VI Approximation and Stability

A. Approximation of continuous functions

differential topology is about <u>smooth</u> functions but many times we only have continuous information so we begin with

Th !!!

Suppose M is a smooth manifold and

$$f: M \rightarrow \mathbb{R}^{k}$$
 is a continuous function
given any continuous positive function
 $S: M \rightarrow \mathbb{R}$
there is a smooth function $\hat{f}: M \rightarrow \mathbb{R}^{k}$
such that
 $\|f(x) - \hat{f}(x)\| < S(x) \quad \forall x \in M$
if f is already smooth on a closed subset $A \subset M$
then we can take $\hat{f} = \hat{f}$ on A

"can juggle a contribuous function to make it smooth" "smooth functions are dense in continuous functions" for the proof we need the following given an open cover {Ux} } were of a manifold M, then a partition of unity subordiviate to {Ux} is

a family of functions
$$\{ \Psi_{A} : M \to R \}_{x \in A}$$
 such that
(i) $0 \notin \Psi_{A}(x) \notin 1$ $\forall u \notin A$ and $x \notin M$
(i) $support of \Psi_{u} \in U_{u} \quad \forall u \notin A$
(i) $\forall \pi, \exists a nbhd \quad \forall_{x} st. \quad \Psi_{u}|_{V_{x}} = 0$ for all but
finitely many α
(ii) $\sum \Psi_{u}(R) = 1 \quad \forall x \notin M$
Iemma 2:
any open cover of a smooth manifold admits
a partition of unity subordinate to it
Proof: "Manifolds are para compact" of meed Hausdorff
and second
countable for this
r.e. given $\{U_{u}\}_{u \notin A}$ an open see text book
Coven, can find an open cover $\{V_{u}\}_{u \notin A}$
by sets homeomorphic to open balls in
Wordinate charts st. $\forall p \notin B, \exists x \notin A$
s.t. $V_{g} \in U_{u}$ and $\{V_{u}\}_{u}$ are "locally finite"
(that is satisfy (i) above)
now for each $\beta \notin B$ take a hump function
 $f_{\beta}: M \to R$
s.t. $F_{g} > 0$ on V_{g} and $= 0$ on $M - V_{g}$
choose a function $i: B \to A$ *s.t.* $V_{g} \in U_{u(g)}$

and set

$$\widetilde{\Psi}_{\chi}(x) = \sum_{\substack{\beta \in B \\ i(\beta) = \alpha}} f_{\beta}(x)$$

$$\frac{\Psi(x) = \sum_{\substack{\chi \in A \\ \chi \in A}} \widetilde{\Psi}_{\chi}(x)$$
and
$$\frac{\Psi_{\chi}(x) = \frac{\widetilde{\Psi}_{\chi}(x)}{\Psi_{\chi}(x)}$$

Cor3:
Suppose
$$M$$
 a smooth manifold
 A a closed subset and
 $f: A \rightarrow \mathbb{R}^k$ a smooth function
for any open set U containing A , $\exists a$ smooth
function $f: M \rightarrow \mathbb{R}^k$
Such that $f = f$ on A and support $f = U$

Proof: by defⁿ of "smooth on A" we know
for each
$$a \in A$$
, \exists an open set W_a and a
smooth function $f_a: W_a \rightarrow \mathbb{R}^k$ s.t. $f_a = f$ on $W_a \cap A$
and we can assume $W_a \subset U$ (by intersection)
 $\{W_a\}_{a \in A} \cup \{M \in A\}$ is an open even of M

so there is a partition of unity
$$\{ \Psi_a \}_{a \in A} \cup \{ \Psi_o \}$$

subordinate to it
set $\tilde{F}_a : M \rightarrow \mathbb{R}^k : x \longmapsto \begin{cases} \Psi_a(x) \tilde{f}_a(x) & x \in W_a \\ 0 & x \notin W_a \end{cases}$
these are smooth on all of M
and since $W_a \subset U$, the functions are O outside U

set
$$\tilde{f}(x) = \sum_{a \in A} \tilde{f}_{a}(x)$$

 $a \in A$ note: finite sum since Ψ_{a} are
locally finite
clearly support $\tilde{f} \in U$
and
 $x \in A, \quad \tilde{f}(x) = \sum_{a} \Psi_{a}(x) f_{a}(x)$
 $= f_{a}(x) \sum_{a} \Psi_{a}(x) = f_{a}(x)$

Proof of Th⁴1: by lor 3 ∃ a smooth function $f: M \to IR^k$ that agrees with f on Alet $U_0 = \{x \in M: \|f(x) - f(x)\| < \delta(x)\}$ this is an open set (check this!) containing Awe now use the continuity of f to construct a "nice cover" of Mfor each $x \in M-A$. ∃ a nbbd U_0 of r is M-A < I

$$for each x \in M-A, \exists a n b h d v_x o f x in M-A s f$$

$$S(y) > \frac{1}{2} S(x) and$$

$$\|f(y) - f(x)\| < \frac{1}{2} S(x) \quad \forall y \in U_x \quad \text{formucty} \quad \text{fo$$

{Ux} is a cover of M-A since M is second countable $\exists a \text{ countable subcover } \left\{ \begin{array}{c} U \\ x_i \end{array} \right\}_{i=1}^{\infty}$ let $\{ \begin{array}{c} V_0, V_n \end{array}\}$ be a partition of unity subord. to $\{ \begin{array}{c} U_0, V_n \end{array}\}_{i=1}^{\infty}$ $\begin{array}{l}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\end{array}\\
\end{array}\\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array}$ \left{\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array}
\left{\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array}
\left{\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array}
\left{\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array}
\left{\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array}
\left{\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array}
\left{\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array}
\left{\begin{array}{c}
\end{array} \end{array} \\
\end{array} \\
\end{array}
\left{\begin{array}{c}
\end{array} \end{array} \\
\end{array}
\left{\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array}
\left{\begin{array}{c}
\end{array} \end{array}

} \\
\end{array}
\left{\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array}
\left{\end{array} \\
\end{array}
\left{\end{array} \\
\end{array}
\left{\end{array}
} \\
\end{array}
\left{\end{array}
\left{\end{array}
\left{\end{array}
} \\
\end{array}
\left{\end{array}
\left{\end{array}
\left{\end{array}
\left{}
\end{array}
}
\end{array}
\left{}
}
\left{}
\end{array}
\left{}
}
\left{}
\end{array}
\left{}
}
\left{}
\end{array}
\left{}
\end{array}
\left{}
}
\left{}
\end{array}
\left{}
\end{array}
\left{}
\end{array}
\left{}
\end{array}
\left{}
}
\end{array}
\left{}
\end{array}
\left{}
} \\
\end{array}
\left{}
}
\left{}
\end{array}
\left{}
}
\left{}
\end{array}
\left{}
}
\end{array}
\left{}
}
\end{array}
\left{}
} \\
\end{array}
\left{}
\end{array}
\left{}
}
\end{array}
\left{}
}
\end{array}
\left{}
}
\end{array}
\left{}
}
\left{}
}
\left{}
\end{array} f is smooth and equal to f on A $now ||\hat{f}(y) - f(y)|| = || \xi(y) \tilde{f}(y) + \tilde{f}(y) f(x_i) - (\xi(y) + \tilde{f}(y))f(y)||$ $\leq \psi_{0}(y) \| \tilde{f}(y) - f(y) \| + \sum_{j=1}^{\infty} \psi_{j}(y) \| f(x_{j}) - f(y) \|$ $< \mathscr{C}_{(\gamma)} S(\gamma) + \sum_{i=1}^{\infty} \mathscr{C}_{i}(\gamma) \stackrel{!}{\geq} S(x_{i})$ $<\left(\mathcal{Y}_{0}(\gamma)+\overset{\infty}{\underset{l=1}{\overset{}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}}}\left(\gamma_{l}\right)\right)S(\gamma)=S(\gamma)$ We would like a similar theorem for f: M-> N but no notion of distance in N so need something new! B. Normal bundles and tubular neighborhoods to continue our discussion of approximations we need normal bundles given a vector bundle IP and a subbundle JP/ M with fiber dimension of E equal to n and

of Gequal to k then set E/G = U Ex/Gr here Ex is the fiber of E above x and similarly for Gx let q: 1/, -> M be the obvious projection to see E/G is a vector bundle we need local trivializations let $U \times IR^n \xrightarrow{\phi} p^{-1}(U)$ be a local Pi V LA trivialization of E note for each $x \in U$, $\phi'(G_x)$ is a k-dimensional subspace of IR" and there is a matrix Ax such that $A_{x}(\mathbb{R}^{k} \times \{0\}) = \phi^{-1}(G_{x})$ <u>exercise</u>: $A: U \rightarrow GL(n, \mathbb{R}): \mathcal{X} \mapsto \mathcal{A}_{\mathcal{X}}$ is smooth 50

and
$$\emptyset$$
 thus induces a map

$$U \times \mathbb{R}^{n-k}$$

$$U \times \mathbb{R}^{n}/\mathbb{R}^{k} \xrightarrow{\widehat{\theta}} q^{-1}(U)$$

$$\mathbb{P} \setminus U \times \mathbb{R}^{n}/\mathbb{R}^{k} \xrightarrow{\widehat{\theta}} (\mathbb{P} \setminus \mathbb{R}^{k})$$

$$\mathbb{P} \setminus U \times \mathbb{R}^{n}/\mathbb{R}^{k} \xrightarrow{\widehat{\theta}} (\mathbb{P} \setminus \mathbb{R}^{k})$$

$$\mathbb{P} \setminus U \times \mathbb{R}^{n}/\mathbb{R}^{k} \xrightarrow{\widehat{\theta}} (\mathbb{P} \setminus \mathbb{R}^{k})$$

$$\mathbb{P} \setminus U \times \mathbb{R}^{n}/\mathbb{R}^{k} \xrightarrow{\widehat{\theta}} (\mathbb{P} \setminus \mathbb{R}^{k})$$

$$\mathbb{P} \setminus U \times \mathbb{R}^{n}/\mathbb{R}^{k} \xrightarrow{\widehat{\theta}} (\mathbb{P} \setminus \mathbb{R}^{k})$$

$$\mathbb{P} \setminus U \times \mathbb{R}^{k}/\mathbb{R}^{k} \xrightarrow{\widehat{\theta}} (\mathbb{P} \setminus \mathbb{R}^{k})$$

$$\mathbb{P} \setminus U \times \mathbb{P} \setminus \mathbb{R}^{k}$$

$$\mathbb{P} \setminus U \times \mathbb{P} \setminus \mathbb{R}^{k}$$

$$\mathbb{P} \setminus U \times \mathbb{P} \setminus \mathbb{R}^{k}$$

$$\mathbb{P} \setminus U \times \mathbb{P} \setminus \mathbb{P} \setminus \mathbb{R}^{k}$$

$$\mathbb{P} \setminus U \times \mathbb{P} \setminus \mathbb{P}$$

So by the above
$$V_{Rk}(M) \cong TM^{\perp}$$

this is why we call it the normal bundle
(you can do this for any 5 in M but need M
to have an inner product on each $T_{\pi}M$
i.e. a Riemannian metric)

If
$$M^{m}$$
 is a compact submanifold of \mathbb{R}^{n} then
wind any open neighborhood U of M , \exists and open
set $N(M)$ containing M s.t. $N(M)$ is an open disk
bundle over M : $B^{n-m} \rightarrow N(M)$
 $\downarrow q$
and \exists a subdisk bundle $N' \subset V_{R^{n}}(M)$ s.t.
 $N' \cong N(M)$
In particular, $q: N(M) \rightarrow M$ is the identity
on M and q is a submersion

<u>Remarks</u>: 1) true if M is non-compact too 2) true for any submanifold 5 of M

Proof: recall
$$v(M) \cong TM^{\perp}$$

let $h: TM^{\perp} \rightarrow R^{n}$
 $v \in [T_{x}M)^{\perp} \mapsto p(w) + v$
 x
 $v \in T_{x}R^{n} = R^{n}$
let $2 = \{ \text{Bero vectors in } TM^{\perp} \}$
note: any $v \in 2$ is a regular point of h
indeed: $T_{p(v)}R^{n} = R^{n} = T_{p(v)}M \oplus (TM)_{p(v)}^{\perp}$
and TM^{\perp}
 $p_{\perp}^{\perp} T\sigma$ where $\sigma(x) = \sigma(TM)_{x}^{\perp}$
 $n = nd p = id_{M}$
so pl_{z} and σ are inverses of eachother
so pl_{z} is a diffeomorphism $2 \rightarrow M$
 $: a \log 2 dp_{\sigma}$ maps onto $T_{p(v)}R^{n}$
 $rm_{p(v)} C T_{p(v)}R^{n}$
so image $dh_{p(v)} = T_{p(v)}R^{n}$
thus since dim TM^{\perp} and R^{n} are same h is a
local diffeomorphism along 2 and $:$ in a
neighborhood of Z
 $(any nbhd of Z contains a subdisk bundle
 $\sigma f TM^{\perp})$$

moreover
$$h|_{2}: Z \to M$$
 is a diffeomorphism
this implies h is a diffeomorphism on a suitably small
ubhd N' of Z
Indeed: let $N_{i_{1}}$ be points in $TM^{\perp} \leq \frac{1}{n}$ from Z
for some n $h|_{M_{i_{1}}}$ an embedding
if not then $\forall n \exists x_{n}; y_{n} \in M_{i_{1}} \quad st. x_{n} \neq y_{n}$
and $h(x_{n}) = h(y_{n})$
 $let x = limi x_{n}$ and $y = limi y_{n}$ (exist by optness)
 $\therefore h(x) = h(y) \Rightarrow x = y$ (since $\pi_{i_{1}} \in Z$)
 h a local diffeomorphism so \exists ubhd of $x = y$
where h is one-to-one, this contradicts $\exists x_{n}, y_{n}$
Approximations of continuous functions II
two continuous functions $f_{o}, f_{i}: X \to Y$ are called
homotopic if \exists a continuous map
 $F: X \times [o_{i}, i] \to Y$
such that
 $F(x_{i}) = f_{o}(x)$ $\forall x \in X$
 $F(x_{i}) = f_{i}(x)$

C.

we call F a <u>homotopy</u> it we set $f_{t}: X \rightarrow Y: x \mapsto F(x_{i}t)$ then we can think of F as giving a "continuous deformation" from fo to fi through the f_{t} 's

it X and Y are smooth manifolds and F is smooth then we call this a <u>smooth homotopy</u>

prercise: (smooth) homotopy is an equivalence relation

Th 5: Suppose N and M are smooth manifolds (M without boundary) and f: N->M is continuous Then f is homotopic to a smooth map. If f is already smooth on a closed subset A then the homotopy can be chosen to be fixed on A.

Proof: We can assume $M \in \mathbb{R}^{k}$ by the Whitney Embedding theorem to $f: N \to M \in \mathbb{R}^{k}$ is continuous $\exists a \text{ tubular nbhd } N(M) \text{ of } M \text{ in } \mathbb{R}^{k}$ and $q: N(M) \to M$ its projection by $Th^{m} 1$ we know there is a smooth map $\hat{f}: N \to \mathbb{R}^{k}$ that is arbitrarily close to f

in particular in
$$\hat{f} \subset N(M)$$

exercise: we can choose \hat{f} st.
 $(1-t) f(x) + t \hat{f}(x)$ is in $N(M)$
 $\forall t \in [0, 1]$ and $x \in N$
So $F: N \times \{0, 1\} \rightarrow M$

$$\frac{\text{Cor 6}}{\text{let } f_0, f_1 : N \to M \text{ be two smooth maps}}$$

$$Then f_0 \text{ and } f_1 \text{ are homotopic}$$

$$(\Rightarrow)$$

$$they are smoothly homotopic$$

$$\frac{Proof}{(\Rightarrow)} \checkmark$$

$$(\Rightarrow) \quad let \quad F: N \times \{o, i\} \rightarrow M \quad be \quad a \quad homotopy$$

$$(smooth \quad on \quad N \times \{o, i\})$$

$$Th^{\underline{m}} 5 \quad gives \quad \widetilde{F}: N \times \{o, i\} \rightarrow M \quad smooth$$

$$and \quad \widetilde{F} = F \quad on \quad N \times \{o, i\}$$

D. Homotopy and Stability

frequently in math (and more so in physics...) we are interested in properties that are "stable" re don't change under "small perterbations" more precisely we say a property of a map $f_{n}: M \rightarrow N$ is stable if for any smooth homotopy ft of to there is some ETO s.t. ft also has this property for all t<E. Thm7 (Stability Thm): The following properties of smooth maps from a compact manifold M to a manifold N are stable: (1) local diffeomorphism (2) immersions (3) submersions (4) maps transverse to a tixed closed submanifold S<N (5) embeddings (6) diffeomorphisms

recall (from homework) that f: M -> N is transverse to SCN if YpEf '(s) we have Tfip N is spanned by im (dfp) and Tfips and if f is transverse to 5 then f - (5) is a manifold of codim = codim 5 in N

<u>Proof</u>: (2) let F: M×{0,1] → N be a smooth homotopy and $f_0(x) = F(x,0)$ be an immersion we must find an $E > 0 \ s_t$. $\forall (x,t) \in M \times \tilde{t}_{0,E}$) $(df_t)_x$ is injective recall lemmaIL.9 says if a linear map has max rank then near by linear maps do too

so for each
$$x \in M$$
, $\exists a$ nbhd V_x of (x_i0) in $Mx[o_i]$
st. $(df_t)_y$ is max rank $\forall (y,t) \in U_x$
now $U = U U_x$ is an open nbhd of $Mx\{o\}$
so $th \exists$ follows!
items (i) and (3) have almost the same proof
as does (4) (once you do your homework)
now for (5) ((6) is similar)
F a homotopy as above with f_x an embedding
we know $\exists \epsilon > 0$ st. f_x immersion for $t \in [e, c]$
since M is compact we are done if we show
 $\exists \epsilon' > 0$ st. f_x is injective $\forall t \in [e, c]$
to this end, assume not, so $\exists a$ sequence
 $t_i \rightarrow 0$ (decreasing)
and $x_i \neq y_i \in M$ st. $f_{e_i}(x_i) = f_{e_i}(y_i)$
by compactness we have $x_i \rightarrow x$ (after possing
 $Y_i \rightarrow y$ to a subsequence)
now $F(x_i, 0) = \lim_{t \rightarrow \infty} F(x_i, t_i) = \lim_{t \rightarrow \infty} F(Y_t, t_t) = F(Y_t, 0)$
 $f(x_i, t) = \lim_{t \rightarrow \infty} F(x_i, t_t) = \lim_{t \rightarrow \infty} F(Y_t, t_t) = F(Y_t, 0)$
 $f(x_i, t) = \lim_{t \rightarrow \infty} f(x_i, t_t) = \lim_{t \rightarrow \infty} F(Y_t, t_t) = F(Y_t, 0)$
 $f(x_i, t) \mapsto F(X_t, 0) = \lim_{t \rightarrow \infty} f(x_t, t_t) = \lim_{t \rightarrow \infty} F(Y_t, t_t) = F(Y_t, 0)$
 $f(x_i, t) \mapsto F(X_t, 0) = \lim_{t \rightarrow \infty} F(X_t, 0) = \lim_{t \rightarrow \infty} \frac{f(x_t, t_t)}{f(x_t, t_t)} = \lim_$

fo an inimersion says df_0 has rank = dimM=m so $dG_{(x_{i0})}$ has rank $m+1 = dim(M \times [o_{i1}])$ so G is an immersion at $(x_{0,0})$ $\therefore Th^{M}II.G \Rightarrow \exists nbhd about <math>(x_{0,0})$ $st. G is one-to-one & \exists (x_{1,t_i}) and (y_{1,t_i})$