IV Existance of Contact Structures

let M be a 3-manifold K a knot in M $N = S' \times D^2$ a neighborhood of K in M $\alpha \subset \partial N = \partial \overline{M \setminus N}$ an embedded curve $f: \partial (S' \times D^2) \longrightarrow \partial \overline{M \setminus N}$ a diffeomorphism sending $\{pt\} \times \partial D^2$ to a α -Dehn surgery on M along K is

 $M(K, \alpha) = (\overline{M \setminus N}) \cup_{f} (5' \times D^{2})$ The second of the second of

Facts: 1) if f_1, f_2 are 2 diffeomorphisms that send $\{p+\} \times \partial D^2$ to a then $(\overline{M \setminus N}) \cup_{f_1} (S' \times D^2) \cong (\overline{M \setminus N}) \cup_{f_2} (S' \times D^2)$ 1.4 M(K, x) well-defined

2) any closed 3-manifold M is obtained from 53 by by Dehn surgery on some link

exercise: prove (or look up) these facts

note: T2 = DNCD (MIN)

there is a curve $\mu \in \partial(\overline{M \setminus N})$ that bounds a disk in $N = 5' \times D^2$

if K is null-homologous then there is a curve $\lambda \in \partial(\overline{M \setminus N})$ such that $\lambda = \partial \Sigma$, Σ a surface in $\overline{M \setminus N}$ exercise: $|\lambda \cap \mu| = 1$

otherwise choose any λ on $\partial(M \cdot N)$ 5t. $|\lambda \eta_{i}| = 1$ note: λ determines a framing of K exercise: $[\lambda], [\mu]$ form a basis for $H_{i}(S' \times S') = \mathcal{E}(\mathcal{O}_{\mathcal{E}})$

so any h & Hi(s'xs') can be written q[x]+p[m]

exercise: h can be realized by an embedded curve iff p.g are relatively prime

now any diffeomorphism $\phi: \partial(S \times D^2) \rightarrow \partial(M \setminus N)$ is determined up to isotopy by its action on $H_1(\partial(S' \times D^2)) \rightarrow H_1(\partial(S' \times D^2))$ 1e. by a matrix $\begin{cases} a & b \\ c & d \end{cases}$ with ad-bc=1

<u>Exercise</u>; Prove this

Hist: a simple closed curve on T² is determined,

up to isotopy, by its class in H_i(T^y)

if 2 diffeomorphisms do the same thing

on (5'x{pt})u({pt}x5') then they are

isotopic (use any diffeomorphism of DD²

extends to D²)

if d is an embedded curve in 2 (MVV) than $[\alpha] = g[\lambda] + p[\mu]$

So diffeomorphism sending $\{pt\} \times \partial D^2$ to α is $\begin{cases} r & 9 \\ 5 & p \end{cases} \quad \text{with } rp - 9s = -1$

(f)

we denote $M(K, \chi)$ by $M_{\kappa}({}^{\ell}/_{q})$

Thm 1 (Martinet):

Any closed oriented 3-manifold admits a contact structure

Proof: given closed oriented 3-manifold M from above we know M is obtained from 5^3 by Dehn surgery on some link in 5^3 we address case where $M = S_k^3(P_q)$ but the general case will clearly follow

1st can isotop K so that it is transverse to 3 std, by lemma II.3

2nd K has a standard neighborhood by Th II.3

that is let $U = 5' \times R^2 = \frac{R^3}{21-21}$ with $3 = \ker(\cos r dz * rsinr de)$

let $S_a = \{(r, \theta, z) \mid r \leq a\}, T_a = \partial S_a$

K has a neighborhood N s.t. N contactomorphic to Sa for some a (ony a close to 0)

is nonsingular and has slope - La Cota so (251N), has slope a' some a' 3rd give in standard contact torus specifically 53 N has contact structure 3 std / we give 5'402 to 53W via f: 2(5'x02) -> 2(53N) f" take fol? of slope a' on 2531N to a fol? of slope b' on a (5'402) now let b be such that - to cot b = b identity 5'xD' with Sb note: f takes (25), to (d(53/N)), so Th II. 5 says from be isotoped to be a contactomorphism 50 can glue (53/N, ? std) and (56,3) via f

to get a contact structure on M!

to be more rigorars should take 5^3 ($5_{a-\epsilon}$ and $5_{b+\epsilon}$, so there is a color neighbor bood to give manifolds together

estend f to T2+I and mohe contactomorphism
here

exercise: Give a second proof of earistence of contact structures using the fact that all close oriented 3-manifolds are covers of 53 branched over some link.

Hunt: make branch locus transverse.

We can use this construction to do better!

let Dist (M) = {all oriented plane fields on M}

= {all oriented line fields on M}

fix a metric

Cont(M) = {all contact structures om M}

Dist (M) sections
of Gr_(TM)
Grossmann of
2-planes in TM

we have a natural inclusion map $Cont(M) \xrightarrow{i} Dist(M)$

Th = 2 (Lut 8):

1x: To (Cont(M)) -> To (Dast (M)) is onto

this says every plane held is homotopic to a contact structure

Major duestion: 15 % injective?

If not understand 1x (x) for x & To (Dist (M))

Before proving this theorem we need to better understand Dist(M), how big is To(Dist(M):

Fact: if Mis a closed oriented 3-manifold then T*MZMXR3

> you can see a proof of this in Kirby's book "The topology of 4-manifolds"

fix a metric g (this is not really necissary)

U(TM) = unit tangent burdle = M×52

(U(TM))

Dist(M) = { oriented plane field} => { unit vector field}

v(x) = unit positive oxhagonal

given V & F (U(TM)) we have

v:M - M×52 $\rho \mapsto (\rho, f_{\sigma}(\rho))$

50 V determined by f! M-> 52

So we have $D_{ist}(M) \longleftrightarrow \{maps M \rightarrow s^{2}\}$ 1-1 corresp.

(correspondence depends on trivialization of TM, but not metric)

So $\pi_0(Dist(M)) = homotopy classes of maps <math>M \rightarrow 5^2$ =: $EM, 5^2$]

example: [53,52] = To (52) = Z

generated by the Hopf map

remark: we will see below that To (Dist (M)) is always
infinite so Th¹² 2 say all orientable 3-manifold
admit infinitely many different contact structures!

a framed submanifold (V.7) of a manifold X

is a submanifold NCX together with a

trivialization 7 of the normal bundle of N in X

 (N_1, \mathcal{F}_1) , 1=0,1, in X are framed cobordant if there is a framed submanifold (N', \mathcal{F}') of $X \times \Sigma_0$. I such that $(N', \mathcal{F}') \cap (X \times \Sigma_1) = (N_1, \mathcal{F}_1)$

lemma 3 (Thom-Pontryagis construction in 3-D):

[$M_{i}^{3}S^{2}$] \longrightarrow {framed cobordism classes of 1-mfds in M_{i}^{3} 1-1 correspondence $g = : \Omega_{i}^{f}(M)$

 $\frac{\text{Proof}}{\text{given }} \phi : M \rightarrow 5^2$

can homotop ϕ so ϕ is transverse to north pole $n \in S^2$ let $Y = \phi^{-1}(n)$ this is a 1-mfd in M

moreover note $d\phi_{x}: T_{x}M \to T_{n}S^{2}$ is onto since ϕ transverse to n

hx a basis v, ve for TNS2=R2

now $\widetilde{V}_{1}(x)$, $\widetilde{V}_{2}(x)$ perpendicular to $T_{x}\widetilde{V}_{1}(x)$ (metric) 5.t. $d\widetilde{V}_{2}(\widetilde{V}_{1}(x)) = v_{1}$

(recall Too = ke(dbx) and dbx (txy) us comorphism)

of V(8) they give a framing of to 8

So $[M_{i} S^{2}] \xrightarrow{f} S_{i}^{f}(M)$ is a map (8,7)

exercise: show I is well-defined

Now given $(x, \pm) \in \mathcal{L}_i^f(m)$ we need to find a map ϕ

Such that P(p) = (x, 7)

<u>note</u>: $V = V \times D^2$ given by framing

now define $\phi! N \rightarrow 5^2$

to be

collapse

d to south pole

send origin to n

on each $\{pt\} \times D^2$ is $N = \mathcal{E} \times D^2$ define $\phi: \overline{M(N)} \to S^2: p \mapsto south pole$

\$\phi\$ can be constructed to be smooth on interior of N and perturbed to be smooth st. \$\phi'(n) still \text{8}

exercise: \$\mathcal{I}(\phi) = (\gamma, \beta)

so I surjective

NOW Suppose $I(\phi) = (\xi, f), I(\phi) = (\xi, f)$ (ξ, f) framed wbordart via (ξ, f)

exercise: if $(\mathcal{F}_0, \mathcal{F}_0) = (\mathcal{F}_i, \mathcal{F}_i)$, then show \mathcal{F}_0 is homotopic to \mathcal{F}_i

exercise: in general, construct a homotopy $M \times \{0,1\} \rightarrow S^{2} \quad \text{from } \Phi_{0} \quad \text{to } \Phi_{1}$ $\text{Using } (E,F) \quad \text{just as we constructed}$ $\Phi \quad \text{above}$

So we know $\pi_0(D_{15}t) \in \mathcal{I}_1^f(M^3)$ let's study $\mathcal{I}_1^f(M)$

Set $\Omega_{i}(M) = \{ \text{ cobordism classes of 1-manifolds is } M \}$ Same as $\Omega_{i}^{f}(M)$ but forget framing

 $\frac{lemma \, 4}{S_{1}(M)} \stackrel{\longrightarrow}{\longleftrightarrow} H_{1}(M)$

 $\frac{Proof}{}$: given $Y \in \mathcal{N}$, (M)

we can "triangulate" (write as 1-complex)
so it gives a 1-cycle: an element of H,(M)

if $\mathcal{X}_0, \mathcal{X}_1$ cobordant via surface $\Sigma \subset M \times \mathcal{X}_0, \mathcal{X}_1$ project surface to M, traingulate

to get a 2-chain in $C_2(M)$ exercise: $\partial \Sigma = \mathcal{X}_1 - \mathcal{X}_2$ (as 2-chain

so of homologous to br

and SZ,(M) = H, (M) well-defined

any h ϵ H₁(M) is represented by the image of an S', so Φ clearly onto

now if $\Phi(\gamma_0) = \overline{\Phi}(\gamma_0)$, then there is a 2-chain c st. $\partial C = \gamma_1 - \gamma_0$

exercise: can find another 2-chain C' such that C' = 1 image of triangulated surface Σ let $f: \Sigma \to [0,1]$ be smooth map st $f^{-1}(i) = X_1$.

now $\Sigma \to M \times [0,1]$ $p \mapsto (p, f(p))$

is a map that can be perturbed to be smooth and self transverse

this means the image in $M \times \{0,1\}$ is an immersed surface with transverse double points one may "resolve" the double points to get an embedded surface Σ' in $M \times \{0,1\}$ st. $\partial \Sigma' = \gamma_0 \cup \gamma_1$

:. 8, = 80 in so, (M)

exercisé: fill in details of argument above

there is a natural map $F: \Omega^{\sharp}(M) \to \Omega_{*}(M)$ that just forgets the framing

lemma 4:

given $x \in \Omega_{\epsilon}(M)$,

 $F^{-1}(x) = \frac{2}{2} d[E(x)] \frac{chondogy}{class of x}$

where dry) is the divisibility of y in HI(M) modulo forsion

note: $0 \in H_1(M)$ for any M has divisibility $0 \in F^{-1}(0) = \mathcal{Z}$

.. all M^3 have infinitely many homotopy classes of plane field and hence infinitely many contact structures by $Th^{\underline{m}} 2$

<u>Proof:</u> given x a 1-submanifold in M

let 7 be a framing on x
and In is the framing on x given by adding n right
handed twist to 7

the map h: # -> F'(x) is clearly onto

suppose h(n)=h(m)

so there is a framed surface $(\mathcal{I}, \mathcal{F}')$ in $M \times \Sigma_0.1]$ s.t. $(\mathcal{I}, \mathcal{F}') \cap (M \times \{0\}) = (x, \mathcal{F}_m)$ $(\mathcal{I}, \mathcal{F}') \cap (M \times \{1\}) = (x, \mathcal{F}_m)$

let T = closed surface in MXS'= MXEO.13/ MXEO3 NMXEO3 given by I

exercise: Show T.T= m-n

C self-witer section

Tend court intersect a copy of

Tand court intersection points with sign

Hint: 7' gives a way to push I of of itself to get

I' think about how to make I' a

closed surface in MX5'

let (= x x s' < M x s' note: m-n = T.T=[(T-c)+c].[(T-c)+c]

= (T-6)·(T-6)+2(T-6)·6+C·6

" use framing on x

to get disjoint apy Claim: (T-C).(T-C) = 0 indeed note Hz (Mx5')= (Hz(M) & Ho(5')) (H,(M) & H,(5')) 1 H2 (M) OH2 (5') now (T-C) 1 (Mx {pt3}) = 0 (SINCE TN (4 x {pt}) = x Cn(Mx {pe}) = x) 50 T-C € H2(M) & HO(S) (since any non-zero elt in H, (M) & H((5') has non-zero intersection with Mx{p+}) SO T-C is homologous to SCM 5.5=0 (push copy of 5 in 5' direction) / so m-n = (T-C).(2C) = (T-C)·(2x) Since T-C homologous to surface in M

40 m-n is divisible by 2d(x) bornesely, suppose 2d(x) \$0 (re x not torsion) let y be a primitive class in H, (M) such that x = d(x) y P.D. (y) is a generator of H²(M) Poncaré Dual

50 3 a surface α such that $y \cdot \alpha = (P.D.(y))(\alpha) = 1$

 $\therefore 2x \cdot \alpha = 2d(x)$

let T be a surface in MX5' representing

(+ x

note: (C+x). (C+d) = 2 C.x = 2 x.x = 2 d(x)

cut Mxs' along Mx{pt} to get MxEo, i)

and T becomes a cobordism from

x to x and framings deften by 2d(x)

(argue as above)

so h: Z -) F -(x) is onto with kernel 2d(x) Z

we now return to the proof of Th=2

Th = 2 (Lutz):

1x: To (cont(m)) -> To (Dist (M)) is onto

we need a construction called <u>Lutz twist</u>

let $R^2 \times S' = R^3 / 2H 2+2\pi$ with contact structure $\frac{3}{2} = \text{her} \left(\cos r \, dz + r \sin r \, d\varphi \right)$

 $T = \{(0,0)\} \times 5'$ is a transverse curve $S_a = \{(f,\varpi,Z) \mid f \leq a\}$ $\{(g,\sigma)\}_3$ is linear foliation of slope $-\frac{1}{a}$ wha

if K a transverse knot in (M,3), then it has a abhd N contactomorphic to Sa for some $a \in (0,T)$

let b \((\pi, 2\pi) \) \(S_b)_3 = (S_a)_3

the result of replacing N=Sa by Sb is called a half Lutz turist on T

replacing $N = S_{\alpha}$ with S_{c} , for $(\in (2\pi, 3\pi)_{s,t})$ $(S_{c})_{7} = (S_{\alpha})_{7}$, is called a full Lute twist

note: Luts trusting does not change M

emmo5:

let (M,3') be the result of performing a half-Lutz twist on a transverse knot K in (M,1)

then F(3')= F(3) - [K]

where F is map from lemma 4 and [K] is the homology class of K

if K is null-homologous and (Y, 7) & SI, (M)
corresponding to 3 then (8, 7 se(x)) corresponds
to 3' where 7n is framing 7 with n right-handed
twists

Proof of Th = 2:

by Th = 1 3 some contact structure ? on M suppose ? corresponds to (8,7)

given some other (8',7') let K be a transverse knot that realizes the homology class [8]-[8']

lemma 5 says the result of half Lutz twisting 3 along K 15 associated to the framed manifold (8,7")

let V transverse unknot with SL=-1 (push off of O)

The transverse right handed trefoil with SL=1 (push off of O)

half Letz twisting on U does not change I' but sends 7" to 7",
while twisting on K sends F" to 7",

so we can realize any framing

Proof of Lemma 5:

Check bach later!