VII Transversality

A. <u>Genericity of transversality</u> we know what it means for a map f: M-N to be transverse to a submanifold S of N and that if f is transverse to S (write fAS) then f'(s) is a submanifold of M of codimension = Lodim Sin N. exercise: if a m + p and flow: and row is to s and $f: M \rightarrow N$ is f to Sthen f'(s) is a submanifold of M with 2 f-4s) C 2M How easy is it to find the maps ?

Suppose x is a regular value of $\pi |_{\Sigma}$ need to see $f_{\chi} = \pi S$ suppose $(p, x) \in \Sigma$ so $F(p, x) = A \in S$ $F = \pi S \Rightarrow \forall v \in T_A N$, $\exists w \in T_{(p, x)} (M \times X)$ $st. v = d = f_{(x, x)} (w) \in T_A S$

we need to find
$$u \in T_p M s_t$$
.
 $T - d(f_x)_p(u) \in T_x S_{x = f_x(p)}$
now $T_{(p,x)}(M \times X) = T_p M \times T_x X$
 $w = (a, b)$
if $b = 0$, then consider
 $M \xrightarrow{i} M \times X$
 $p \mapsto (p, x)$
we know $di_p(a) = (a, c)$
so $(bf_x)_p(a) = d(F \circ i)_p(a)$
 $= dF_{(p,x)}(di_p(x))$
 $= dF_{(p,x)}(a, c) = dF_{(p,x)}(a, b)$
 $= dF_{(p,x)}(w)$
and so $V - (df_x)_p(a) \in T_x S$
and we are dare
now in general, we know that
 $dT_{(n,x)}(T_{(p,x)}\Sigma) = T_x X$
since x is a regular value
and $dT_{(p,x)} : T_{(p,x)}(M \times X) \rightarrow T_x X$
 $T_p M \times T_x X$
is just projection

$$50 \exists (c, b) \in T_{(0,x)} \Sigma \quad s.t. \ dT_{(0,x)}(c,b) = b$$

$$\underline{note}: \ since \ (c,b) \in T_{(0,x)} \Sigma \quad we \ know$$

$$dF_{(0,x)}(c,b) \in T_{d} S$$

$$50 \ v - dF_{(0,x)}(a-c, 0) = v - dF_{(0,x)}((ab) - (c,b))$$

$$= (v - dF_{(0,x)}) + dF_{(0,x)}(c,b)$$

$$= (v - dF_{(0,x)}) + dF_{(0,x)}(c,b)$$

$$= T_{d} S$$

$$\therefore v - dF_{(0,x)}(a-c, 0) \in T_{d} S$$
and we are done by above #
$$Th^{0}\Sigma:$$

$$Iet \ M, N \ be \ smooth \ manifolds \ (M \ possibly \ with \ 2)$$
and $S \ a \ sub \ manifold \ of \ N$

$$for \ any \ smooth \ map \ f: M \rightarrow N \ there \ is \ a$$

$$homotopy to \ a \ smooth \ map \ f: M \rightarrow N \ there \ is \ a$$

$$homotopy to \ a \ smooth \ map \ f: M \rightarrow N \ there \ is \ a$$

$$homotopy to \ a \ smooth \ map \ f: M \rightarrow N \ there \ is \ a$$

$$homotopy to \ a \ smooth \ map \ f: M \rightarrow N \ there \ is \ a$$

$$homotopy to \ a \ smooth \ map \ f: M \rightarrow N \ there \ is \ a$$

$$homotopy to \ a \ smooth \ map \ f: M \rightarrow N \ there \ is \ a$$

$$homotopy to \ a \ smooth \ map \ f: M \rightarrow N \ there \ is \ a$$

$$homotopy \ to \ a \ smooth \ map \ f: M \rightarrow N \ there \ is \ a$$

$$homotopy \ to \ a \ smooth \ map \ f: M \rightarrow N \ there \ is \ a$$

$$homotopy \ to \ a \ smooth \ map \ f: M \rightarrow N \ there \ is \ a$$

$$homotopy \ to \ a \ smooth \ map \ f: M \rightarrow N \ there \ is \ a$$

$$homotopy \ to \ a \ smooth \ map \ f: M \rightarrow N \ there \ is \ a$$

$$homotopy \ to \ a \ smooth \ map \ f: M \rightarrow N \ there \ is \ a$$

$$homotopy \ to \ a \ smooth \ map \ f: M \rightarrow N \ there \ is \ a$$

$$homotopy \ to \ a \ smooth \ map \ f: M \rightarrow N \ there \ is \ a$$

$$homotopy \ to \ a \ smooth \ map \ f: M \rightarrow N \ there \ smooth \ map \ f: M \rightarrow N \ there \ smooth \ map \ f: M \rightarrow N \ there \ smooth \ map \ f: M \rightarrow N \ there \ the \ smooth \ map \ f: M \rightarrow N \ there \ smooth \ map \ f: M \rightarrow N \ there \ smooth \ map \ f: M \rightarrow N \ there \ smooth \ smooth \ fin \ f$$

where q: N(N) -> N ~ tubular n bhd of N in R^k

$$\underbrace{\operatorname{note}: \ T_{(Y,X)}(MXX) = T_Y M \times T_X X \xrightarrow{dF} T_{H(Y,X)} \overset{dF}{\longrightarrow} T_{F(X,X)} \underset{\mathbb{R}^{h}}{\overset{SII}{\mathbb{R}^{h}}} \xrightarrow{SII} \underset{\mathbb{R}^{h}}{\overset{SII}} \overset{SII}{\overset{SII}}} \overset{SII}{\overset{SII}} \overset{SII}{\overset{SII}}} \overset{SII}{\overset{SII}}} \overset{SII}{\overset{SII}} \overset{SII}{\overset{SII}} \overset{SII}{\overset{SII}}} \overset{SII} \overset{SII}{\overset{SII}} \overset{SII}{\overset{SII}}} \overset{SII}{\overset{SII}} \overset{SII$$

let
$$M_{i}N$$
 be smooth manifolds (M possibly with ∂)
So smooth submanifold of N
 $f: M \rightarrow N$ a smooth map
if \exists a closed set C of M on which f is ff to S
(and $fl_{\partial M}$ ff S on C), then
 f is smoothly homotopic to $g: M \rightarrow N$ s.t.
 $gff S$ (and $gl_{\partial M}$ ff S) and $g=f$ on an
open subset of C .

Idea of Proof:

Step 1: there is an open neighborhood Vof C st. fland fle) is the fos on U Hint: It is an "open" condition see proof of stability the

Step 2: there is a function $Y: M \rightarrow \mathbb{R}$ s.t. Bopon sets $C \subset U' \subset U'' \subset U$ and Y = 0 on \overline{U}' and Y = 1 outside U''<u>Hint</u>: for \overline{M} . 3

Step 3: If
$$F: M \times X \to Y$$
 is the function from
last proof, then set
 $G: M \times X \to N$
 $(Y, \times) \mapsto F(Y, 8^{2}(Y) \times)$
note: i) where $8 = 1$ (outside U"),
 $G \notin S$ since F is
i) where $Y = 0$ (inside U'),
 $G(Y, \times) = F(Y, 0) = f(Y)$ if S
since f is on U'
3) exercise G is transverse to S
everywhere (i.e. on U"-U),
now proof follows as proof of $Th^{m}2$

H

B. 1-Manifolds and applications

Thm: every compact connected 1-manifold is diffeomorphic to [0,1] or 5'

<u>Remark</u>: we will not prove this It is not too hard, see Gvillemin & Pollack

Th 4:

let M be a smooth compact manifold with boundary there is no continuous retraction of M to 2M 1.e. no map f: M-> JM s.t. f= id on JM

Proof: Suppose there is a retraction f: M-> JM assume t is smooth (for now) I x & IM that is a regular value of f and flow so f-'(x) = 5 is a submanifold of M and 25 c 2M {X} closed in DM so 5 closed in M M compact so 5 is compact :. S = union of intervals and 5's note: f'(x) A & M = {x} since f = id on & M so S has one boundary powit! but compact 1-manifolds must have an even number of boundary points &

so f does not exist!
now suppose f is only continuous
by Th^m I.3
$$\exists$$
 a nbhd of ∂M in M
diffeomorphic to $\partial M \times [o, E)$
now set $f: \partial M \times [o, C) \rightarrow \partial M \times [o, E)$
 $(k, t) \longmapsto f(x, g(E))$
where $f(x, g(E))$
where $f(x, g(E))$
where $f(x, g(E))$
 $f(x, g(E))$

Cor 5 (Brower fixed-point thm): any continuous map $f: B^n \rightarrow B^n$ has at least one fixed pt. $1e. x \in B^n \text{ s.t. } f(x) = x$

Proof: Ossume not
then
$$f(x)$$
 and x define a ray r_x starting at $f(x)$ and
going through x
let $g(x) = unique point$
is $r_x \cap \partial B^n$
os shown in picture
Claim: $g(x)$ is continuous
if true then this \bigotimes $Th \stackrel{m}{=} t$ since $g(x)=x$ for $x \in \partial B^n$
to see the claim is true note r_x is parameterized
by $(i-t)f(x) + tx$ tzo
the ray intersects ∂B^n at
 $(i-t)^2 ||f(x)||^2 + 2t(i-t) (x \cdot f(x)) + t^2 ||x||^2 = 1$

50

 $\left(\|\chi\|^{2} - 2\chi \cdot f(\chi) + \|f(\chi)\|^{2}\right)t^{2} + 2(\chi \cdot f(\chi) - \|f(\chi)\|^{2})t + \|f(\chi)\|^{2} - 1 = 0$ $\|\chi - f(x)\|^{2} t^{2} + z(x \cdot f(x) - \|f(x)\|^{2}) t + (\|f(x)\|^{2} - 1) = 0$ p(t) = polynomial in t

so p has two roots and we know $p(0) = ||f(x)||^2 - | \le 0$ $p(1) = ||x||^2 \le 0$

but
$$p(t) > 0$$
 as $t \rightarrow \pm \omega$
so one root ≤ 0 and one ≥ 1
quadratic formula says the positive root t_{χ}
depends continuously on χ
 $\therefore g(\chi) = (1 - t_{\chi})f(\chi) + t_{\chi}\chi$ is continuous

C. Mod Z intersection theory

Then given $f: M \to N$, we can use $Th^{m} 2$ to homotop f to f_i so that $f_i \overline{T}_i S$

<u>note</u>: $f_i^{-1}(5) = f_i(M) \cap S = \{ \text{finite set of points} \}$ $\int_{0-dim}^{\infty} f_i(5) = \int_{0}^{\infty} (M) \cap S = \{ \text{finite set of points} \}$ $\int_{0-dim}^{\infty} f_i(5) = \int_{0}^{\infty} (M) \cap S = \{ \text{finite set of points} \}$ $\int_{0-dim}^{\infty} f_i(5) = \int_{0}^{\infty} (M) \cap S = \{ \text{finite set of points} \}$ $\int_{0-dim}^{\infty} f_i(5) = \int_{0}^{\infty} (M) \cap S = \{ \text{finite set of points} \}$ $\int_{0-dim}^{\infty} f_i(5) = \int_{0}^{\infty} (M) \cap S = \{ \text{finite set of points} \}$ $\int_{0-dim}^{\infty} f_i(5) = \int_{0}^{\infty} (M) \cap S = \{ \text{finite set of points} \}$ $\int_{0-dim}^{\infty} f_i(5) = \int_{0}^{\infty} (M) \cap S = \{ \text{finite set of points} \}$ $\int_{0}^{\infty} (M) \cap S = \{ \text{finite set of points} \}$ $\int_{0}^{\infty} (M) \cap S = \{ \text{finite set of points} \}$ $\int_{0}^{\infty} (M) \cap S = \{ \text{finite set of points} \}$ $\int_{0}^{\infty} (M) \cap S = \{ \text{finite set of points} \}$

The intersection mod 2 of
$$f$$
 and S is
 $I_{z}(f, S) = \# f_{1}^{-1}(S) \mod 2$

$$\frac{Th^{m}6}{I_{2}(f_{1}s) \text{ is well-defined}}$$

$$I_{2}(f_{1}s) \text{ is well-defined}$$

$$I_{2}(f_{1},f_{2}) = I_{2}(f_{2},s)$$

Proof: let F: M × [0,1] → N be the homotopy
from f, to f₂
by Th^M3 we may find a homotopy
$$\widehat{F}$$
 s.t. \widehat{F} th s
now $\widehat{F}^{-1}(S) = compart 1 - manifold$
 $= \coprod S^{1} \cup Y_{1} \cup ... \cup Y_{n}$
 $\underset{M \times (0,1)}{n}$ arcs with end
points on M × [0,1]
note: f, $\widehat{-}^{1}(S) \cup \widehat{f_{2}}^{-1}(S) = \Im(\widehat{F}^{-1}(S)) \leftarrow even \# of pts$

$$so \# f_{1}^{-1}(s) = \# f_{2}^{-1}(s) \mod 2$$

Remarks:
1) given any
$$f_{i,j}f_{z}: M \rightarrow N$$
 homotopic then
 $I_{z}(f_{i,j}S) = I_{z}(f_{z,j}S)$
(since homotopy is an equivalence $rel^{(1)}$)
2) given $S_{i,j}S_{z}$ submanifolds of N st.
divin S_{i} t divin $S_{z} = divin N$
(we say $S_{i,j}S_{z}$ have complementary divin)
Suppose $S_{i,j}S_{z}$ closed and compact
then $I_{z}(S_{i,j}S_{z})$ is defined to be $I(i, s_{z})$
where $i: S_{i} \rightarrow N$ is inclusion

<u>Thm7</u>:

suppose
$$M, N, S$$
 and $f: M \rightarrow N$ as above
if $\exists a$ compact manifold W st. $\exists W = M$ and
 f can be extended to $F: W \rightarrow N$
then $I_{z}(f, S) = 0$

Proof: homotop
$$F$$
 to \hat{F} that is transverse to S
note: $I_{z}(f,s) = I(\hat{F}|_{w}, s)$ since f and $\hat{F}|_{w}$
are homotopic
now $\hat{F}^{-1}(s)$ is a compact 1-manifold

So
$$\Im \widehat{F}^{-1}(S) = even \# of points$$

$$(\widehat{F}|_{J_{W}})^{-1}(S)$$
So $I_{2}(\widehat{F}|_{J_{W}}, S) = 0$

example: consider $T^{2} = S^{1} \times S^{1}$
let $S = S^{1} \times \{pt\}$
and $f: S^{1} \rightarrow T^{2}$
 $\vartheta \mapsto (pt, \vartheta)$

$$S^{1} \quad f \quad f = pt\}$$
So $I_{2}(f, S) = 1$
thus f does not extend over D^{2}
(or any compact surface)
Intuitively clear but not easy to show!
exercise: 1) Show S^{2} is not diffeomorphic to T^{2}
by showing any $f: S^{1} \rightarrow S^{2}$ can be
extended to D^{2}

2) Show RP2 is not diffeomorphic to 52

Hint: Consider "self-intersection" of 5' cm 52 equator quot. RP2

Suppose now M, N are two manifolds of the same dimension and without boundary

assume M is compact and N is connected

given any map $f: M \to N$ we call $I_2(f, \{p\})$ for any PEN the degree mod 2 of f and denote it deg. (f)

Th 38:

For any two points $p_1 p_2 \in N$, $I_2(f_1(p_1)) = I_2(f_1(p_2))$ (re degr (f) is well-defined)

for the proof we need a few observations

First since deg (f) is defined in terms of $I_2(f, \{p\})$ and $I_2(f, \{p\})$ is unchanged if we homotop f we see

Gor 9: homotopic maps have the same degree we also need

lemma 10:

With notation as above, for any regular value p of f I an open noted U of p s.t. $f'(\upsilon) = U_{1} \upsilon \dots \upsilon U_{k}$ where the U_k are disjoint and $f: U_i \rightarrow U$ is a diffeomorphism.

Proof of Th=8:

given pEN we can homotop f to be transverse to p (so p is a regular value of f) now we have U1,..., Uk as in lemma 9 so for any q E U, f'(q) has k points : the function $N \rightarrow \mathcal{E}$ $\rho \mapsto I_{\tau}(f, \{\rho\})$ is locally constant since N is connected it is thus constant (exercise)

Proof of Lemma 9:

let $\{\rho_{1}, \dots, \rho_{k}\} = f'(\rho)$ (we know $f'(\rho)$ is a compact 0-manifold so a finite number of points)

each
$$p_i$$
 has a neighborhood W_i such that
 $f|_{W_i} : W_i \to f(W_i)$
is a diffeomorphism (by inverse function th^m)

since M is Hausdorff we can assume
$$W_i$$
 are disjoint
note: $X = f(M - \bigcup_{i=1}^{U} w_i)$ is compact (since M is)
set $U = (f(W_i) \cap \dots \cap f(V_k)) - X$ need to remove π since
some pts in $M - Uw_i$ might
this is an open set and $p \in U$ map to $(f(W_i))$
now set $V_i' = W_i \cap f^{-1}(U)$
Clearly: $f|_{U_i}: U_i \rightarrow U$ is a diffeomorphism
and $UU_i \in f^{-1}(U)$
now if $\pi \in f^{-1}(U)$ then $f(\pi) \in U$
so $f(\pi) \notin X = f(M - \bigcup_{i=1}^{U} w_i)$
 $\therefore \pi \in Uw_i \implies \pi \in W_i$ some i
and so $\pi \in W_i \cap f^{-1}(U) = U_i$

thus
$$(U_i = f^{-1}(U))$$

Th= 11:

If
$$M = \partial W$$
, W compact, and $f: M \rightarrow N$ can be
extented to a map $F: W \rightarrow N$ then
 $deg_{2}(f) = 0$

Proof: take a regular value
$$p$$
 of f
so the deg₂(f) = #(f⁻(p)) mod Z
we can homotop F rel $\exists v$ (re don't change f)
so that $F.Th$ { p }
now $F^{-1}(p)$ is a compact 1-manifold with boundary
 $f^{-1}(p)$ so $f^{-1}(p)$ is an even number of pts

The 12: every complex polynomial of odd degree has a root

Remarks: 1) Similar proof with non-mod Z degree proves general result (any positive degree) 2) The proof is a simple case of a very powerful idea <u>The Continuity Method</u>: if you can't solve an

equation, howeotop it to one you can solve
and then argue original one solvable too!
Proof: let
$$p(t)$$
 be an odd degree polynomial
if $p(t)$ has no zeros then

$$\frac{p(t)}{|p(t)|}: C \rightarrow S^{1} \text{ is well-defined}$$
now consider

$$p_{1}(t) = t p(t) + (1-t) t^{m}$$

$$= t (t^{m} + a_{m-1}t^{m-1} + ... + a_{0}) + (1-t) t^{m}$$

$$(con assume P is month)$$
note: away from origin p_{t} has a zero
 $t = t$

$$\frac{p_{t}(t)}{t^{m}} = 1 + t (a_{m-1} t^{m} + a_{0} t^{m})$$
as $t \rightarrow \infty$, $(t) \rightarrow 0$
so if D_{r} is the disk of radius r about origin in C
then for large r , $|(t)| < 1$ on ∂D_{r}
 $t = \frac{p_{t}(t)}{p_{t}(t)} : D_{r} - 3 t^{t}$ is well-defined
 $t = \frac{p_{t}(t)}{t^{m}} = 2 + t^{m} t^{m} + t^{m$

and gives a homotopy from
$$\frac{P(2)}{|P(2)|} \neq 0$$
 $\frac{2^{n}}{|2^{m}|} = D_{r}$
you can easily check $\deg_{2}\left(\frac{2^{m}}{|2^{m}|}\right) = m \neq 0 \mod 2$
if modd
so $\deg_{2}\left(\frac{P(2)}{|P(2)|}\right) \Rightarrow 0$
 ∂D_{r}
and $\frac{P(2)}{|P(2)|} = \operatorname{cant}$ be extended over D_{r}
so from above $p(2)$ must have a root in D_{r}