde{\vartheta}_{x}$$
 satisfies $\tilde{\vartheta}_{x}(0) = p$ and
 $\tilde{\vartheta}'_{x}(t) = F(\tilde{\vartheta}_{x}(t))$
so we get $\Gamma: U_{0} \times J_{0} \to U$ where $U_{0} = \phi^{-1}(V_{0})$
 $(x,t) \mapsto \vartheta_{x}(t)$
where $\vartheta_{x}(t) = \phi^{-1} \cdot \vartheta_{\phi(x)}(t)$
note: Γ is E near p and Γ is smooth by ODE th^m
exercise: Show you can do the same for other points in M
and by uniqueness in ODE th^m they fit together
to give E on all of M and we can assume at
each p , E is defined on a maximal subinterval
exercise: check $E(E(p,t),s) = E(p,t+s)$

lemma2:

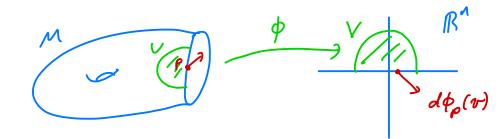
let
$$\mathcal{X}: (a, b) \to \mathcal{M}$$
 be a flow line of v
through p (i.e. $\mathcal{X}(o) = p$)
assume (a, b) is the maximal interval
on which \mathcal{X} can be defined
if $a \neq -\infty$ or $b \neq \infty$ then $\mathcal{X}((a, b))$ is
not contained in any compact subset
of \mathcal{M}

Proof: suppose be and im & compact set in M

take
$$t_i \rightarrow b$$
 an increasing sequence in (a, b)
by compactness $\delta(t_i) \rightarrow p$
from ODE $th \stackrel{m}{=} \exists V_o a nbhd
of p and $J_o = (-\xi, \varepsilon)$
st. $\tilde{\Gamma}: V_o \times J_o \rightarrow M$
 $(x_j t) \mapsto \delta_x(t)$ is defined
now \exists some t_i st. $t_i > b - \varepsilon$ set
 $\delta: (a, t_2 + \varepsilon) \rightarrow M$
 $t \mapsto \{\gamma(t) \quad a < t < b$
 $f(\gamma(t_1), t - t_1)) \quad t_1 \in < t < t_2 + \varepsilon$
you can check that δ is well defined an extention
of γ to a larger subinterval$

exercise:

1) if M is a manifold with boundary we say v∈T_xM with x∈∂M, <u>points out of M</u> if there is a local coordinate chart \$:V=V such that d\$x(v) has <u>negative</u> xⁿ-coordinate



Show this is independent of wordmates

2) if
$$v$$
 is a vector field on a manifold with boundary
and $v(x)$ never points out of M then show there
exists $S: M \rightarrow (0, \infty)$ such that
 $\overline{P}: W_{0,S} \rightarrow M$ is as in the 1
and if v has compact support then
 $\overline{P}: M \times [0, \infty) \rightarrow M$
Great application!

$$\frac{Th^{m}3:}{every open neighborhood of \partial M is a compact mfd M
contains a collar neighborhood
that is a smooth map
 $\psi: (\partial M \times [0, E)) \rightarrow M$
St. $\Psi|_{\partial M \times [0]}: \partial M \times [0] \rightarrow \partial M$ is a diffeomorphism
and $\Psi: (\partial M \times [0, E)) \rightarrow im(\Psi)$ is a diffeomorphism$$

Proof:

given v as in claim we get $\overline{\Psi}: \mathcal{M} \times [o, \infty) \to \mathcal{M}$ Set $\psi: \partial \mathcal{M} \times [o, \delta) \to \mathcal{M}$ $(\rho, t) \longmapsto \overline{\Psi}(\rho, t)$

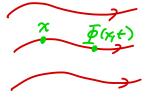
note: 1)
$$\Psi(p, 0) = p$$
 so $\Psi_{hm \times 10}^{i}$ is a diffeomorphism
(just inclusion)
c) $d\Psi_{(p,q)}(\frac{2}{4t}) = \Psi(p)$ so $d\Psi_{(p,q)}^{i}$ on isomorphism $T_{(p,q)}(hm \times 105)$
 $dT_{(p,q)}^{i})$ an isomorphism for all t near O
 $\therefore \Psi$ a local diffeomorphism at (p,t) for
all $(p,t) \in \partial M \times 50, 5'$ for some $5' > 0$.
exercise: an injective local diffeomorphism is a diffeomorphism
so we now show Ψ is injective
 $suppose \Psi(p, t_0) = \Psi(q, s_0) = X$
 $T_{(p,t)}^{i}(t) = \Psi(q, s_0) = X$
 $T_{(p,t)}^{i}(t) = \Psi(q, s_0) = X$
 $T_{(p,t)}^{i}(t) = \Psi(r, s_0) = M$
 $Y_{(p,t_0)}^{i}(t) = \Psi(r) (Y_{(p,t_0)})$
 $Y_{(p,t_0)} = Y(r) (Y_{(p,t_0)})$
 $Y_{(p,t_0)}^{i}(t) = V(Y_{(p,t_0)})$
 $T_{(p,t_0)}^{i}(t) = Y(r) (Y_{(p,t_0)})$
 $Y_{(p,t_0)}^{i}(t) = V(Y_{(p,t_0)})$
 $T_{(p,t_0)}^{i}(t) = Y_{(p,t_0)} = X$
 $\therefore T_{(p,t_0)}^{i}(t) = Y_{(p,t_0)} = X$
 $\therefore Y_{(p,t_0)}^{i}(t) = Y_{(p,t_0)} = X$
 $\therefore Y_{(p,t_0)}^{i}(t) = Y_{(p,t_0)}^{i}(t)$
 $M = Y_{(p,t_0)}^{i}(t) = Y_{(p,t_0)}^{i}(t)$
 $Y_{(p,t_0)}^{i}(t) = Y_{(p,t$

$$\therefore$$
 $S_p = S_q$ and $p = q$

Now for Claim:
for each
$$p \in \partial M$$
 let $\phi_{P}^{:} U_{p} \rightarrow V_{p}$ be a coordinate chart
 $about p$
let $r_{p} > 0$ be such that $B_{\phi(p)}(r_{p}) \land R_{20} = V_{p}$
 $V_{build of radius r_{p} about $\phi(p)$
set $\mathcal{O}_{p} = \phi_{p}^{-1} (B_{\phi(p)}(r_{p}))$ and
 $\mathcal{O}_{p}^{'} = \phi_{p}^{-1} (B_{\phi(p)}(r_{p}))$ and
 $\mathcal{O}_{p}^{'} = \phi_{p}^{-1} (B_{\phi(p)}(r_{p}))$
and $f_{p} : M \rightarrow R$ a bump function st:
 $f_{p} = 1 \quad \text{on } \overline{\mathcal{O}_{p}},$
 $f_{p} = 0 \quad \text{outside } \mathcal{O}_{p}^{'}, \text{ and}$
 $0 \leq f_{p} \leq 1$
 $\{\mathcal{O}_{p}\}_{p \in \partial M} = \text{cover of } \partial M$
take a finite subcover $\{\mathcal{O}_{p_{1}}, \dots, \mathcal{O}_{p_{k}}\}$
 $let \tilde{\mathcal{O}}_{p_{i}} = d\phi_{p_{i}}^{-1} (\frac{\partial}{\partial X^{n}})$
 $set \quad \mathcal{V}_{p_{i}}(X) = \begin{cases} f_{p_{i}}\tilde{\mathcal{V}}_{p_{i}} : & X \in \mathcal{O}_{p_{i}}^{'} \\ & X \leq \mathcal{O}_{p_{i}}^{'} \end{cases}$
and $\mathcal{V}(X) = \sum_{i=1}^{k} \mathcal{V}_{p_{i}}(X)$$

C. Lie derivatives

given a vector field v on a manifold Mlet $\underline{F}: W_{\xi, \xi} \rightarrow M$ be its flow and $\phi^{t}: M \rightarrow M$ the associated diffeomorphisms for t small



suppose $f: M \rightarrow \mathbb{R}$ is a function then define the <u>Lie</u> <u>derivative of f</u> to be

$$\begin{aligned} \mathcal{L}_{v} f(x) &= \lim_{t \to 0} \frac{f \circ \overline{\Phi}(x,t) - f(x)}{t} \\ &= \frac{d}{dt} \left(f \circ \overline{\Phi}(x,t) \right) \Big|_{t=0} \\ &\text{note: this is just } f \\ &\text{along a flow line so} \\ \mathcal{L}_{v} f \text{ is the rate of change} \\ &\text{of } f \text{ along the flow line} \end{aligned}$$

if wis another vector field then define the Lie

derivative of w along v to be $d\phi_{st(x)}^{-t}(v(\phi^{r(x)}))$ w (x) $\mathcal{L}_{\psi} w(x) = \lim_{t \to 0} \frac{d\phi_{\phi^{\dagger}(x)}^{-t} (w(\phi^{\dagger}(x))) - w(x)}{t}$ x $= \frac{d}{dx} \left(d\phi_{\phi^{\dagger}(x)}^{-t} \left(W(\phi^{\dagger}(x)) \right) \right) \Big|_{t=0}$ all vectors in Tr.M

$$\frac{Th^{\mu}}{2} \frac{q}{4}$$

$$i) \quad \mathcal{I}_{v} f = v \cdot f = df(v)$$

$$i) \quad \mathcal{I}_{v} v = [v, w]$$

$$\frac{Proof:}{2} \quad i) \text{ for a fixed } \times let$$

$$T_{x} : (-E_{r}(c) \rightarrow M)$$

$$t \mapsto \overline{\Phi}(n;t)$$

$$So \quad Y'_{x}(o) = \overline{v}(x) \quad and \quad Y_{x}(o) = x$$

$$So \quad Y_{x} \quad represents \quad the vector \quad \overline{v}(x) \quad in \quad T_{x} M$$

$$thus \quad df(v) = \frac{d}{dt} (f \cdot Y_{x})|_{t=0}^{t} = \frac{d}{dt} (f \circ \overline{\Phi}(x,t))|_{t=0} = X_{o} f(x)$$

$$lat: \quad def^{n} \quad of \quad df$$

$$in \quad terms \quad of \quad paths$$

$$2) \quad \mathcal{X}_{v} w \quad is \quad clearly \quad a \quad vector \quad field \quad so \quad to \quad see \quad X_{v} w = [v, w]$$

$$we \quad just \quad need \quad to \quad see$$

$$(X_{v}, w) \cdot f = [v, w] \cdot f \quad \forall \quad f \in C^{\infty}(M)$$

$$to \quad do \quad this \quad let \quad \overline{F}: W_{t,s} \rightarrow M \quad the \quad associated \quad diffeomorphisms$$

$$for \quad t_{i} s \quad near \quad (0,0) \quad in \quad \mathbb{R}^{2} \quad set$$

$$f'(th(tr(o)))$$

$$H(t, s) = f \left(\phi^{-t} \left\{ + s\left(\phi^{t}(x)\right) \right\} \right)$$

$$\underline{note}: \frac{\partial H}{\partial s}\Big|_{(t,0)} = \frac{\partial}{\partial s} \left[\left(f \circ \phi^{-t} \right) \circ \Psi(s, \phi^{t}(x)) \right] \Big|_{s=0}$$

$$= \mathcal{J}_{w} \left(f \circ \phi^{-t} \right) \left(\phi^{t}(x) \right)$$

$$f_{by \ definition}$$

$$= \left[w \cdot \left(f \circ \phi^{-t} \right) \right] \left(\phi^{t}(x) \right)$$

$$f_{by \ 1}$$

50
$$(\mathcal{X}_{v} w) \cdot f(x) = \left[\frac{d}{dt} \left(d\phi_{\phi^{+}(x)}^{-t} w(\phi^{+}(x)) \right) \Big|_{t=0} \right] \cdot f$$

 $= \frac{d}{dt} d(f \circ \phi^{-t}) \left(w(\phi^{+}(x)) \right) \Big|_{t=0}$
 $\int de^{f^{n}} of pushing vector forward$
 $= \frac{d}{dt} \left(w \cdot (f \circ \phi^{-t}) \right) (\phi^{+}(x)) \Big|_{t=0}$
 $= \frac{\partial^{2} H}{\partial t \partial s} \Big|_{(0,0)}$

now consider

$$K(t,s,u) = f \circ \phi^{u} \circ \psi^{s} \circ \phi^{t} (x)$$

$$So \quad H(t,s) = K(t,s,-t)$$

and

$$\frac{\partial H}{\partial t \partial s}\Big|_{(0,0)} = \frac{\partial^{2}}{\partial t \partial s} \left(K(t_{1} s, -t) \right)\Big|_{(0,0)}$$

$$= \frac{\partial}{\partial t} \left(\frac{\partial K}{\partial s}(t_{1} s, -t) \right) \Big|_{(0,0)}$$

$$= \left(\frac{\partial^{2} K}{\partial u \partial s} - \frac{\partial^{2} K}{\partial s \partial t} \right) \Big|_{(0,0)}$$

$$NOW \quad \frac{\partial K}{\partial s} \Big|_{(t_{1} \theta, 0)} = \left(\partial L_{w} f \right) \left(\phi^{t}(x) \right) = \left(w \cdot f \right) \left(\phi^{t}(x) \right)$$

$$F = \left(\partial L_{w} f \right) \left(\phi^{t}(x) \right) = \left(w \cdot f \right) \left(\phi^{t}(x) \right)$$

and
$$\frac{\partial^{2} k}{\partial u \partial s} \Big|_{(o, 0, 0)} = \mathcal{J}_{\sigma} (w \cdot f)(x) = \mathcal{V} \cdot (w \cdot f)(x)$$

 $f_{by}(v) \cdot f_{by}(v) = \mathcal{V} \cdot (v \cdot f)(x)$
 $\therefore (\mathcal{X}_{v} w) \cdot f = \frac{\partial^{2} H}{\partial s \partial t} \Big|_{(o, 0)} = \mathcal{V} \cdot (w \cdot f) - w \cdot (v \cdot f)$
 $= [v, w] \cdot f$