XI Integration

A Orientations let V be a vector space we say two ordered bases Vi,..., Vn and Wi, ..., Wa of V give the same orientation if the unique linear map LiV -> V satisfying LU: = V: has positive determinant errercise: 1) "gives the same orientation" is an equivalence relation 2)] exactly 2 equivalence classes of bases a choice of equivalence class is called an orientation on V (for O-dim' V we just call a choice of I for {0} on orientation)

examples:

R

exercise: given
$$\omega \in \Lambda^{n} \vee \operatorname{with} \ \omega \neq 0$$
, the set of
ordered bases $e_{1,\dots,e_{n}}$ such that $\omega(e_{1,\dots,e_{n}}) > 0$
form an orientation on \vee
Recall: $\Lambda^{n} \vee \cong \mathbb{R}$
so a choice of component of
 $\Lambda^{n} \vee - ioi$
is equivalent to an orientation on $\Lambda^{n} \vee$ and hence on \vee
now consider a manifold M
let $\mathcal{O} = \Lambda^{n} M - i \mathbb{O}^{i}$ section
 $= \coprod (\Lambda^{n}(T_{x},M) - ioi)$
 \mathcal{O} is an $(\mathbb{R} - ioi) - bundle over M$
fiberwise \mathcal{O} has 2 components, so if M is
connected they \mathcal{O} has either 1 or 2

Components

<u>example</u>:

1 component

2 components

if O has 2 components then we say M is <u>orientable</u> and a choice of component is called an <u>orientation</u> on M (note this gives an orientation on each $T_x M$ for all $x \in M$) note: if M is connected and orientable, then an

orientation on M is determined by a chair of component of O above one point x & M i.e. by a montero elt of Mⁿ(T_x M) i.e. by a choice of oriented basis of T_xM

If M, N are oriented n-manifolds, then

a map $f: M \rightarrow N$ is called orientation preserving if it takes the component of \mathcal{O}_N defining the orientation to the component of \mathcal{O}_M defining the orientation

Le df takes a correctly oriented basis for $T_x M$ to a correctly oriented basis for $T_{f(x)} N$. $T_h = 1$:

Ma smooth manifold. The Following Are Equivalent (a) M orientable (b) $\exists a \quad collection \quad of \quad charts \{ \phi_{a} : U_{a} \rightarrow V_{a} \}$ for \mathcal{M} such that $\{ U_{a} \}$ cover \mathcal{M}

and $det\left[d(\phi_{p},\phi_{x}^{-i})\right] > 0$ whenever defined (c)] a nonzero n-torm on M

Proof:
(a)
$$\Rightarrow$$
(b)
let $\{ \psi_{k} : U_{k} \rightarrow V_{k} \}$ be all charts s.t. ψ_{k} is orientation
preserving where $V_{k} \in \mathbb{R}^{n}$ has the orientation $\frac{2}{2} \sum_{j=1}^{n} \frac{2}{2} \sum_{$

a

(c) =)(a)

given
$$\omega$$
 as in (c) let

$$\Lambda^{+} = \bigcup_{x \in M} \{a \omega(x) \mid a \in \mathbb{R} \mid a > 0\}$$

$$\Lambda^{-} = \bigcup_{x \in M} \{a \omega(x) \mid a \in \mathbb{R} \mid a < 0\}$$

$$x \in M$$
(leadly, $\Lambda^{+} \cap \Lambda^{-} = \emptyset$

$$\mathcal{O}_{M} = \Lambda^{+} \amalg \Lambda^{-}$$

So \mathcal{O}_{M} is disconnected.

lemma 2:

M a smooth oriented n-manifold
S a smooth submanifold of M of codim 1

$$v$$
 a vector field along S that is transverse to S
(z.e. v is a section of TMI_s and $T_x S$
and $v(x)$ span $T_x M$)
Then \exists a unique orientation on S such that
 (v_{i_1, \dots, v_{h-1}) is an oriented basis for $T_x S$
 $(v(x), v_{i_1, \dots, v_{h-1})$ is an oriented basis for $T_x M$

Proof: let S be an n-form on M that

gives the orientation on \mathcal{M} let $\omega = (L_v SL)|_S$ this is an (n-1) - form on Sone can easily check $\omega \neq 0$ on Smoreover $\omega(v_{i_1, \dots, v_{n-1}}) > 0 \iff SL(v_{i_k}, v_{i_1, \dots, v_{n-1}}) > 0$

examples: 1) $S^{n} \subset \mathbb{R}^{n+1}$ $let \ U = \sum x^{i} \frac{2}{2x^{i}}$ U is transvense to S^{n} $\mathcal{L} = dx^{i} \wedge \dots \wedge dx^{n+i} \text{ orients } \mathbb{R}^{n+1}$ $so \ \omega = C_{U} \cdot \mathcal{L} = \sum (1)^{i-1} dx^{i} \wedge \dots \wedge dx^{i} \wedge \dots \wedge dx^{n+1}$ $orients \quad S^{n}$

 $\frac{exercise}{e:}$ $let \ r: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n+1}: p \rightarrow -p$ $(note \ r(_{sn}: s^{n} \rightarrow s^{n}))$ $show \ r^{*} \ \omega = (-1)^{n+1} \ \omega$ $so \ r(_{sn} \ is \ orientation \ preserving$ $\underset{n \ is \ odd}{\Leftrightarrow}$ $z) \ \mathbb{R}p^{2} \ is \ not \ oriented$

If it were then there is a nonzero
z-form
$$\omega$$
 giving orientation
let $p: S^2 \longrightarrow \mathbb{RP}^2$
 $(x'_i x_i^2 x^3) \longmapsto [x': x^2: x^3]$
 $\left(\frac{note}{2}: p^{-i}(x) = \xi Y, \Gamma(Y) \right)^3$
for Y st $p(Y) = x$
so it we define equivalence
relation on S^2 by
 $x - Y \bigoplus \Gamma(X) = Y$
then $\mathbb{RP}^2 = S^2_{in}$

now
$$\tilde{\omega} = p^* \omega$$
 is a nonzero 2-form
on S^2
(check this, but p is a local
diffeo. so clear)

 $5^2 \xrightarrow{r} 5^2$ from above r / / r Rpz 50 p*=(p*or)*=r*op* $: \quad \widetilde{\omega} = \rho^* \, \omega = \, r^* \, (\rho^* \, \omega) = \, r^* \, \widetilde{\omega}$

: r is orientation preserving & above exercise! . IRP is not oriented

Recall in the proof of $Th^{m}V.3$ we saw that if M is a manifold with boundary then there is a vector field v on M such that v(x)points out of M for all $x \in \partial M$

thus if M is an oriented manifold with boundary, then there is an orientation induced on ∂M using an out ward pointing vector field along ∂M (as in lemma 2) i.e. if \mathcal{SL} gives an orientation on M and v is an autword pointing vector field then $\omega = L_v \mathcal{SL}|_{\partial M}$ orients ∂M

examples:

B. Integration let x',..., x" be standard coordinates on R" N"R" = R so an n-form looks like $\omega = f(x'_1, ..., x^n) dx'_1 ... n dx^n$ where f: R" - R is a function for any set A < R" we define $\int_{A} \omega = \int_{A} f dvol$ from vector calculus

<u>note</u>: if $\phi: \mathbb{R}^n \to \mathbb{R}^n$ is a coord change $x' \cdot x' \quad y' \cdot \cdot y' \quad (i.e. local diffeo)$

and w=f(y) dy'n... ndy" then

 $\int_{\phi(A)} \omega = \int_{\phi(A)} f \, dvol_{y'-y''}$

vector calc
$$= \int_{A} (f \circ \phi) | Jacobian \phi | dvol_{x'...x'}$$

variables $= \pm \int_{A} (f \circ \phi) det(d\phi) dvol_{x'...x'}$
depending $= \pm \int_{A} (f \circ \phi) det(d\phi) dvol_{x'...x'}$
of ϕ orientation $= \pm \int_{A} (f \circ \phi) (det d\phi) dx'n...ndx''$
revensing $= \pm \int_{A} f^* \omega$

so if
$$\phi$$
 is orientation preserving, then

$$\int_{\phi(A)} \omega = \int_{A} \phi^* \omega$$

now suppose
$$\omega \in \mathcal{M}^{n}(M)$$

and M is oriented
if $supp(\omega) \subset coord \ chart U, \ \phi: U \rightarrow V$
then define
 $\int_{M} \omega = \int_{R^{n}} (\phi^{-1})^{*} \omega$
from above this is well-defined as
long as ϕ is orientation preserving
now if M is oriented a $\{\phi_{\alpha}: U_{\alpha} \rightarrow V_{\alpha}\}_{\alpha \in A}$

is a set of oriented charts st. {U} dea lover M (exist by The 1) then let { "} be a partition of unity subordinate to { Ux } for any we sn (M) define $=\sum_{\alpha\in\mathcal{A}}\int_{\mathcal{R}^{n}}(\phi_{\alpha}^{-1})^{*}(\psi_{\alpha}\omega)$

lemma 3: Show is independent of cover EUS and partition of unity ne. Swis well-defined

<u>Proof</u>: let $\{\widetilde{\varphi}_{\beta}: U_{\beta} \rightarrow V_{\beta}\}$ and $\{\widetilde{\Psi}_{\beta}\}\$ be another oriented cover of M and partition of unity $\int_{M} \Psi_{d} \omega = \int_{M} (\widetilde{\Sigma}\widetilde{\Psi}_{\beta}) \Psi_{d} \omega = \widetilde{\Sigma} \int_{M} \widetilde{\Psi}_{\beta} \Psi_{d} \omega$

⁵⁰
$$\int_{M} \omega = \sum_{\alpha,\beta} \int_{M} \tilde{\Psi}_{\beta} \Psi_{\alpha} \omega$$

note $\tilde{\Psi}_{\beta} \Psi_{\alpha} \omega$ is supported
in U_{α} and \tilde{U}_{β}
⁵⁰ $\int_{M} \tilde{\Psi}_{\beta} \Psi_{\alpha} \omega$ is the same
wheather we use U_{α} and \tilde{U}_{β}
chart. So $\int_{M} \omega$ independent
of cover and partition Ξ

we can also define for
$$A \, c \, M$$

$$\int_{A} \omega = \sum_{\alpha} \int_{A} (\psi_{\alpha} \, \Lambda^{-1})^{*} \, \psi_{\alpha} \, \omega$$

$$\frac{Th^{\mu}}{2}$$
integrals satisfy
i) $\int_{M} a \omega + 6 \eta = a \int_{M} \omega + b \int_{M} \eta$
2) $if \overline{M}$ is M with its opposite orientation
 $Hien \int_{\overline{M}} \omega = -\int_{M} \omega$
3) if $f: N \to M$ is an orientation preserving
 $diffeomorphism$, then $\int_{N} f^* \omega = \int_{M} \omega$

4) if
$$M = M_1 \cup M_2$$
 and $M_1 \cap M_2$ is
a (dim M)-1 manifold in M, then
 $\int_M \omega = \int_{M_1} \omega + \int_{M_2} \omega$
5) If ACM has measure 200 then
 $\int_M \omega = \int_{M-A} \omega$

Proof: exercise (most are almost obvious) example: let a = xdy-ydx on R² and restrict 2 to S'CR2 unit 5' compute Six recall sets of measure the can be ignored so $\int_{S'} \alpha = \int_{S' - \{(i, o)\}} \alpha$ now $f:(o,z\pi) \rightarrow 5'$ €H) (cos€, sin €) gives a coordinate chart (actually f"

So
$$\int_{S'} \alpha = \int_{S'-\frac{1}{2}(10)} \alpha = \int_{(0,2\pi)} f^* \alpha$$

$$= \int_{0}^{2\pi} \cos(\cos\theta) d\theta + \sin\theta(\sin\theta) d\theta$$
$$= \int_{0}^{2\pi} 1 d\theta = 2\pi$$

to integrate on Mⁿ we need M to be oriented, an orientation is given by a never-zero n-form we call a never-zero n-form w a <u>volume form</u> on M (it is sometimes denoted dvol) bad notation since not necessarily d of sometimes but standard rotation

now guien a volume form dvol on M we can integrate functions f: M-> R as follows $\int_{M} f = \int_{M} f dvol$

we say the volume of M is $\int_{\mathcal{M}} dvol \left(or Vol_{\omega}(\mathcal{M}) = \int_{\mathcal{M}} \omega \right)$ now given a k-form & ESC(M) on M we

cannot integrate ~ on M but given any k-dimensional oriented subminited I of M let C:Z-M

be the inclusion map and define $\int_{\Xi} \alpha = \int_{\Xi} \iota^* \alpha$

C. Stokes Theorem

The 5 (Stokes' Theorem):

let Mbe a smooth oriented n-manifold with boundary let BE sch-1(M) be an (n-1)-form on M that is compactly supported, then $S_{M}d\beta = S_{M}\beta$

<u>Proof</u>: consider the case where $M = IR_{\geq 0}^{n}$ and B has compact support Suppose $\sup \beta \land \Im(\mathbb{R}^{n}_{20}) = \varnothing$ then clearly SmB=0 and we have $\int_{\mathcal{M}} d\beta = \int_{\mathcal{M}_{2n}^n} d\left(\sum \beta_i d_{x'n \dots n} d_{x'n \dots n} d_{x'n} \right)$ $= \int_{\mathcal{R}_{20}^{n}} \sum_{\alpha} (1)^{2-1} \frac{\partial \beta_{T}}{\partial x^{2}} dx' \Lambda \dots \Lambda dx^{n}$ $= \sum_{i=1}^{2} (-1)^{i-1} \int_{\mathbb{R}^{n}} \frac{\partial \beta_{i}}{\partial x^{i}} dx^{i} \dots dx^{n}$ by Fubini's The integrate w.r.t. x' first then the fundamental theorem of calculus gives $\int_{-\infty}^{\infty} \frac{\partial \beta_i}{\partial x^i} dx^i = 0$ = 0 /

in general we have
as above all its terms 0

$$\int_{M} d\beta = (i)^{n-1} \int_{\mathbb{R}^{n}} \frac{\partial \beta_{n}}{\partial x^{n}} dx^{n} \dots dx^{n}$$

$$= (i)^{n-1} \int_{\mathbb{R}^{n-1}} \left(\int_{0}^{\infty} \frac{\partial \beta_{n}}{\partial x^{n}} dx^{n} \right) dx^{n} \dots dx^{n-1}$$

$$= (i)^{n} \int_{\mathbb{R}^{n-1}} \beta_{n} (x'_{1} \dots x^{n'}_{1} o) dx^{n} \dots dx^{n-1}$$

$$= (-i)^{n} \int_{\mathbb{R}^{n-1}} \beta_{n} (x'_{1} \dots x^{n'}_{1} o) dx^{n} \dots dx^{n-1}$$

$$Recall : dx^{n} \dots dx^{n} \text{ orients } \mathbb{R}_{\geq 0}^{n}$$

$$so \text{ orientation on } \partial \mathbb{R}_{\geq 0}^{n} \text{ is given}$$

$$= (-i)^{n} dx^{n} \dots dx^{n} = (-i)(-i)^{n-1} dx^{n} \dots dx^{n-1}$$

$$= (-i)^{n} dx^{n} \dots dx^{n} = (-i)(-i)^{n-1} dx^{n} \dots dx^{n-1}$$

$$= (-i)^{n} dx^{n} \dots dx^{n-1}$$

50
$$\int_{\partial M} \beta = \int_{V} f^{*}\beta = \int_{V} f^{*} \left(\sum_{i} \beta_{i} dx_{i}^{i} \dots dx_{i}^{i} \right)$$

=
$$\int_{\mathbb{R}^{n-1}} (-1)^n \beta_n(y) \cdots y^{n-1}(0) dy' \cdots n dy^{n-1}$$

all terms but 1=n are Zero

$$= \int_{M} d\beta$$

now if B is compactly supported in a coordinate
chart of M, then the above computation
shows
$$\int_{M} d\beta = \int_{M} \beta$$

for a general
$$\beta$$
, choose a collection of
Loordinate charts $\{\phi_i: V_i \rightarrow R_{20}^n\}$
such that $M = U U_i$ and
a partition of unity $\{\Psi_i: M \rightarrow R\}$ superdinate
to the cover $\{U_i\}$

$$MDW \int_{\partial M} \beta = \sum_{i} \int_{\partial M} \Psi_{i} \beta = \sum_{i} \int_{M} d(\Psi_{i} \beta)$$
$$= \sum_{i} \int_{M} d\Psi_{i} \wedge \beta + \Psi_{i} d\beta$$
$$= \int_{M} \left(d(\Sigma \Psi_{i}) \wedge \beta + (\Sigma \Psi_{i}) d\beta \right)$$
$$= \int_{M} 0 + \int_{M} d\beta = \int_{M} d\beta$$

Cor 6:

$$M \text{ a smooth compact } n-manifold$$

$$i) \text{ if } \mathcal{M} = \mathcal{P}, \text{ then} \\ \int_{M} d\omega = 0 \quad \forall \omega \in \mathcal{S}^{n-1}(M)$$

$$z) \text{ if } \omega \text{ is a closed } (n-1) - \text{form on } M, \text{ then } \\ \int_{\partial M} \omega = 0$$

$$3) \text{ if } \omega \text{ is a closed } k - \text{form on } M \text{ and } 5$$

$$is \text{ an oriented } k - dimensional \text{ submanifold of } M \quad \forall 0 \text{ boundary then } \\ \int_{S} \omega \neq 0 \text{ implies } \omega \text{ is } \underline{not} \text{ exact and } S$$

$$does not bound a (k+1) dimensional \text{ submanifold of } M$$

Proof:
1)
$$\int_{M} d\omega = \int_{\partial M} \omega = \int_{\partial} \omega = 0$$

2) $\int_{M} \omega = \int_{M} d\omega = \int_{M} 0 = 0$
3) if ω is exact then $\exists \alpha \ s.t. \ dd = \omega$
50 $\int_{S} \omega = \int_{S} d\alpha = \int_{\partial S} \alpha = 0$

if
$$S = \partial N$$
, then

$$\int_{S} \omega = \int_{N} d\omega = \int_{N} 0 = 0$$

note: if
$$f: \mathbb{Z}^k \to M^n$$
 is a smooth map, then we
can consider $\int_{\mathbb{Z}} f^* \alpha$ for any $\alpha \in \mathcal{N}^k(M)$

$$\frac{\text{(or 7:}}{\text{if } f_{o}, f_{i} : \Sigma \rightarrow M \text{ are smooth maps}}{(\Sigma \text{ an oriented } k-\text{manifold})}$$

$$\frac{\text{(that ore homotopic rel } \partial \Sigma}{\text{and } x \text{ is a closed } k-\text{form on } M$$

$$\frac{\text{then }}{\sum_{\Sigma} f_{o}^{*} \omega} = \int_{\Sigma} f_{i}^{*} \omega$$

$$\frac{Proof}{f_{0}, f_{1}} \text{ homotopic} \Rightarrow \exists \text{ smooth homotopy} \\ F : \sum \times [0,1] \rightarrow M \\ \text{st. } F(x, i) = f_{1}(x) \qquad 2 = 0,1 \\ \text{note } \Sigma \times [0,1] \text{ is oriented by } \left(\text{or}^{-1} \text{ on } \Sigma_{1}, \frac{2}{2+} \right) \\ \text{and } \Im \left(\Sigma \times [0,1] \right) = \left(-\Sigma \times \{0\} \cup \Sigma \times \{1\} \right) \cup \left(\Im \Sigma \times [0,1] \right) \\ \end{cases}$$

$$50 \quad 0 = \int_{\Sigma \times \{0,1\}}^{\infty} 0 = \int_{\Sigma \times \{0,1\}}^{\infty} F^* dx = \int_{\Sigma \times \{0,1\}}^{\infty} dF^* dx$$

$$= \int_{\partial \{\Sigma \times \{0,1\}\}}^{\infty} F^* dx + \int_{\Sigma \times \{0,1\}}^{\infty} F^* dx + \int_{\partial \{\Sigma \times \{0,1\}\}}^{\infty} f^* dx = 0 \text{ on } \partial \Sigma \times \{0,1\}$$

$$= \int_{-\Sigma} f^* dx + \int_{\Sigma} f^* dx$$

$$= - \int_{\Sigma} f^* dx + \int_{\Sigma} f^* dx$$

example:
on
$$5' \times 5'$$
 consider $\alpha = d\Theta$
 (Θ, Φ)
 $\mathbb{R}^{2} \times \mathbb{R}^{2}$
 $(x, y) \quad (u, v)$
 $\Theta = \tan^{-1} \frac{v}{x} \quad \Phi = \tan^{-1} \frac{v}{u}$

 $d = \frac{-\frac{1}{1+1}}{\frac{1+(\frac{1}{1+1})^2}{1+(\frac{1}{1+1})^2}} dx + \frac{\frac{1}{1+(\frac{1}{1+1})^2}}{\frac{1+(\frac{1}{1+1})^2}{1+(\frac{1}{1+1})^2}} dy$ = - Y dx + x dy dy on S'= unit circle $= -y \, dx + x \, dy$ note: on 5' dd= 0 since its a 2-form 50 on 5'x 5' dx = 0 let f: 5'→ 5'×5': 4 → (4, (1,0)) now $f^* \alpha = d \Psi$ 50 $\int_{c_1} f^* \alpha = \int_{s_1} d\Psi = 2\pi \neq 0$ so f is not homotopic to a constant function note: we have once again shown T² is not simply connected and thus not = 52