
HI Integration

A- Orientations

let V be a vector space
we say two ordered bases

Vi , . . .

,
Vn and

Wi
, . . . gun

of V givethesameor.eu/ation- if the uncg
-

ve

linear
map Liv→ V satisfying LV, = wi has

posited determinant

exercise: D
"

gives the same orientation
"

is an

equivalence relation

2) I exactly 2 equivalence classes of bases

a choice of equivalence class is calledan

orientation on V
⑧

(for O -doin
'
l V we just call a choice

of I for { 0} an orientation )

examples .-
IR
'
-•→ represent the
a- two orientations



R2
represent the

§¥ 91¥
no orientations

1123

v
, p

represent the

¥→ no orientations

Vz

note: a basis for V gives a basis for V
't

so an orientation on V gives one on V
't

similarly for The V and N V

if e
, ,

. . . ,
en and f.

,
. . . ,
f
n
are bases for V

and L : V→ V is the linear map
Lt
.
-

- e
;

then using the basis {t ) we can

express L as a matrix M
= Cm; ) where

ej
= Em fj

we saw in lemma I. 2 that

e'n . . . ne
"
= (detM)f 'n . . . nf "



exercise: given w e MV with u to
,
the set of

ordered bases e, , . . ., en such that wcei , . . ., en)
>0

form an orientation on V

Recall: MY E IR

so a choice of component of

NV - lo )

is equivalent to an orientation on TV and hence on V

now consider a manifold M
← linage of zero

let O = MM - { ④} section

= ¥em(NCTxm) - 103)

O is an (N - fol) - bundle over M

fiberwise O has 2 components, so if M is

connected then O has either 1 or 2

components

example :

2. components 1 component



if O has 2 components then we say M is orientable

and a choice of component is called an orientation

on M (note this gives an orientation on each

Tx M for all x eM)

note : if M is connected and orientable
,
then an

orientation on M is determined by a choice

of component of O above one point x EM

i.e . by a non zero elf of A
"

( Tx M)

re
. by a choice of oriented basis of TxM

H M
,
N are oriented n -manifolds , then

a map f : M→N is called orientation preserving
it it takes the component of On defusing
the orientation to the component of Om

defining the orientation
i.e

.

If takes a correctly oriented basis fortyM
to a correctly oriented basis for Tfc, N.

That .

M a smooth manifold
.

The Following Are Equivalent
(a)M orientable
(b) F a collection of charts { old : y →VL }

for M such that { Ua} cover M



and d.et@④poolI ')) - o
whenever defined

(c) F a nonzero n-form on M

Droof
-

:

Ca ) ⇒ (b)

let { old : y → Va } be all charts set
.

4
,
is orientation

preserving where Vac IR
"

has the orientation Zx; . . .# n

note : { y ) clearly coverM since given any 4: U→ V

that is not orientation preserving consider
F = ro4 : U→ rCK) where r(x "

.
. . .

,
xn) = Cx,

'
. . . ,
x
"

,
x
"

I

clearly deffdtrot)) = (det dr)@et dy) > 0

but now we clearly have det (d olio de ) >g
(b) ⇒ cc)

let { 4g : VL → Va } be a collection of charts as in (b)

recall we can find a partition of unity {Ya : y → IR}

subordinate to { y }
2.e

.

. OE Ya CX) E 1
,

• support Ya C K ,
• Hx

,
Inbhd Vx set

. Ya↳ = o for all but finitely
many 2, and

• E ICH =L



now dxh . . . rdx" is nonzero n - form on IR
"

i
. on Va for all x

and

I [4£ (dx' n . . .
ndxn))

is an n- form on M

set

w = Ty Ya [ 4£@x'n . . .
ndxn)]

this is clearly an n - form on M

exercise w is never zero

Hint : w Cx) is the sum of finitely

many non zero forms

the condition d off
' ) > o says

you are summing positive things

(c) ⇒ (a)

given w as in Ca let
t =

µ
{ a wcx) I a c- IR a > o}

A- = U { a wad I a EIR a co}
X EM

clearly ht n t = 0

On = rt In
-

so On is disconnected ¥7



exercise f :M→ M

w eri (M) gives an orientation onM

then f is orientation preserving
⇒

f-*old is a positive multiple Wfc,

lemma 2 :

M a smooth oriented n -manifold

S a smooth submanifold of M of codein 1

V a vector field a long S that is transverse to S
(Ze

. V is a section of TMls and Tx S

and vcx) span TxM )

Then I a unique orientation on S such that

& , . . .

, Um, ) is an oriented basis for Tx S
⇒

(VIX)
, 4, . . . , rn, ) is an oriented basis for TxM

Proof : let R be an n - form on M that



gives the orientation on M

let w e- (Lor) Is this is an K- c) - form on S

one can easily check w # O on S

moreover w Cv
, , .

. . , rn . . ) > O retreat, . . .,rn. . ) so
#

examples

1) S
"

c IR
nel

let V -- ExtFyi
V is transverse to S

"

r = dxh . . . rdx
""
orients M

""

so w = Cur = I El )
"'

dx 's . . . rdxin . . - ndxn"

orients S
"

exercise

let r : IR
""
→ IR

""

:p to -p

(note rlsn : S
"
→ s

")

show r
*
w = C- 1)

" t '

w

so rlgn is orientation preserving
⇒
n is odd

2) IRR is not oriented



If it were then there is a non zero

Z - form w giving orientation

let p : S2→ IRp
-

(x : x? x3)t [x' : x? xD

(note : p - '(x ) = { y, rays}
for y set

. ply )-- X

so if we define equivalence
relation on S2 by

x -y ⇒ rex) = y

then Np
'

= SI )

now To =p
't
w is a nonzero 2- form

on S2

( check this
,
but p is a local

differ
. so clear)

from above 5 Is S2

p) w/p
IRp
-

so p
*
= (p

*

or)
*
= r

*
o p
*

: . G=p
*

we r
* (pi w) = r 't J



:-. r is orientation preserving
* above exercise !

:c. IRPZ is not oriented

Recall in the proof of Th 'I.3 we saw that if
M is a manifold with boundary then there
is a vector field v on M such that vcx)

points out of M for all x C- 2M

thus if M is an oriented manifold with

boundary, then there is an orientation
induced on 2M using an outward pointing
vector field along 2M (as in lemma 2)
i.e

.

it r gives an orientation on M and
v is an outward pointing vector field

then w = Curly
m
orients 3M

examples . orient
- t

* ⇒ • a

M = (o
,
I ] 3M



' ⇒

B. Integration
et x: . . .

,
x
" be standard coordinates on IR

"

A
"

IRN E IR so an n - form looks like

w = f- Cx: . . .,xn) dx
'

n . . .
ndx "

where f : Rn→ IR is a function

for
any set

Ac IR
"

we define

SA w = Saf dual
-

from vector calculus

note if 4 : IR
"

→ IR
"

is a word change
x
'

. .
.xn Y

'
- " Y
"

(re
.

local dcffeo )

and w = fly) dy 'n . . . rdyn then

Sgc w = Spca, f- drdyi . . .yn



vector calc→
= Saffo 4) / Jacobian 91 dvdxi . . .×"change of

variables

depending
of 0 orientation A

☐ $) det@4) duo/
✗ i. ✗

a

preserving or = I faff • 4) fdetdo) chin . . - ndx "

reversing
= ISaf

't

w

so if & is orientation preserving , then

S w = Saito&(A)

now suppose we①(M)

and M is oriented

if supp@ I ccoord chart U, 4 : u→ V

then define

Snu = 5*4-1*0
from above this is well-defined as

long as 0 is orientation preserving
now if M is oriented a {% : ↳→ V2}

✗ ←A



is a set of oriented charts set .

{4)
a ⇐ a
lover M (exist by That 1)

then let { %) be a partition of

unity subordinate to { Uh }

for any w Er
"

(M ) define

Sno -Easiest "%o%%:÷ ,
= Eea Sancti

'Mukai

lemma 3

Smw is independent of cover Ely}
and partition of unity

re
. 5µW is well- defined

Proof : let {Fp : Up→ Vp } and {Fp } be another
oriented cover ofM and partition ofunity

Smtaw - Sulfite ) Yaw -

- Ep site Yaw



so

Smw =3
,
site Yaw

note Tp Yaw is supported
in Ud and Op

so 5mF, Ya w is the same

wheathen we use Ua and Tp
chant

.

So Smw independent
of cover and partition L#

we can also define for A CM

Saw -

- E sohu.li
*

Yaw

The4 :

integrals satisfy
') Sma wt by = a Smart b Sun
z ) it it is M with its opposite orientation

then

saw = - Sno
3) if f :N→M is an orientation preserving

diffeomorphism ,
then Snf

*

w = Smw



4) if M-M,
UMz and M, nMz is

a CdconM) - I manifold in M
,
then

Smw = SmartSmw
5) If ACM has measure zero then

Sri -- Sm
-aw

Prat: exercise (most are almost obvious)E#

example : let a = xdy - ydx on IR
'

and restrict L to S
'

c 1122 unit S
'

compute Ss ,

d

recall sets of measure zero can be

ignored so

Sst -- Ssi
. " "ni

now f : ( o
,
2T) → s '

0-1-7 (cost , Sino)

gives a coordinate chart (actually f
- *

is)



"

Sin -

- Ssi
. " ".in

-

- Scotia
= S
,o,%f0

( coso)do t smokin a)do

= 52*1 do = ZIT
0

to integrate on M
"
we need M to be

oriented
,
an orientation is given by

a never - zero n- form

we call a never - zero n-form w a

volume form on M

(it is sometimes denoted devol )
bad notation

since not necessarily
d of something
but standardnotation

now given a volume form drool on M

we can integrate functions f : M→ IR

as follows
Snf = fmfdvol



we say the volume of M is

Smdvol (or Volwent - Smw)

now given a k - form d C-IIM) on M we

cannot integrate x on M butgiven
any
k -dimensional oriented submanifold

E of M let
e : I →m

be the inclusion map and define

Sea = See
*

a

C
. Stokes ' Theorem

ha 5L Stokes ' Theorem ) :

let M be a smooth oriented n -manifold
with boundary
let p E rn

- '
(M ) be an K - H - form on M

that is compactly supported , then
Sndp = Same



Proof : consoler the case where M= IRLo
and P has compact support

☒i
suppose supp p n HR:o) =0

then clearly Sym B = 0

and we have

Smdp = S d (Epi dxh . . .

ndÑ^
. . -rdx

" )
MIO

= S I fi
"

?f¥. dx
'

n . . -
^ dx "

IRI o
= Een

"

ftp.?fYidx'n...rdx"

by Fubini 's Th I integrate
w.at. X

"
fist then the

fundamental theorem of

calculus gives

= If S.IT#.idxi=o



in general we hove
as above all etn terms 0

Snap =Ég 2k

IR ; 02 ×
"
d×"

. . - rdxu

= C-Ñ
"

Spy . , ( S?}¥nd×Ydxh . -
ndx
" '

÷
Bncx!¥ia - Bix; . .,x" -:o)

= C- 1)
"

Spy - , pnlx! . . . ✗"To) dx 'r . . . ndx"-1

Recall : dxh . . . ndx
"

orients IR?o

so orientation on 2117
"

20
is given

by
"

outward normal first
"

2-e.kz,
chin . . .ndx

"
= C- 1) C-1)

""

dxh
. .

.ndx
""

= C- 1)
"

dx
'

n . . . rdx"
"

but orientation on 47
" "

given by
dx'n

. .
. ndxn

- '

so to compute Samp = Szpy
,
op use chart

f- : y→GIR?on M) :(y, ! . . ,y
" -1)→ (y ', . . ., ya

-:o)

and multiply by C- D " to account for the or
't



so Samp = 5,,ftp.syftrkpidxh.in?exi--ndxY--Spy.f-1Ypnlyi..yn-io)dyh..rdyn- '
t
all terms but 2-u are Zero

= Smdp
now it p is compactly supportedin a coordinate

chart of M
,
then the above computation

shows Snip = S B
2M

for a general p , choose a collection of

coordinate charts { ¢; : 4- → IR?o }
such that M = U Ui and

a partition of unity {4, :M→ IR} supordinate
to the cover {4 .}

now

some = -75,1in = -75in
= Ii find Yin p + Yidp
= find -124.)^B +⑦4.) dp)
YI

= Sno + SIR = Snap #



Cor 6 :

M a smooth compact n -manifold

1) if 2M = 0
,
then

Jmdw -0 Fw c- In
- '

(m)

2) if w is a closed @ - 1) - form on M,

then

gzmw = 0

3) if w is a closed k - form on M and S

is an oriented k-dimensional

submanifold of M Yo boundary then

Ssw to

implies w is riot exact and s

does not bound a Rtl) dimensional

submanifold of M

Proof :
1) Smdw = Sgnw = Sow = 0

2) Szmw = S doo = Sno = 0
M

3) if w is exact then I✗ S.t. old= W

so Ssw = Ssd✗ = §; = Soy = 0



if 5- 2N
,
then

Ssw = Sndw -- Sno = 0

€17

note : if f : -2k→M " is a smooth map, then we

can consider S f-
*

✗ for any ✗ c-HIM)
I

con 7 :

it to,f, : I →M are smooth maps
(I an oriented h -manifold)

that are homotopic rel ZE

and ✗ is a closed h - form on M

then

gzfjw-S-zf.tw

Proof : fo
,
f
,
homo topic ⇒F smooth homotopy
F : I ✗[on] →M

St
.
Fcx, E) = f, Cx) 2=0,1

note I ✗ [on ] is oriented by (or
'
on -2,37)

and 2 (I ✗ [oil ] ) = ( - -2×103 u I ✗ { i } ) u (2-2×10,13)



so 0=[2×10,0]--5 F*d✗ =) dF*✗
-2×10,1] -2×10,1]

= S F 's

21-2×10,13 )

= S -5*2+5
, .gg#x+SF*x-I ✗ {o} 2-2×191]

note : dF(¥) = 0 along 2-2×10.1]
since homotopy doesn't move
2-2
,
thus f-

*

2--0 on 2-2×10,1]

= [
[
fix + f
,
f,*✗

= -5,1-5×+5,4*2
☒-

example :
on 5×5

'

consider ✗= do

6-
,
4)

112%1122
⇐ y) car)

D- = tan
-1

Yfx 10 -- tan
- ' %



do = dx t dy

= dx t ×¥p dy
on S

'
= unit circle

= -y dxtxdy

note: on s
'

d2=0 since its a 2- form

so on S
'

x s
'

da = 0

let f : s
'

→ s
'

xs
'
i 4→ CY, Choi)

now f
*
a = d4

SO Sg , f
*

a = Ss , dy = 2T t O

so f is not hometopic to a constant function

note : we have once again shown T2 is not

simply connected and thus not E 5


