
Section II : Almost symplectic structures

an almost symplectic structure on a manifold M is a non - degenerate
2- form Y

clearly if we hope for M to be symplectic it is necessary that it be

almost symplectic
we will see is this section that one can systematically
study when a manifold has an almost symplectic structure

Here is the main conjecture of El cash berg about the existence of

symplectic structures

Conjecture
It M a manifold of dimension 2h > 4 with

• a class h E IT ( M ) St . hu . . .
uh

to
and

-

h times

• a non - degenerate 2- form Wo

Then I a symplectic structure w on M such that

• w is homo topic to Wo through non - degenerate forms

• [ us can be deformed to h keeping its hth power

non - zero

Remark : Not true in
' dimension 4 I we discuss this more later )

Butthere is an alternate conjecture ( discuss later )
We discuss an approach to this conjecture later

as well as some interesting test cases in 4 D
.

A
.

Linear Symplectic Group

Consider the standard symplectic vector space
V = Can

= R2 "

e
,

. .  . en a complex basis

f-
,

= ie ;

e
, f , , . . . en .tn a real basis

set to
o

;D



d early
we a ,v)= utfov where u :#¥ In basis above

so a linear map
L : Y→V is symplectii

#

LT Jo L = Jo

and we see Spknl :{ linear symplechi maps }

= { Le SLCM
,

R ) : LTJOL = Jo }

lemma 1 :

If L E Splzn )
,

then

, ) deft 1

2) X an eigen value of L # X
'

Is

( and multiplicities agree )

3) if Lv=Xv and Lu = Xuand xx 't I

then .
w( v. a) = 1

Proof :  i ) L preserves wsµ so preserves wsntd ← multiple of volume form

: .
L preserves volume

,
ie detL= 1

2) Similar matrices have same eigen values
,

and

LT=Jo[ '

Jo
"

(eigen values of [ '
are Inverses of those of L )

3) w ( v. a) = w ( Lv
,

La ) = XX
'

wlv ,
a )

so ( 1 . Xx
' ) w( v. a) = o EH

recall some other linear groups a identity matrix

orthogonal group Oln ) = { Le Gkn.IR ) : LTL = 1 }

Gun , e)= { Linear maps of 6
"

that preserve multiplication by i }

thinking of E
"

as IR
' "

can write
g

complex molt
.

Gun , e) = { LEGLGN
,

IR ) : L Jo = Jo L }

unitary group
Uln ) = { LEGL ( Zn .IR ) : LTL --11 and L Jo -

. JOL }



lemma 2 :

Sphnln Ohn ) = Splzn ) n Gun
, e)

= Ohn ) n GL ( n
,

G)

= U ( n )

Proof : Clear from above
. E#

The } .

U In ) c Splzn ) Is the maximal compact subgroup of Splzn)

and the inclusion map is a homotopy equivalence

lemma 4 :

let LE Span )

it L is symmetric and positive definite

then the span ) f xzo

Proof

symmetric & pos .
def  ⇒ eigen values are positive real numbers X.

, ... ,Xk

and eigenvectors span
M

"

IN "
= ¥

,
E ;

E
, is X

, eigen space

clearly L× is defined to be mult by XT on Ez

we just need to check He Span)

for any v E IR
" write V=v

,
+

. . tvn with me E
,

now w( La v. a a) =

ftp.3pwtr.uj
)

h
etther

7,1=1 or wlvnio
,

)=0 by lemma 1

= I wlv
, ,v,

)
7.) =L

= ftp.t,
w ( v. up= wlv

,
a )

so d e Sphn )
¢#

Proof of That 3 : to show U ( n ) → span ) a homotopy equivalence we build a

strong deformation retraction H :[ on ] xspkn ) → spkn )

( t
,

L ) 1-74
+

( L )



that Is ho=ttsphn )

ht = Hun ,
Tt

h
,

(

Sph
) = U ( n )

to this end set h
+

( l ) =L lLTL#
←

note LTL is symmetric and positive
def

.

:
. so is (LTLJ

'

and use lemma 4
clearly ht is continuous

Le Uln ) then LTEH so 4+14 fixed Ht

and Le Sphn) then h
,

k ) Esplin ) st .

[ (

ELIKT
'

EL
(

LTLJ
" '

= (

EL
542 (

LTLT
"

LTL
= I

*
commute ( same eigeuspaces) so L

,
(C) EU (9)

see Madoff - Salamon for Uk ) max cpt subgroup
( not hard

,
but we don't really need It ) E#

B. Linear Complex Structures

a complex structure on a real vector space V is a linear map

J :X → y

such that
J2= - Ii ,

given J on V then V gets the structure of a 6 vector space
by defining ( ×+ey)v= xvty JW )

so clearly V must be even dimensional

the matrix Jo above Is the standard complexStr . on IN
"

exercise : If V a Zn - dimensional vector space and J a complex

structure on V
, then F an isomorphism 10 : It "

→ V st .

Jo01=40Jo

ie
. ¢ conjugates J to Jo

( in ' appropriate basis J given by Jo )



lemma 5 :

The space of complex structures on Mln
,

denoted TUR " )
,

is doffeomorphci to the homogeneous space
642 "

'"YGkn
, e)

.

so . TUR " ) has two components ← Pos det
.

° component containing Jo
,

denoted 7+(112 " )
,

Is
642 " ' MY

Glcnic )

: . htpy equivalent to 5012% , n )

. 7+4122 ) = { * }

. 7+11124) = 5

Proof : exercise above ⇒ 642%112 ) acts trasitiiely on 74122 ")

by A ' → A
'

IA

and the stabilizer of Jo Is Gun
.

e)

proof of That 3 gives
64+2"

' "%un
,

,c ,
= 5012%(a)

for 9+(1/22) = 5012%
, , ,

I 5%1=1*3

for T
+

(M
" )

, up to homotopy any J is A-
'

Jo A with AE SO (4)

( so A
 '

= At )
thus V . Jv = Aoo JOAV =

Costa ( Air ,Av)=O
so Jv orthogonal to v

note : J determined by JHE
,

) e { Hy, ,x. y . )l xityitxeeyiel
x. =o 3=52

since JCZX
,
) e 5 and if E= span {Ex

,
,J¥ ,

}
then Jonete.in?neroptyoabuypteYp exercise)

#

If (V. w ) a simple chic vector space we say a complex structure J

on V is compatible with w it

WIJV
,

Ju ) = w ( v. a) ( J*w= w )

w ( v. Jv ) > 0 ttvt 0 ( called tame )

note :L) go ( v. a) = WCV
,

Ju ) Is an inner product :



• go.lv,
a) = WIV

,
Ju ) = wl Jr ,J2u)= - w ( Jv

,
u )

and
= Wlui Jv ) = g ( a , v )

in gglv, v) = wlv
,

Jv ) > 0 if vto

2) g ,
( Jr

,
Ju ) = gylv. a) ( ie

. J*g , =g ,
)

lemma 6
.

"

let V be a vector space
W a symplecti structure on V

J a complex structure on V

Then the following are equivalent
1) J is compatible with W

2) gylv ,u)=w( V. Ju ) is a J - invariant

inner product

g) (V. w ) has a basis v
, ,Jv, ,

... on ,
Jon

St. in this basis w given by Jo4)3 isomorphism 01 : M
' "

→ V such that

Q*w= word 0*J= Jo5)w tamed by J and

V. Lagrangian subspaces LCV the

space JL also Lagrangian

Proof :

i ) ⇒ 2) above

2) ⇒ i ) w I v. Jv ) =g§v,v) > 0 it VFO by non - degen of g ,

symmetry of g ,
⇒ symmetry of all

3) ←→

4)
clear

4)⇒

1)
clear

1) ⇒ s ) let LCV be a Lagrangian subspace
let V

,
. . .vn be a gy orthogonal basis for V



you can check that V. ,
Joi , . . .

, rn
,

Jun is the

desired

basis ,

1) ⇒ 5 ) L Lagrangian means Lt =L

J
't

w = w ⇒ ( ve Lt ⇐ To e @LY )
so ( JL )

'
= J I Lt ) = The ,

5)
⇒ 2) let g luv ) -

- wlu
,

Tv )
J

we check g ,
a J - init inner product

it q is not J - invariant then -3 air set .

g- C Ju , or ) I gjcu.ir)
so w C v. Ju ) * w ( a. Jv )

so veto and w lo
, Jv ) > O by tamed condition

set w = u - wine r
w

iv.
or )

so who
,

Jw ) = w ( v
,

Ju ) -
wwrwar ,

or ) = O
w C , Jv )

but
wlw ,

Jv ) = w la
,

Jv ) - w I r
,

Ja ) I 0 (by assumption)

exercise : I Lagrangian L c V containing v
,

Jw

so w
,

Jo E JL so TL not Lagrangian

this ④ ⇒ gg is 5- invariant

w tamed by J ⇒ gy
an miner product L#

an inner product g on V is compatible with a complex structure it

it it is J - invariant : J
't

g = g

note : giving and T compatible ,
then wgcu.ir ) -

-

g C Ju
, v )

is a symplectic structure compatible with it

given an inner product g and symplectic structure w on V



Awe get y .
.

.  - - - . - a V

HE
, ,

*

Epg A = g-
'

o low

and o ol V. u ) =g I Ar
.

u )

• g I Avia ) -

- w C v. at =
- w luv ) -

-

-

g C Au
,

v )
= -

g C v
,

Au )

A shew - adjoint for g

we call g and w compatible if A 's - I

exercise

:Dgiven any
2 of 3 possible compatible structures show

you get a unique 3rd structure that is compatible
with the other 2

.

2) If g ,
w

,

J are all compatible on V

then h = g ti w is a Hermitian structure on V thought
of as Q - us

. w/ J

re
.

h : VxV→ E is IR - bilinear

hluivl-hcv.at
her ,

v ) to note this is real number

h Iv
,

Jussi hcv
.

u ) ( slightly different than std

def a of Hermitian

Tha 7 :
but allows for lmh = w )

1) ( V
,

w ) symplectic vector space

J ( V
,

w ) = I compatible complex structures with w )

is contractible C and non - empty )

2) I V
,

it ) a vector space with complex structure

AN ,
J ) = I symplectic structures compatible with it }

is contractible I and non - empty )



Remark : This theorem essentially says
"

choosing a complex
structure on Y is more or less the same as

choosing a symplectic structure
"

Proof :

i ) let IN) = I inner products on V )

w induces a map ¢
Jw

,
w ) → IN )

J t 9J

we now build a map in
' other direction :

given
g

E ICH we have

A

y →

low
u

Yog A-  Kioto isomorphism

as above ulv
.

at = g CA v. a )

g CAV
,

u ) -

-

- gto, Au )

so
- A

'
is self - adjoint and g I - At v.v ) = g ( Av

.
Av ) > 0 it UFO

so - A
'

is a positive definite self - adj map

just as in
- proof of Lemma 4 - A

'

has a square root

set Jg = f-At I
' '

A commute

- It
.  - I

clearly Jg
'

-

- f-A)
"

'

A f-AT
" '

A = f-AYA '
= - I

so Jg a complex structure

and w ( v , Jgr ) = g C

Av
, EAT

" 2

Ar ) > o if v to

since Auto and f-A' I "
pos - def

operator

finally whtgv, Jgu)=gCAJgv, 5gal 9C Av
, Jg

'

ul
= g IA v. u )

So Jg E TLV ,
w )

Jg shew - adj
w.r.t.g-wlv.ee)

thus we have 4 : IN → Thru )



note : 404 = id on TCU , w )

loot : IN ) → IN ) is not identity but  it is homotopic
to identity since ICU ) is contractible

indeed
,

choose a basis and IN ) =L positive - def
. symmetric matrices }

exercise : This is a convex open subset of all matrices
i. contractible .

i. TLV
.

w ) = IN ) is contractible ,

proof of 2 similar
L#

exercise :

1) Show If = GloryOch )

( :
. since I contractible 01h ) → Gun ) hip . equiv. )

2) It H ( En ) = { Hermitian Str
.

on En }

then HI en ) =
GL Cn

, EyU Cn )

and It ( en ) contractible

( : . Vln ) ↳ GL Cn . 6) htpy equiv .
)

3) T ( HT
"

, costa ) I Spanking

so The 3 says THR "

, costa ) contractible

"

C
.

"

Almost Structures

let M be an n - manifold

an almost complex structure on M is a bundle map

TM TM

y f
St . it !  - idem ( ne

.
fiber wise J

µ
a complex structure on M )

an almost symplectic structure on M

is a non - degenerate 2- form w he
.

Aber wise Wx is

a syrup ! str . on Tx M )



a I Riemannian ) metric on M is a smoothly varying inner product

on each Tx M

we call any
2 of the abovecompatible if they are compatible

on each tangent space

an almost Hermitian structure on M is an almost complex
structure and together with a smoothly varying Hermitian

form on each Tx M

Tha 8 :

M any smooth manifold

A space of metrics MCM ) is non - empty and contractible

4 given an almost symplectic structure w on M the space

7 ( m
,

w ) =

almost complex str on µ{compatible with w
}

is non - empty and contractible

3) given an almost complex structure J on M the space

run ,
f) =

almost symplectic str on m{ compatible with it }
is non - empty and contractible

4) given an almost complex structure U on M the space

H ( M
,

it ) = { almost Hermitian str . on Hit )}
is non - empty and contractible

.

Remark : So upto homotopy

a) any manifold has a unique metric !

b) almost complex,
almost symplectic ,

almost Hermetic n

structures are the same ! ( upto homotopy)

Proof : I ) note it g. , . . . ga are inner products on It



and t
, , . . . tu ? O set

.

I t
,

= I

then I tyg ;
an inner product on Y

it %) a cover of M by word in ant charts

let ga be any metric on Ua ( re
. The Vax IR

"

take any
I ion )

and Ipa ) a partition of unity suborder ant to Wa )

then I pay is a metric on M

it go , g ,
are metrics on M

,
then so is tg ,

-14-f) go

exercise : Show this implies MCM ) is contractible ,

21,3) follow directly from Th ' 7 Cproofed

4) gist like for D
L#

it (M ,
J ) an almost complex manifold then Y c M an almost complex
submanifold it JLTY ) CTT ( so They an almost complex str on N )

exercise : y if J
-

is compatible with w on M and Nan almost complex

submanifold of CMJ) then N is also a symplectic submanifold

4 Show converse not true
=

3) If L CCM, w ) Lagrangian and J is compatible with w
,

then JCTL ) is

the normal bundle of L in M

( note this completes the proof of Cor III. 5

about
nbhds of

Lagrangian submanifolds )

We will use this theorem to show there are lots of manifolds

that can't be symplectic ,
but first we discuss how to

"

remove the almost "

of course
,

an almost symplectic structure w is symplectic
' if d w = O



recall a complex manifold is simply a I Hausdorff
,

2nd countable) space

M with a maximal atlas of Gordini ant charts Lola : Ua → Va }

where Vac E
"

and transition maps are holomorphic
exercise : Show a complex manifold

t complex differentiable

has an almost complex structure

an almost complex structure J on M is called integrable it M

has a complex structure inducing J
.

recall an almost Hermitian structure on an almost complex manifold
CMit ) gives ( and is determined by) a compatible almost symplectic

structure w .

If J is integrable and do -0 then CMJ,
o ) is

called a Koi - tiler manifold

example : EP
"

=
E

" '
- Ico , . . .  oh , G - fo )

has coordinate charts oh : U
,

-74
, where U

.
-

- I Ezo :
. . . Edl Zito )

you can easily see transition
Y -

- a
"

maps are holomorphic d l Go :  - .  .

' 
- Zn ) ) -

- ⇐Izz.
,

. . .
z

, ,
. . .

the;)
4-

 '

17
,

. . .
2-a) = [ Z

,
:

. . . :L :
. . .

: Zn ]
so QP

"

a complex manifold teth entry

exercise : Check use
is compatible with complex structure

so ( GP
"

, cops ) a Keibler manifold

and all complex submanifolds are too .

Remark . later we will see not all complex and not all symplectic
manifolds are Kahler

.

recall a function f : E
"

→ Em: Hi
, . . .

, -4 ) t If
,

Hi
. . . H

,
. . . fmft ,

,
. . .

2- d)

with . fj -

- ujtiv ; isholomorphic if word in ant functions

satisfy 21=21 this2X h 24k

I
.

-
I Cauchy - Riemann Eg 's

2 y h
-

24k



exercise : If J
,

is almost complex structure on E
"

l coming from i )
and Jz u I I u  i , EM ( u  i c )

then f : E
"

→ Em is holomorphic
⇐

If  o J ,
= Joo If

now if ( MJ ) and ( m
'

,
J

' ) are

almost

complex manifolds then

a function f : M → M
'

is called (pseudo) holomorphic

( or J - holomorphic or HJ
' ) - holomorphic . . .

) if

d f- o J -

- J
 '

odf

from exercise above we see for complex manifolds this is the same

as being holomorphic

Remarks .

1) Given f : M -7M
'

as above with dini M - 2h
,

then when you

write out * in local coordinates you see that it

n > I system of PDEs is overdetermined

-n=I u Ii  is elliptic

2) So for not expect the solutions
.

It's a miracle of complex
geometry that there are any such functions but

for generic almost complex structures expectnesolace

3) for n = I expect Sol 's to be
"

nice
"

In 1985 Gromov observed this and revolutionize symplectic

geometry by studying pseudo - holomorphic curves

( more on this later )

4) In 1996 Donaldson noticed you
could study functions that

almostsolveI and learn a lot about symplectic
manifold I more on this later )



So when is an almost complex manifold complex ?

given an almost complex manifold CMit ) define

Nfv, ut [ Jr
,

Ju ] - [ v. u ] - J Ev
,

Ju ] - J C Jv
,

u ]

for vector fields v. u E X I M )

exercise :  i ) N is a tensor he .
N Hr

. gu ) = Fg Naru ) )

2) it J is integrable show N = O

3) for any diffeomorphism to : M → M : No, * gtfo ,
Eu ) = ofNolan)

Ny is called the Nijehuistensor of J

Tha ( New lander - Nirenberg
' 57 ) :

an almost complex structure Jon M is integrable
if and only if Ns -

-

o

Proof is beyond this course (mainly P.DE
. )

let's understand this more geometrically
it it an almost complex structure on M

then eigenvalues of Jx : IM → IM are Ii ( root of e. v. of - id
µ )

so can 't diagonalize over IR

let Ta M = TM ④ E complex if ie 'd tangent bundle

now we can write Te M = ( TM )
" "

④ IMY""

p
-

eigen space of i eigenspace of - i

exercise :

Show TM → ITMY""
and TM → ITMY " )

v I → Hv- i Jv) v to

#truth
are linear isomorphisms



the dual of I : IM -7 Tx M is

Jit : # n → I'm

so we have a
"

complex structure
' '

on T*M as well

as above we have

TIM = TM ④ a = IT'tMY ' "
to IT

*MY " "

and
nk TIM = Ah ( TH ④ E) =p.Qg=hN"T*M

I" I Mls r ( i""
T

't

m )

now if u
,  . . . on is a basis for Tx M then

vi. JU , . . . Un . Jun is a real basis for (Tam)×

and
w

,
-

- Ely - itv
,
) , - I

. .  . a span ( TMI""

5=26 , tiJr
,
) , -

- I . . .  n span CTM )
'd"

wits Vit
titty

't

, =L
. . . n span Html""

Ty
't

-

- vj - a v; , -

- i . . . n span ( THY '"

moreover y er
"" I M ) can be written

*  - *

y = I M AB

WA
^

WBIAI =p , IBI -

q

where 7µg functions A
,

B multi . index leg A C 4 .  - ep )

andwait=win. .  .iwietc .

3 El "  - - -  ' m )

exercise :

1) if yer
" " I M ) then dry E I

" " - '

tutor
" " 9cm) toe ' " In) toe "9"

C n )

2) if CMJ) integrable then dye I "
' 9cm) ④ em 9 "

( m )

denote 2 : I '4m ) → r
" " 9cm)

j : I " ( n ) → I ' 9 "

( n ) the composition of d

with appropriate projection
so you showed it M complex D= 2+5



3) it M complex show 22=-22--252+502--0

4) Nijehuistensor Nj  
= o ⇒ CTMY"" closed under Lie bracket

⇒ -5--0 on functions

⇒ D= 2 TJ

⇒ d ( em ( m )) arm . 9cm) ④ spilt
'

cm )

so all of these ⇐ J integrable
It M is a complex manifold then -5=0

,
and we can define the

Dol beau It cohomology of M to be

HPj9 (my =
kerCJirmlnl-r.ae#

in (

J
; em 9- '

' (m ) → SLP -9
I m ))

exercise : if f : M → N a holomorphic map between complex manifolds

then f
*  

: Nh I N ) → ICM ) induces a map

f
*  

: RPM c N ) → rep-9
I m )

Set
.

f IJ =

-2
of

't

so we get a map f*.

.

Haga
In ) → H'If IM )

Hodge Tha :

for a compact complex manifold

HPI I n ) if finite dimensional

proof is all about elliptic PDE and beyond this course

but I put notes on course web page .

More Facts : it M is a compact ,
connected complex n - manifold with a

Hermitian form
,

then

Hangin( m ) = E

and
HIMCmx Anjan-9in ) : ca.

it Smarts

is nondegenerate i
so

any
- P .

n - 9
(my = ( H t.MY



we write h "
= dim It

'II In ) called Hodge numbers

from above we have h " 9
a

when = I

hn
- p , n - 9

,
hPa 9

More Facts : it M is a compact Kahler n - manifold
,

then we have the

Hodge decomposition

Hrmlmi-p.to,
HII l M )

and -

HE'
cm I H' fun

and hhih > O

so we have the Hodge diamond :

= I

.hn
,

n

-
,

'

a

' '

.
-

I
y

I l

ha
, o

'

, ? 0in
.

I

.
I

-
.

.

hyo him ho
,

2

hi
,

O
ho

,
I

40,0

symmetric about middle line

Cor 9 :

for a Kahler manifold M we have

din H' th
'

IM ) is even

Proof : Clear from symmetry of diamond L#


