III Introduction to Convex Surfaces

let (M, 3) be a contact 3-manifold a vector field or is a contact vector field if its flow preserves ?

if x is a contact form for ?, then v is a contact vector field

if flow of of or preserves ?= ker x

which is equivalent to $\mathcal{L}_{T} \mathcal{L} = \frac{d}{dt} \phi_{t}^{*} \mathcal{L} \Big|_{t=0} = \frac{d}{dt} f_{t} \mathcal{L} \Big|_{t=0} = g \mathcal{L}$

tor any g: M -> R

or is a contact vector field = Lrx=9 x

Prample: Xx Reeb vector field of a 2xx x = 1x dx + d(xx = 0+d1 = 0 :. Xx a contact vector field note also X is transverse to ?

exercise:

1) show a contact vector field v is a Reeb field for some a @ V is transverse to?

2) show a contact vector field v is always tangent to ?

lemma 1:

Proof: assume v is a contact vector field

Set $H = -\alpha(v)$ NOW $g \alpha = \mathcal{L}_{v} \mathcal{A} = \mathcal{A}_{v} \mathcal{A} = \mathcal{A}_{v} \mathcal{A} = -\mathcal{A}_{v} \mathcal{A}_{v} \mathcal{A}_{v} \mathcal{A}_{v} = -\mathcal{A}_{v} \mathcal{A}_{v} \mathcal{A}_{v} \mathcal{A}_{v} = -\mathcal{A}_{v} \mathcal{A}_{v} \mathcal{A}_$

exercise:

given H:M > R there is some vector field v satisfying equations in lemma 1

Remark: this says any locally defined contact ve ctor field can be extended to a global one

a surface Σ in a contact manifold (M,7) is convex if there is a contact vector field v transverse to Σ

lemma 2:

a surface Σ is convex \iff \exists an embedding $\Sigma \times \mathbb{R} \xrightarrow{\phi} M$ such that $\Phi(\Sigma \times \{0\}) = \Sigma$ and $\Phi^*(7)$ is vertically invariant (that is invariant in the \mathbb{R} -direction)

Proof:

if Σ is convex, then let v be the transverse contact v.f. set H = -d(v) (some contact form α for 3)

Cut off H near Σ (so it has compact support)

let v' be the contact v.f. associated (by lemma 1) to new function

flow of v' (which exist for all time since has compact support)
gives Φ

conversely, given ϕ let t be wordinate on \mathbb{R} the vector field $v = \phi_{\star} \frac{\partial}{\partial t}$ is a contact v.f. transverse to Σ

exercise: If Σ is a convex surface in (M, 7), then show,

Using lemma above, that Σ has a neighborhood $\Sigma \times [-1,1]$ such that β is given by a 1-form $\alpha = \beta + udt$ B a 1-form on Σ and $u: \Sigma \to \mathbb{R}$

note no + dependence for B, u

note: with & as above

2) for & to be contact we need

$$\alpha \wedge d\alpha = \beta \wedge (d\beta + du \wedge dt) + udt \wedge \beta$$

$$= (\beta \wedge du + u d\beta) \wedge dt > 0$$

lemma 3:

let I be a surface in (M.?)

1: I -> M the inclusion map

a a contact form for ?

B= 2* x

the surface I is convex

I a function u: I → R st. udβ+ Brow >0

Proof:

If I is convex we are done from above

If u exists then on IXR consider the contact structure

ker (p + udx)

char tol¹ on Ix (0) and I are the same

:. we have neighborhoods of Ix {o} and I that are

contactomorphic and contactomorphism sends 3+

to a contact-vector field transvorse to I

dualize equation 1: fix an area form on I

so there is a vector Réld w on I such that

$$l_{w} \omega = \beta$$

note wis in ker B and so directs I,

(1.e. tangent to Iz and 0 at singularities)

if I convex then

Trecall dunw=0 so

(ω(dunw)=0

du(ω) ω-dunlωω

du(ω) ω+ (ωωndu

50 -du(w)+ udivw >0 (2)

intishing (1) is conven

exercise: for a fixed & set of u satisfying 1 is convex

example (of non convex surface):

$$R^3$$
 coords (r, θ, z)
 $M = R^3/2H2+1$
 $3 = \ker(dz+r^2d\theta)$
 $T_c = \{(r, \theta, z) \mid r = c\}$
Characteristic fol² on T_c is linear
note β above on T_c is $dz+c^2d\theta$
So $d\beta = D$
if $\omega = d\theta$ nd z on T_c then $w = c^2\frac{3}{2z} - \frac{3}{2\theta}$

Satisfies $l_w w = \beta$ so w directs char. fol^a

and $div_w w = 0$ i. if T_c convex \exists a function $u: T_c \rightarrow \mathbb{R}$ such that -du(w) > 0so w decreases along flow lines

leaves of $(T_c)_3$ are closed $\not \otimes$ or dense $\not \otimes$ so T_c not univer

exercise:

let I be a surface in (M,?)
if one of the following is true then I is not convex

(1) I, has a flow line from a negative to a

positive singularity

(2) I, has a dense leaf.

given a surface I

a singular foliation f on E properly embedded arcs and simple closed curves we say a multi-curve Γ divides f if

- (1) I / L = I + H I -
- (2) I is transverse to F and
- (3) there is a volume form ω on Σ and vector field w on Σ such that (a) $\pm \operatorname{div}_{\omega} v > 0$ on Σ_{\pm} (b) w directs \mathcal{F}
 - (c) w points out of Σ_{+} along $\partial Z_{+} (\partial \Sigma_{+} \cap \partial \Sigma)$

exercise: if [,, [both divide I then [, and [are isotopic through dividing curves

if I is a convex surface then near I we can write the contact form \$+udt the multi-curve S can assume 0 a regular value of u $\Gamma = \{x \in \Sigma : u(x) = 0\}$

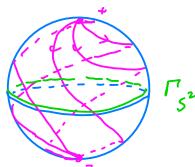
is called the dividing set of I

given a compact orientable surface I in (M,3) with 2 I Legendrian

 Σ is convex \iff there is a dividing set for Σ_7

we will prove this theorem and the ones below later but now we give a user's guide to convex surfaces and then see how they are used to study contact structures

examples: 1) 5^2 unit sphere in \mathbb{R}^3 with $3 = \ker(dz + r^2 d\theta)$

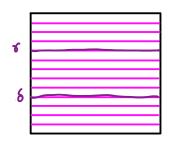


indeed if v= = = = = = === then $Z_{1r} \propto = x$ so v confact and $\alpha(v)=2$ 50 P52={2=0} 2) recall $T_{c} = \{(r, \theta, z) \mid r = c\} \subset \mathbb{R}^{3}/z \mapsto z + r$ with $3 = her(dz + r^{2}d\theta)$

above we saw T_c not Gorvex $(T_c)_7$ is a linear foliation

choose c so slope is rational f_q

pick 2 orbits V, & of (Tc),

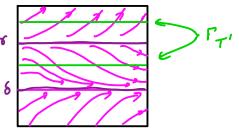


changed coordinates on torus so picture clearer

 $T_c - (8 v 8) = A_c v A_z$ 2 cannoli

push A, out a little and Az in a little to get T'

with T_3'



note the new torus has dividing curves so is convex so a Composition of the non-covex To is convex!

Note: we would have perturbed To to have any even number of dividing curves

more generally we have

any closed surface is C^{∞} -close to a convex surface if Σ contains Legendrian curves L_1 ... L_k with $tv_i^2(L_i, \Sigma) \leq 0$ for all i, then Σ may be C^{∞} -isotoped near L_i and C^{∞} -isotoped away from the L_i to become convex

so convex surfaces are very common!

The 6 (Cirax flexibility):-

suppose. I a compact surface in (M.3)

- \cdot E closed or has ∂Z Legendrian with non-positive twisting along each component of $\partial \Sigma$
- · I is convex with dividing curves of and transverse contact vector field v
- · i: I -> M the inclusion map

let $\Gamma = i^{-1}(\Gamma_{\Sigma})$ and \mathcal{F} be any singular foliotion on Σ that is divided by Γ

Then in any neighborhood U of Σ in M, there is an isotopy $\phi_s: \Sigma \to M$ for $s \in \{0,1\}$ such that

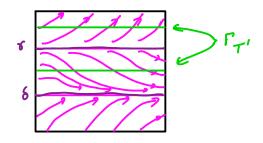
- (1) $\phi_0 = i$
- (2) \$ is fixed on [
- (3) $\phi_s(Z) c U$ for all s
- (4) $\phi_s(\Sigma)$ is transverse to v(:convex)with $\Gamma_{\phi_s(\Sigma)} = \Gamma_{\Sigma}$
- (5) $(\phi_i(E))_{ij} = \phi_i(F)$

recall $Th^{\frac{m}{2}}II.5$ says Σ_3 determines 3 near Σ , coupled with $44^{\frac{m}{2}}$ above we see Γ_{Σ} more or less determines 3 near Σ way easier to understand multi-curves than foliations!

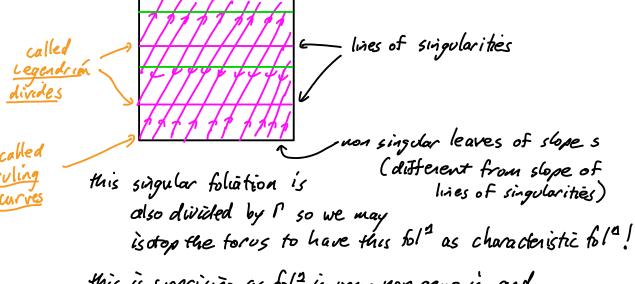
example:

this flexibility is very powerful!

in the example above we saw a torus with foliation



now consider the singular foliation



this is susprising as fol2 is very non generic and we can realize any slope s (* slope of sing. lines)

we call a torus with foliation as above a torus in standard form and it is determined by the slope of the dividing curves and the slope s (any s = r) of the ruling curves

let Σ be a convex surface in (M,3) Γ_{Σ} the dividing curves

a graph GCI is called <u>non-isolating</u> if G is transverse to PE

and every component of $I \setminus G$ intersects Γ_{E}

Th = 7 (Legendrian Realization Principle or LERP):-

I a convex surface in (M,3)G a graph in I that is non isolating Then there is an isotopy of I (rel ∂I) through convex surfaces to I', s.t. G is confained in the characteristic foll of I'

a useful corollary is

Corollary 8:

If C is a simple closed curve in a conversiviface I that nontrivally and transversely intersects

P_E then I may be isotoped so that C is Legendrian on I

we can say a lot about Legendrian curves on a convex surface

Thm 9:

let L be a legendrian simple closed curve in a convex surface Σ that is transverse to, then $tw_{\chi}(L, \Sigma) = -\frac{1}{2} \# (L \cap \Gamma_{\Sigma})$

if $L=\partial Z$, then this gives to(L), moreover $\Gamma(L)=\chi(Z_+)-\chi(Z_-)$

we can also understand tightness using conversurfaces

Thus 10 (the Girax Criterian):

 Σ a convex surface in (M.3) a vertically invariant neighborhood of Σ is tight

(1) $\Sigma = S^2$ and Γ_{Σ} is connected, or

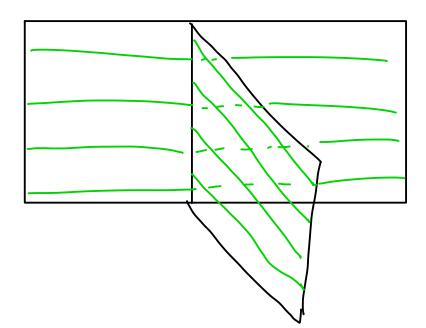
(2) $\Sigma \neq S^2$ and Γ_{Σ} has no components bounding a disk

ve end by seeing how to "transfer information" between convex surfaces

lemma 11:

 Σ, Σ' convex surfaces with dividing sets $\Gamma_{\Sigma}, \Gamma_{\Sigma'}$ $\partial \Sigma' C Z$ a Legendrian curve let $S = \Gamma_{\Sigma} \cap \partial \Sigma'$ and $S' = \Gamma_{\Sigma}, \cap \partial \Sigma'$ then between any two adjacent points of S there is one point of S', and vice-versa

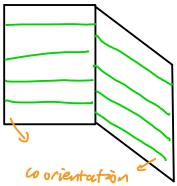
Pictorially



ve can say a little more

lemma 12:

If I, I' are as is lemma 11 but $\partial I = \partial I'$ and look like



then one can round the corner" to get a smooth convex surface with dividing set

