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Preface

Contact geometry in dimension 3 has seen rapid growth in the last 30 years, leading to
a rich theory with applications to many areas, such as knot theory, the topology of 3
and 4-manifolds, Riemannian geometry, and fluid dynamics. There has also been recent
progress in higher-dimensional contact geometry, but the foundations of the theory are
still being developed. So except for a few remarks, in this book we will restrict ourselves
to low-dimensional contact geometry.

Much of our understanding of low-dimensional contact geometry comes from the
study of a special type of surface, called a convex surface. These grew out of Grioux’s
study of convex contact structures, which were originally defined by Eliashberg and Gro-
mov in [EG91]. In [Gir91], Giroux defined convex surfaces and established many of
their fundamental properties. The properties given in [Gir91] are what make convex sur-
faces such a powerful tool in the study of contact 3-manifolds. Another key tool that
makes them such a useful tool is the notion of a bypass, which was defined by Honda
in [Hon00a]. With the ideas in these two papers, one can classify contact structures on
many simple manifolds, and in some sense, much of this book is an exploration of these
two papers and their consequences.

The reason convex surfaces are so useful is that we can cut a contact manifold along
convex surfaces until we obtain “simple pieces" (like a ball). We can then understand the
contact structure on the simple pieces and try to reassemble the original contact manifold
by gluing the simple pieces back together along the convex surfaces. If the surfaces are
simple enough, then we can carry out the program to obtain classification results for
contact structures on some manifolds and for special knots inside the contact manifolds.
expain this more
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iv Preface

The book is broken into two parts. In Part I, we restrict to the simplest uses of convex
surfaces and bypasses, and also manifolds with the simplest topology. In Part II, we
introduce more advanced topics about convex surfaces and bypasses, and also consider
manifolds with more complicated topology.

Add details about the content of the book

In several chapters of the book, we adopt an idiosyncratic style. Specifically, certain
sections will be broken into two parts, then will have an “executive summary of main
results” and “proofs of main results” part. The idea is that the “executive summary of
main results” subsection is meant to be a survey of the main results about the topic at
hand. Proofs are (mostly) not presented in this subsection as they might detract from
a clear picture of the main results and their corollaries, whereas the picture could be
obfuscated if the results were interspersed among fairly long proofs. The proofs are then
collected in the “proofs of main results” subsection. We hope this makes the presentation
helpful as a research reference and as a learning reference.

Prerequisites

The reader is expected to have familiarity with the material in a one-semester course
in differential topology and in algebraic topology. Specifically, in differential topology,
the reader should not only be familiiar with smooth manifolds and smooth maps (includ-
ing tangent bundles and local forms for functions with constant rank differentials), but
also transversality, flows of vector fields, differential forms, the exterior and Lie deriva-
tives, and de Rham cohomology. This material can be found in most books on differential
topology, such as [GP10, Leel3]. In algebraic topology, the reader should be familiar with
the fundamental group, covering spaces, homology, cohomology, and Poincaré duality.
A good reference for this material is Chapters 0 through 3 in [Hat22].

It would also be helpful if the reader were familiar with locally trivial fiber bundles
and characteristic classes, as can be found in [FF16, MS74]. However, to keep this book
as self-contained as possible, we have added much of this material in Appendix A.
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Part I: Contact structures
and convex surfaces






Chapter 1

Introduction to contact
geometry in dimension 3

There are many good references for the basic facts about contact geometry, see for ex-
ample [Gei08, OS04a]. So in this introduction, we will not try to exhaustively cover the
basic results in contact geometry. However, we would like this book to be fairly self-
contained, so we will review all the basic definitions and results necessary for the rest
of this book. We will give proofs of results that will be used later in the book or give
important intuition about the subject and otherwise refer to the existing resources.

In Section 1.1 we give a general discussion of plane fields on a 3-manifold and discuss
when they can be tangent to surfaces in the manifold and when they are not, this leads to
the definition of a contact structure that is a plane field that is “never tangent to surface
along open sets". We then discuss many examples of contact structures. In the following
section we discuss “local theorems". These are results that essentially say contact struc-
tures are completely determined locally in nice situations. For example, we will prove
Darboux’s theorem which says that any two contact structures look identical near a point.
There are similar results for Legendrian knots (those tangent to the contact planes) and
transverse knots (those that are transverse to the contact planes). In Section 1.3 we ex-
pand these “local results" to neighborhoods of surfaces in contact manifolds, but in this
case, more data is needed to determine the contact structure in a neighborhood of the
surface. This extra data is called the characteristic foliation, which is a singular foliation
induced on a surface from the contact plane field.

In Section 1.4 we discuss Legendrian and transverse knots. These are fundamental
objects in contact geometry and essential to understanding contact structures on man-
ifolds. We will discuss their basic invariants, that is the Thurston-Bennequin invariant
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4 1. Introduction to contact geometry in dimension 3

and rotation number of Legendrian knots, and self-linking number for transverse knots,
and then how to study them in the standard contact structure on R® (and by Darboux’s
theorem this allows us to study such knots near a point in any contact manifold). We also
discuss the Bennequin inequality which bounds the classical invariants of Legendrian
and transverse knots, mentioned above, in terms of the Seifert genus of the knot. We
then turn to the fact that any smooth knot can be approximated by a Legendrian knot
and that we can associate to any Legendrian knot its “transverse push-off" and to any
transverse knot many “Legendrian approximations". The section ends with a discussion
about the classification of Legendrian knots which will be revisited later in the book.

Section 1.5 is devoted to the existence of contact structures on oriented 3-manifolds.
We begin by showing that any oriented 3-manifold admits a contact structure. We then
discuss the homotopy classes of oriented plane fields on a 3-manifold and then show
that in each homotopy class, there is a contact structure. This means that each oriented
3-manifold admits an infinite number of distinct contact structures. We end the section
with a discussion of invariants of oriented plane fields that determine their homotopy
class.

In Section 1.6 we introduce a critical dichotomy in contact geometry, this is the tight
versus overtwisted dichotomy. A contact structure on a 3-manifold is either overtwisted,
which means it contains a special type of disk, or tight. We recall Eliashberg’s classifica-
tion of overtwisted contact structures which says that any homotopy class of plane field
admits a unique overtwisted contact structure, we will detail the proof of this result in
Chapter 14. We also revisit the Bennequin inequality which characterizes a contact struc-
ture as being tight. We then move on to symplectic fillings of a contact manifold and recall
that a symplectic fillable contact structure is tight. A special type of symplectic filling is
a Stein filling of a contact manifold. We discuss how to construct Stein fillings and use
this construction to construct many tight contact structures on lens spaces (we will later
show that this is a complete list of tight contact structures on lens spaces) and also show
that there can be arbitrarily many tight contact structures in a fixed homotopy class of
plane field. We then move on to a brief review of Heegaard Floer homology, which is an
invariant of 3-manifolds and knots in them, and define an invariant of contact structures
that live in Heegaard Floer homology. This invariant vanishes if the contact structure is
overtwisted and so is a good way to prove a contact structure is tight. We also see how
to recover the Bennequin inequality from Heegaard Floer theory.

Section 1.7 gives a brief overview of higher dimensional contact geometry. While
we will not discuss much about higher dimensional contact manifolds in the book, this
section will put the 3-dimensional results in a larger context and highlight differences
between the theory in dimension 3 and higher. Specifically, we will discuss differences
in the “local" theorems that determine a contact structure near certain submanifolds of
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a contact manifold and how the general existence question is quite different in higher
dimensions. We will also discuss the tight versus overtwisted dichotomy in higher di-
mensions as well as symplectic fillability, and see that while there are similarities with
dimension 3, there are quite a few differences as well.

In the last section of this chapter, we will discuss the history and applications of
contact geometry. We start by discussing some of the first occurrences of contact geom-
etry in geometric optics, thermodynamics, classical mechanics, and partial differential
equations. (These occurrences are really precursors to contact geometry. They did not
explicitly use contact geometry at the time as contact structures had not been defined
yet, but the ideas used are clearly contact geometric in hindsight.) We then move on to
discuss a close connection between contact geometry and Riemannian geometry. Specif-
ically, a Riemannian metric determines, and is determined by, the geodesic flow on the
unit tangent bundle to a manifold. This flow is conjugate to the Reeb flow (a contact
geometric flow) on the unit cotangent bundle (which is a contact manifold). We then dis-
cuss connections between contact geometry and fluid mechanics, showing, among other
things, that any real analytic solution to the Euler equations for a perfect incompressible
fluid on the 3-sphere possesses a close flow line. We then turn to the connection be-
tween Riemannian metrics and contact structures again and see how compatible metrics
and contact structures can influence each other. We end with a discussion of numerous
applications of contact geometry to low-dimensional topology.

1.1. Definitions and first examples

Let M be a closed, oriented 3-dimensional manifold. Contact structures on M are special
types of plane fields, so we will begin by discussing plane fields. A plane field £ ona M is
a sub-bundle of the tangent bundle of M such that

& =T,MNE

is a 2-dimensional subspace of T,M for all p € M. To better understand this idea, it is
good to compare it to the more well-known concept of a vector field on a manifold. A
vector field is simply a choice of vector in the tangent space of M at each point of M and
the vector can change as we move to different points in M (of course we demand that it
change in a smooth manner). A plane field is a similar concept, it is a choice of plane in
the tangent space of M that changes as we move to different points in M.

Example 1.1.1. We consider several examples of plane fields.

(1) On the manifold M = R? consider the plane field

£ =spanll 2
- % ox’ dy |’

This constant plane field is shown in Figure 1.1.1.
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Figure 1.1.1. The plane field on the left is from Example (1) and the plane field on the right
is from Example (3). need better pictures!

(2) Consider the manifold M = £xS! where L is an orientable surface and the plane
field
Ex,0) = Tk C Ty 9)(Z X SY).
(3) On the manifold M = R? consider the plane field

&= span{i, i + yi} .
dy dx oz
This is a non-constant plane field on R? and is shown in Figure 1.1.1.
(4) Let a be a 1-form on M so for each p € M we have that
ap: M — R

is a linear map. We say that a is non-singular if a is onto R for all p € M. We will
now assume that « is non-singular. In this case for each p € M we can define the

plane
&p = keray
and let
=]
peM

This is a plane field on M and we write £ as & = kera. We note that all the
previous examples can be described in terms of 1-forms.

(a) For example (1) if we set a« = dz then & = kera.

(b) For example (2) if we set @ = dO then & = kera.

(c) For example (3) if we set @ = dz — y dx then & = ker a.

It is not a coincidence that our examples can be written as the kernel of a 1-form.
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Exercise 1.1.2. Show that any plane field can be locally written as the kernel of a 1-form.
Here what we mean by “locally written" is that given a plane field £ on M, for each point
p € M there is an open set U containing p and a 1-form ay; on U such that for each g € U,
&g = ker ag.

Exercise 1.1.3. Show that the following are equivalent:

(1) & can be written as the kernel of a 1-form on M
(2) there is a vector field v that is transverse to & at all points of M

(3) ¢ is orientable.

Hint: Recall that we are assuming that M is orientable. Some of the implications are not
true if M is not orientable.

When a plane field £ has a transverse vector field as in the exercise, we say that
the plane field is transversely orientable and by the exercise this is equivalent to being
orientable.

Convention : We will assume that all of our plane fields are oriented.

It is interesting to consider non-orientable plane fields (and contact structures) but
we will not be considering these in this book.

To continue our discussion of plane fields we need the following important theorem.
Before stating the theorem we need a few definitions. Given an n-manifold M a k-plane
field, also known as a distribution of rank k, is a subbundle D of the tangent bundle of
M with k-dimensional fibers. An integral submanifold of D is the image of a one-to-one
immersion f : N — M such that df (TxN) = Dy(,) forall x € N. We say that D is integrable
if each point p € M is contained in an integral submanifold of D. Finally, we say that D
is closed under Lie brackets, this is also known as involutive, if given two sections v and
w of D, their Lie bracket [v, w] is also a section of D (recall D is a sub-bundle of TM
so sections of D are vector fields and hence we can compute their Lie bracket). In other
words, I'(D) is a Lie sub-algebra of I'(T M), where I'(E) denotes the space of sections of a
bundle E. A smooth integrable plane field defines a foliation on a manifold. A foliation
on a manifold M is a decomposition of the manifold into a union of immersed surfaces
such that each point in the manifold has a coordinate chart ¢p: U — V, where U is an
open set in M and V is an open set in R3 so that the surfaces in the coordinate chart
map to constant x3-hyperplanes where (x1, x3, x3) are coordinates on V. The image of
each surface is called a leaf of the foliation. (This is actually the definition of a foliation
of a 3-manifold by 2-manifolds, but there is a clear generalization for a foliation of an
n-manifold by k-manifolds.)
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Theorem 1.1.4 (Frobenius Theorem). Given an n-manifold M and a k-plane field D on M,
then

D is integrable if and only if D is closed under Lie brackets.

It is easy to prove that any integrable distribution is closed under Lie brackets, but
the other implication is quite a bit more difficult to establish. You can find a proof of this
result in most textbooks on Differential Topology, see for example [Lee13, Chapter 19].

Continuing our discussion of plane fields, let £ be a plane field on the 3-manifolds
M that is given as the kernel of a 1-form a. Suppose v, w € I'(§), then clearly a(v) = 0,
a(w) = 0 and [v, w] € I'(§) if and only if a([v, w]) = 0. We would like to rephrase this,
and to do so we recall from Differential Topology, see [Lee13], the formula for the exterior
derivative of a 1-form:

da(v,w) =v-a(w)—w - a(v) — a([v, w]),

where v - f for a function f and vector field v is the result of applying v, thought of as a
derivation on function on M, to f, which of course gives another function on M. Using
this formula we see that for v, w € I'(§)

[v, w] € T'(&) if and only if da(v, w) = 0.

Thus
¢ is integrable if and only if da|s = 0.

Definition 1.1.5. A plane field £ on a 3-manifold M given as the kernel of a 1-form « is
a foliation if da|c = 0 and is a contact structure if da|¢ is never zero. A contact manifold is a
pair (M, &) where M is a manifold and ¢ is a contact structure on M.t

If £ = ker a is a contact structure, then we say that « is a contact form for &.

Considering our discussion around the Frobenius Theorem, it is easy to see that if &
is a contact structure then it cannot be tangent to a surface along an open subset of the
surface. It is common to define a contact structure on a 3-manifold as a non-integrable
plane field.

Continuing to discuss the contact condition we note that da|s never being zero is
equivalent to the fact that for any pair of vectors v, w that span & we have da(v, w) # 0.
Now if we let u be a vector field transverse to &, then we clearly see that a(u) is never
zero; and thus, for vector fields v and w (locally) spanning &

aANda(u,v,w) =a(u)da(v, w) + terms with a evaluated on v or w,

11t is common to denote the phrase “dag is never zero" by da|s # 0. While this is technically not accurate, this is a
common abuse of notation.
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and the latter terms must be zero. So if £ is a contact structure then a A da is a never zero
3-form on M, that is it is a volume form on M. Thus we have

& = ker a is a contact structure if and only if a A da is never zero.

This is frequently given as the definition of a contact structure, but we see it follows from
our geometric definition given above.

Example 1.1.6. We now consider our examples above in light of this discussion.

(1) On the manifold M = R® we have the plane field

Jd d
= _—, = = k
& span{ax ay} er o
where @ = dz. Since da = d(dz) = 0 we see that ¢ is integrable and defines a
foliation. Indeed, R? is filled by planes
R? x {z}
and these planes are tangent to &.

(2) On the manifold M = £ x S! we have the plane field £ given as the kernel of
a = d6. Since da = d(dO) = 0 we see that & is also a foliation. We also see that &
is tangent to the submanifolds

X x {6}
and these manifolds fill M.
(3) On the manifold M = R® we have the plane field

E=s anii+ 9 = ker a
- oy’ dx Yoz T
where a = dz — y dx. One easily computes

anda=dx ANdy Ndz

which is a volume form on R3 and hence & is a contact structure on R3.

Notice that a contact structure & can be defined by more than one contact form. Sup-
pose that £ = ker o and & = ker .

Exercise 1.1.7. Show that there is a non-zero function f : M — R such that a = ff.
Hint: The two linear maps a;,f, : T,M — R have the same kernel and T,M is 3-
dimensional.

Given a function f from the exercise notice that
anda=fBAA(F) = FBA(f AB+fdp)
= —fBAB+ B AdP = F3B A dp.
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Thus any 1-form defining & will induce the same orientation on M (recall orientations on
a manifold M correspond to equivalence classes of never zero 3-forms, where two such
forms are equivalent if one is a positive functional multiple of the other). Recall that M
was assumed to be oriented so there is some never zero 3-form Q) on M that defines this
orientation. Since a A da is never zero there is some non-zero function g: M — R such
that

anda =gQ.

If g > 0 then we write
anda >0

and say that & = ker « is a positive contact structure. If ¢ < 0 then we write a Ada < 0 and
say that & is a negative contact structure.

Convention: We will assume that all of our contact structures are positive.

So the phrase “contact structure" means “positive contact structure". If we want to study
negative contact structures, we will just consider the manifold with the opposite orienta-
tion where the contact structure will be positive.

Exercise 1.1.8. Consider a non-transversely oriented contact structure £ on a 3-manifold
M that might or might not be orientable. Recall this means that there is no global 1-
form defining &, but it can locally be defined by 1-forms. Show that & still defines an
orientation on M. So non-orientable 3-manifolds cannot admit contact structures.

There is another useful way to determine if a plane field is a contact structure or a
foliation that we explore in the following exercises.

Exercise 1.1.9. Give a plane field £ on a 3-manifold M show that near any point p in M
there are coordinates so that & is the kernel of a 1-form of the form

a=dz—a(x,y,z)dx.

Moreover, if v is any non-zero section of ¢ near p show that the coordinates can be chosen
so that v is %.
Hint: Given v choose a disk D transverse to v. Put coordinates (y,z) on D and generate

the coordinate system by the flow of v.

Exercise 1.1.10. Given £ and «a as in the previous exercise show that & is a positive (neg-
ative) contact structure if and only if

&_a >0 (% < 0) .
dy dy
Also show that £ is a foliation if and only if

0

2 o

Yy
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These exercises show that a plane field is a positive contact structure if and only if
when flowing along a vector field tangent to the plane field the planes rotate in a left-
handed fashion and the plane field is a foliation if and only if the plane field is invariant
under the flow of any vector field tangent to the plane field.

We will now consider more examples of contact structures.

Example 1.1.11. For these examples we take M = R>.

(1) Let a1 = dz — ydx and & = ker aq. It is common to call &; the standard contact
structure on R3 and in the rest of the book we will denote it by &sta-

(2) Let ap = dz+x dy —y dx, or in polar coordinates ap = dz + r2d0,and & = ker ay.
See Figure 1.1.2. The contact structures &; and &; look quite different, but they

are in some sense “the same".

Figure 1.1.2. The plane field on the left is from Example (2) and the plane field on the right
is from Example (3). need better pictures!

Definition 1.1.12. Two contact manifolds (M, &) and (M1, &1) are contactomor-
phic if there is a diffeomorphism f: My — M such that df (o) = &1. In terms
of contact forms a; for &;, this condition is equivalent to f*a; = gao for some
non-zero function g: My — R.

Contactomorphism is the natural equivalence relation on contact manifolds. We
can now check that £; and & are contactomorphic. Indeed consider the map

finn = (54255 2)

Exercise 1.1.13. Show that f: R3> — R? is a diffeomorphism.
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Notice that

f*az=d(z—%)—ygxd(x;y)er;yd(y;x)

=dz — %(x dy + ydx) + %(x + y)(dy —dx) - %(y —x)(dy + dx)

=dz—-ydx = ay.
Thus df(&1) = & and (R3, &7) is contactomorphic to (R3, &y).
(3) Let a3 = cosrdz + rsinr dO and &3 = ker a3. See Figure 1.1.2.
Exercise 1.1.14. Check that &3 is a contact structure.

Exercise 1.1.15. Let U, = {(r,0,z) € R3: r < a}.
(a) Show that (U,, &3]y, ) is contactomorphic to (R3, &) for a < 7.
Hint: Try to prove this for a < m/2 first as this is easier. It also might be
helpful to read Section 1.3 on characteristic foliations below first.
(b) Show that (U,, &3|u,) is not contactomorphic to (R3, &) for a > 7.
Hint: This is very hard, maybe come back to this after reading Section 1.6.

(4) Let ay = sin(2mz)dx + cos(2mz) dy and &4 = ker a4. See Figure 1.1.3.
z

Figure 1.1.3. The plane field is from Example (4). need better pictures!

Exercise 1.1.16. Check that &4 is a contact structure.
Exercise 1.1.17. Show that
f(x,y,z) =(zsinx + ycosx,zcosx — ysinx, x/2m)
is a contactomorphism from (R3,&)is contactomorphic to (R3, &y).

Notice that &3 twists infinitely often and is not contactomorphic to the standard
contact structure on R3 while &4 also twists infinitely often but is contactomor-
phic to the standard structure. We will see the reason for this in Section 1.6.
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Example 1.1.18. In this example, we consider M = S® thought of as the unit sphere
in complex 2-space, C2. Recall that for any linear space V, the tangent space T,V can
canonically be identified with V. Thus multiplication by i on C? induces multiplication
by i on all the tangent spaces T,C?. We now set
& =T,5° Ni(T,S?)
for each p € S3, that is £ is the set of complex tangencies to S°.
We will see that & is a contact structure on S3. To this end, let (z; = x1 + ixy, 20 =
X2 + iy2) be coordinates on C2? and set
fiC =R (x1,y1,%2,y2) = X+ Y7 + x5+ 13,
Clearly 1 is a regular value of f and S = f~1(1). We know that
T(X1,y1,xz,yz)53 = ker df(x1,y1,X2,y2) = ker 2(x1 dx1 + Y1 dyl + Xp de + Y2 dyz)
Sov € i(TpS3) if and only if iv € TpS3 if and only if df,(iv) = 0. To see what this last
condition is we need to understand df o i. We note that
R R )
dxj dy;  dyp Ix
and thus

dxjoi 2 =0anddxjoi 2 =-1.
9x;j Iy
Similar further computations lead to the fact that
dxjoi=—dyjand dy;oi = dx;.

Thus we see that
df oi=2(y1dx1 — x1dyr + y2 dxz — x2dyo).
So if we set a = y1 dxq1 — x1dy1 + yo dxo — x2 dy; then ars is a 1-form on S3 defining &.
Now notice that
da = =2(dx1 A dyy + dxa A dyy)
and so
da Nda =4dx; Adyy Adxy Ady,
which is the standard volume form on C?. Now let
d d d d

+Yr15— +Xo=5— +yza—y2

1
X=3 8]/1 8x2

2 (Mo

be the radial vector field and notice that it is transverse to S3 (since df (X) > 0). One can
now compute that

Ixda = «,
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where (xda is the contraction of X into the 2-form d«, and hence
ix(da Nda) =2a Nda.
Now if v1, v2, v3 span the tangent space TPS3 then X, v1, v, 03 span T, C? and hence
0#danda(X,v1,v3,03) =2a Ada(vy,02,03),

which shows that a A da is a volume form on S3. Thus & = ker a is a contact structure as
claimed.

This contact structure is called the standard contact structure on S® and is usually
denoted &;¢4. (Even though we use the same notation for the standard contact structure
on R3, the meaning should be clear from the context.)

Exercise 1.1.19. Recall that S3 is the join of S! with S'. We can see this explicitly by
considering the map

F: S'xS'x[0,7/2] — S3: (6, ¢,t) — (cost(cos,sin 0,0,0) +sint(0, 0, cos ¢, sin @)).

This is an embedding when restricted to S x S! x (0,7/2) and S! x S! x {0, t/2} are
collapsed to the Hopf link H in S3. This shows S? is the join S'+S!. Show the contact form
for the standard contact structure on S pulls back to cos? t 46 + sin? t dp on T2x(0,7/2).
Notice that this says that on S* — H = S! x S! x (0, 1/2) the standard contact structure is
tangent to the (0, t/2) factor and the planes rotate from slope oo to 0 as one traverses the
interval factor.

Exercise 1.1.20. Show that (S° \ {pt}, &ls3\(pey) is contactomorphic to (R3, Esta).
Hint: This can be challenging, see [Gei08] for the details.

The previous example is the first example of a contact structure on a closed 3-manifold.
In Section 1.5 we will see that all closed oriented 3-manifolds admit contact structures.
But for now, we note a few other simple examples on some closed 3-manifolds.

Exercise 1.1.21. Show that the 3-torus T° has a contact structure.
Hint: Recall, one can think of T® as R3/Z3, where the integer lattice in R® acts by transla-
tion. Consider the contact structure &4 above.

Exercise 1.1.22. Construct a contact structure on the lens space L(p, q), where L(p, q) is
the manifold obtained from the unit sphere S in C? by quotienting out by the Z/pZ
action generated by (z1, z2) > (e@™/Pzy, e@17)/P 7).

We end this section by defining two notions that will be important throughout the
book. A knot K in a contact manifold (M, &) is called Legendrian if it is always tangent
to &. Legendrian knots are essential to the study of contact manifolds. We will see that
we can use them to construct contact manifolds and distinguish contact manifolds. In
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addition, they have a very rich and interesting structure. The second notion we need is
that of a Reeb vector field.

Exercise 1.1.23. Suppose w is a skew-symmetric pairing R* x R*> — R that is non-zero
on some two-dimensional subset of R3. Show there is a unique line L in R3 such that for
anyv € L, w(v,w) =0 forall w € R3.

From this exercise we know that if « is a contact from defining & then there is a unique
vector field R, satisfying a(R,) = 1 and (g, da = 0. This vector field is called a Reeb vector
field for &.

Exercise 1.1.24. Show that the flow of R, preserves & and a. That is the flow gives a
family of contactomorphisms of a.

The Reeb vector field is a fundamental object in contact geometry. It is used in many
results (for example, see the next section) and its dynamics is extremely rich.

1.2. The local theory

In this section, we will see that contact structures are all “locally the same" in various
ways. Most of our theorems will follow from the following result.

Theorem 1.2.1. Let M be an oriented 3-manifold and N a compact subset of M. Suppose that
&o and &4 are contact structures on M and

Eoln = &1ln-

Then there is a neighborhood U of N such that the identity map on M is isotopic, relative to N,
to a map that is a contactomorphism when restricted to U.

We will prove this theorem later, but first, we examine some of its consequences. We
also note that there are higher dimensional analogs of this theorem and its corollaries.
We will briefly discuss those in Section 1.7.

Theorem 1.2.2 (Darboux 1882, [Dar82]). Let (M, &) be a contact 3-manifold. Every point p in
M has a neighborhood U that is contactomorphic to a neighborhood of the origin in (R3, &4).

Darboux’s theorem essentially says that all contact structures look the same near a
point. So contact structures do not have interesting local structures (this should be com-
pared with Riemannian geometry, where the curvature is an obstruction to metrics being
locally the same). This is an indication that any interesting phenomena in contact geom-
etry should be of a global nature (i.e. be related to the global topology of the manifold
supporting the contact structure). We also note that given Darboux’s theorem we could
define a contact structure on a 3-manifold to be a plane field that is locally equivalent to

(Ral éstd)'
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Proof. We first claim there is a neighborhood U’ of p € M, a neighborhood V' of the
origin 0 in R3, and a diffeomorphism

o: U -V
taking p to 0, the contact hyperplane at p to the one at 0
d(ll)p(ép) = (&std)o-

This may be proven in many ways, one is explored in the following exercise.

Exercise 1.2.3. Find ¢ by first taking any coordinate chart about p that maps p to 0, then
compose with a linear map of R3 to make sure the contact plane at p maps to the contact
plane at 0.

We will give a different proof that ¢ exists that will be useful in future proofs. In partic-
ular, we will use the exponential map. More specifically recall [Pet16, Proposition 5.5.1]
if we fix a metric on a manifold M then there is an exponential map exp: T,M — M
defined on and a diffeomorphism from a neighborhood of 0 € T, M to a neighborhood of
p € M, and taking 0 to p. In addition, D exp,,: To(T,M) — T, M is the identity map (recall
there is an obvious identification of the tangent space to a vector space with the vector
space). Now choosing any isomorphism from T, M to ToR? taking a &, to (Es1a)o, We can
use the exponential map for R?, the exponential map for M, and the linear isomorphism
to construct the claimed diffeomorphism ¢p: U’ — V’.

Let & = ¢.&. We have & = (&sta)o. Thus Theorem 1.2.1 says there is a neighborhood
V” of 0 in V' and an isotopy, fixing 0, from the identity map on V" to f such that on a
smaller neighborhood V' c V” of 0 we have

flv: V= f(V)

taking &’|v to (&sta)|f(v)- Thus ¢y o f is the desired contactomorphism, where U is the
open set p~1(V). ]

For our next local result, we consider transverse curves. A curve C in a contact man-
ifold (M, &) is called a transverse curve if T,C intersects ¢, transversely forallp € C. A
closed transverse curve is called a transverse knot.

Theorem 1.2.4. Any two transverse knots have contactomorphic neighborhoods.

Proof. Let C; be a transverse knot in (M;, &;) for i = 0,1. As in the proof of Darboux’s
Theorem we only need to find a map from a neighborhood of Cy to a neighborhood of C;
such that the contact planes along Cy are taken to the contact panes along C;. Once we
have such a map we simply apply Theorem 1.2.1 to the &; and the push-forward of &y in
the neighborhood of C;. To construct such amap let f: Co — Cp be any diffeomorphism
from Cp to C;. Then choose a bundle map F: Tc,Mo — Tc,M; that covers f and sends
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&o to £1. We may now use a normal bundle version of the exponential map, see [Pet16,
Corollary 5.5.3], to extend f to a neighborhood of C. m]

Example 1.2.5. Theorem 1.2.4 allows us to write down a standard model for a transverse
knot. Consider R3/~ where (x, y,z) ~ (x,y,z + 1) with the contact structure &y =
ker(dz + r?d0). The curve T = {(0,0,z)} c (R3/~) is a transverse knot and hence any
transverse knot T in a contact manifold (M, &) has a neighborhood N contactomorphic
to a neighborhood N’ of T’ in (R3/~, Esym). Moreover, by shrinking this neighborhood
we can assume N is contactomorphic to S, = {(r,0,z) : r < a} for some positive real

number a.

Our next local result will concern neighborhoods of Legendrian knots. Recall a knot
L in a contact manifold (M, &) is called Legendrian if T,L C &, for each p € L.

Theorem 1.2.6. Any two Legendrian knots have contactomorphic neighborhoods.

Exercise 1.2.7. Prove this theorem. The proof is essentially the same as the proof of The-
orem 1.2.4.

Remark 1.2.8. Note that in the proof of Theorem 1.2.4 we could take any diffeomorphism
between neighborhoods of transverse knots (that preserve the knots) and isotope it into a
contactomorphism on a smaller neighborhood. In particular, there is no preferred fram-
ing on a neighborhood of a transverse knot. This is not the case for Legendrian knots!
The contact planes give a non-zero section of the normal bundle of a Legendrian knot
(recall we are assume our contact structures are transversely oriented). This gives a fram-
ing of the knot (that is, a trivialization of the normal bundle). Any diffeomorphism of
neighborhoods of Legendrian knots that preserves the framing can be isotoped to be a
contactomorphism in a neighborhood of the knots. We will discuss this contact framing
more thoroughly in Section 1.4.

Example 1.2.9. Theorem 1.2.6 allows us to write down a standard model for a Legendrian
knot. Consider R®/~ where (x,y,z) ~ (x + 1,y,z) with the contact structure &std =
ker(dz — y dx). The curve L’ = {(x,0,0)} c (R3/~) is a Legendrian knot and hence any
Legendrian knot L in a contact manifold (M, &) has a neighborhood N contactomorphic
to a neighborhood N’ of L in (R3/~, &st4). Moreover, by shrinking this neighborhood we
can assume N is contactomorphic to S, = {(x,y,z) : y> + z? < a} for some positive real
number 4.

We now understand contact structures in neighborhoods of points and (special) curves.
What about contact structures in the neighborhood of a surface? We have a similar neigh-
borhood theorem, but the details are a little more complicated and interesting, so we
defer our discussion of this to the next section.
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Moser’s method is a way to construct an isotopy from a vector field so that it satisfies
certain properties. We will illustrate this in the proof of Gray’s theorem.

Theorem 1.2.10 (Gray 1969, [Gra59]). Let

‘Etlt € [0/ 1]/

be a family of contact structures on a 3-manifold M. Suppose that & = & outside a compact set
C C M. (That is the contact structures vary on a compact set. If M is compact then we can take
C = M.) Then there is an isotopy

Yr: M — M,

t € [0, 1], of the identity map such that Y;&y = & and v, is the identity off of C.

It is obvious that an isotopy of M gives is family of contact structures (by pushing
forward a fixed contact structure with the isotopy), but Gray’s theorem says this is the
only way to construct a family of contact structures (that vary only on a compact set).
One says two contact structures are isotopic if there is a 1-parameter family of contact
structures interpolating between them. So Gray’s theorem essentially says if you have
an isotopy of contact structures (fixed outside a compact set) then it is induced from
an isotopy of the underlying space. This should be a surprising result, it is saying that
given an isotopy occurring in the tangent bundle, it must be induced by an isotopy of the
manifold. In general, such results are not true as the following examples show, but the
contact condition on the plane field allows us to “integrate the isotopy".

Example 1.2.11. Consider T thought of as R3 modulo Z3. Then for a fixed ¢ consider
nfx,y,z) = span{ax, d, + tay},

Notice that ' is a plane field for each t and for ¢ a rational number it is tangent to em-
bedded T2 in T and for ¢ irrational it is tangent to non-compact cylinders S! x R in T°.
If there was a diffeomorphism ¢: T3 > T3 taking nt, for t rational, to 1°, for s irrational,
then the diffeomorphism would map a compact torus onto a non-compact cylinder. Since
this obviously cannot happen there is no isotopy of T? relating the n".

Example 1.2.12. We also note that it is essential in Theorem 1.2.10 that the isotopy of the
contact structures is constant outside a compact set. Indeed, consider R* with the contact
structures
Eota = ker(dz + r2 d6)
and
&ot = ker(cosr dz + rsinr db).

It is easy to check that these contact structures are isotopic. For example, notice that if

a=f(r)dz+g(r)do
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for some functions f, g: R — R then a describes a contact structure” if and only if
aANda=(fg —gf)dr NdO Adz

is a positive volume form on R3, and this occurs if and only if

f&'=g8f" >0.
We can interpret this last condition as saying that the position vector and tangent vector
to the curve r > (f(r), g(r)) form a basis for R? (that is the position and tangent vectors
are not co-linear). Now if for t € [0, 1) we let (f:(7), g:(r)) be

(1, 7’2) re [0/ h(t)]
(cos(r — h(t)), h?(t) + 2rsin(r — h(t)) r € [h(t), o)

where h(t) = ﬁ, and (f1(r), g1(r)) = (1 +72), then one can easily check that these 1-forms
give an isotopy from &/, = ker(cosr dz + 2rsinr d0 to &stg and &, is clearly isotopic to
&ot (prove this if it is not obvious). In Section 1.6 we will see that these contact structures
are not contactomorphic and hence there is no isotopy of R? relating them.

Before starting the proof of Gray’s theorem we need a simple, but essential, prelim-
inary result. To state it we first fix a contact form @ on M and R, its Reeb field. Now
set

Q}x = { 1-forms g on M : B(R,) = 0}.

Lemma 1.2.13. Given a contact manifold (M, &) and a contact form « for &, there is a one-to-one
correspondence
T(E) — QLM) :u - 1,da

Proof. Note if we set (Al ), to be the elements 8 € T; M such that (R, (x)) = 0, then this
is a 2-dimensional vector space. Now the map

(A}l)x — &t da

is a linear isomorphism (prove this if it is not clear to you). Thus if we set AL = Uyem(Al)y,
then da induces an bundle isomorphism from Aé to &. Thus it also induces a one-to-one
correspondence on sections of these bundles. m]

We are now ready to move on to the proof of Gray’s theorem.

Proof of Theorem 1.2.10. We do not give Gray’s original argument here, but instead, we
use a technique called Moser’s method, also known as Moser’s trick. The idea first ap-
peared in [Mos65] but has been used in many contexts since then. The idea is to try to
find the isotopy ¢:: M — M as the flow of a time-dependent vector field v;. One can
derive an equation for v; that will guarantee its flow satisfies the desired properties.

2Notice that for a to be a smooth form at 0 we need g(r)/r - 0asr — 0.
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We assume the contact structures &; are all co-oriented.
Exercise 1.2.14. Prove the theorem when the &; are not co-oriented.

Exercise 1.2.15. Show that there is a smoothly varying family of 1-forms a; such that
& = ker a;.

We will now determine equations that a vector field v; must satisfy if its flow ¢; will give
the isotopy in the theorem. We want the isotopy ¢;’s to satisfy

orar = Arag

for some functions A; # 0. We compute

0 O At+n — Qi
— (i) = lim
ot (Praxr) h—0 h
- lim ¢:+hat+h B q5:+hat + ¢:+hat - (P:at
h—0 h

Aoy — A L0 — Qi
= lim ¢ ( t+h t) + lim ¢t+h ¢
h—0 h

So we want

But recall ag = Altcf);at SO
* da; dAs 1 .
b, (W + Lvtat) = E/\—t(i)tat.
If we set h; = % (log At) o ¢; !, then

d
o; (% + -l:vtflt) = ¢; (htay).

Using Cartan’s formula for the Lie derivative, L,a = di,a + 1,da, see [Leel3], we can
rewrite this equation as

(121) % + Lvtdat = hay.

if we look for a vector v; in &; = ker a;.
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Before we can solve for v; we need to know what h; is. Recall the Reeb vector field
of a; is the unique vector field X; satisfying a;(X;) = 1 and tx,da; = 0. If we plug X; into
Equation (1.2.1) we get

da
d—tt(Xt) = ht.
Thus h; is determined by a; and Equation (1.2.1) can be written
da
(12.2) Lo, dety = hyaty — d—t"‘.

The right-hand side of this equation is a 1-form determined by a; and satisfies the condi-
tion that ¢y, (htoct - %) =0.

So, using the notation established before the proof, this 1-form is in (O}, and hence by
Lemma 1.2.13 we can solve Equation (1.2.2) for v;. By construction, the flow of v; will be

the desired isotopy.

Finally, where the &;’s agree we can choose the a; to agree and hence % = 0. Thus

vy will be zero there. Since the v;’s have compact support their flow exists for all time. In
particular, the flow exists from time t = 0 to t = 1 giving our desired isotopy. m]

It is a simple application of Gray’s theorem to prove our main Theorem 1.2.1.

Proof of Theorem 1.2.1. Let a; be contact forms for &;,i = 0,1, that determine the same
co-orientation. On N we have ap = fa; for f # 0a functionon N. Let a; = (1 -t)apg+tay
and & = ker(ay). Soday = (1 —t)dag + tday. On N, day and da, are both area forms on
&t = &o = &1 inducing the same orientation and thus da; is also an area from on &;. Hence
dat|g, # 0 on a neighborhood U’ of N. If we repeat the argument in Gray’s theorem we
get a vector field v; in U” whose flow would give the isotopy ;. Since v; = 0 on N, a
compact set, there is a sufficiently small neighborhood U” of N for which the flow of v;
exists for t € [0,1] and stays in U’. This gives the desired flow on U”. To extend this
to an isotopy on M that gives a contactomorphism near N we use the smooth isotopy
extension theorem, see [Hir76, Section 8.1].

Exercise 1.2.16. Show that there is a compact set N’ that contains N in its interior and is
contained in U.

We may now extend our isotopy restricted to N’ to an ambient isotopy of M with the
desired property on the set U which is the interior of N’. m]

We now consider some applications of the Moser trick to Legendrian and transverse
knots that we will use below.

We say that Lo and L are Legendrian isotopic if there is a smooth isotopy L; of Lo to L;
such that L; is always Legendrian. We say they are contact isotopic, or ambient Legendrian
isotopic, if there is an isotopy ¢;: M — M of contactomorphisms such that ¢ is the
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identity on M and ¢1(Lg) = L;. Finally, we say that Lo and L; are contactomorphic if there
is a contactomorphism ¢: M — M such that ¢(Lg) = L1. We have similar definitions for
transverse knots. That is transverse knots can be transverse isotopic, contact isotopic (also
known as ambient transverse isotopic), or contactomorphic.

It is clear that Ly and L1 being contact isotopic implies that they are both Legendrian
isotopic (consider L; = ¢;(Lg)) and contactomorphic (via ¢1). It turns out that being
contact isotopic and Legendrian isotopic are equivalent notions.

Lemma 1.2.17. Let (M, &) be a contact manifold. Two Legendrian knots are related by Legen-
drian isotopy if and only if they are related by ambient contact isotopy.

Proof. We noted above that contact isotopic implies isotopic. Now assume that L;,t €
[0,1], is a Legendrian isotopy. By the smooth isotopy extension theorem, see [Hir76,
Section 8.1], there is an isotopy ¢;: M — M, t € [0,1], of M, such that ¢ is the identity
on M, and ¢;(Lg) = L;. Moreover, it is easy to arrange that the ¢; may be isotoped so
that ¢;(&|L,) = &|L, (note that since ¢; is a diffeomorphism we can push-forward or pull-
back plane fields). Let & = ¢;(&) This is a one-parameter family of contact structures.
with & = &p along L. Thus Gray’s theorem implies there is a family of diffeomorphisms
Yy such that 1}(&) = & and 1) is the identity on Lo. Now set f; = ¢; o ;. Note that
£ (o) = ¥;(¢;(&0)) = Pi(&) = &o, and so f; is a contact isotopy and f;(Lo) = L. O

Exercise 1.2.18. Prove the analogous theorem for transverse knots.

We now consider a technical result that will be used several times later in the text (see
for example Section 1.4 and 6.1).

Lemma 1.2.19. Let M be a compact 3-manifold on which the space of contact structures isotopic
to a fixed contact structure & is simply connected (if M has boundary we only consider contact
structures that are fixed near IM). The classification of Legendrian knots in (M, &) up to Leg-
endrian isotopy is equivalent to the classification of Legendrian knots up to contactomorphism
isotopic to the identity.

In Lemma 1.4.1 below, we will see how to apply this lemma to S® with its standard
contact structure.

Proof. From the previous lemma we see that if two Legendrian knots are Legendrian
isotopic then they are contactomorphic by a contactomorphism that is isotopic to the
identity. To prove the other implication we assume that L and L" are contactomorphic.
That is there is a contactomorphism ¢: M — M that sends L to L’ and is smoothly
isotopic to the identity. Thus there is an isotopy ¢;: M — M with ¢¢ = idpy and ¢P1 = ¢.
Notice that & = (¢¢).£ is a loop of contact structures based at £. So by hypothesis, there
is a map
H: [0,1] x[0,1] — E(&)
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where E(&) is the space of contact structures isotopic to &, such that H(t,0) = &; and
H(t,1) = H(0,s) = H(1,s) = & We apply Gray’s theorem to H(t,s) for t € [0,1] and s
tixed and notice that as s varies the diffeomorphisms constructed vary smoothly. That is
we get a map

F: [0,1] x [0, 1] — Diffeo(M)

satisfying F(0,s) = idpy, F(t,1) = idp (since H(t,1) = £ for all t), and F(1, s) is a contac-
tomorphism of & for all s.

Exercise 1.2.20. Show that you can choose a; such that & = ker a; and F(t,0) = ¢;.

Thus F(1, s) is a contact isotopy from F(1,1) = idp to F(1,0) = ¢s. O

1.3. Characteristic foliations

In this section we will introduce the characteristic foliation of a surface in a contact man-
ifold. We will see that the contact structure in a neighborhood of the surface is deter-
mined by this (singular) foliation. This fundamental concept will be further studied in
Chapter 2.

1.3.1. Singular foliations on surfaces. A singular line field on a surface X is a subset L of
the tangent bundle TX such that at each point x € X we have that L, is either a line or
all of T,X. We call the points x where the latter occurs singular points of L. We will be
concerned with line fields L that can always be locally spanned by a vector field. That is,
for each p in X there is a neighborhood U of p and a vector field v such that v is tangent
to L where it is non-singular and zero where L is singular. Notice that if v is any other
vector field defining L locally then v’ = fv for some non-zero function f. Thus we could
define L by choosing a covering {U;} of £ and vector fields {v;} where v; is defined only
on U; such that on any overlap U; NU; the vector fields v; and v; are related by some non-
zero function as above. Given this, the span of the v; give L on L. We say L is oriented if L
can be defined by a global vector field on X.

Convention: We assume all our singular line fields are orientable.

Notice that since L is given (at least locally, by a vector field) we can look at flow-lines
of the vector field. If S is the set of singular points of L, then on X — S these flow-lines
give a foliation. We call this a singular foliation on L. If the line field is given by the vector
field v then we say that v directs the singular foliation.

There is another, dual, perspective on singular line fields and singular foliations. Let
@ be an area form on X. Just as in the proof of Lemma 1.2.13 we see that w induces an
isomorphisms

X@) - Q)
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from vector fields on X, denoted by X(X), to 1-forms on X, denoted by QLY), by sending
the vector field v to (,w. Thus if v directs the singular foliation, then we get the 1-form
@, = lyw. Notice that the kernel of a, defines the singular line field defined by v.

Exercise 1.3.1. Prove this last statement.

Conversely, given a 1-form a on L if we let L = ker a, then L is a singular line field that is
generated by the unique vector field mapped to a by the above isomorphism.

1.3.2. Characteristic foliations. Let M be a 3—-manifold, £ an oriented contact structure
on M, and X an oriented surface in M. For each point p € X let

I, = & NT,L.

This gives an oriented singular line field on X. That is, at most points of X we have a line
in T, X chosen, and at some points [, all of T, X.

Exercise 1.3.2. Show that the set of singular points does not contain a open set.

Hint: If this is true, then you can show that the contact condition is violated. Consider
two vectors fields v and w tangent to X defined along this open subset. Using the formula
da(v,w) =va(w) —wa(v) + a([v, w]) compute a A da.

At a non-singular point the orientation on the line field [, comes from intersecting
the two oriented planes &, and T,X in the oriented 3-space T, M. Recall this orientation
is defined as follows. We say u € [, gives the orientation on I,, if there are vectors v € &,
and w € T, such that {u, v} is an oriented basis for &,, {u, w} is an oriented basis for
T,Z, and {u,v, w} is an oriented basis for T, M.

From above we know that the singular line field is tangent to a singular foliation of
Y. This singular foliation is called the characteristic foliation of ¥ and is denoted Z¢. >

Example 1.3.3. Consider R3 with the contact structure Esym = kera where a = (dz +
r2d0). Let f: D?> — R3 be given by f(x,y) = (x,y,0) where D? is the unit disk in R.
Then

fra=r*do =xdy - ydx.
It is easy to see that [, = ker f*a so clearly the characteristic foliation is tangent to the line
tield spanned by r%. See Figure 1.3.4.

Now consider the embedding ¢: D?> — R3 given by ¢(x,y) = (x,y,axy) where
a > 1. Then we have

g'a=(@+1xdy+(a—-1ydx

3some authors prefer £X.
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N

W

Figure 1.3.4. Characteristic foliations on various embeddings of the disk.

and the characteristic foliation is defined by the flow of the vector field
(a+1)x
(1-a)y
See Figure 1.3.4. The singularity on the left is called an elliptic singularity and also called

a nodal singularity. The singularity on the right is called a hyperbolic singularity and also a
saddle singularity.

1.3.3. Characteristic foliations and germs of contact structures. The key property of the
characteristic foliation of a surface in a contact manifold is that it determines the contact
structure in a neighborhood of the surface.

Theorem 1.3.4. Let (M;, &;) be a contact manifold and ¥; an embedded surface for i = 0,1. If
there is a diffeomorphism f: Yo — X4 that preserves the characteristic foliation:

f((Zo)g) = Z1)g,

then f may be extended to a contactomorphism in some neighborhood of Lo. Moreover, if f was
already defined on a neighborhood of Lo then we can isotop f, relative to Lo, so as to be a contac-
tomorphism in some (possibly) smaller neighborhood.

For notational convenience, we will prove the following equivalent theorem instead.

Theorem 1.3.5. Let © C M be an oriented surface in a 3—manifold M. Suppose &g and & are
contact structures on M such that
Ly = Ly
Then there is a neighborhood U of * and an isotopy ¢¢: M — M such that
(1) ¢o is the identity on M,
(2) ¢ is fixed on X and
3) ¢ilulEolu) = &1



26 1. Introduction to contact geometry in dimension 3

Proof. The theorem will follow from Theorem 1.7.4 if we have

Eolz = &1lx,

but this does not have to be the case. We shall construct an isotopy of a neighborhood
of X to achieve this. To this end let W = ¥ X (—¢, €) be a neighborhood of X in M. We
will denote points in £ by p and points in (—€, €) by s. Our aim is to construct an isotopy
Y¢,t €[0,1] on a subset of W such that

(1) ¢ isfixedon L,
(2) g is the identity on W and
3) ¥i(&o(p,0)) = &ilp, 0).

Once we have found such an isotopy we can extend it arbitrarily to M and apply The-
orem 1.7.4 to ]&p and &; to get an isotopy W;: M — M such that W] (y]&) = &1 ona
neighborhood of X and ¢; = 1; o W; will then be the desired isotopy.

To construct U we choose contact forms «;,i = 0,1, for our contact structures and
write

ails = Bilp) + fi(p) dt

where §; is a 1-form on X and f; is a function on X. As above we have L, = ker(;) and
since Y¢g, = X, there is some positive function ¢g: ¥ — R such that f1 = gfo.

Exercise 1.3.6. Show that ¢ must be positive.
HINT: Show the only thing to worry about is at the singularities. Write down the contact
condition for a; on X and show that when at singularities §;(p) = 0 but d;(p) # 0.

Now extend g to a non-zero function on all of M and replace ap with gag. We have
aolrs = a1|rs and Bo = f1 which we denote simply f.

folp)
over, if f is also never zero then 1p: W — M is a diffeomorphism onto its image (we

might need to shrink the domain of ¢ to make sure it is well-defined). We compute
Y*ag = a1 and thus P*&y = & so the straight line isotopy from the identity to ¢ is the
desired isotopy.

Assume for the moment that fy # 0 then {(p,t) = (p, f 1(p)if) is well-defined. More-

In general, fy (and f1) will be zero in some places. Let £5 = £, (Is| > 6)N f;71(Is| > ).
Notice that if p is a singular point f(p) = 0 so we must have f;(p) # 0. Thus if 6 is small
enough then X5 contains all the singularities of Xs; = X¢,. We can define 1 on s, as

above. Let X' = X\ Is and &.” = X' N Ls/,. Clearly & = X5/, UX'. On X’ choose a vector

field v = vy + g—s such that v € &y, vy € TX. Note that v is transverse to X. Also choose w

on X’ such that v = w on X", w is transverse to ' and w € &;.
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We can write w = wy + h(p)% where wy € TZ and h(p) is some function on Z”. On
Y we have

Y* (vz + %) = wy + h(p)a%
hlp) o
fo(p) 9s

since P(p, s) = (p, %s) onX”. ]

=0y +

1.3.4. Characteristic foliations and contact structures on neighborhoods of surfaces. In
the previous section, we saw that the characteristic foliation on one surface determines
the contact structure in some neighborhood of the surface. Here we shall see that a family
of foliations on a surface cross interval determines the contact structure on the surface
cross interval.

Theorem 1.3.7. Let M = X X R for a surface L. If two contact structures induce the same
characteristic foliations on all the surfaces L x {t}, for t € R, (and are the same in a neighborhood
of I x [0, 1] if IL # 0) then they are isotopic relative to IM.

Proof. Suppose &y and &; are two contact structures on X X R that induces the same
characteristic foliations on £ X {t} for all t € R and agree near J~ X R. Then ¢&; is the
kernel of a; = Bi(t) + u;(t) dt where t is the coordinate on R, ;(t) is a 1-form on X and
ui(t) is a function on X for i = 0,1. Given that the characteristic foliations on all the
surfaces L X {t} are the same we see that there are some non-zero functions f(t) such that
Bo(t) = f(t)B1(t) (as we argued in the previous section).

Exercise 1.3.8. Show that the f; vary continuously in ¢.

So the f; give a function F: £ X R — R and we can replace a; with (1/F)a, which we
still denote a» so that fp = f1 which we denote by §. m]

1.3.5. Families of surfaces. It will be useful to know that the characteristic foliations
on an interval’s worth of surface also determine the contact structure up to isotopy. In
[Gir00], Giroux refers to this as the reconstruction lemma.

Lemma 1.3.9 (Giroux 2000, [Gir00]). Given a surface ¥, consider two contact structures & and
& on L x [-1,1]. If the characteristic foliation on Ly = X X {t} induced by & and &’ agree for all
t, then & is isotopic to &'.

In preparation for the proof of this lemma, we consider a contact form on £ x [-1, 1].
Such a form can be written

a:ﬁt+utdt,
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where t is the coordinate on [-1, 1] and f;, respectively u;, are 1-forms, respectively func-
tions, on © depending smoothly on t. The contact condition & A da > 0 is equivalent to

d
utdﬁt+ﬁt/\(dut+%)>0

on X for all ¢.

Exercise 1.3.10. Given contact forms a = f; + u; dt and a’ = B; + u/ dt show that a5 =
sa + (1 —s)a’ is a contact form for s € [0, 1]. That is with the ; fixed the collection of u;
that define a contact form by the equation above is convex.

Proof of Lemma 1.3.9. Given contact forms a and a’ for £ and &', respectively, we can
write then as a = f; + u; dt and a’ = B} + u; dt. The fact that the characteristic foliations
on the Xy induced by £ and &’ agree, implies that 8; has the same kernel as ,B;

Exercise 1.3.11. Verify that the characteristic foliation on X induced by £ is given by the
kernel of ;.

Thus there are non-zero functions f; : ¥ — R such that g; = fi;. Now the contact
structure &’ is also given by the form a” = %(ﬁ; +ujdt) =B + '}—f dt. From the discussion
before the proof, we know that there is a 1-parameter family of contact 1-forms f; +
u; dt interpolating between a and a”. Now, considering the proof of Gray’s theorem,
Theorem 1.2.10, we know there is a vector field v, that is tangent to the surfaces Iy whose
flow (which exists for all time because the flow is tangent to compact surfaces) generates
an isotopy taking & to &’. m]

Remark 1.3.12. If £ and &’ in the lemma agree near the boundary of = X [-1, 1] then the
isotopy in the theorem can be taken to be fixed in a neighborhood of the boundary.

1.4. Legendrian and transverse knots

Legendrian and transverse knots play a central role in contact geometry. In addition to
their rich structure, which we will explore throughout this book, they can be used to
construct contact structures and also distinguish them. In this section we will establish
some of the basic results concerning these special knots. We begin with the ways in which
one can try to classify these knots.

1.4.1. Types of classification. Recall at the end of Section 1.2 we discussed three equiv-
alence relations one can put on Legendrian knots: Legendrian isotopic, abmient Legendrian
isotopic (also konwn as contact isotopic), and contactomorphic. We have similar definitions
for transverse knots. That is transverse knots can be transverse isotopic, contact isotopic
(also known as ambient transverse isotopic), or contactomorphic.
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We also saw in Section 1.2 that Ly and L; being contact isotopic implies that they
are both Legendrian isotopic (consider L; = ¢¢(Lo)) and contactomorphic (via ¢1) and
Lemma 1.2.17 shows that being contact isotopic and Legendrian isotopic are equivalent
notions.

Given Lemma 1.2.17 we see that contact isotopy and Legendrian isotopy are the same
for Legendrian knots in any contact manifold, and each implies that the Legendrian knots
are contactomoprhic. Contactomorphic Legendrian knots need not be Legendrian iso-
topic, but in some cases this is true. We mention the most relevant case here.

Lemma 1.4.1. Two Legendrian knots in (S3, Egq) or in (R3, Es14) are Legendrian isotopic if and
only if they are contactomorphic.

This lemma follows immediately from Lemma 1.2.19 and

Theorem 1.4.2 (Eliashberg 1992, [E1i92]). The space of contact structures E(Estq) on S3 that
are isotopic to the standard contact structure g is simply connected. The same is true for Z(Eseq)
on R3.

1.4.2. Classical invariants. Given a Legendrian knot L in a contact manifold (M, &),
the underlying knot type is an invariant of L. That is if two Legendrian knots are not
smoothly isotopic then they are not Legendrian isotopic. There are two other simple,
though not quite as obvious, invariants of Legendrian knots up to Legendrian isotopy.

The first is the contact framing, which for null-homologous knots is equivalent to
the Thurston-Bennequin invariant. To define this invariant we recall that the normal
bundle v(L) of a Legendrian knot L is an R?-bundle over L. This can canonically be
identified with a tubular neighborhood of L in M, and we can also think of the tubular
neighborhood of L as a disk bundle over L. We will abuse notation and denote all of these
by v(L), but the meaning should be clear from the context.

Exercise 1.4.3. Since M is oriented show that v(L) is trivial.

From the exercise we know that v(L) = L x D2. Up to isotopy there are an integers worth
of ways to identify v(L) with S! x D? that differ by twisting. More specifically, consider
the diffeomorphism

Yy S'x D? - S x D?: (¢, (r,0) > (¢,(r,0 +nd)),

where ¢ is the angular coordinate on S! and (r, 6) are polar coordinates on D?. See
Figure 2. Now if f: S! X D? — v(L) is a trivialization of the normal bundle of L, then
fn = f o, gives other trivializations.

Exercise 1.4.4. Show that these are the only trivializations up to isotopy.
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An identification of v(L) with S! x D? is called a framing of L.

We note that a non-zero section s of v(L) gives a framing of L. One can see this by
choosing another section s’ of v(L) that is independent of s (that is at each point of L, s
and s’ span the fiber of v(L)). Given this, we see that

¥: LxR?* = v(L): (x,(a,b)) — as(x)+bs’(x)
is a trivialization.

Now since L is Legendrian it gets a framing by choosing a non-zero vector s(x) in
&x Nvy(L). That is s(x) is an element in the normal bundle that is also in the contact
plane. This is called the contact framing of L, and is denoted F(L).

Exercise 1.4.5. Let R, be a Reeb vector field for £. Show that R, also gives L a framing
and that this framing is the same as the framing defined above.

We now consider knots L that are null-homologous in M.

Exercise 1.4.6. Show that a null-homologous knot L is the boundary of an embedded
surface in M. If L is in R or S then give an algorithm to find the surface.

Hint: This can be found in many books on knot theory and 3-manifold topology. See
[Rol76].

If L is the boundary of a surface X, then L is called a Seifert surface for L. Given L
there is a framing for L given by a section s of T N v(L). For example, after choosing
a metric, one can choose the unit vector normal to L pointing into X.. This is called the
Seifert framing of L and is denoted Fx(L).

Exercise 1.4.7. Show the Seifert framing is well-defined (that is, it does not depend on
the Seifert surface used to define the framing).

Given two framings 1 and %, then we can associate an integer as follows. Notice we
have two identifications of v(L) with S! x D?

7i 7
S!x D? =5 yL &= St x D2

We can now consider #,”! o F1: S! x D? — S! x D? which will be isotopic to one of the
Y, defined above. We say that the difference between ¥ and ¥ is n and write

Fi-Fa=n

The Thurston-Bennequin invariant of a Legendrian knot L, denoted by tb(L), is the differ-
ence between the contact framing and the Seifert framing:

tb(L) = F&(L) = F=(L).

Exercise 1.4.8. Show that if Ly and L null-homologous Legendrian knots that are Legen-
drian isotopic or contactomorphic, then tb(Lg) = tb(L1).
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We will also be interested in Legendrian knots L that are on the interior of a surface
X. Notice that L still inherits a framing from X (just as it did from a Seifert surface). We
say the twisting of £ relative to X is the difference between the contact framing and the X
framing, and denote it by

tw(L,X) = ¥ — framing induced by X.

The last classical invariant of a Legendrian knot is the rotation number. This invariant
is defined for oriented null-homologous knots. Suppose that L is an oriented Legendrian
knot in (M, &) that is the boundary of an oriented surface X.

Exercise 1.4.9. Show that any oriented plane field over an oriented surface with bound-
ary is trivial.

So we know that

&lr =L xR?
and this induces a trivialization

&lp = Lx R2.

Exercise 1.4.10. The trivialization |y is not unique, but show that the restriction of any
such trivialization to dX is unique.

Since L is oriented we can choose a tangent vector v(x) to L at x that points in the
direction of the orientation. This gives a section L — L x R? and hence a map, which
we still denote by v, from L to R%. In particular, we obtain a map L — S! given by
x = v(x)/|v(x)| (where |v(x)| is computed with respect to any metric). We define the
rotation number of L, denoted by rot L, to be the degree of this map.

Exercise 1.4.11. Show that if Ly and L; oriented null-homologous Legendrian knots that
are Legendrian isotopic or contactomorphic, then rot(Lo) = rot(L1).

One can think of the rotation number in terms of a relative Euler class.

Exercise 1.4.12. Given an oriented Legendrian knot L that bounds a surface X, let s be
the section of £ along J~ = L that defines the orientation on L. Extend s arbitrarily to a
section s’ of &|y so that it is transverse to the zero section. Show that rot(L) is the signed
count of zeros of s’. This is known as the Euler class of |y, relative to s.

In summary, an oriented, null-homologous, Legendrian knot L has three “classical
invariants". Specifically, we have

(1) the smooth knot type of L,
(2) the Thurston-Bennequin invariant of L, and

(3) the rotation number of L.
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We will see how to compute these invariants (in certain cases) in the next section.

We now turn to transverse knots. Recall a knot T in a contact manifold (M, &) is
transverse if K is transverse to & at each point of K. Recall we are assuming that our contact
structures and manifolds are oriented, thus if T is oriented we say it is a positive transverse
knot if the orientation on T followed by the orientation on & induces the orientation on
M, otherwise we say that T is a negative transverse knot.

Convention: We will assume that all of our transverse knots are positive.

We suppose that T is the boundary of some Seifert surface L. As above we know that
&|x is trivial so is bundle isomorphic to X x R?2 and we can restrict this trivialization to
the boundary to get &|r = T X R2. This is a framing on T. The self-linking number of T is

sl(T) = link(T, T")

where T’ is a push-off of T obtained from the framing above. Much like the rotation
number for Legendrian knots, we can think of sl(T) as a relative Euler class.

Exercise 1.4.13. Given a transverse knot T and surface X with dX = T then let s be a
vector field along T that is tangent to the characteristic foliation Xs and pointing out of X
(note that s is correctly orienting X; along J¥). Show that sl(T) is the minus of the Euler
class of &|y relative to s. In other words, if we extend s to a section s’ of &|y so that it is
transverse to the zero section, then sl(T) is the minus of the signed count of zeros of s’.

In particular, if Z¢ is generic, then it only has elliptic and hyperbolic singularities. Let
e+ be the number of =+ elliptic singular points in X¢ and /. be the number of + hyperbolic
singularities. Then

s(T) = —(e+ — hy) + (e— — ho).

We see that an oriented, null-homologous transverse knot has two classical invari-
ants:

(1) the smooth knot type of T, and
(2) the self-linking number of T.

1.4.3. Legendrian knots in (R3, &s14). In this section, we will consider knots in the con-
tact manifold (R3, &g = ker a) where a = dz — y dx. Our main tool to study such knots
will be the front projection. The front projection is the map

n: R® > R3: (x,y,z) — (x,2).

We will study Legendrian knots by considering their image under this projection. To this
end suppose L is a Legendrian knot in (R3, &s14). We can parameterize L by a function

P: ST = R3: 0 (x(0),y(0),2(0)).
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The knot L being Legendrian is equivalent to ¢*a = 0, which is the same as (z’(0) —
y(0)x’(0))dO = 0 or more simply

z'(0) — y(0)x’(0) = 0.

Now consider o 1: S! — R2. Where the z-coordinate of this projection can be written
as a function of the x-coordinate (that is where x’(6) # 0) we have that

z'(0)  dz
x'(0) FrA

which implies that
dz
y(0) = —(0).

In other words, the y-coordinate of a Legendrian knot can be recovered as the slope in
the front projection (at least where x”(6) # 0).

We now consider the case when x’(6) = 0. We will first consider the case when the
zero of x’ is isolated. For convenience, we assume it is 6 = 0 where x’ is zero. Since
y(0) is a well-defined smooth function, the limit of y(0) as O goes to 0 exists, and hence
z'(0)/x’'(0) is well-defined for 6 # 0 and the the limit

. z'(0)

i o)
exists and defines the y-coordinate at 6 = 0. Generally the function x’(0) will have
0 as a regular value and hence x will be increasing/decreasing before 0 and decreas-

ing/increasing after 0. Thus the picture for the front projection near 0 = 0 is as shown in
Figure 1.4.5. We note that in order for the limit above to exist, we must have z’(0) = 0.

< <<

Figure 1.4.5. The front projection of cusps.

Thus for our parameterization to be regular, we must have y’(0) # 0.

Example 1.4.14. Translating (x(0),z(0)) to the origin and assuming that 0 is a regular
value of x’(0), show that one can re-parameterize the knot so that

(x(0),y(0),z(0)) = (a62,b + 0,ab6? + (a2/3)6°)

for some constants a and b. Such a curve is called a semi-cubical cusp.

Hint: Under the given hypothesis show that the curve can be re-parameterized so that
the x and y functions are as stated and then recover the z function from the equation
above.
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Remark 1.4.15. We note that Legendrian knots could have x’(0) vanishing to higher order
and even have the x and z coordinates be constant for some interval of 0 values. These
will not occur for generic Legendrian knots, but the reader is encouraged to consider the
front projection of such knots.

So an immersed curve with cusps in the xz-plane determines a Legendrian knot by
setting y(0) = Z—i(@).

Example 1.4.16. In Figure 1.4.6 we see two examples of front projections of Legendrian
knots.

Figure 1.4.6. The front projection of two Legendrian knots.

Knot diagrams usually have crossing information, [Rol76], but notice that the dia-
gram on the right in Figure 1.4.6 has no such information. This is because the crossing
information is determined by the front projection. In particular, since y = g—i we see that
the more negative slope must be in front of the more positive slope at any crossing. (Re-
call, that since we are projecting to the xz-plane, the positive y-direction is going into
the the page so that we have a positive orientation on R3.) We will frequently draw the
crossing information in the projection for convenience, but this is not strictly necessary.

We now see how to compute the Thurston-Bennequin invariant and rotation number
of knots in (R3, &4). We begin by recalling the definition of the linking number. Given
two oriented knots Ky and K; in R3, let X be a Seifert surface for K. We define the linking
number of Ko and Ky, denoted by link(Ky, K1), to be the algebraic intersection between =
and Kj. We can compute the linking number from a diagram of Ky and Kj. At a crossing
¢ between Ky and K; in some projection we define the sign of the crossing to be €(c) as
shown in Figure 1.4.7.

Then
. 1
hnk(KO/Kl) - E EC €(C),

where the sum is taken over all crossings c between Ky and Kj, see [Rol76]. It is easy to
check that if ¥ is a framing of a knot K and K’ is a push-off of K along the vector field
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XX XX

Figure 1.4.7. The signs €(c) of a crossing in a projection of a knot.

giving the framing, then
F — Seifert framing = link(K, K’).

Exercise 1.4.17. Verify this claim.

Now if L is a Legendrian knot let L’ be the result of pushing L in the direction of the
Reeb vector field (which in this case if %). Then
tb(L) = link(L, L")

where we arbitrarily orient L and orient L in the same direction.

Example 1.4.18. We compute the Thurston-Bennequin invariant of the two knots in the
example above. See Figure 1.4.8. Notice that for the knot on the left-hand side, there are

Figure 1.4.8. Computing the Thurston-Bennequin invariant of a Legendrian representa-
tive of the right-handed trefoil.

2 crossings coming from the cusps of L. They both contribute a — sign. Thus tb(L) = —1.
For the knot on the right-hand side, there are 6 crossings between L and a copy of L
pushed up coming from crossings of L. These all have a + sign. There are 4 crossings
coming from the cusps of L and they all have a — sign. Thus we see tb(L) = 1.

We can come up with a simpler formula for tb(L). To do so we define the writhe of a
diagram D
writhe(K) = Z e(c)

[
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where the sum is taken over all crossings ¢ in the diagram of K and where K is oriented
arbitrarily.

Exercise 1.4.19. Given a Legendrian knot L in (R3, &s14) show that one can compute the
Thurston-Bennequin invariant of L by

tb(L) = writhe(rt(L)) — number of left cusps.
Hint: Consider Example 1.4.18.

9 9
dy’ dx

plane field is trivialized by the vectors ai and ai + yai and this, of course, induces a triv-
y X z

Turning to the rotation number notice that &4 = span { + y% } So the contact

ialization on any Seifert surface for a Legendrian knot. So we can compute the rotation
number of a Legendrian knot L by counting how many times the oriented tangent vector
to the knot passes the line [, spanned by % in &s:4. Note, that since the rotation number
is a degree, we should only count the number of times the tangent vector passes the ray
spanned by %, but we will find it easier to compute the number of times it passes the line
and then divide by 2. If the oriented tangent to L passes the line I, in an anti-clockwise
direction, then it contributes a +1 to the degree and if it passes in a clockwise direction,
then it will contribute a —1 to the degree.

Exercise 1.4.20. Prove that all the claims above about computing the rotation number are
true.

Notice that at points in the front projection of the Legendrian knot L that are not at
a cusp, there is always a component of the tangent vector in the x-direction and thus it
does not contribute to the degree. If we assume that all the cusps are horizontal (which
one can easily see is possible), then each cusp will contribute to a crossing of the tangent
vector to L with the line ;. See Figure 1.4.9. Thus we see that the rotation number of L
can be computed by

(143) rot(L) = %(DL _uy),

where as one traverses the knot in the direction of the orientation, D; is the number of
cusps passed going downwards, and Uy, is the number of cusps passes going upwards.

Example 1.4.21. We now consider several examples of Legendrian knots that are smoothly
isotopic to the unknot. See Figure 1.4.10. Notice that tb(L1) = tb(Ly) = —1 and tb(L3) =

tb(Lg) = tb(Ls) = =2, while rot(L1) = rot(L;) = 0 and —rot(L3) = rot(Ls) = rot(Ls) = —1.

Thus we see that L1 and L, are not Legendrian isotopic (or contactomorphic) to L3, Ly,

or Ls since they have distinct Thurston-Bennequin invariants. Similarly, L3 is not Legen-

drian isotopic (or contactomorphic) to L4 or L5 since they have distinct rotation numbers.

But notice that L1 and L; have the same classical invariants as do L4 and Ls.
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Figure 1.4.9. Cusps in the front projection are shown in the top row. In the second row
we see the projection of the cusps to the xy-plane. As &g,z projects isomorphically to the
xy-plane and I, projects to the y-axis, we see in the bottom row the rotation of the oriented
tangent vector to L near a cusp.

Ly :i: Ly :i:

Figure 1.4.10. Legendrian realizations of the unknot.

Front projection

tangent vector

=/ X

In the above example, we are left to wonder if L; and L, are isotopic and similarly for
L4 and Ls. When working with front diagrams of a Legendrian knots we have a sequence
of moves that will relate diagrams of the same Legendrian knot.



38 1. Introduction to contact geometry in dimension 3

Theorem 1.4.22 (Swiatkowski 1992, [$92]). Two Legendrian knots Ly and Ly in (R3, &g1q) are
Legendrian isotopic if and only if their front diagrams are related by a sequence of moves shown
in Figure 1.4.11 and ambient isotopies.

We will not rely on this theorem much in this book and only state it here for reference
and to give a few exercises that show it can be difficult to use this theorem to see if two
Legendrian knots are Legendrian isotopic. We will prove various classification theorems
for Legendrian knots later in this book that will make some of the exercises below trivial.
We refer to the original paper cited in the theorem for a proof of this result.

Exercise 1.4.23. Show that L and L; from Example 1.4.21 are Legendrian isotopic. Show
that L4 and Ls from the same example are Legendrian isotopic.

Exercise 1.4.24. Show that the formulas for the Thurston-Bennequin invariant and rota-
tion number of a Legendrian knot in terms of front diagrams are indeed invariants of
Legendrian isotopy by using Theorem 1.4.22.

R 3

Figure 1.4.11. Legendrian Reidemeister moves. The diagrams indicate a segment of a
Legendrian front diagram and one may replace that segment with the indicated segment
to obtain an isotopic Legendrian knot. In the top row we see a Type I move, in the middle
two rows we see a Type Il move, and in the last row is a Type III move.

Exercise 1.4.25. Show that the two front diagrams shown in Figure 1.4.12 are Legendrian
isotopic.
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/\/ S

Figure 1.4.12. Two diagrams of Legendrian realizations of the right-handed trefoil.

Given a Legendrian knot L there is an easy way to construct other Legendrian knots
in the same knot type as L. Specifically, we define positive, respectively negative, stabilization
of L by altering the front projection of L as shown in Figure 1.4.13. We will denote the

S+
e

\ 4

S
S_

Figure 1.4.13. Positive and negative stabilization of L.

positive stabilization of L by S, (L) and the negative stabilization by S_(L).

Exercise 1.4.26. Show that stabilization is well-defined for Legendrian knots in (R3, Egra).
That is it does not depend on where the stabilization is done on the knot and how large
the “zig-zag" is.

It is clear from the figure that the classical invariants of L change as follows under
stabilization

tb(S+(L)) = tb(L) — 1 and rot(S+(L)) = rot(L) + 1.

Thus we see that a knot that can be realized by a Legendrian knot (which we will see
in the next section is all knots) has infinitely many distinct Legendrian realizations by
stabilizing a given one. We can also define stabilizations of Legendrian knots in any
contact manifold.
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Lemma 1.4.27. Let L be an oriented Legendrian knot in a contact manifold (M, &). Then the
positive, respectively negative, stabilization of L is well-defined and we denote it by S, (L), respec-
tively S_(L).

Proof. By Theorem 1.2.6 L in M has a neighborhood N contactomorphic to a neighbor-
hood N’ of a Legendrian knot L” in (R3, &s14). The stabilization defined above for L’ can
be carried out inside the neighborhood N’ and hence the image of the stabilization in N
will be the stabilization of L. m]

1.4.4. Legendrian and transverse approximations. In this section we will consider how
to approximate smooth knots by Legendrian and transverse knots and also see some
relations between Legendrian and transverse knots. We start with transverse push-offs
of Legendrian knots.

Lemma 1.4.28. Any oriented Legendrian knot L is C* close to a positive (respectively nega-
tive) transverse knot, denoted L, (respectively L_). Moreover, L, is uniquely determined by the
Legendrian isotopy type of L up to transverse isotopy.

We call L, the (positive) transverse push-off of L, and similarly for L_.

Proof. Let A = S'x[-1, 1] be an annulus containing L as S'x{0} that is tangent to & along
L and transverse to & elsewhere (it is easy to construct A, see below). The characteristic
foliation on A is shown in Figure 1.4.14. We see that L. = S! X {F¢} is a transverse knot

A

L,

Figure 1.4.14. The positive and negative transverse push-off of L. The annulus A is ob-
tained by identifying the right and left edges of the figure.

and if L, is oriented in the same direction as L then L, is a positive transverse knot and
L_is anegative transverse knot. If A" is another such annulus, then note that A and A’ are
tangent along L. Let L, be the transverse knots on A’. We can isotope A and A’ to agree
in a neighborhood of L and this isotopy can be chosen to be disjoint from L. and L’,. We
now see that we can transversely isotope L. on A into the region where the annuli agree
and then further transversely isotop it on A’ to agree with L/,. Thus the transverse knot
L, does not depend, up to transverse isotopy, on the specific annulus chosen to define
it. And if L and L’ are Legendrian isotopic then we can find an ambient contact isotopy
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that will take the annulus for L to one for L’ and thus the transverse isotopy class of L.
depends only on the Legendrian isotopy class of L.

Recall that any two Legendrian knots have contactomorphic neighborhoods by The-
orem 1.2.6. Thus we may assume our Legendrian knot L has a neighborhood N contacto-
morphicto S, = {(x,y,z) € R¥/~ |y? + z2 < a®} with the contact structure ker(dz — y dx)
and where (x,y,z) ~ (x +1,y,z). Now the annulus A = {(x,y,z) € R3/~ [z=0and y <
€} gives the annulus described above. m]

One can determine the classical invariant of the transverse push-off of a Legendrian knot
from those of the Legedrian knot.

Lemma 1.4.29. If L is an oriented null-homologous Legendrian knot in a contact manifold
(M, &), and L. is its positive transverse push-off, then

sl(Ly) = th(L) — rot(L).

Proof. Let L be a Seifert surface for L. To compute rot(L) we choose a non-zero vector
field t in |y and let v be a non-zero vector field along L that agrees with the orientation
on L. Then the rotation number of L is simply the twisting of v relative to t in & along
L. We denote this rot(L) = tw(v, t; ). Similarly in the normal bundle v(L) ¢ TM|. we
can choose a non-zero vector field s pointing out of £ and w a vector field in &|, that
is transverse to v and contained in v(L). Then the Thurston-Bennequin invariant of L is
simply the twisting of w relative to s in v(L). That is tb(L) = tw(w, s; v(L)).

Notice that t can be extended to a neighborhood of X as a non-zero vector field in .
Similarly, v and w can be extended to a neighborhood of L as non-zero vector fields in &.
Thus we see that we have vector fields ¢,, v, w, in &1, since L, is arbitrarily close to L.
Notice that since L, is positively transverse then we can identify |1, and v(L,). Since a
framing on a knot induces one on all nearby knots, we have a section s, of the normal
bundle of L, coming from s along L, and hence s, is the Seifert framing on L,. We know
that the self-linking number sl(L. ) is the twisting of ¢, relative to s, in v(L4). Thus

sl(Ly) = tw(ty, s4;v(Ly)) = tw(ty, wi; v(Ly)) + tw(ws, s4;v(Ly))
= tw(ts, wy; &L, ) + tw(ws, s4;v(Ly))
=tw(t,w; &) + tw(w, s;v(L)) = —rot(L) + tb(L).

In the first equality on the third line we note that the twisting of w and v past t is the
same. Thus establishing the claimed formula. m]

Exercise 1.4.30. Prove that sl(L-) = tb(L) + rot(L).

To a transverse knot there is not a unique Legendrian associated to it, but it can be
approximated by many different Legendrian knots.
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Lemma 1.4.31. If T is a transverse knot then there is a Legendrian knot L such that its positive
transverse push-off L. is transversely isotopic to T .

Proof. By Theorem 1.2.4 any transverse knot T has a neighborhood N contactomorphic
to a neighborhood N’ of the z-axis in S! x R?2 = R3/~, where (x,y,z) ~ (x,y,z+ 1),
with the contact structure & = ker(dz + r?d0). Let T, = {(r,0,z)|r = a}. There is a k
such that for a < k the torus T, is in N’. Moreover there is an a < k such that (T;)¢ is a
foliation by curves of slope n for some large negative n. Here “slope n" means that the
curve is in the homology class of [S! X {p}] + n[{g} X dD?] for some p € dD? and g € S'.
See Section 4.1 for more on our slope conventions. One may easily check that inside N
one may realize any sufficiently negative slope. See Figure 1.4.15. Let L be a leaf in this
foliation. Clearly L is Legendrian. Let A be an annulus inside T, that has one boundary

\ L T

Figure 1.4.15. The torus T; on the left with one leaf in its characteristic foliations high-
lighted. On the left is the annulus A that shows T is the transverse push-off of L.

component on L and the other on the z-axis. One may easily check that the foliation is as
pictured in Figure 1.4.14. So, by definition, the z-axis which we can think of as T, is the
positive transverse push off of L. m]

We call a Legendrian L constructed in the proof a Legendrian approximation of T.

Exercise 1.4.32. In the proof if L, is a Legendrian approximation coming from the torus
with slope n characteristic foliation and L,_1 is the one coming from a torus with slope
n — 1 characteristic foliation, then show that L, is a negative stabilization of L,.

Remark 1.4.33. In Section 6.1 we will see that L, and L/, are transversely isotopic if and
only if L and L’ are related by negative stabilizations. So classifying transverse knots in a
knot type is equivalent to classifying Legendrian knots in that knot type up to negative
stabilizations.
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Lemma 1.4.34. Any knot (or arc) can be C°-approximated by a Legendrian knot and a transverse
knot.

Proof. Consider curves on (R3, &y = ker(dz — y dx)). We will begin with an example.
Consider a curve C sitting in the y = 0 plane and having slope —1. See Figure 1.4.16.
If we consider the projection of C to the xz-plane and let C’ be the Legendrian curve

y=0

N y=-i

Figure 1.4.16. The smooth curve C sitting in the y = 0 plane and the curve C’ sitting in
the y = -1 plane that is the Legendrian lift of C.

with the same projection (we call this the Legendrian lift of the curve on the xz-plane,
and obtained by taking the y-coordinate to be the slope of the curve on the xz-plane, see
Section 1.4.3), then C’ will sit in the y = —1 plane. We need to find a curve D¢ in the
xz-plane whose Legendrian lift is C’-close to C. We can take D¢ to be a curve in a small
neighborhood of C that has all of its tangent lines having slopes close to zero. This is
done by creating several zig-zags in the curve. See Figure 1.4.17. The Legendrian lift of

Figure 1.4.17. The smooth curve C sitting in the y = 0 plane and the curve D¢ inthe y =0
plane that lifts to the approximation L¢ of C.

D¢, which we denote Lc, is a Legendrian arc that is C O_close to C. Notice that we do not
need to move the endpoints of C to create Lc.

Exercise 1.4.35. Prove that any arc in R3 can be approximated by a Legendrian arc rela-
tive to its endpoints.

Hint: Note that an arc may be subdivided into pieces where the slope of the tangent line
to the arc is almost constant. Now slightly generalize the above argument to this setting.

We now consider an arc C in a general contact manifold (M, £). Notice that we can
cover C by Darboux charts. That is open sets U; that are contactomorphic to open sets



44 1. Introduction to contact geometry in dimension 3

in (R3, &,4). Now C can be subdivided into compact sub-arcs such that each subarc is
contained in one of the Darboux charts. Now we can approximate each of these sub-arcs,
relative to their endpoints, using the argument above.

Finally, using Lemma 1.4.28 we can also approximate any topological knot by a trans-
verse knot. o

Remark 1.4.36. We will see in Section 6.1 that two Legendrian knots L and L’ represent
the same topological knot type if and only if they are related by some number of positive
and negative stabilizations.

Exercise 1.4.37. Prove the fact in the remark for Legendrian knots in (R3, Esta) using front
projections.

1.4.5. Classification of Legendrian and transverse knots. We end this section by dis-
cussing the classification of Legendrian and transverse knots. Given a smooth knot type
K in a contact manifold (M, £) we will denote the set of Legendrian knots realizing the
knot type K by L(K). (It is common to denote an isotopy class of knots by a fixed repre-
sentative of that knot type, say K a fixed embedded of S! into M. While we will do this
as well, for now, we would like to emphasize that we are discussing an isotopy class of
embeddings of S 1 by using the notation K.) There is an obvious map

W: L(K)— ZxZ: L (rot(L), tb(L)).

Classifying Legendrian representatives of K is equivalent to understanding the image of
W, the number of points mapping to a given point in the image, and how two distinct el-
ements in £(K) mapping to the same point are related by stabilization. The first problem
is called the geography problem for K and the second problem is called the botany problem
for K.

A knot type K is called Legendrian simple if W is injective. Notice that this implies
that two Legendrian knots in the knot type are Legendrian isotopic if and only if they
have the same rotation numbers and Thurston-Bennequin invariants. In Chapter 6 we
will show that the unknot and torus knots are Legendrian simple. It is also known that
the figure eight knot is Legendrian simple [EH01a]. In Chapter 10 we will see that many
cables of torus knots and connected sums are not Legendrian simple. It is also known that
negative twist knots are not Legendrian simple [Che02, EGH00, ENV13] while positive
ones are [ENV13].

We now consider a few Legendrian knots in (R3, &s1q) toO get a sense of what the
classification of Legendrian knots looks like. We will see much more in Chapters 6 and 10.

Example 1.4.38. Let U be the knot type of the unknot. Eliashberg and Fraser [EF98,
EF09] showed that the unknot is Legendrian simple and every Legendrian unknot is a
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stabilization of the one shown of the left-hand side of Figure 1.4.6. Thus we see the image
of W in this case is shown in Figure 1.4.18.

-4 -3-2-1 01 2 3 4
- A\,

S SN\,
NN\,
NN
NN N

. .
. .
. .

Figure 1.4.18. The image of W for the unknot.

In [EHO1a], the first author and Honda showed that torus knots were Legendrian
simple and classified them. For example, the (4, —9)-torus knot has four Legendrian rep-
resentatives with tb = —36, they have rotation numbers -5, -3, 3, and 5. See Figure 1.4.19.
All other Legendrian representatives are stabilizations of these. See Figure 1.4.20 for the

L5488

Figure 1.4.19. The four Legendrian (4, —9)-torus knots with tb = —36. Moving from left to
right the rotation numbers are -5, -3, 3, and 5.

image of WV in this case. See Chapter 6 for notation concerning torus knots, and the clas-
sification of Legendrian representatives.

We now consider a non-Legendrian simple knot type. Let K representatives the (3, 2)-
cable of the right-handed trefoil knot. You can see Legendrian representatives of these
knots in Figure 1.4.21 and you can find a general discussion of cables in Section 10.2.
In [EHO5], the first author and Honda classified Legendrian representatives of K and
showed that the image of W for L(K) is shown in Figure 1.4.22. Notice that some points
in Zx Z have more than one representative and that they correspond to rotation numbers
and Thurston-Bennequin invariants that are represented by distinct Legendrian knots.
Notice that the figure also denotes how Legendrian representatives are related under
stabilization. Of course, an arrow pointing to the right is a positive stabilization while an
arrow pointing to the left is a negative stabilization. We will see much more about cables
of torus knots in Chapter 10.
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Figure 1.4.20. The image of the map W for the (4, —9)-torus knot. The four dots at the top
are realized by the Legendrian knots in Figure 1.4.19.

Figure 1.4.21. Two Legendrian knots realizing the (3, 2)-cables of the right-handed trefoil
with tb = 6. The rotation numbers going from left to right are -1 and 1.
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Figure 1.4.22. The image of the map W for the (3, 2)-cable of the right-handed trefoil.

Given the figures above, the image of W for a given knot type K, along with an
indication of the multiplicity of each point and stabilization information is frequently
referred to as the mountain range of K. The classification of Legendrian representatives
is frequently easier to understand by considering the mountain range than by explicitly
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stating what all the Legendrian representatives are. We will see such statements in Chap-
ters 6 and 10 and also see how these translate into the easier to understand mountain
range. We will also explore general properties of mountain ranges in Section 10.3.

We can study transverse knots in the same way. Given a knot type K we consider
the set of transverse isotopy classes of transverse knots realizing K and denote this set
7 (K). In this case we have a map

®: T(K)—> Z: T - sl(T).

We similarly say that a knot type is transversely simple if @ is injective. So two transverse
knots in a transversely simple knot type are transversely isotopic if and only if their self-
linking numbers are the same.

Example 1.4.39. Recalling from Remark 1.4.33 that the classification of transverse knots
is equivalent to the classification of Legendrian knots up to negative stabilization, we see
that the unknot and torus knots are transversely simple. In particular, the image of @ for
the unknot is the set of negative odd integers, while the image of ® for the (4, —9)-torus
knot is the set of odd integers less than or equal to —31.

We see that the (3, 2)-cable of the right-handed trefoil is not transversely simple. The
image of @ for this knot type is the set of odd integers less than or equal to 7 and @ is
injective except that there are two transverse knots with self-linking number 3.

Transversely non-simple knots, and the general structure of the classification of trans-
verse knots, will be discussed more in Chapter 10.

1.5. Existence of contact structures on 3-manifolds

In this section we will prove that any orientable closed 3-manifold admits a contact struc-
ture. In fact, we will see that in any homotopy class of plane field, we can find a contact
structure; so, in particular, such manifolds admit infinitely many distinct contact struc-
tures. In Subsection 1.5.1 we will briefly review some facts about Dehn surgery and use
that to prove that an orientable closed 3-manifold admits at least one contact structure.
In the next subsection we will discuss homotopy classes of plane fields on an orientable
3-manifold and in particular discuss invariants of plane fields Finally, in Subsection 1.5.3
we will prove that every homotopy class of plane field on an orientable 3-manifold con-
tains at least one contact structure.

1.5.1. Constructing contact structures on 3-manifolds. We will construct contact struc-
tures through surgery on S3, thus we begin by reviewing the Dehn surgery construction.
We will review more facts about Dehn surgery later in the chapter (and later in the book),
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but the reader is referred to [GS99, PS97, Rol76, Sav12] for a more comprehensive dis-
cussion of Dehn surgery as well as proofs of the various facts we are using about Dehn
surgery.

Given a 3-manifold M and a knot Kin M, let N = S! x D? be a neighborhood of K
in M. If a is an embedded curve in d(M — N) and f: d(S! x D?) - dN c (M — N) is a
diffeomorphism sending {p} X dD? to a curve isotopic to & for any point p € S!, then we
say the manifold Mk («) is obtained from M by a-Dehn surgery on K if

Mg(a) = (M —N) Uy (S' x D?)

where (M - N) Uy (S! x D?) is the quotient space of (M — N) U (S! x D?) obtained by
identifying x € (S' x D?) with f(x) € M — N.
Dehn Surgery Facts. We have the following well-known results about Dehn surgery.

(1) If fo and f; are two diffeomorphisms d(S! x D?) — dN C d(M — N) that both
send {p}xdD? to a curve isotopic to a, then (M — N)U (S 1xD?)is diffeomorphic
to (M — N) Uy, (S' x D?)

(2) Any closed oriented 3-manifold can be obtained from S by Dehn surgery on
some link.

Exercise 1.5.1. Prove these facts. The second one requires a bit of work, see [Rol76].

We note that N = T? and there is a non-trivial curve u in T? that bounds a disk in
N = S! x D2. If K is null-homologous then there is also a curve A in T? that bounds a
surface X in M — N.

Exercise 1.5.2. Show that u and A can be chosen to intersect exactly once.

If K is not null-homologous, then we can choose a curve A such that y and A intersect
once (recall, this is just choosing a framing on K).

The homology classes of i and A form a basis for H1(T?) = Z @ Z. So any embedded
simple closed curve @ in T? has a homology class that can be expressed by g[A]+p[u]. We
will denote the curve a by p/q (with the convention that 1/0 = o). For a more thorough
discussion of rational numbers and curves on tori see Section 4.1. Now we can denote
Mk (a) by Mk(p/q). For our arguments below, we note that the diffeomorphism f used
in the definition of Dehn surgery can be taken to be a linear map (that is, thinking of T2
as R?/Z? the diffeomorphism is induced by a linear map on R?).

For later use, we note several ways one can change a Dehn surgery description of
a manifold. See Figure 1.5.23 for the first two of these moves and Figure 1.5.24 for the
third. The proof that these moves do not affect the result of Dehn surgery can be found
in [Rol76]. The first change one can make is called the slam-dunk and is shown on the left
of the figure.
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Figure 1.5.23. The slam-dunk move is shown on the left, here 7, r, and s are integers. The
Rolfsen twist is shown on the right, here m,r, and s are integers and r;, rl’. are rational
numbers. The blue curves correspond to knots K, ..., Kj, and each knot can go through
the region multiple times. The framing on K; is r;. The framings rl’. = r; + m(link(K;, U))?,
r" =r/(s + mr), and the box labeled m indicates m full right-handed twists.

Exercise 1.5.3. Use the slam-dunk move to show that any 3-manifold can be obtained
from S® by Dehn surgery on a link with integer coefficients, that is we do not need to
consider general rational Dehn surgery coefficients.

The second change one can make to a surgery description is called a Rolfsen twist and is
shown on the right-hand side of the figure. The third change is shown in Figure 1.5.24
and is called a handle slide. The figure is schematic in the sense that K; and K, might

ni 1%)

K1 K>
n’ o

K1 K>

Figure 1.5.24. The top diagram and the bottom diagram represent equivalent surgery di-
agrams. The 75 in the box represents 1 full twists between the blue and the black curves.

link even though that is not shown in the diagram. It is important that both surgery
coefficients are integers. The surgery coefficient n” in the figure is
n = ni+mny+ link(K1,K2),

one must orient K; and K, to perform this operation and the sign in the formula is +
if the orientation on the blue curve in the bottom diagram can be chosen to agree with
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the orientation on K; and K3, otherwise the — sign is used. (Note that since link(Kj, K»)
changes sign if we reverse the orientation on one of the components and the sign in the
formula changes, then framing n’ is actually independent of the chosen orientations.)

We are now ready to bring contact structures into the picture.

Theorem 1.5.4 (Martinet, 1971, [Mar71]). Any closed, oriented 3-manifold has a contact struc-
ture

Proof. Given a closed, oriented 3-manifold M we know from above that it can be realized
by Dehn surgery on some link in S3. We will consider the case where M is Dehn surgery
on a knot S;’((p /q), but the general case will clearly follow.

First we note that by Lemma 1.4.34 we can isotop K to be a transverse knot in the
standard contact structure &7 on S3. By Theorem 1.2.4 we know that the transverse
knot K has a standard neighborhood. More specifically, if we let R? x S! = R3/~, where
(r,0,z) ~ (r, 0,z + 21) with the contact structure & = ker(cosr dz + rsinr df) then T =
{(0,0)} x S! is a transverse curves and K has a neighborhood N contactomorphic to S, =
{(r,0,z)|r < a}. We note that JS, has a characteristic foliation of slope %cota So as a
goes from 0 to oo the possible slopes of the characteristic foliation trace out all rational
numbers (and o) infinitely many times.

Now let f be a linear map from d(S' x D?) to 9(S3 — N) that is used to define Si(p/q).
Notice that there is some linear foliation of slope s on T? that f will map to the character-
istic foliation on dN = dS,. Notice that there is some b € (0, oo] (actually in (0, 7]) so that
the characteristic foliation on dS; has slope s. Since the characteristic foliation on a sur-
face determines the contact structure in a neighborhood of the surface by Theorem 1.3.4,

we can glue (Sp, &ls,) to (S3 — N, (55td)|m) to obtain a contact structure on M.

To be careful that we have a smooth contact structure on M, one should glue “with
overlap". Specifically. Theorem 1.3.4 says that we can extend f and isotop it so that it
is a contactomorphism from Sp.c — Sp—e to some open neighborhood of IN in S3. Now
we can glue Sp,¢ to S3 — N were Spie — Sp is glued to a neighborhood of N in M — N
via the extended f. On the level of the manifold, this is still clearly 5%(p/q) but the
contact structure induced on the surgered manifold is now smooth. In the future, we will
give an argument as in the previous paragraph for constructing contact structures, but
one should keep in mind that it is really shorthand for gluing “with an overlap" as just
described. ]

Exercise 1.5.5. Give a second proof that all closed, oriented 3-manifolds have a contact
structure by using the fact that all closed, oriented 3-manifols are covers of S* branched
over some link. See [Rol76] for the definition of branched cover and this fact.

Hint: Make the branch locus transverse.
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Remark 1.5.6. We will give a third method to construct contact structures on 3-manifolds
based on open book decompositions in Chapter 12.

Remark 1.5.7. We will see in Sections 6.2 and 12.2, respectively, that all contact struc-
tures on closed 3-manifolds can be constructed by surgery (a generalization of the one
discussed above) and open books decompositions. It is also known that all contact struc-
tures can be constructed via branched covering S3 over a link or knot, see [Gir02] and
[Cas13], respectively.

We would now like to strengthen this theorem to show that there is a contact structure
in any homotopy class of plane field on M, but to do this we first study homotopy classes
of plane fields and their invariants.

1.5.2. Homotopy classes of plane fields. In this section we will study the space of plane
fields on 3-manifolds. To this end, given a 3-manifold M we define

Dist(M) = {oriented plane fields in TM}.

To formally define this space, we let Gr¢(V) be the space of k-planes in the vector space
V. One can topologize this just like projective space which is the space of lines in V
(that is real projective space is Gri(V)). Notice that a linear map L: V — V induces a
map on Gri(V). Recall, that the tangent bundle TM of M is a vector bundle of rank 3
so the transition functions have range GL(3; R) (see Appendix A for recollections about
bundles) and thus we can consider the fiber bundle Gro(TM) associated to the tangent
bundle with fiber Gro(TyM). We call this the Grassmann bundle of 2-planes in TM. Now
the formal definition of Dist(M) is the space of sections of Gr(TM).

Two plane fields are homotopic if they are connected by a path in Dist(M). So since
our task is to understand the homotopy classes of plane fields on M, we are interested in
the path components of Dist(M) which is commonly denoted

1t9(Dist(M)).
Our main result about this set is the following.

Proposition 1.5.8. Given a closed, oriented 3-manifold M, one can fix a trivialization of TM to
get a surjective map

F: mo(Dist(M)) —» H1(M),
and for any x € Hy(M) we have
F([y]) = 2/(2d(x)Z)

where d(x) is the divisibility of x in H1(M) modulo torsion.
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Remark 1.5.9. Notice that 0 € H;(M) for any manifold M and d(0) = 0so F~(0) = Z. This
tells us that 7p(Dist(M)) is always an infinite set. So when we show that any homotopy
class of plane field contains a contact structure, we will know that there are infinitely
many distinct contact structures on any closed, oriented 3-manifold.

We may also use the proposition to see the mo(Dist(M)) is in one-to-one correspon-
dence with [[,cp, m) Z/(2d(x))Z.

There are a few steps in proving this proposition. We begin with a simple observation.

Lemma 1.5.10. Given an oriented 3-manifold M and a Riemannian metric ¢ on M and set U; M
to be the unit tangent bundle. There is a homeomorphism from sections of Uy M to the space of
plane fields on M:

W, : T(UgM) — Dist(M): v+ v*
where vt is the plane field orthogonal to v. Moreover, this homeomorphism is well-defined up to
isotopy.

Proof. The map is clearly well-defined given g. Given a plane field & there is a unique
line field /¢ orthogonal to £ and since M and ¢ are oriented so is I:. Thus we can choose
a unit vector field v in I¢ that orients [,. Clearly W¢(v) = & so W is onto. Notice that the
previous construction gives an inverse map \Pgl to W and thus W is a bijection.

Exercise 1.5.11. Review the topology on I'(U,T) and Dist(M) and show that W, and \P;
are continuous.

Finally, notice that if go and g are two Riemannian metrics on M then g = (1 —
t)go + tg1 is a path of Riemannian metrics on M. There is a natural projection Ug, M —
Ug,M given by sending a unit vector v in Ug, M to v/|v| where |v| is computed with
respect to the metric go. This projection induces a bundle isomorphism and hence a
homeomorphism between of sections of Uy, M and sections of Ug,. Thus W, will be an
isotopy from W, to Wy,. m]

It is a well-known fact that the tangent bundle of an oriented 3-manifold M is trivial,
see [Kir89]. If we fix a trivialization TM = M xR3, then the unit tangent bundle is M x s?,
and a section of UM is determined by a map M — S2. We denote the homotopy classes
of maps from M to S? by

[M, 5?].
From our discussion above, once a trivialization of TM is fixed, we have the equality of
sets
no(Dist(M)) = [M, S§?].

The Pontryagin-Thom construction is a way to study homotopy classes of maps from a
manifold of any dimension to the k-sphere. We will consider the special case of [M?, 52].



1.5. Existence of contact structures on 3-manifolds 53

See [Mil65b] for the general case. To state the result we first define the framed cobordism
group. A framed submanifold of an n-manifold X is pair (K, ), where K is an oriented
submanifold of X and ¥ is a trivialization of its normal bundle. We say (K;, ¥;),i =0, 1,
are framed cobordant if there is a framed manifold (K’, #”) of X X [0, 1] such that

(K", F)n (X x{i}) = (K, Fi)

and as oriented manifolds dK” = K1 U—Kg where —Kj denotes Ky with the opposite orien-
tation. We denote by Q{ (M) the set of framed 1-manifolds in M up to framed cobordisms.

Lemma 1.5.12. For any closed 3-manifold M there is a bijection
M, $%] & Q) (M).

Proof. Given ¢: M — S? we can homotop ¢ so that it is transverse to the north pole n €
S2. Lety = ¢~ !(n). This is a 1-manifold in M. Moreover, notice that d,: T,M — T,,S? is
surjective for all x € y since ¢ is transverse to n. Thus if we fix a basis v1, v, for T, S2, then
we can find vector fields &1(x), 92(x) along y so that the vectors are perpendicular to y (in
some Riemannian metric) and d¢,(9;(x)) = v;. It is easy to find these vector fields since
d¢, restricted to (Tyy)* is an isomorphism onto T,,S2. Then 1(x), 92(x) give a framing
to y. Thus we have a map

W: [M,S%] - Qf(M): f s (y,F).

Exercise 1.5.13. Show that W is well-defined. More specifically, show that if ¢9 and ¢
are homotopic maps then the associated framed 1-manifolds are framed cobordant.

We now show that W is surjective. To this end let (y, ) be a framed 1-manifold in
M. Notice that y has a neighborhood N that is canonically, up to isotopy, identified with
S! x D? by the framing ¥ . We have the map

D? — S%: (r,0) > (W1 + (r —1)2cos 0,1 + (r —1)2sin 6, )

that maps the interior of D?> homeomorphically onto S? — {s} where s is the south pole
and maps the boundary of D? to s. We can now set ¢o: N — S to be this map on each
D?in S!xD? = N. Now extend ¢ over M — N to be constantly s. Notice that ¢ is smooth
on the interior of N and hence we can perturb ¢ to be smooth on all of M so that M — N
still maps to a small neighborhood of s and the perturbation was fixed on almost all of
N. Thus n is a regular value of ¢ and clearly W(¢) = (y, ), so W is surjective.

We now show that WV is injective. Suppose that W(¢o) = ()0, Fo) and W(¢p1) = (y1, F1)-

Exercise 1.5.14. Show that if (yo, o) = ()1, 1). Then ¢ and ¢ are homotopic.

More generally suppose that (o, o) is framed cobordant to (y1, 71) via the framed
cobordism (X, ).
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Exercise 1.5.15. Construct a homotopy M X [0, 1] — S? of ¢ to ¢1 using (Z, F).

Hint: From the previous exercise, you can assume that ¢; are the maps constructed above
associated with (y;, ;). Now the construction of the homotopy is essentially the same as
the construction of ¢ form (y, ) above.

Thus W(¢o) = W(¢1) implies that ¢ is homotopic to ¢; and hence W is injective. ]

Remark 1.5.16. Combining Lemmas 1.5.10 and 1.5.12 we see that there is a one-to-one

correspondence between 7y(Dist(M)) and Q{ (M) and this correspondence is determined
by a trivialization of TM.

We now study Q{ (M) further. To this end, we consider the set of cobordism classes of
1-manifolds in M, denoted by Q;(M). The definition of cobordism classes is the same as
framed cobordism classes, except we drop any consideration of the framing. *

Lemma 1.5.17. For any manifold M we have a one-to-one correspondence

(M) & Hi(M).

Proof. Given y € Q;(M) we can “triangulate" y, that is write y as a 1-complex. Thus
the inclusion of this 1-complex into M gives a singular 1-cycle in M. That is y defines a
singular homology class [y] € Hi(M). Now suppose that )y and y; are coborant via a
surface X ¢ M x [0, 1]. We can triangulate the surface X and project this to M. This will
give a 2-chain in M. That is an element of the singular 2-chain group C»(M).

Exercise 1.5.18. Show that X = y; — y9 where dr: Co(M) — C1(M) is the singular
boundary map in the definition of singular homology.

Thus we see that 79 and y; are homologous and so [)o] = [y1] in H1(M). That is we have
shown that the map

D: (M) - HH(M): y = [y]
is well-defined.

It is not hard to see that any x € Hy(M) is represented by the image of S! under some
smooth map (recall the abelianization of 711(M) is H1(M)). Thus @ is clearly surjective.

Now suppose that ®(y) = @(y1). Then there is a 2-chain ¢ such that dac = y1 — yy.

Exercise 1.5.19. Show that there is some other 2-chain ¢’ such that ¢’ is the image of a
triangulated surface X and dac” = dac.

Now let f: ¥ — [0, 1] be a smooth function such that f~1(i) = y; and i is a regular
value for i = 0, 1. we now get a map

L—>Mx[0,1]: p = (p, f(p)).

4One can actually make Q1 (M) a group with the operation of disjoint union.
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This map can be perturbed, relative to d¥, to be smooth and self-transverse. This means
that the image in M X [0, 1] is an immersed surface with transverse double points.

Exercise 1.5.20. Show that one can “resolve" the double points of this surface to obtain
an embedded surface X’ in M X [0, 1] such that &' N (M X {i}) = yi.
Hint: If you have not seen how to resolve transverse double points, see [GS99].

So X’ shows that yy is cobordant to y1 and hence @ is injective. m]
We are not ready to prove the main result of this section.

Proof of Proposition 1.5.8. There is clearly a map from framed cobordism classes to cobor-
dism classes one gets by forgetting the framing

F': Of (M) > i(M): (7, F) = 7,

and using the previous lemma we will consider F’ as a map lef (M) — Hy(M). More-
over, after fixing a trivialization of TM Lemmas 1.5.10 and 1.5.12 give bijection between
1to(Dist(M)) and Q{ (M). We will denote the composition of this bijection with F’ above
by F. From the discussion above it is clear that F is surjective. So we are left to identify
F~1(x) for x € H{(M).

Given a homology class x € Hi(M) let y be a knot such that [y] = x. Fix a framing
¥ on y and define the framing %, to be the framing of y obtained from ¥ by adding n
right-handed Dehn twists. We now define a map

h: Z — Flx): n (v, Fn).

This map is clearly surjective.

Suppose that h(n) = h(m). This means that (), ) is framed cobordant to (y, F).
Denote the framed cobordism by (X, ). Thinking of M X S! as the quotient space of
Mx[0, 1] that identifies M X {0} to M x {1} by the identity map on M, we can consider the
closed surface T obtained from X by identifying T N (M x {0}) = y with TN(M x {1}) = y.

Exercise 1.5.21. Show that the self-intersection of T with itself is m — n. Here the self-
intersection, denoted T - T, is obtained by considering the inclusioni: T — M X S Land
perturbing it to be transverse to T, then counting the number of intersection points with
sign. See [GS99].

Hint: If one has a trivialization of the normal bundle of T then its self-intersection would
be 0. The framing ¥’ frames X but does not give a framing to T because it is not the same
ony C M x {0} and y ¢ M x {1}. If we take a copy of X pushed off of itself with ¥’ and
call it ¥’ think how we can make Y’ into a closed surface in M x S'.
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Now let C = ¥ x S in M x S!. Notice that
m-n=T-T=[(T-C)+C]-[(T-C)+C]
=(T-C)-(T-C)+2AT-C)-C+C-C.

We can take any framing on y to get a framing on C and thus C-C = 0. We now claim that
(T —C)-(T - C) = 0. Recall that the self-intersection of a surface with itself (or another
surface) only depends on the homology class of the surface [GS99]. By the Kiinneth
formula we know that

Hy(M x S') = (H2(M) ® Ho(S")) & (H1(M) ® H1(S")).

Notice that the homology class of (T — C) N (M X {pt}) in H1(M x S!) is 0 (since it is x — x).
Thus we see that T — C € Hy(M) ® Hy(S') since any nontrivial element in Hy (M) ® H(S')
has nontrivial intersection with M X {pt}. Thus T — C is homologous to a surface S in M.
In M x S! we can clearly perturb S to be disjoint from itself and hence S - S = 0 which
implies the same for T — C. We now see that

m-n=2(T-C)-C=2(T-C)-x

since T — C is homologous to a surface S in M and S intersects C in M X S! the same way
it intersects x in M. Thus we see that if #(m) = h(n) then m — n is divisible by 2d(x).

So if d(x) = 0 then we see that & is injective and F~!(x) = Z. Now suppose that
d(x) # 0. Let y be a primitive class in H1(M) such that x = d(x)y. By Poincaré duality
we know there is a surface a in M such that y - @ = 1, should we say more... probably so
and thus 2x - @ = 2d(x). Now consider the surface T representing (y X S!) + a in M x S1.
Notice we can build T by taking the surface a in M x {pt} and C = y x S!, which intersect
transversely in some points in M X {pt}, and resolving the double points. Notice that

T-T=2C-a=2y -a=2d(x)

Now we can cut M xS! along a copy of M (not containing the a used to construct T) to get
Mx[0, 1] and inside this manifold T will be cut open to be a surface X with ZN(M x{i}) =
y for i = 0, 1. Notice if we fix a framing ¥, on y then as argued above, we can frame X so
that it induces %, on y ¢ M x {0} and Fy124(x) ony € M X {1}. Thus h: Z — F~!(x) is
surjective with kernel 2d(x)Z. Thus F~!(x) = Z/(2d(x)Z). o

1.5.3. Contact structures in a given homotopy class of plane field. With our under-
standing of the set of plane fields on M we are now ready to strengthen Theorem 1.5.4 to
show that any homotopy class of plane field contains at least one contact structure. Let
Cont(M) be the subset of Dist(M) consisting of contact structures on M.

Theorem 1.5.22 (Lutz 1977, [Lut77]). Given a closed, oriented 3-manifold M, let i: Cont(M) —
Dist(M) be the inclusion map. Then

i.: mo(Cont(M)) — mo(Dist(M))
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is surjective. That is every homotopy class of plane field contains a contact structure.

As noted in the previous section we know that this theorem implies that any closed,
oriented 3-manifold M admits infinitely many distinct contact structures. We also note
that Lutz did not precisely prove this theorem, he showed that a given manifold can
admit contact structures in more than one homotopy class of plane field by introducing
what we now call a Lutz twist. Since it is not hard to go from the results in his paper to
the above theorem, we attribute the result to him.

To prove this theorem, we introduce the notion of a Lutz twist. To do this we consider
R2xS! = R3/~, where (r, 0, z) ~ (r, 0, z+2m) with the contact structure & = ker(cos r dz+
rsinr dO) that we used in the proof of Theorem 1.5.4. Recall that T = {(0,0)} x Slisa
transverse knot and we have the neighborhoods S, = {(r, 0, z)|r < a} of T such that dS,
has a characteristic foliation of slope r, = —1 cota so as a goes from 0 to 7 the possi-
ble slopes of the characteristic foliation trace out all rational numbers (and o). Given a
transverse knot K in a contact manifold (M, &) we know, by Theorem 1.5.4, that K has a
neighborhood N contactomorphic to S, and we can assume a € (0, 7] (by shrinking N if
necessary). Notice that there is a unique b € (7, 27] such that S, and S, have the same
characteristic foliation on their boundaries. See Figure 1.5.25. The contact structure £’ on

Figure 1.5.25. Graph of —% cot x with the points a, b, and ¢ marked.

M is obtained by removing S, = N from M and regluing S;, by the identity map (see the
proof of Theorem 1.5.4 to guarantee that &’ is a smooth contact structure) is said to be the
result of a half-Lutz twist along K in (M, £). We also define the Lutz twist (or sometimes a
full Lutz twist in the same manner except instead of gluing in S, we glue in S, where c is
the unique number in (277, 37| so that the characteristic foliation on dS, is the same as on
dS,.
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To prove the above theorem we need a few lemmas about Lutz twisting. We first
notice that if we fix a trivialization of the tangent space of M then after performing a (half)
Lutz twist we still have the same trivialization of TM since doing a Lutz twist smoothly
removes a solid torus and reglues it by the identity map, so the resulting manifold is
canonically diffeomorphic to M. With this in mind, we have the following results.

Lemma 1.5.23. Let (M, &) be the result of performing a half Lutz twist on a transverse knot K
in (M, &). Then using the notation from Proposition 1.5.8 we have

F(&') = F(&) - [K].
That is, the first homology class associated with & and & differ by [K].

Lemma 1.5.24. Let (M, &’) be the result of performing a half Lutz twist on a null-homologous
transverse knot K in (M,&). If (y,F) is the framed 1-manifold corresponding to & by Re-
mark 1.5.16 then (y, Fs(x)) is the framed manifold associated to &’ where F, is the framing on y
obtained from F by adding n right-handed twists.

We will prove these lemmas below, but first, see how they imply our main theorem.

Proof of Theorem 1.5.22. From Theorem 1.5.4 we know there is a contact structure £ on
M. The plane field £ corresponds to a framed 1-manifold (), ¥) by Remark 1.5.16. Now
given any framed manifold (y’, ¥’) we need to find a contact structure in the homotopy
class of plane field associated with this framed manifold. Let K be a knot realizing the
homology class [y] — [y’]. By Theorem 1.2.4 we can find a transverse knot isotopic to
K, we will still call it K. By Lemma 1.5.23 we see that a half-Lutz twist on K will give a
contact structure &’ associated with the framed manifold (y’, #”) for some framing 7"
ony’.

Now in (M, &’) consider the transverse unknot U in a Darboux ball with sl(U) = -1
and the transverse right-handed trefoil T with sl(T) = 1. According to Lemma 1.5.24
the result of a half-Lutz twist on U or T, respectively, give result in a contact structure
&" associated to the framed manifold (), ¥7), respectively (y, ,”). Performing further
half-Lutz twists will allow us to find a contact structure realizing any (y’, #,””) and hence
we have a contact structure in the homotopy class of plane field corresponding to the
framed manifold (y’, 7). m|

We now move to the proof of our lemmas about half-Lutz twists.

Proof of Lemma 1.5.23. Using the notation from the proof of Lemma 1.5.12 we fix a triv-
ialization of TM and consider the map from [M, S?] — Q{ (M) (with [M, §?] identified
with Dist(M) by Lemma 1.5.10 and the following discussion). The contact structure & is
associated with a map f: M — S? and we can assume (by isotoping K thourgh trans-
verse knots if necessary) that f(K) ¢ S?—{n}. Thus f(K) is homotopic to the constant map
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with image the south pole s. We can homotop the trivialization of TM so that f(K) = s.
Let N be a small neighborhood N of K contactomorphic to S, for a € (0, ] (for notation
see the discussion at the beginning of this section). We can further assume by homotop-
ing the trivialization of TM that f(&|n) = s.

Exercise 1.5.25. Prove the last assertion.

As in the definition of half-Lutz twist, let b € (7, 21t] be the number such that (dS;)s =
(0S4)e. 1f we replace N = S, in M by S, and let f, be the map M — S? associated with
&’ the result of a half-Lutz twist on K, then on S, C S; we see that f” maps this to s. The
core of S, will be mapped to n € S and the rest of S, — S, which is (S! x (0,1]) x S! will
be mapped around 52 — {n}. Thus we see that f,' = y U -K. m]

To prove Lemma 1.5.24 we need to reconsider our discussion from the previous sub-
section. Recall from Section 1.5.2 that, once we fixed a trivialization of TM, to & we
associated a map fr : M — S? where S? was identified with the unit vectors in R® and
the framed manifold associated to & was fgl(n), where 7 is the north pole of S? and f
was homotoped to be transverse to it. However, S? was naturally thought of as the space
of oriented planes in R®, which we now denote by Gr3(R?) and is called the Grassman of
oriented 2-planes in R3. We identified 5% with Gr§(R?) by sending an oriented plane to the
unit vector positively orthogonal to it. So we can think of [M, S?], which we identified
with 7o(Dist(M)) earlier in this section, more naturally as [M, Gry (R3)]. Now Gr§(R3)
has a natural oriented vector bundle bundle of rank 2 over it. Specifically, let

E; = {(P,v) € Grj(R® ) x R®: v € P}.
We now have a couple of simple observations which we leave as exercises.
Exercise 1.5.26. The bundle E; can be naturally identified with TS2.

Exercise 1.5.27. If f: M — Gr§(R3) is the map associated to &, then as a vector bundle &
is isomorphic to the pull-back f*Ey.

Proof of Lemma 1.5.24. Given the null-homologous transverse knot K in (M, &) we know
that it bounds a surface . We begin by assuming that X is disjoint from y (recall (y, )
is the framed 1-manifold associated to &). From the discussion above, and the fact that
S? has a vector field that vanishes to order 2 at the north pole 7 and is otherwise non-
vanishing, we can trivialize T(S? — {n}) using this vector field and pull it back to a trivi-
alization of £ on M — y. This gives a trivialization of £ over L, and the framing given by
this trivialization relative to the framing coming from X is, by definition, the self-linking
number of K. Now when we perform a half-Lutz twist to £ along K to obtain &', as in
the proof of Lemma 1.5.23, we see that the framed manifold associated to &’ is y U K.
Moreover, the framing on y is unchanged and the framing on K is sl(K). Since K is null-
homologous we see that y U K is cobordant to y.
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Exercise 1.5.28. Show that under the cobordism mentioned above, the framing on y is
Fal(K)-

We are left to consider the case when y intersects Z. We can assume the intersections
are transverse. There are two ways to deal with this case that will be explored in the
following exercises.

Exercise 1.5.29. Show that one may homotop to the trivialization of TM so that y is
disjoint from X.

Exercise 1.5.30. If y N T # 0 then the trivialization of T(S? — {n}) does not give a triv-
ialization of & over L, but we can assume that K and y are disjoint, so we still have a
trivialization of & along K. How does this trivialization differ from sl(K)? What framing
on y is framed cobordant to a framing on y U K.

One may conclude the general case of the lemma from either exercise above. m]

We end this section by noting that full-Lutz twists do not affect the homotopy class
of the contact structure. As we do not use this in this book we refer the reader to [Gei08]
for the proof of this fact.

1.5.4. Invariants of plane fields. We know from Section 1.5.2 that there is a one-to-one
correspondence between 7o(Dist(M)) and Q{ (M) once a trivialization of TM is fixed.
We were able to use that to prove that every homotopy class of plane field contained a
contact structure in the previous section. In particular, with a fixed trivialization of TM a
complete invariant of the homotopy class of a plane field is given by its associated framed
1-manifold (y, ). But in general, if we have two abstractly diffeomorphic manifolds it
is not clear how to relate trivializations of their tangent bundles and so we do not have
obvious invariants of plane fields on M. In this section we will remedy this, but to do
so we will use several results from bundle theory. The relevant parts of bundle theory
necessary for this discussion are reviewed in Appendix A.

The first invariant of a plane field we sill consider is its Euler class, see Section 1.1fix
indexing, this should be A.1 for the general definition of Euler class. In our context, we
are interested of the Euler class of the contact bundle & over M. As & is an oriented R2-
bundle over M one can define the Euler class as the Poincaré dual of ¢~1(0) where o is a
section of & that is transverse to the zero section 0 of £&. We denote this by e(£) and it is a
cohomology class in H2(M).

We would like to relate (&) to the element in Q{ (M) that completely characterizes the
homotopy type of the plane field &. To this end, recall that, once we fixed a trivialization
of TM, to & we associated a map fr : M — S? where S? was identified with the unit
vectors in R? and the framed manifold associated to & was f(g 1(n), where # is the north
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pole of S? and f was homotoped to be transverse to it. However, at the end of the last
section we say that we can think of S? as the space of oriented planes in R3, which we
denoted by GrJ (R3). Thus we can think of [M, 5?], which we identified with 77o(Dist(M)),
more naturally as [M, Grg([R{3)]. We also saw that Gr§(R3) has a natural oriented vector
bundle of rank 2 over it. Specifically, let

E; = {(P,v) € Grg(IR?’) XxR3:v e P}.

Finally in the last subsection we saw that E; can be naturally identified with TS? and if
f: M- Gr§(R3) is the map associated to &, then as a vector bundle & is isomorphic to
the pull-back f*Es.

Given this and the fact that we know that S? has a vector field that vanishes to order
2 at the north pole, we see that the Poincaré dual of the Euler class e(TS?) is 2n and
hence the Poincaré dual of the Euler class of & is 2f~!(n). (Recall from Appendix A that
characteristic classes, like the Euler class, act naturally under pull-back.) This discussion
has established the following result.

Lemma 1.5.31. Given an oriented 3-manifold M and a fixed trivialization of T M we can associate
to an oriented plane field & and framed 1-manifold (y, ) as in Lemma 1.5.12 and the discussion
before the lemma. We have the following identification

e(&) =2PD[y]

where PD|y] is the Poincaré dual of the homology class [y]. In particular, the homology class
2[y] can be associated to & independent of a trivialization of T M.

Unfortunately 2[y] does not determine [y] in H1(M), if H1(M) has 2-torsion. So e(&)
does not completely recover the cobordism class of y. In [Gom98], Gompf defined an-
other invariant, the I'-invariant, that does completely determine the cobordism class of y.
To define this invariant we note that the lemma above implies that e(&) is always 2 times
some other cohomology class. One can see this in a more direct way as discussed in the
next exercise.

Exercise 1.5.32. Let £ be an oriented plane field on an oriented 3-manifold M. Show that
e(&) is even (meaning it is 2 times another homology class).
Hint: Notice that TM = £ & R and so, as discussed in Appendix 1.3, the Stiefel-Whitney
classes satisfy

w(TM) =w(&) Vw(R) = w(é).
Thus wy(&) = wo(TM) and since any oriented 3-manifold is spin, see Appendix 1.4, we
have w;(&) = 0. Finally, we know, see Appendix 1.3, wy(&) is the mod 2 reduction of e(&).

Now given an even cohomology class h € H2(M) let G, = {[y] € Hi(M) : 2[y] =
PD(h)}. We also denote the set of spin structures on M by Spin(M). The I'-invariant of an
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oriented plane field £ on an oriented 3-manifold M is a map
[e: Spin(M) — Gg)

defined as follows. Given a spin structure s on M we know from Appendix 1.4 that s
induces a trivialization of the tangent bundle of M. Using this trivialization & induces
amap ¢s: M — S? as discussed just before Lemma 1.5.12. Homotop ¢¢ so that it is
transverse to the north pole 1 of 5? and let T(&)(s) = gbgl(n). From the lemma above it is
clear that 2I'¢(s) is (&) and hence it is in G, (s). We begin by noting that I's well-defined.

Lemma 1.5.33. The homology class I's(s) does not depend on the trivialization of T M determined
by s and hence I'¢ is well-defined.

Proof. From Appendix 1.4 we know that s determines a unique trivialization of TM over
the 2-skeleton of M that can be extended to a trivialization © of TM over all M, but
7 is not uniquely determined by s. Consider two trivializations 7 and 7" of TM that
are determined by s. Any two trivializations of TM differ by a map M — SO(3) (this
is clear as each trivialization is determined by a triple of sections that pointwise give
an orthonormal basis for TM, with respect to some Riemannian metric, and hence they
differ by an element of SO(3) at each point). Thus if f: M — SO(3) determines the
difference between the trivialization of TM given by 7 and by 7’ then the trivializations
of TM give by 7 and 7’ are related by

F: MXR3 - M xR3: (x,0) — (x, f(x)v).

As discussed in Appendix 1.2 we know that the obstruction to homotoping 7 to 7’ on the
2-skeleton of M is givne by f*(1,) where 1, is the generator of H*(SO(3)) = Z/2Z and
since 7 and 7’ both agree with s on the 2-skeleton we see that f*(12) = 0.

Now if ¢r: M — S? and ¢o: M — S? are the two maps associated to & by the
trivializations then consider the maps

Oc: M — §2xSO(3): p = (¢<(p), f(p))
and
m: §2x SO(3) — §2: (x,y)—y-x

where y-x means that the matrix y acts on the unit vector x € S2. Notice that ¢p» = mo®;.

We note that H(S? x SO(3)) = H2(S?) @ H%(SO(3)) = Z & Z/2Z and one may easily
compute that if 1 € H?(S?) is a generator then m*(1) = 1® T5. Thus ¢%,(1) = @ om*(1) =
(1) + £(1) = oz (D).

Finally we note that the homology class of a point 7 in S? is Poincaré dual to 1 €
H?(SO(3)). Thus ¢; (1) is homologous to (p;,l (n) (see for example [Bre93, Chapter IV.11])
and we see that I's is well-defined. O

We have the following properties of I's.
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(1) If f: M — M’is a diffeomorphism and ¢ is a plane field on M’, then

ré (o) ﬁ = f;_ (o] rf*é
where the first f, is an identification of the sets f. : Spin(M) — Spin(M’) and the

second is the map induced on homology f.: Hi(M) — Hi(M’). That is I'¢ is an
invariant of £ that behaves naturally under diffeomorphisms.

(2) We have I's = I'¢s if and only if £ is homotopic to &’ on the 2-skeleton of M if
and only if £ and &’ determine the same Spin® structure on M if and only if in
any fixed trivialization 7 of TM the 1-homology classes associated to & and &’ by
Proposition 1.5.8 are the same.

(3) The group H%(M,Z/2Z) = H1(M, Z/2Z) acts naturally and transitively on the
set Spin(M), see Appendix 1.4, and on H;(M) via the long exact sequence in
homology corresponding to the short exact sequence 0 - Z — Z — Z/27Z — 0.
The map I'¢ is equivariant with respect to this action. Thus I's is determined by
its value on one spin structure.

Exercise 1.5.34. Prove these properties of I's (or see [Gom98]).

From these properties, we see that I's completely recovers the cobordisms class associated
to &£ by any trivialization of TM. We are left to see that we can recover the framing as well.

We will define an invariant that recovers this framing for £ whose Euler class e(¢) is
torsion. There is a more general, and quite a bit more complicated, invariant that works
for any &, see [Gom98], but we will mainly need the simpler invariant so refer the reader
to [Gom98] for the more general case. We start with a simple observation whose proof
can be found in [Gom98, Lemma 4.4].

Lemma 1.5.35. Given an oriented plane field & on a closed, oriented 3-manifold M, there is a
compact 4-manifolds X that admits an almost complex structure | such that X = M and & is
the set of complex tangencies to dX.

Given a contact structure & on a 3-manifold M let (X, |) be the almost complex mani-
fold with boundary M from Lemma 1.5.35 we then define the ds-invariant of £ to be the
rational number

B(9) = () - 2(X) = 1) = 30(X)

where x(X) is the Euler characteristic of X, o(X) is the signature of X, and c; is the
Chern class of J. Since X is a manifold with boundary we need to determine what c%( )]
really means. To this end, we first recall notice that TX|y = & ® R? and so when ¢(]) is
pulled back to M we see that it equals c1(£) which is simply the Euler class of . Since
we are assuming that e(&) is torsion we note that ¢1(J) on the boundary of X is trivial in
cohomology with rational coefficients. Now note that ¢1(J) € H?(X) which, by Poincaré
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duality, is isomorphic to H2(X, dX) denote the image of ¢1(J) in Hy(X, dX) by c. Consider
the portion of the long exact sequence of the pair (X, dX)

RN Hz(X;@)iF Hz(X,QX;Q)i Hi(0X; Q) — --- .

Since we are assuming that e(&) = 0 in H>(M; Q) = H;(M;Q) we see that dc = 0 and
hence by exactness there is some class ¢’ € Hy(X; Q) for which i(c”) = c. We can now use
the intersection pairing on Hy(X; Q) to compute ¢ - ¢’. We define c%( J) to be this rational
number.

Exercise 1.5.36. Show that ¢’ - ¢’ is the same for any choice of element in Hy(X; Q) that
maps to ¢ under i.

In Theorem 6.2.9 we will give a formula for computing d3(&) if & is described by a
contact surgery diagram.

Lemma 1.5.37. For an oriented plane field & on a closed oriented 3-manifold M, the rational
number d3(&) depends only on M and &.

Proof. Given M and ¢, let (X,]) be as in the definition of d3(&) and let (X’,]’) be an
almost complex manifold with X’ = —M and the complex tangencies to X’ a plane
tield & homotopic to . Notice that W = X U X’ is a closed almost complex manifold.
Hirzebruch and Hopf [HH58] showed that on a closed almost complex manifold one
must have

c%(W) =2x(W) + 3a(W).
We also notice that y(W) = x(X) + x(X’) and 6(W) = (X) + o(X’).

Exercise 1.5.38. Show that C%(W) = c%(]) + c%(]’).
Thus if we set d} = }l(c%(]’) = 2(x(X’) = 1) = 30(X")) then d3(&) = —d; — 1 and this is
independent of the specific X and | chosen to define d3(&). m]

We have the following properties the dz-invariant.

(1) If f: M — M’ is an orientation preserving diffeomorphism then for any plane
field £ on M with torsion Euler class we have d3(f.&) = d3(&).

(2) If £ and &’ are two 2-plane fields on M that have torsion Euler classes are homo-
topic on the 2-skeleton of M, then they are homotopic on all of M if and only if
d3(&) = d3(&').

(3) The number d3(&) is unchanged when the orientation of £ is changed and changes
sign with the orientation on M changes.

Exercise 1.5.39. Prove these properties of d3(&) (or see [Gom98]).
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maybe we should prove some of these facts and facts for I'c?

From these properties and those of I's we see that I'c and d3(&) completely determine
the homotopy class of & (if £ has torsion Euler class so that d3(&) is well defined.

Remark 1.5.40. The invariant d3(&) has many incarnations in the literature. In [Gom98]
Gompf defined the invariant 6(&) that is related to the invariant above by 0(&) = 4d3(&)-2
and in some papers the formula for the invariant d3 does not include the +2. We choose
the current convention for the dz-invariant since it has several nice properties the other
definitions do not have. For example, it is an integer if M is an integral homology sphere,
it is additive under connected sum, and —d3(&) agrees with the grading on the Heegaard
Floer invariant of a contact structure (see Section 1.6.4). Some authors also discuss the
Hopf invariant h(&) of contact structures & on S3, this is simply —d3(0).

1.6. Tight and overtwisted contact structures

In this section we explore the fundamental dichotomy in contact geometry; specifically,
a contact structure can be tight or overtwisted. We will see that overtwisted contact
structures are well-understood and determined by algebraic topology while tight contact
structures are much more mysterious and are closely connected to the topology of the
manifolds that support them.

1.6.1. Tight and overtwisted contact structures. Given a contact manifold (M, &) and
disk D in M is called an overtwisted disk, if the characteristic foliation of D has a unique
singularity on its interior, dD is a leaf in the characteristic foliation, and the other leaves
are asymptotic to the singular point in one direction and dD in the other direction. See
the drawing on the left-hand side of Figure 1.6.26. We could also define D to be an

Figure 1.6.26. Two overtwisted disks.

overtwisted disk if the characteristic foliation of D has a unique singularity in its interior,
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all points of dD are singular points, and the other leaves of the foliation are asymptotic
to the interior singularity in one direction and to dD in the other direction. See on the
right-hand side of Figure 1.6.26.

Exercise 1.6.1. Show that (M, &) admits the first type of overtwisted disk if and only if it
admits the second type of overtwisted disk.

Given this exercise, we will call either of the above types of disk an overtwisted disk.
The contact structure & on M is called overtwisted if there is an overtwisted disk in (M, &),
otherwise the contact structure is called tight.

We first concentrate on overtwisted contact structures. Let Cont,;(M) be the subset
of all contact structures Cont(M) consisting of overtwisted contact structures. It is easy
to see that, as in the proof of Theorem 1.5.22, that the inclusion map i: Cont, (M) —
Dist(M) induces a surjection 11o(Cont,¢(M)) — mo(Dist(M)), but we have even more.

Theorem 1.6.2 (Eliashberg 1989, [Eli89]). For a closed, oriented 3-manifold M the inclusion
map i: Cont,t(M) — Dist(M) induces a bijection

i: mo(Conty(M)) — mo(Dist(M)).

This theorem says that in every homotopy class of plane fields on M there is a unique
overtwisted contact structure up to isotopy. Moreover, from Section 1.5.4 we know that
we can determine if two plane fields are homotopic using algebraic topological infor-
mation. So, the classification of overtwisted contact structures on a 3-manifold is well
understood, but this also implies that overtwisted contact structures are unlikely to be
able to detect any subtle features of a 3-manifold that cannot be seen from the algebraic
topology of the manifold. Following work of Huang [Hual3], we will use the convex
surface theory developed in this book to prove this theorem in Chapter 14, but we note
here that the original proof used quite different techniques and proved quite a bit more.
To state the more general theorem, we take an embedded disk D in M, fix a singular
foliation ¥ on D that would make D an overtwisted disk (for example, either foliation in
Figure 1.6.26) and let Contp(M) be the space of contact structures on M which induces
¥ as the characteristic foliation on D. Let p € D be the interior singular point of # and
set Distp(M) be the space of oriented plane fields on M that are tangent to D at p. With
all in place we state the following remarkable result h-principle due to Eliashberg.

Theorem 1.6.3 (Eliashberg 1989, [Eli89]). For a closed, oriented 3-manifold M the inclusion
map i: Contp(M) — Distp(M) is a weak homotopy equivalence.

Exercise 1.6.4. Show how Theorem 1.6.2 follows from this theorem.

We now move to a discussion of tight contact structures that will be the main focus of
this book. We have seen many overtwisted contact manifolds, but so far have not shown
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that there are any tight contact structures. The first result about tight contact manifolds
was due to Bennequin (though the terminology of tight and overtwisted did not exist at
the time).

Theorem 1.6.5 (Bennequin 1983, [Ben83]). The standard contact structure on S* and R3 is
tight.

This result is fundamental to the subject and can be thought of as the birth of contact
topology. One way to see how fundamental a result this is, is to note that it can be proven
in a variety of different ways. For example, this theorem was proven by

(1) Bennequin using braid theory [Ben83],

(2) Eliashberg and Gromov using holomorphic curves [Eli90a, Gro85],
(3) Kronheimer and Mrowka using Seiberg-Witten theory [?],

(4) Giroux using convex surfaces [Gir00], and

(5) Ozsvath and Szab6 using Heegaard-Floer theory [OS05].

We will give a proof of this result in Chapter 11 based on Giroux’s approach. We mention
that Bennequin proved that for transverse knots K in the standard contact structure on
R3 we have
sl(K) < —x(X)

where L is any oriented surface in R? with boundary K. Notice that, by considering the
positive and negative push-off of a Legendrian knot, and using the relation between their
classical invariants in Lemma 1.4.29, we also gather that for any Legendrian knot L in the
standard contact structure on R® we have

tb(L) + | rot(L)| < —x(X).

Notice that this allows one to obtain bounds on the minimal genus of a surface with
boundary a given knot since —x(X) = 2¢(X)—1 where g(X) is the genus of X. Determining
the minimal genus of a Seifert surface for a knot has historically been a difficult problem
(though with recent advances, in particular with Heegaard Floer theory [OS04b, Ni09],
it is now much more tractable), but we see that contact geometry can give bounds that in
some cases are sharp. This observation shows that a tight contact structure (in particular,
the standard one on R3) can “see” subtle features of smooth topology.

It turns out that one can characterize the tightness of a contact structure in terms of
the Bennequin inequality as follows.

Theorem 1.6.6. A contact manifold (M, &) is a tight contact manifold if and only if for any
Legendrian knot L we have
tb(L) + | rot(L)| < —x(X)

for any orientable surface T with boundary L.
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We note that one implication in this theorem is clear. If (M, &) is overtwisted then it
contains an overtwisted disk D with dD a Legendrian knot with tb = 0. Thus we see that
dD violates the inequality. The other implication is the content of Theorem 3.7.5.

In order to give other examples of tight contact manifolds we make a simple obser-
vation.

Lemma 1.6.7. Suppose (M, &) is a contact manifold and M is some covering space of M. If the
pull-back of & to M is tight, then so is &.

Proof. Suppose D is an overtwisted disk in (M, &), then by the lifting criteria for covering
space i: D — M lifts to an embedding of D into M. Since the contact structure on M
is the pull-back of & we see that the characteristic foliation on D in M is the same as
the characteristic foliation on D in M. Thus the contact structure pulled-back to M is
overtwisted. ]

How contact structures behave under pull-backs to covering spaces is interesting to study.
We will call a contact structure & on M universally tight if its pull-back to the universal
cover of M is tight. If the pull-back of & to a finite cover of M is overtwisted then we say
that & is virtually overtwisted.

Exercise 1.6.8. Show that a contact structure on a closed 3-manifold is either universally
tight or virtually overtwisted, but not both.
Hint: The fundamental group of a 3-manifold is residually finite.

We now see how to construct some universally tight contact structures.

Example 1.6.9. Consider &k = ker(cos(2kmz) dx + sin(2k7z) dy) on R3. Notice that the
diffeomorphisms ¢.(x,y,z) = (x +1,y,2),¢y(x,y,2z) = (x,y +1,2), and ¢:(x,y,z) =
(z,y,z +1) all preserve &x. Thus if we look at the quotient of R3 by the action of Z> gen-
erated by these diffeomorphisms, which yields the 3-torus T3, then it inherits a contact
structure & from 5 k. Since we noted in Exercise 1.1.17 that the 51 is contactomorphic to
the standard contact structure on R3, we see that it is tight. One can similarly show that
all the Ek are contactomorphic to the standard contact structure. Hence all the & on T3
are tight, and in fact, universally tight.

We will see in Section 5.8 that all the & on T? are pairwise distinct contact structures.

Exercise 1.6.10. Show that all the contact structures & on T° are homotopic as plane
fields.

This example shows that tight contact structures behave very differently from overtwisted
contact structures. Via Eliashberg’s classification theorem, in every homotopy class of
plane fields, there is a unique overtwisted contact structure, but for T® one homotopy
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class contains infinitely many distinct tight contact structures. We will see in Section 3.7
that all but finitely many homotopy classes of plane fields on any fixed 3-manifold con-
tain tight contact structures. In fact, some manifolds do not support tight contact struc-
tures at all.

Theorem 1.6.11 (Etnyre and Honda 2001, [EHO01b]). The Poincaré homology sphere with its
opposite orientation does not support a tight contact structure.

We will define the Poincaré homology sphere and prove this theorem, and a general-
ization due to Lisca and Stipsicz [LS07] in Section 9.8.

Example 1.6.12. We now consider the standard contact structure &gy on S3 that comes
from complex tangencies to S® thought of as the unit sphere in C2, see Example 1.1.18.
Notice if u € S! is a unit complex number and (z1, z2) € S3 then (uz1, u*z,) is also in S°.
Now let u,, be a primitive p'" root of unity in S and g positive integer relative prime to
p. Then the map S3 — S3: (21, 22) — (uz1,u9z7) generates a free Z/pZ action on S3. Let
L(p, q) denote the quotient space of S® by this action. We call L(p, ) a lens space. Since
this action is also an action on C? that preserves the complex structure, we see that &4 is
invariant under the action and so descends to a contact structure & on L(p, q). Thus each
lens space has a universally tight contact structure.

We will construct more tight contact structures below, including some virtually over-
twisted ones, but we note here that tight contact structures have been classified on many
3-manifolds. The first classification results were due to Eliashberg who showed that there
is a unique tight contact structure on S® and S'xS? which follows from his classification of
tight contact structures on the 3-ball. We will prove the first two results in Section 5.1 and
the latter result in Section 5.0.1. In Chapter 5 we will also classify tight contact structures
on lens spaces, 3-torus, solid tori, and thickened tori (given appropriate boundary condi-
tions). In Chapter 9, we will discuss the classification of tight contact structures on torus
bundles over the circle, circle bundles over surfaces, and on some small Seifert fibered
spaces. These results constitute the majority of current classification results known, but
there are a few more. We note that in [Ghi05b] Ghiggini classified tight contact structures
on Seifert fibered spaces over T? with one singular fiber, and in [Mas08] classified con-
tact structures with negative twisting on all Seifert fibered spaces except when the base
surface is a sphere. The classification on some hyperbolic manifolds was considered in
[CM20, HKMO03, MN23]. In the first paper, Honda, Kazez, and Mati¢ classified tight con-
tact structures on hyperbolic surface bundles over S! with a certain Chern class, in the
second paper Conway and Min classified contact structures on most manifolds obtained
from surgery on the Figure 8 knot, and in the last paper Min and Nonino classified tight
contact structures on many surgeries on the Whitehead link.
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1.6.2. Sympletic fillings of contact manifolds. One of the main ways to construct tight
contact manifolds is as the boundary of symplectic manifolds. A 2-form @ on a 2n-
dimensional manifold X is called a symplectic form if dw = 0 and " is a volume form
on X, where w" means the n-fold wedge product of @ with itself. Note that w" orients X
and we always use this orientation on X. We call (X, w) a symplectic manifold.

Given a contact 3-manifold (M, &) we say (X, w) is a weak symplectic filling of (M, &) if
dX = M (as oriented manifolds), w|: is an area form, and X is compact. We also say that
(M, &) is weakly fillable or weakly symplectically fillable. Our main interest in fillable contact
structures is the following result.

Theorem 1.6.13 (Gromov and Eliashberg, [E1i90a, Gro85]). If (M, &) is a weakly symplecti-
cally fillable contact manifold, then & is tight.

We will sketch the proof of this theorem in Appendix B. We note that this theorem
immediately proves Theorem 1.6.5 above since B* ¢ C? has symplectic form w = dx; A
dy1 + dxa A dys and (B*, ) is a weak symplectic filling of (S3, &s14).

There are other types of symplectic fillings of a contact manifold. We review two
more types of fillings below and refer the reader to the survey article [Etn98] for various
others. A symplectic manifold (X, w) is said to have convex boundary if there is a vector
field v defined near JdX, points out of X along JX, and satisfies L,w = w (that is the
flow of v expands the form w). Suppose (X, w) has convex boundary and v is the vector
tield showing the boundary is convex, then let @ = 1,w. We note that «a restricted to the
boundary is a contact form for dX. Indeed, near the boundary di,w = @ by the convexity
condition, and so a A da = (1,w) A w is a volume form on JdX. If (M, &) is any contact
manifold contactomorphic to (dX, ker @), then we say that (X, @) is a strong symplectic
filling of (M, &). It is common to refer to a strong symplectic filling as simply a sympectic
filling and only add the word “strong" when trying to contrast with a weak symplectic
filling. It is clear that w = da is positive on ker @ and hence (X, w) is a weak symplectic
filling of (X, ker a). Thus we see that a strong symplectic filling of a contact manifold
is also a weak symplectic filling. We will see in Section 7.3 that strongly symplectically
fillable contact structures have some advantages over weakly fillable contact structures.
Most notably, they can be used to build symplectic manifolds through cut-and-paste con-
structions.

Example 1.6.14. Consider C? with the symplectic form w = dx1Ady1+dxaAdy,. The radial

; = 1y, 2 2 2 2 isfi - i
vector field v = 5 (x1 g tYig, Xz T2 8y2) satisfies L,w = w and is transverse to

the unit sphere S3. Moreover, our discussion in Example 1.1.18 shows that &s4 on S3is
the kernel of 1, . Thus the unit ball B* is a strong symplectic filling of (S, &)

Example 1.6.15. Consider the symplectic manifold (C — {0}) x C with symplectic form
dr AdO + dx A dy where (v, 0) are polar coordinates on C — {0} and (x, y) are Cartesian
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coordinates on C. Letv = (r — 1)% + % (x% + y%) and S!' x S? be the boundary of a
small tubular neighborhood S! x D? of S! = {(r, 0, x, y)|r* + x? + y? < €2}. Notice that v

is transverse to S! x S? and dilates w. Thus (S! X D3, w) is a strong symplectic filling of
(Sl X SZ/ gstd) where &g = ker(LvC‘))-

Exercise 1.6.16. Try to picture the contact structure &4 on S 1y 82,

We mention one more type of symplectic filling of a contact manifold. Suppose X is a
complex manifold and J: TX — TX is the almost complex structure on TX induced from
the complex structure on X (that is | is a bundle automorphism that satisfies | 2 = —idrx).
Given a function ¢p: X — R we can consider the 1-form A(v) = —d¢(Jv). We say that ¢
is J-convex, which is also called strictly pluri-subharmonic, if dA(v, Jv) > 0 for all non-zero
v € TX. The manifold X is called Stein if there exists a J-convex function ¢: X — R such
that ¢ is bounded below and proper (that is the preimage of compact sets is compact).
Stein manifolds are important in complex analysis and have several other definitions, but
this definition is well-suited to us since wy = —d((d¢o)]) is a symplectic form on X.

Exercise 1.6.17. If (X, ¢) is a Stein manifold and x is a regular value of ¢, then M = ¢~!(x)
is a smooth manifold and —d¢ o | is a contact form on M. Moreover, (X, w) is a strong
symplectic filling of (M, kerd¢ o J).

Hint: Consider g4(v, w) = wy(v, Jw). This is a Riemannian metric on X and the gradient
vy of ¢ with respect to gy is an expanding vector field for w.

A Stein domain is a sub-level set of ¢ for a Stein manifold (X, ¢) and a contact mani-
fold (M, &) is called Stein fillable if (M, &) is contactomorphic to a regular level set of ¢. In
summary for a contact structure we have;

Stein fillable = symplectically fillable = weakly symplectically fillable = tight.

In Section 7.1 we will see that none of the notions of fillability are the same and that none
are equivalent to a contact structure being tight.

Exercise 1.6.18. Show that the two examples above of strong fillings of (S3, &stq) and
(S! x S2, &s14) are actually Stein fillings.

While it can be difficult to find strong symplectic fillings of contact manifolds, there
is a systematic way to construct Stein fillings, and hence tight contact structures, as we
will see in the following section.

1.6.3. Constructions of Stein manifolds. There is a simple way to construct Stein mani-
folds in terms of handle decompositions. To describe this, we review handle decomposi-
tions. The reader is referred to [GS99] for a thorough discussion of handlebodies.
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An n-dimensional k-handle is h* = D¥xD"~2 where D' is the I-dimensional unit disk.
We define d_h* to be (dD*) x D"~ and 9, h* to be D¥ x (dD"~%). If X is an n-manifold
with boundary and ¢: d-hF — 9X is an embedding then we say X Uy h* is the result
of attaching a k-handle to X with ¢ where X Ug h* is the quotient space of X U h* where
points x in d_h* are identified with their image ¢(x) in dX. See Figure 1.6.27.

X

d_h*

Figure 1.6.27. A k-handle 1k = D¥ x D" attached to an n-manifolds X.

Exercise 1.6.19. Show how to put a smooth structure on X Uy, h*. Show that the diffeo-
morphism type of X U, h* is unchanged if ¢ is changed by an isotopy.

Since we only need to know the isotopy class of ¢ to understand a handle attachment,
we will determine what data is needed to fix the isotopy class. To this end, consider
A = (dD*) x {p} for some point on the interior of D"*. We call A the attaching sphere of
h* and its image under ¢ is an embedded S¥~! in 9X. We will also call it a (k — 1)-knot
in dX. Notice that the image of d_h* under ¢ will give a framing to the knot ¢(A). (We
discussed framings of an S! in a 3-manifolds, but for a general submanifold it is simply
a fixed trivialization of the normal bundle.)

Exercise 1.6.20. Show that the isotopy type of the attaching map ¢ is determined by the
image of the attaching sphere up to isotopy and the framing on it.

Exercise 1.6.21. Show that if a knotted (k — 1)-sphere K in X, where X is an n-manifold,
with trivial normal bundle, then the set of framings is in one-to-one correspondence with
1x—1(O(n — k)) or if k > 1 then also by mx_1(SO(n — k)).

This last exercise says that one may attach a k-handle to X by identifying a knotted (k—1)-
sphere in dX with a fixed framing. We note that d_h° = 0, so attaching a 0-handle is the
same as taking the disjoint union of X and an n-disk. For a 1-handle the attaching sphere



1.6. Tight and overtwisted contact structures 73

is S” so we must specify two points in dX and this is equivalent, up to isotopy, to picking a
path component for each point. The framings on a 1-handle are indexed by 7o(O(n —1)).
Thus there are two framings. One may check that one of the framings leads to a non-
orientable manifold. So if we wish to attach a 1-handle to an n-manifold so that the result
is oriented, we just need to specify two points in dX. Lastly, we consider 2-handles. The
attaching sphere for a 2-handle is a potentially knotted S! and the framings are parame-
terized by m1(SO(n — 2)). We will be mainly interested in 4-manifolds, so the framings,
in that case, are given by 111(SO(2)) = Z as we noted before. So a 2-handle attached to
a 4-manifold is determined by a knot in its 3-manifold boundary and a framing on the
knot.

We end our brief discussion of handle attachment by considering the effect on the
boundary of a 4-manifold X when a 2-handle is attached. Suppose that ¢: d_h? — X
is the attaching map for the 2-handle that is determined by a knot K in dX and a framing
¥ on K. Then when h? is attached we obtain a manifold X’ and dX’ is obtained from 9X
by removing qb(&-hz) (since it will become part of the interior of X’) and gluing the torus
dh2.

Exercise 1.6.22. Show that dX’ is obtained from dX by an a-Dehn surgery on K where
a is a curve on the boundary of the neighborhood of K determined by the framing ¥ .
In particular, if K is null-homologous then JdX’ is obtained from JX by n-Dehn surgery
on K where 7 is the framing on K (here we are using the Seifert framing to define the 0
framing and others are obtained by twisting that framing some integer number of times).

A handlebody decomposition of X is a sequence of manifolds Xy, X1, . .., Xx where Xy is
the empty set and X; is obtained from X;_; by attaching a k-handle for some k.

If X is a Stein domain, Eliashberg [Eli90b] showed that one may attach a 1-handle
to X and the Stein structure can be extended over the new handle. Similarly, if L is a
Legendrian knot in dX (recall X is a contact manifold) then Eliashberg also showed
that one can attach a 2-handle to X with framing one less than the contact framing, that
is tb(L) — 1 for a null-homologous knot, and extend the Stein structure of the resulting
manifold. Gompf [Gom98] examined Stein manifolds further and showed that one could
draw a handle diagram for one as shown in Figure 1.6.28 and one can use the formulas for
the Thurston-Bennequin invariant and rotation number from Section 1.4.3 for the Legen-
drian knots in this diagram (even though some of them might not be null-homologous).
Combining the work of Eliashberg and Gompf yields the following result.

Theorem 1.6.23 (Eliashberg 1990, [Eli90b] and Gompf 1998, [Gom98]). An oriented 4-
manifold X can be given the structure of a Stein domain if and only if it has a handle decomposition
with only 0, 1, and 2-handles as shown in Figure 1.6.28 and the 2-handles hf are attached to
Legendrian knots L; in the boundary of the union of the 0 and 1-handles with framing tb(L;) — 1.
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4 )
Legendrian
Tangle
- J

Figure 1.6.28. Handlebody diagram for a Stein manifold. Each pair of 3-balls on a hori-
zontal line is the attaching region for a 1-handle. Legendrian knots are shown in blue.

Moreover, the first Chern class of X evaluated on h? is
(c1(X), hi) = rot(L;).

A slightly weaker version of this theorem (for Weinstein manifolds) will be proven in
Section 7.4. For this theorem, we note that if X is a handlebody, then the kth cellular chain
groups of X are generated by the k-handles of X and hence the k!" cellular co-cycles are
determined by their values on these handles.

We note that when attaching a 2-handle to a Legendrian knot L as in the theorem, the
boundary undergoes a (tb(L) — 1)-Dehn surgery and we have a contact structure on the
resulting manifold. More generally given any Legendrian knot L in a contact manifold
(M, &) we can perform (tb(L) — 1)-Dehn surgery on L, and one can uniquely extend the
contact structure on the complement of a neighborhood of L to the surgery torus so that it
is tight on that torus. We will prove, and generalize, this in Section 6.2. The new contact
manifold formed is said to be obtained from (M, &) by Legendrian surgery on L. From the
theorem above, it is clear that any contact manifold obtained from the standard contact
structure on S3 by Legendrian surgery on some links will be Stein fillable and hence tight.
We will use this observation to construct tight contact manifolds below.

We would like to compute the Euler class of the contact structure induced on the
boundary of a Stein domain.
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Exercise 1.6.24. Show that for a Stein manifold X the complex bundle TX restricted to
dX splits as £ ® C where ¢ is contact structure induced on JdX and the trivial bundle C is
spanned by the Reeb vector field.

Thus we see that ¢1(X) = c1(&) + ¢1(C) = c1(&). Since the first Chern class of a rank
1 complex bundle is the same as its Euler class, we see that if (M, &) is obtained from
(S3, &sta) by Legendrian surgery on the link Ly, ..., Lx then the Euler class of £ is given

by

k
(1.6.4) e(&) = Z rot(L;)PD([u])

i=1
where PD(h) means the Poincaré dual of the homology class / and [;] is the homology
class of the meridian y; of L;.
We now construct some more tight contact structures on lens spaces. We defined lens
spaces in Examples 1.6.12 but one can also define a lens space L(p, q) as the result of —%

Dehn surgery on the unknot in S°.

Exercise 1.6.25. Use the Rolfsen twist discussed in the previous section to show that any
non-zero surgery on the unknot is equivalent to surgery on the unknot with surgery
coefficient less than or equal to 1.

Example 1.6.26. Legendrian surgery on L1 in Figure 1.6.29 corresponds to —2 Dehn surgery
on the unknot. Thus we have a tight contact structure on L(2,1) and since the rotation

<R
(3829

Figure 1.6.29. Legendrian knots L; through Lg.

number is 0 we see that its Euler class is 0. Similarly, Legendrian surgery on L, or L3
will yield a tight contact structure on L(3, 1) with the first having Euler class —1 and the
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second having Euler class 1. So we see there are (at least) two distinct contact structures
on L(3, 1). We finally note that Legendrian surgery on Ly, L5, or Ls will give tight contact
structures on L(4, 1) with Euler classes —2, 0, 2 respectively. But note that 2 and -2 are the
same in Z/4Z = H?(L(4,1)) so it is not clear at the moment if all three contact structures
are different. In Section 6.2 we will see how to compute the I invariant and this will
distinguish them but we will use a different method below.

For now, we focus on the contact structure & on L(4, 1) obtained from surgery on Ls.
We will use an argument of Gompf [Gom98] to see that this contact manifold is virtually
overtwisted. Indeed, consider Figure 1.6.30, the blue Legendrian knot L’ is a Legendrian

Figure 1.6.30. On the left is the knot L on which we perform Legendrian surgery and L’ is

L/

a Legendrian knot in the surgered manifold. On the right, the same surgery on L is shown
together with a smooth knot isotopic to L'.

knot in L(4, 1) with the contact structure induced from Legendrian surgery on L. Notice
that L’ bounds an immersed disk as can be seen on the left-hand side of the figure.

Exercise 1.6.27. Show that the framing the disk gives to L’ is 2 larger than the Seifert
framing on L'.

Given the exercise, we note that since tb(L’) = -2 the twisting of the contact planes
relative to the immersed disk is 0. The fundamental group of L(4,1) is generated by a
meridian to L and thus the meridian will unwrap in any cover of L(4, 1). So in the 2-fold
cover of L(4, 1) the immersed disk will lift to two embedded discs (though the disks will
intersect each other). Focusing on one disk in the covering space we see that its boundary
is a Legendrian knot with tb = 0. That is the disk is an overtwisted disk in the covering
space. Thus we see that & is indeed virtuatlly overtwisted.

Exercise 1.6.28. Give a criterion for a contact structure constructed by Legendrian surgery
on a Legendrian link in (S3, &s14) to be virtually overtwisted.
Hint: Consider Legendrian surgery on a Legendrian link that has a component that has
been stabilized positively and negatively. Further, consider the meridian to that compo-
nent. For a general criterion see Proposition 5.1 in [Gom98].
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To construct distinct contact structures on lens spaces, and other manifolds, we will
use the following theorem.

Theorem 1.6.29. Suppose we have two distinct Stein structures on X build with only one 0-
handle and 2-handles. Denote them by J1 and Jo. If c1(J1) # c1(J2), then the contact structures
induced on the boundary of X by these two Stein structures are not isotopic.

This theorem is a corollary of a result of Lisca and Mati¢ [LM97], and we show how
this follows from work of Plamenevskaya [Pla04b] in Heegaard Floer theory in the next
section.

The continued fraction expansion of a rational number —p/q < -11is

1

—-p/q =ao-

al —
1

a...— —
An

with a; < —2. We will denote this by r = [ag, a1, ..., 4,] and discuss it more in Section 4.3.

Lemma 1.6.30. There are at least |(ap+1)(a1 +1) - - - (a,, +1)| tight contact structures on L(p, q)
where —p/q = [ao, ..., ax].

In Section 5.7 we will see that these are all of the tight contact structures.

Proof. The lens space L(p, q) can be obtained by surgery on the unknot, or integer surgery
on a chain of unknots using the slam-dunk move (see Figure 1.5.23 and the surrounding
text for the slam-dunk move). See Figure 1.6.31. The i*" unknot in the chain on the right

-p/q ag a1 ap

Figure 1.6.31. Two surgery pictures of the lens space L(p, q). The left picture is obtained
from the right by a series of slam-dunks starting from the left.

of the figure can be realized by a Legendrian unknot with tb = a; + 1. We can then per-
form Legendrian surgery on the chain of Legendrian unknots to obtain a tight contact
structure on L(p, q) by Theorem 1.6.13. Note that the i*" unknot with framing a; can be
realized by a Legendrian unknot in |a; + 1| ways that are distinguished by their rotation
number (one must stabilize the tb = —1 Legendrian unknot |a; + 2| times and as each
stabilization can be positive or negative there are |a; + 1| ways to do this).

Notice that all the distinct Legendrian realizations of the chain have distinct rotation
numbers on each component of the chain. Thus by Theorem 1.6.23 the Chern classes
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of the Stein manifolds built by attaching 2-handles to these are all different, and thus
Theorem 1.6.29 says that all the contact structures are distinct. m]

It turns out that all the distinct contact structures constructed on lens spaces are in differ-
ent homotopy classes of plane fields.

Exercise 1.6.31. If p is odd show that all the Euler classes of contact structures on lens
spaces constructed above are distinct. If p is even (and larger than 2) then this is not true,
but show that the I'-invariant is distinct for all distinct contact structures. See Section 6.2
for formulas for the I'-invariant. Thus each tight contact structure on a lens space is in a
different Spin® structure.

Above we have seen that unlike for overtwisted contact structures, tight contact struc-
tures do not exist in any homotopy class of plane field. Another distinction is that there
can be multiple distinct contact structures in a fixed Spinc structure as the next example,
which is due to Lisca and Mati¢ [LM97], shows.

Example 1.6.32. Let M, be the manifold obtained from 1/n Dehn surgery on the right-
handed trefoil. See Figure 1.6.32.

i

/\/

k{ﬂ;k
Y

Figure 1.6.32. Two surgery diagrams for the 3-manifold M; shown on the left. On the
right is a Legendrian link on which Legendrian surgery will also produce M;,.

<

b

—-n

Exercise 1.6.33. Show that M,, has the same homology as S°.

Using the slam-dunk move on surgery pictures we see that M, can also be repre-
sented by surgery on the two component link in the bottom left of Figure 1.6.32. On the
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right of the figure, we see a Legendrian link on which Legendrian surgery will give M,,.
Let &k be the contact structures on M,, given by Legendrian surgery on this link. Notice
that there are n — 1 choices for k and the rotation number of the unknot is n —2k. Thus the
n — 1 Stein domains constructed using different choices for k will all have distinct Chern
classes. Thus the contact structures &; must all be distinct from Theorem 1.6.29.

We now show that all the & are homotopic as plane fields. We first note that since
M,, is a homology sphere the I'-invariant is the same (indeed zero) for all the contact
structures. We can compute the dz-invariant using the Stein domain, (W, J), that fills
(M, £k). We compute that ¢1(Jx) = [n — 2k, 0]" and so c%(]k) = 0, the signature o(Wg) =
0 and Euler characteristic x(Wx) = 3 for any k. Thus, their 3-dimensional homotopy
invariants are the same; specifically, they are d3(&x) = %(c% -2x—-30+2) =-1. As
discussed in Section 1.5.4, the I'-invariant and the dz-invariant completely determine the
homotopy class of a plane field, so all of the & are homotopic as plane fields.

The above example shows that there can be arbitrarily many different tight contact
structures in a fixed homotopy class of plane field. We will see in Section 5.8 that the 3-
torus has infinitely many distinct tight contact structures in one homotopy class of plane
field.

1.6.4. Heegaard Floer invariants. Heegaard Floer theory consists of a collection of in-
variants for low-dimensional manifolds. Since its inception, the reach and applicability
of this theory in low-dimensional geometry and topology have been truly spectacular. In
this section we introduce this theory in its simplest form, and briefly explore its connec-
tion to contact geometry. In Appendix C we will provide a more detailed discussion of
the theory.

Let M be closed, connected, oriented 3-manifold equipped with a Spin° structure t.
(See Appendix 1.4 for details Spin‘ structures.) With this data in [0S04d, OS04e] Ozsviath
and Szab¢ introduced the Heegaard Floer homology groups HF(M, t) and HF*(M, 1)
over F = Z/27. The group HF " has the structure of an F[U]-module where U is a formal
variable. Since HF™ is a F[U]-module, we can think of U as an endomorphism of HF*.
There is a natural long exact sequence in homology connecting those groups as follows

... — HE(M, t) — HF*(M, ) -5 HFH(M, 1) — ---

When M is rational homology sphere, or more generally when c1(t) is a torsion class,
the groups HF(M, t) and HF*(M, t) carry a Q-grading, and they split as

HF°(M, 1) = @ HFg, (M, 1).
deQ

here HF? stands for one of HE or HF*.
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Moreover, Heegaard Floer homology is functorial under cobordisms. Namely, for a
spin® cobordism (W, s) from (Mjy, t1) to (My, t2), there is a homomorphism

Fy o HF*(My, t1) = HF(M, 1)

where t; = s|y,. For contact geometric considerations below, it will be useful to consider
the “upside-down cobordism” W. This is the same W but considered as a cobordism
from —M, to —M;.

Suppose now ¢ is a contact structure on M. In [OS05], Ozsvath and Szab6 defined an
element ¢ € HF(-M, tg) which is an isotopy invariant of £. Here t¢ is the spin® structure
induced by the plane field £. This invariant is called the contact invariant. 1If cq(&) is
torsion (for example when M is rational homology sphere), then c(&) is a homogeneous
element of degree —d3(&). We will denote by ¢ (&) the image of ¢(&) under the natural
map HE(-M, te) — HF*(—M, t:) mentioned in the long exact sequence above.

Heegaard Floer theory and 3-dimensional contact topology have had striking inter-
actions since early 2000, and the contact invariant is at the center of this progress and
captures some of the essential features of contact topology. We list some of these.

(1) If (M, &) is overtwisted, then ¢(&) = 0.

(2) If (M, &) is strongly fillable, then ¢(&) # 0.

(B) c*(&) € ker(U).

(4) c(&)isnatural under Stein cobordism. Thatis, if (W, ]) : (M1, &1,ts,) — (M2, &2, t,)

is a Stein cobordism, then the induced homomorphism F; . carries ¢(&2) to ¢(&1)
where s is the canonical spin® structure induced by J.

(5) If (M, &) has positive Giroux torsion, then c¢(§) = 0. In particular, (M, ¢) is

not strongly symplectically fillable. For more on Giroux torsion see Sections 5.8
and 9.3.

The first four items are from the original paper [OS05] of Ozsvath and Szab¢6, and the
last one is due to Ghiggini, Honda and Van Horn-Morris [GHVHM] (the conclusion that
positive Giroux torsion obstructs strong fillability was previously known by work of Gay
[Gay06]).

Next we focus how the contact class can be used to detect different tight contact struc-
tures. This will be achieved by the following results of Plamenevskaya.

Theorem 1.6.34 (Plamenevskaya, 2005, [Pla04b]). Let W be a smooth compact 4-manifold
with boundary M = dX. Let |1, ]2 be two Stein structures on W that induce spin® structures 1,
sp on W and contact structures &1, Ex on M. We puncture W and regard it as a Stein cobordism
from S3 to M. Suppose that s1|pm = s2|m, but the spin® structures s1, 5, are not isomorphic. Then

() B (&) =0fori # ]
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() F% 54(c+(éi)) is a generator of HF*(S®)

An immediate and useful consequence of this is the following result.

Corollary 1.6.35. Let W be a smooth compact 4-manifold with boundary M = 9X. Let |1, >
be two Stein structures on W that induce spin® structures s1, s, on W and contact structures
&1, & on M. If the spin® structures are not isomorphic, then the contact invariants c(&1), c(&2)
are distinct elements of HF (—M).

Note that a pair homotopic (as plane fields) contact structures &; and &, induces the
same spin® structure t, and hence the corresponding contact invariants c(&1), c¢(&2) lie in
HF(-M,t) and have the same grading. The result above says despite this c(&1) and c(&2)
can still be different. Here is a concrete example.

Example 1.6.36. Recall M, is the manifold obtained from 1/n Dehn surgery on the right-
handed trefoil. A list of n — 1 Stein fillable contact structures &, was introduced in Exam-
ple 1.6.32 which are explicitly drawn on the right-hand side of Figure 1.6.32. The handle
description there also shows a Stein domain W,,. Various Legendrian surgeries provide
Stein structure Jx on W, which are pairwise non-homotopic. We show that the contact
structures & have distinct contact invariants, and indeed we show that they generate an
essential piece of HF (—=M,,). To see this, we first claim that one can calculate

7T _ -1
HF(-M,) = Z?+2) ® Z?H)

where the subscripts denote the grading. (See Appendix C for this computation.) Also,
in the computation above we drop the spin® structure info since the manifold M, is an
integral homology sphere, and so has a unique spin°® structure.

Recall the grading of a contact structure is calculated via gr(c(&)) = —d3(&). Now
as calculated in Example 1.6.32 d3(&x) = —1, and hence gr(c(&x)) = 1. So, for each k =
1,---,n — 1, the contact class c(&g) lives in Zzﬁr‘ll) - Iﬁ(—Mn). Since by Theorem 1.6.34,
the ¢(&x) are pairwise distinct and primitive elements. Thus, we obtain that

HE(=M,)(s1) = Z?jll) = span{c(&1),- -+, c(&n-1)}

Next, we examine the contact invariants of tight contact structures on lens spaces
constructed in the previous section.

Example 1.6.37. Consider the lens space L(n,1). Following the recipe in the proof of
Lemma 1.6.30, one can list n — 1 Stein fillable contact structures, say £ where k =
1,---,n =1, on L(n,1). By using Theorem 1.6.34, we can easily see that the contact in-
variants ¢(&) are non-zero and distinct.they are still linearly independent as they live in
groups corresponding to different spin® structures. One can calculate that rankHF(+L(n,1)) =
n, and the classes c(&x) are responsible for 7 —1 of these generators. This arguments apply
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to a general L(p, ). We already noted this by claiming the contact structures had distinct
I-invariants, but we can now see this via Heegaard Floer theory too. Indeed, we will
verify in Chapter 5 that the spin® structures induced by the contact structures listed in
Lemma 1.6.30, and hence their contact invariants are complete invariants of tight contact
structures on L(p, q).

We can significantly expand on the above example. To this end, we recall a crucial
class of 3-manifolds, so called L-spaces, which was motivated by the Heegaard Floer
homology of lens spaces, and its definition is due to Ozsvath and Szabé.

Definition 1.6.38. A rational homology sphere M is an L-space if HF(M, ) = Z for any
t € Spin“(M).

We claim the property at the end of the previous example stays true for tight contact
structures on all L-spaces that we know (and where the question can be answered). To
explain this we consider small Seifert fibered spaces M = M(ep; 11,12, 13) where ¢y € Z
and r; € QN(0, 1), given in Figure 1.6.33. Itis easy to check that M is a rational homology

Figure 1.6.33. Surgery diagram for Seifert fibered space M(eo; 11,12, 13).

sphere if and only if eg + 71 + r2 + r3 # 0. Among those most are L-spaces. For example,
M is an L-space whenever ey # —1,-2, and there are precise criterion [?] that certifies
M is an L-space for other values of ¢g. Combining the results in [Ghi08, GLS06, GLS07,
Mat18, Tos20, Wu06] one obtains the following structural result.

Theorem 1.6.39. Let M = M(eo; 11, 12, 13) be an L-space. Then two tight contact structures &
and & on M are isotopic if and only if their induced spin® structures te, and te, are isomorphic if
and only if their contact invariants c¢(&1) and c(&y) are equal.
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In Section 7.1 in Chapter 7 we will study the relationship between various types of
symplectic fillings and tightness. Heegaard-Floer homology and the contact invariant
will be essential for this discussion.

1.6.5. A Bennequin type bound from Floer homology. Let K C M be a smooth knot.
Assume that M carries a unique spin® structure. In [OS04c], Ozsvéth and Szab6 produces
the complex CFK(M, K) for the pair (M, K) which comes from CF(M) together with a
filtration:

o C Fyt € Fy € --- € CE(M)

by subcomplexes ¥, such that 7, = 0 for m sufficiently small and 7, = CE (M) for
m sufficiently large. Now for a fixed non-zero element x € HF(M) one can define an
integer-valued invariant 7,(M, K) as follows:

Te(M, K) = min{m | x € Im(i,, : Hi(Fy) — HE(M))}

where i,, is induced by the inclusion %, C CE (M). If one specializes to a knot K C s3
then the construction above gives a well-known invariant 7(K) = Tg(S3, K) where © is the
unique non-zero element of HF (S%). The invariant 7(K), which was defined by Ozsvath
and Szab6 [0OS03] and independently by Rasmussen [Ras03], is a concordance invariant.
It has a significant geometric content as it is shown in [OS03] that |t(K)| < g4(K) where
¢4(K) is the minimal genus of a surface in B* with boundary K. Moreover, it is shown by
Plamenevkaya that this invariant captures a Bennequin type bound as follows.

Theorem 1.6.40 (Plamenevskaya 2004, [Pla04al). For a Legendrian knot L C (S3, &stq)

tb(L) + | rot(L)| < 27(L) -1

This is clearly an improvement over the Bennequin bounds since 7(K) < g4(K) <
g(K), where g is the minimal genus of a Seifert surface for K.

1.7. Higher dimensional interlude

While higher dimensional contact manifolds are not the focus of this book, we will now
briefly consider them to put out discussion in a broader context and highlight the differ-
ence between them and contact structures on 3-manifolds. We begin in the first section
with a discussion of basic definitions and see how the “local" theorems differ in higher
dimensions. In the following section we will discuss the existence of contact structures
on higher dimensional manifolds which is quite different than in dimension 3. Finally, in
the last section, we will discuss the tight versus overtwisted dichotomy and its relation
to fillability.
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1.7.1. Definitions and basic results. A contact structure on a (2n + 1)-dimensional manifold
M is a distribution £ of rank 2 (that is a hyperplane field) that is maximally non-integrable.
A more detailed look at the Frobenious Theorem shows that this means that & can be
given (locally) by a 1-form a such that £ = ker & and a A (da)" is never zero. Notice in di-
mension 3 one does not need to say “maximally” non-integrable, but just non-integrable.
In higher dimensions, there can be different degrees of non-integrability, but not in di-
mension 3. Arguing as above, one can easily see that da at a point p, is a non-degenerate
2-form on &, that is the pair (£, da)) is a symplectic vector space (this is simply a vector
space with a non-degenerate pairing).

Exercise 1.7.1. Show that a symplectic vector space must be even-dimensional. (You can
see a proof of this in [MS98].)

Thus we see that a contact structure can only exist on an odd-dimensional manifold since
the hyperplane must be even-dimensional.

We note that any distribution is at least “partially” integrable. For example, given a
distribution, one may take a rank 1 subdistribution which locally is spanned by a vector
field, and a vector field can always be integrated to give flow lines which are integral
submanifolds of the rank 1 distribution. A careful look at the proof of the Frobenious
theorem shows that a distribution of rank 27 on a (2n + 1)-dimensional manifold does
have submanifolds of dimension n tangent to it, but if the distribution is a contact struc-
ture then it cannot have integral submanifold of dimension larger than n. This is what is
meant by “maximally non-integrable". Given a contact manifold (M?"*!, &) a submani-
fold L that is tangent to & and of dimension 7 is called a Legendrian submanifold.

Exercise 1.7.2. Recall in Exercise 1.1.8 it was shown that any 3-manifold that admits a
contact structure must be orientable. Is this true in higher-dimensional contact mani-
folds?

Hint: For a (2n + 1)-manifold consider the parity of n.

We end our discussion of contact structures on all dimensions by considering Reeb
vector fields of a contact structure.

Exercise 1.7.3. Given a non-degenerate 2-form @ on R?**! (that is w" is never zero). Show
there is a unique vector field v, up to scale, such that 1,0 = 0.

Let (M?"*1, &) be a contact manifold and « a contact form for &. There is a unique vector
field R, such that

a(Ry) =1land g, w = 0.
We call R, the Reeb vector field of a and a Reeb vector field for £. The Reeb vector field is
a fundamental object in contact geometry. The study of its dynamics is a central area of
study and we will use it at various points during the rest of the book.
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We now consider differences between “local theorems" in dimension 3 and higher. In
particular, our main theorem, Theorem 1.2.1, becomes the following.

Theorem 1.7.4. Let M be an oriented (2n + 1)-manifold and N C M a compact subset of M.
Suppose &y and &1 are contact structures on M such that

Eoln = &N

and there are contact forms a; for &; such that

da0|50 = f dallgl,

for some non-zero function f. Then there is a neighborhood U’ of N such that the identity map
on U’ is isotopic, relative to N, to a map that is a contactomorphism when restricted to a smaller
neighborhood U of N.

One may easily see that Darboux’s theorem is unchanged in higher dimensions as is
Theorem 1.2.6 concerning neighborhoods of Legendrian submanifolds. In an (2n + 1)-
dimensional contact manifold one also is interested in isotropic submanifolds. These are
submanifolds N of M that are tangent to £ and have dimension less than or equal to n. If
the dimension is less than n then there is a similar neighborhood theorem, but there are
extra hypotheses. See [Gei08].

1.7.2. Existence of contact structures. We now turn to the question of the existence of
contact structures on higher dimensional manifolds. In dimension 3 we know that any
oriented 3-manifold admits a contact structure, see Theorem 1.5.4, and moreover, every
homotopy class of plane field on such a manifold contains a contact structure, see Theo-
rem 1.5.22. This is not true in higher dimensions. There is an obstruction to the existence
of a contact structure. Just as in the 3-dimensional case, we will focus on the case of con-
tact structures that are co-orientable, which is given globally as the kernel of a 1-form.

To understand this obstruction, let & be a co-orientable contact structure on M?"*1
given as the kernel of the 1-form a. Notice that £ and the span of the Reeb vector field
R, split the tangent bundle

TM=¢oR.

In addition, da gives & the structure of a symplectic bundle. It is well-known, [MS95],
that any symplectic bundle has a (unique up to homotopy) complex structure. (Recall, a
complex structure on a bundle E — M is a bundle map J: E — E such that [ = —idg.)
Thus & has structure group U(n) and hence TM has structure group U(n) ® I. See Ap-
pendix 1.1 for a reminder about structure groups. We say an almost contact structure on
M?*1 is a reduction of the structure group of TM to U(n) @[ and two such structures are
homotopic if there is a 1-parameter family of reductions connecting them. It is easy to see
that this definition is equivalent to the existence of a pair (1, J) where 1) is a hyperplane
tield in TM and ] is a complex structure on 7.



86 1. Introduction to contact geometry in dimension 3

Exercise 1.7.5. Show an almost contact structure on M can equivalently be defined by
a pair (a, @) where a is a non-singular 1-form and w is a 2-form on M that induces a
symplectic structructure on 1 = ker a. Given two such pairs (a, w) and (a’, @’) when do
they define homotopic almost contact structures?

Clearly from the discussion above for M to admit a contact structure it must admit an
almost contact structure. We observe that there are simple bundle theoretic obstructions
to admitting an almost contact structure. For example, notice that given an almost contact
structure (1, J) on M we clearly have that the Stiefel-Whitney classes of TM and ) agree

wi(TM) = wi(n)

since the total Stiefel-Whitney class of the trivial bundle is 1. Moreover, we know that
for a complex bundle, the even Stiefel-Whitney classes are the mod 2 reduction of the
Chern classes. Thus if, for example, w2(M) € H(M; Z/2Z) does not have an integral lift,
then M does not admit an almost contact structure and hence it does not admit a contact
structure.

Exercise 1.7.6. Show that any oriented 3-manifold admits an almost contact structure
and the almost contact structures are in one-to-one correspondence with the homotopy
classes of oriented plane fields. (Note that this is why we did not need to discuss almost
contact structures in dimension three since for 3-manifolds they are just homotopy classes
of oriented plane fields.)

Exercise 1.7.7. Show that an oriented 5-manifold M admits an almost contact structure
if and only if wy(M) admits an integral lift. Moreover, show that two almost contact
structures are homotopic if and only if they are homotopic on the 2-skeleton of M. Finally,
if H2(M; Z) has no 2-torsion, then the homotopy type of the almost contact structure is
determined by its first Chern class.

Hint: Show that M admitting an almost contact structure is equivalent to there being a
section of the SO(5)/U(2) bundle associated to TM and then use the fact that SO(5)/U(2)
is homotopy equivalent to CP3, see [Gei08].

Exercise 1.7.8. Show that the simply connected 5-manifold SU(3)/SO(3) does not have
an almost contact structure. Should we give a hint?

In general, the existence of almost contact structures in higher dimensions is a purely
algebraic topological question [Mas61].

So now the real question about the existence of contact structures in higher dimen-
sions is when an almost contact structure on a manifold homotopic, through almost con-
tact structures, to a contact structure.

There is a long history of partial results along these lines. For example in 1991 Geiges
[Gei91] showed that every almost contact structure on a simply connected 5-manifold is
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homotopic to a contact structure and in 1998 Geiges and Thomas [GT98] gave a partial
answer for 5-manifolds with 711 = Z/27. In 1993, The case of “highly connected" man-
ifolds in all dimensions was addressed by Geiges [Gei93]. But in general, the existence
question remained elusive. For example, up until 2002 it was not known if tori T"*!
for n > 2 admitted contact structures! (In 1979 Lutz [Lut79] showed that T° admitted a
contact structure, but for over 20 years nothing was known about T”.) In 2002, Bourgeois
[Bou02] showed that if M admits a contact structure then so does M x T?2.

The first general result was in 2015 when Casals, Pancholi, and Presas [CPP15] showed
that any almost contact structure on a 5-manifold is homotopic to a contact structure. The
general existence question was answered in 2015 by Borman, Eliashberg, and Murphy
[BEM15]. In that paper they defined a notion of overtwisted contact structures in higher
dimensions and showed.

Theorem 1.7.9 (Borman, Eliashberg, and Murphy 2015, [BEM15]). Let (1, ]) be an almost
contact structure on a manifold M. Then there is a homotopy of (n, ]) through almost contact
structures to an overtwisted contact structure & on M. Moreover, any other contact structure &g
that is homotopic to & through almost contact structure and is overtwisted is isotopic to &.

Just as Theorem 1.5.22 did in dimension 3, this theorem completely answers the
general existence question in higher dimensions. The theorem parallels Eliashberg’s 3-
dimensional overtwisted theorem, Theorem 1.6.2. As, for the tight versus overtwisted
dichotomy we will see in the next section that there are actually significant differences
between dimension 3 and higher.

Before moving on to the next section we briefly discuss the definition of overtwisted
contact structures in higher dimensions. The original definition in [BEM15] is somewhat
more complicated than the definition in dimension 3 given above, but there are many
alternate characterizations of overtwistedness that we now discuss. In [CMP19] Casals,
Murphy, and Presas gave several “geometric” interpretations of a contact structure be-
ing overtwisted. The simplest criterion for (M?"*1, &) being overtwisted is that there is a
contact embedding of (R3 X C"2, ker(a, + Ast4)) where a,; is a contact 1-form for any
overtwisted contact structure on R3, such as the “standard" overtwisted contact struc-
ture in Example 1.1.11 (3), and A4 is the Liouville form on C"2 which in coordinate
(X1, Y1, .., Xn-2, Yn—2) can be expressed by

n-=2

1
Astd = 5 le(xi dy; — y; dx;).

There are several other simple characterizations of overtwisted contact structures, but
most involve “loose Legendrian submanifolds" introduced by Murphy in [Murl2] or
open book decompositions, which we have not defined yet. So we refer the reader to
the paper [CMP19] for more details.
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1.7.3. Tight, overtwisted, and fillable contact structures. Just as in dimension 3, we will
say a contact structure £ on a (2n + 1)-dimensional manifold M is tight if it is not over-
twisted.

We can use symplectic fillings to produce tight contact structures. Just as in dimen-
sion 2 we say a symplectic manifold (X, @) of dimension 2n +2 is a strong symplectic filling
(or just symplectic filling) of a contact manifold (M, &), if M is the oriented boundary of X
and there is a vector field v defined near dX = M such that v points out of X, Lyw = w,
and (,w restricted to M is a contact form for &. There is also a notion of weak symplectic
filling in higher dimensions, but it is a bit more complicated than in dimension 3. Ac-
cording to [MNW13], we say a symplectic manifold (X, w) is a weak symplectic filling of
the contact manifold (M, &) if M is the oriented boundary of M and

a/\dozk/\wg_k>0

forallk =0,...,n, where w¢ is w restricted to the contact hyperplanes &. In [MNW13] it
was shown that this definition is equivalent to (M, &) being the tame pseudoconvex bound-
ary of (X, ]) for some almost complex structure on X (that is a complex structure on TX).
This means that £ is the set of J-complex tangencies

E=TMnNJTM,

w(w, Jw) > 0 for all non-zero vectors w (we say that | is an w-tame complex structure),
and for any 1-form a with kernel £ we have da(w, jw) > 0 for any non-zero w € &. One
also says of this last

Exercise 1.7.10. Show a strongly symplectic filling of (M, &) is also a weak symplectic
filling.

It is much more difficult to show that there are weakly fillable contact structures in
high dimensions that cannot be strongly fillable. For such examples, see [MNW13]. One
may also prove that fillable implies tight in higher dimensions.

Theorem 1.7.11 (Niederkriiger, [Nie06]). If (M, &) is a weakly symplectically fillable contact
manifold, then & is tight.

As a precursor to the notion of overtwisted in higher dimensions Niederkriiger de-
tined the notion of a plastikstufe for high-dimensional contact manifolds. This was a par-
ticular type of “parameterized” overtwisted disk. He then proved that a contact manifold
that contained a plastikstufe could not be symplectically filled. Then in [BEM15] it was
shown that any overtwisted manifold admits a plastikstufe. Combining these results
yields the above theorem.

Recall that in our discussion about symplectic fillability and tightness in the previous
section, we noted that, while there are tight contact structures that are not symplectically
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fillable, they are relatively rare. In particular, they do not exist on S, and if they exist,
there are only finitely many of them. In the work of Bowden, Gironella, Moreno, and
Zhou we see a striking difference between dimensions 3 and higher.

Theorem 1.7.12 (Bowden, Gironella, Moreno, and Zhou, [BGMZ24]). If M is a contact
manifold of dimension at least 7 that admits a Stein fillable contact structure, then M admits a
tight contact structure in the same homotopy class of almost contact structure that is not sym-
plectically fillable. If the dimension of at least 11 and the first Chern class of the contact structure
is torsion, then M admits infinitely many distinct tight contact structures that are not symplec-
tically fillable.

There is an analog to the first part of the theorem when M has dimension 5 if the first
Chern class of the contact structure is zero.

This theorem is striking for several reasons. Firstly, it shows that many homotopy
classes of almost contact structures contain infinitely many distinct tight contact struc-
tures, whereas in dimension 3 there can be at most finitely many. In addition, the result
shows that tight, but not strongly fillable contact structures are abundant in higher di-
mensions, which again is not possible in dimension 3.

1.8. History and applications

1.8.1. Geometric optics. Add section
1.8.2. Thermodynamics. Add section
1.8.3. Classical mechanics. Add section

1.8.4. Jet spaces and partial differential equations. One of the precursors to modern
contact geometry is contained in the work of Sophus Lie. In [?], Lie introduced the notion
of a berhrungstransformation in his study of partial differential equations. Even though the
notion of a contact structure had not yet been formalized, Lie’s berhrungstransformation
are contactomorphism, and his work can nicely be described in terms of contact geometry
and jet spaces. We explore this idea in this section.

Given any function

E: R2n+1 SR
we get a first-order partial differential equation by looking for functions u: R" — R that
satisfy
) d
(1.8.5) Flxg, ..., xn, 22 " oul=0

— .., =—,u
dx1” T ox,
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For example the partial differential equation

du du ’ du 2_ > o
555 (x y)(g) =x"+y“+3

can be written as above where

F(x1,%2, Y1, ¥2,2) = 5y1y2 — (X3 = x2)y3 — x3 — x5 - 3.
That is finding a function u: R? — R satisfying the equation is the same as finding u
satisfying F (x, v, %, g—;, u) =0.

To continue our story we need to introduce the jet space of a manifold. This is a
natural contact manifold associated with any manifold. If M is an n-manifold then the
cotangent bundle T*M is a 2n-manifold that has a natural exact symplectic structure.
Specifically, there is a unique 1-form A on T*M that is characterized by the property that
for any 1-form  on M, recall f: M — T*M is a section, we have

BA=p.
If we choose local coordinates (41, ..., §,) on some open set U in M, then we get local
coordinates (41,...,qn,P1,--.,Pn) on T*U C T*M. In these coordinates we can write A

as "
A= Z pi dqi.
i=1

Exercise 1.8.1. Show that A exists and that A has the claimed local expression.

We now define the jet space of M, or more precisely the 1-jet space of M, to be J}{(M) =
T*M & R. This is an R"*! bundle over M (the fiber at any point x € M is T} ® R). Let
n: J{(M) — M be the bundle projection map. Consider the 1-form

a=dt—A
where t is the coordinate on R.

Exercise 1.8.2. Show that « is a contact form on J'(M).
Hint: Check this in local coordinate using the above formula for A.

We note that J1(R!) is simply R® with its standard contact structure from Exam-
ple 1.1.11(1), and more generally we call the contact structure on J!(R") the standard
contact structure on R2**1,

Now given a function f: M — R we can consider its 1-jet, j1(f). This is the section
of J{(M) — M given by
HOG) = @dfe, f(2)),
that is, the component of j(f) in T; M is just the differential of f evaluated at x and the
component in R is just the value of the function f(x). Notice that in local coordinates,
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j1(f) “remembers" the value of f and the value of all its first derivatives. In particular, for
functions f: R" - Rand g: R" — R, the 1jets of f and g agree at x if and only if their
first order Taylor polynomials at x agree. So we can think of j!(f) as a generalization of
the first-order Taylor polynomial of f.

We now note that

GUP) '@ =d(f)-df'A=df —df =0.
Thus the image of j!(f) is a Legendrian submanifold of J1(M).

Exercise 1.8.3. Show that a section 6: M — J!(M) parameterizes a Legendrian subman-
ifold if and only if ¢ is j!(f) for some function f: M — R.

Returning to partial differential equations, we note that the function F: R?>"*! — R
can be thought of as a function F: JY(R) — R. Then from the above discussion, it should
be clear that a function u: R” — R is a solution to the partial differential equation given
in Equation 1.8.5 if and only if F o j1(u) = 0. Thus solving Equation 1.8.5 is equivalent to
finding a section 0: R" — J(R") such that

(1) o(R") is Legendrian and
(2) Foo=0.

Thus we have turned the analytic problem of solving the Partial Differential Equation 1.8.5
into solving two other problems. The first is geometric while the second is algebraic (if
F is an algebraic function). Sophus Lie observed that one could try to use this separation
to simplify the problem. Specifically, he noticed that one could look for a contactomor-
phism ¢ of J(R") that simplifies the equation Foo = 0. If we could solve this “simplified"
problem, then we could use ¢ to get a solution of the original problem.

FIND A GOOD EXAMPLE TO DEOMONSTRATE
1.8.5. The unit cotangent bundle and Riemannian geometry. Add section

1.8.6. Fluid dynamics. In [EG00a] the first author and Ghrist introduced the use of con-
tact geometry into the study of fluid dynamics and studied the connection extensively in
[EGO0D, ?, EG05]. To understand this connection we recall that if v is a time-dependent
vector field on a manifold M with a Riemannian metric g, then we say v satisfies the
Euler equations for a perfect incompressible fluid if

dv
% Vo=V
(1.8.6) oF TYeU =TV
Lou=0.

where V,v is the covariant derivative of v along v, p is the “pressure” of the system,
u is a volume form (usually assumed to be associated to g), L,u is the Lie derivative
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of the volume form p in the direction of v, and Vp is the gradient of p. The second
equation says that v is incompressible (that is preserves volume) and the first equation is
a simplification of the Navier-Stokes equation for a perfect (no viscosity) incompressible
fluid flow.

We will primarily be concerned with steady solutions to the Euler equations, that is
solutions that do not depend on time. Below is a sampling of results that can be proven
with contact geometry. First we have the existence of non-singular steady solutions.

Theorem 1.8.4 (Etnyre and Ghrist 2000, [EG00a]). Every closed oriented 3-manifold admits
smooth, steady, nonsingular solutions to the Euler equations for a perfect incompressible fluid.

Furthermore, every compact domain in R® with toroidal boundary components likewise ad-
mits such solutions that leave the boundaries invariant.

We can also guarantee certain properties about solutions to the Euler equations. In
the theorems below C“ means real analytic.

Theorem 1.8.5 (Etnyre and Ghrist 2000 and 2002, [EG00a, EG02]). Every C steady solution
to the Euler equations for a perfect incompressible fluid on S3 (in any metric on S®) possesses a
closed flowline. The same is true for flows on the solid torus if the flow is tangent to the boundary.

To give some perspective on this result we recall the famous Seifert conjecture which
asks if every CF non-zero vector field on 53 must possess a closed orbit. This conjecture
is known to be false for k = 1 by Schweitzer [Sch74], for k = 2 by Harrison [Har88], for
k = oo by K. Kuperberg [Kup94], and for real-analytic vector fields by G. Kuperberg and
K. Kuperberg [KK96]. There is also a C! counterexample for volume-preserving fields
due to G. Kuperberg [Kup96]. Given these results, one is left to wonder what “regularity”
is necessary to force the flow of a vector field to admit a periodic orbit (or does one ever
expect a vector field to have a periodic orbit). The theorem above shows that if a vector
field is real-analytic and also satisfies the time-independent Euler equations then it must
have a closed orbit.

We now turn to the question of what are the possible periodic orbits of a steady fluid
flow.

Theorem 1.8.6 (Etnyre and Ghrist 2000, [EG00b]). For some C® Riemannian structure on
S3 (or R®), there exists a C% nonvanishing steady Euler field whose periodic flow lines realize all
knot and link types.

If one is interested in flows with lower regularity, we still have “forcing results". Be-
low we will define Beltrami fields these are special steady solutions to the Euler equations.

Theorem 1.8.7 (Etnyre and Ghrist 2001, [EGO01]). There is a computable index I that can be
associated with a Beltrami field on a solid torus, and any C? or smoother non-vanishing Beltrami
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field on an invariant Riemannian solid torus having nonzero index I possesses a contractible
closed orbit.

We note that one can also prove results related to time-dependent solutions to the
Euler equations. Here a solution time-independent solution to the Euler equations is,
roughly, called “unstable" if when it is (appropriately) perturbed the corresponding so-
lution to the time-dependent Euler equations has unbounded growth in the energy norm
(see [EGO05] for a more precise definition). Before stating the result, we note, as discussed
below, that a vector field that is an eigenfield for the curl operator will be a special case
of a Beltrami field and hence a steady solution to the Euler equations.

Theorem 1.8.8 (Etnyre and Ghrist 2005, [EGO05]). For a generic set of C" Riemannian metrics
on the 3-torus (for each 2 < r < o), all of the curl-eigenfield solutions to the Euler equations
(with nonzero eigenvalue) are linearly hydrodynamically unstable in the energy norm.

To see the connection to contact geometry we will reformulate Equations 1.8.6, using
the metric g, in terms of differential forms. Recall there is a one-to-one correspondence
between vector fields and 1-forms using the metric g. Specifically, if v is a vector field
then (,g is a 1-form, where (,¢ is the contraction of v into the 2-tensor g. Consulting
[AMRSS, Section 8.2] we see that

1
08 = Lo(tog) + 5a(lo])2.

Recalling that Vf for a real-valued function f is the unique vector field that satisfies
tyfg = df , and converting Equations 1.8.6 into 1-forms we have

iy g 3 1 ’
o + .Lv(ng) =—d (P - i”z}” ) .

We now recall Cartan’s formula [AMRS88, Theorem 6.4.8] which says £, = t,d + dt, and
see the above equation becomes

dpg 2 3 1 ’
5+ dllolP) + s(dtcg) == = 5lolP).

Simplifying yields
g
ot

where P = p + %||v||2 is called the reduced pressure. The particular function P is not im-
portant and we will say v satisfies the Euler equations if it satisfies the previous equation
and L,u = 0.

Finally, we would like to reformulate this last equation in terms of standard notions

(1.8.7) + 1p(d1pg) = —dP

from vector calculus generalized to a Riemannian manifold. To this end, we define the



94 1. Introduction to contact geometry in dimension 3

curl of a vector field v with respect to a metric ¢ and volume form u (again, we usually
take u to be the volume form associated to g) to be the unique vector field V X v satisfying

tyxolt = d(1p8)
and the cross-product of two vector field v and w to be the unique vector field v X w that
satisfies

loxw8 = lylwl.
Exercise 1.8.9. If M = R3, g is the standard flat metric on R3, and u is the standard

volume form on R3, then check that the curl of a vector field and the cross-product of
vector fields defined above agree with their standard definition in this case.

Exercise 1.8.10. Show that v X w is orthogonal to v and w.

Now we can rewrite Equation 1.8.7 as

o
ot

Recall above we are mainly considering steady solutions to the Euler equations so v does

+ovx(Vxv)=-VP

not depend on t. Thus we are concerned with
(1.8.8) v X (VXv)=-VP.

Notice if VP = 0 then we must have that v and V X v are parallel. We call a vector field v a
Beltrami field if V X v = fov for some function f and we say the field is a rotational Beltrami
field if f is never 0. If f is constant then v is a curl eigenfield. We will call a vector field
non-singular if it is never zero.

We call a vector field v on a 3-manifold M Reeb-like if there is some contact form «
on M and v = hR, where R, is the Reeb field for a and & is a positive function (this can
equivalently be stated as (,da = 0 and a(v) > 0). We are now ready for the main theorem
connecting Beltrami fields to contact geometry.

Theorem 1.8.11. On a Riemannian 3-manifold M a non-singular rotational Beltrami field is a
Reeb-like vector field for some contact form on M. Conversely, any never-zero rescaling of a Reeb
vector field is a volume-preserving, rotational Beltrami field in some Riemannian metric on M.

Proof. Suppose that v is a rotational Beltrami field for a metric § on M with volume
form p. Then let a = 1,g. Notice that the equation V X v = fv for some f translates into
flop =diyg = da and we have

anNda = f(lu8) A Lol

At a given point x € M let uy, w, be vectors in T, M that are orthogonal to v(x) and
together with v(x) span T,(M). Then notice

a A da(v(x), iy, 0x) = fllo@)|P0(@(x), ur, wy) # 0
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and thus a A da is a volume form on M. That is « is a contact form and
tda = flyl,w =0

so v is Reeb-like for a.

Conversely, given a Reeb vector field X on M and positive function f it is not hard
to construct a Riemannian metric for which f X is a rotational Beltrami filed. See the next
section for this construction. m]

Notice that from the previous theorem we see that any Reeb vector field on a 3-manifold
will solve the Euler equations for some Riemannian metric on the manifold. This proves
Theorem 1.8.4 since we know any oriented 3-manifold admits a contact structure by The-
orem 1.5.4.

As for Theorem 1.8.5 we consider the case of a steady (recall, this means time-independent)
solution v to the Euler equations on S3 with some metric. If v has any singular points,
then it has flow lines that are constant (hence periodic with any period). We now recall a
theorem of Arnold.

Theorem 1.8.12 (Arnold 1966, [Arn66]). Let v be a real-analytic steady nonsingular solution
to the Euler equations on a closed Riemannian 3-manifold M. If v is not everywhere parallel to its
curl, there exists a compact real-analytic subset S in M of codimension 1 or more which splits M
into a finite collection of T> X R. Each T? x {x} is invariant under the flow of v and the flow is
conjugate to a linear flow.

A sketch of the proof is as follows. Since v satisfies Equation 1.8.8 we know that P is
an integral for v. That is the flow lines of v are constrained to lie on level sets of P (since
c is orthogonal to VP). Since P is real analytic we know that the singular set S (that is the
pre-image of all the singular values) must be of codimension at least 1. Now for a point
outside of S it sits on a pre-image that is a surface in M and since there is a non-zero
vector field on it (that is v) it must be a torus.

Proof of Theorem 1.8.5. We consider the case when the reduced pressure P is not con-
stant. We then have the real-analytic set S from Aronld’s theorem. By real analyticity we
know S is a Whitney stratified set of codimension at least 1, [GMS88]. This says that S is
the union of compact manifolds of dimension 0, 1, and 2, that come together in simple
ways. It is not hard to see that S and its strata are preserved by the flow. If there are no 0
or 1 strata, then S® will be foliated by tori but this is not possible.

Exercise 1.8.13. Show that S3 cannot be foliated by tori.

It is not hard to see that there must be 1-strata and that these will be closed orbits in
the flow.
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We now need to consider the case when P is contact. As noted above this will imply
that V X v = fo for some function f. If f is non-zero then we can use Theorem 1.8.11 to
find a contact structure such that v is a Reeb-like vector field for the contact structure. We
now have the desired periodic orbit by a famous theorem of Hofer.

Theorem 1.8.14 (Hofer 1993, [Hof93]). The flow of any Reeb vector field on S3 has a closed
orbit.

The proof of this theorem involves pseudo-holomorphic curves and will be sketched
in Appendix B.

We are left to consider the case when f is zero at some point of S3. If f is not constant
then we claim that f is an integral of v and hence this case follows just like the case when
P was an integral. To see that f is an integral recall that the divergence of v is zero:
di,u = 0and so

df A pp = d(tpop) = d(tvxop) = d(diyg) = 0.
Since df A p is a 4-form it must be zero so the above equation is equivalent to df (v)u = 0;
in particular, f is constant on flow lines of v.

We finally consider the case when f = 0. Notice that this tells us that the 1-form
a = 1,g is closed. From our discussion in Section 1.1 we know that the kernel of a
defines a foliation on S® and v is transverse to this foliation. A theorem of Novikov
[Nov65] implies that this foliation must contain a leaf that is a torus, but this contradicts
the fact that v is a non-singular volume-preserving flow transverse to the leaves of the
foliation. m]

add some recent papers building on the above + hydrodynamic instability

1.8.7. More connections to Riemannian geometry. In Section 1.8.5 we saw that the con-
tact geometry of a unit co-tangent bundle was closely related to Riemannian geometry
through the geodesic flow. Here we would like to focus on other connections between
contact geometry and Riemannian geometry. For context recall that in dimension 3 there
is a profound connection between Riemannian geometry and topology as was formal-
ized in Thurston’s geometrization conjecture [Thu82], which was established in the early
2000 by Perelman [?]. On the other hand, we will see in the next section that there are
subtle connections between contact structures and the topology of 3-manifolds. Given
these connections, one might expect there to be important connections between contact
structure and Riemannian geometry. Here we will discuss some interesting questions in
Riemmanian geometry that arise from contact geometry and how a Riemannian metric
can influence important properties of a contact structure.

To begin our discussion we assume that the reader is familiar with the basic notation
from Riemannian geometry, as can be found in [Pet16], but will briefly recall a few facts
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and notation. Given a Riemannian manifold (M, g) one can consider the exponential map
exp,,: M —- M

that sends a vector v # 0 to y,(1) where y; is the geodesic through p with tangent vector
v at p and sends the zero vector 0 to p (here exp, might not be defined for all v € T, M,
but will be defined for a neighborhood of 0 € T,M). This map is smooth and a diffeo-
morphism from some open set about 0 to an open neighborhood of p. Given a plane
0 C T,M we let ; be the image of a neighborhood of 0 in ¢ under the map exp,,. The
metric ¢ induces a metric on L, and we define the sectional curvature of ¢ to be the Gauss
curvature of the surface X at p its induced metric. We denote this number by (o).

We recall that all the various “curvatures" of (M, g) — such as the curvature tensor,
the Ricci curvature, and the scalar curvature — can be computed from «.

The first hope one might have to relate Riemannian geometry and contact geometry
is that the sectional curvature of the contact planes would control something about the
contact geometry (like whether the contact structure is tight or overtwisted). This is not
the case.

Theorem 1.8.15 (Krouglov 2008, [Kro08]). Given any (cooriented) contact structure & on a
closed 3-manifold M and any strictly negative function f, there is a weakly compatible metric on
M such that the sectional curvatures of & are given by f. If the Euler class of & is zero then any
function f may be realized as the sectional curvature of & for some metric.

We will define “weakly compatible metrics" below, but the point of the theorem is
that the sectional curvatures of a contact structure cannot tell us anything interesting
about the contact structure (even for nice, that is compatible, metrics). The proof of this
theorem is done via an explicit local alteration of the metric.

To move forward, we discuss a way to use a metric to determine if a plane field
is a contact structure. To this end, let £ be any plane field and consider the following
characterization of £ being a contact structure.

Exercise 1.8.16. Show that & is integrable if and only if the flow of any (possibly local)
non-zero vector field tangent to & preserves &.
Hint: Recall the Frobenius theorem, Theorem 1.1.4.

Now given a Riemannian metric g on M let u and v be (possibly locally defined)
sections of £ that provide an orthonormal basis for £ and let 7 be the oriented unit normal
to £&. We would like to measure how much v “twists" as we move along the flow of u.
This is given by the quantity

§((p—t)v, 1)
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where ¢; is the flow of 1, and we can extract an angle out of this

o _g((cﬁ_t)w,n))
0(¢) = cos ( ool )

Notice that for each point p € M this gives a path of angles. We can now define 6’(p) to
be the derivative of this path at 0. We call 6’(p) the instantaneous rotation of & at p.

Exercise 1.8.17. Show that ¢ is a (positive) contact structure if and only if 0 is a positive
function.

Exercise 1.8.18. Show that 0’ only depends on & and g (and not the choice of basis u, v).

So we have a quantity 0’ that only depends on g and & and can tell us if £ is a contact
structure or not! We have the following useful theorem.

Theorem 1.8.19 (Etnyre, Komendarczyk, and Massot 2012, [EKM12]). Let g be a Riemann-
ian metric and & = ker a a (positive) contact structure on M. Let R, be the Reeb vector field
associated to a. The following are equivalent.

(1) The Reeb vector field R, is orthogonal to &.

(2) There is a positive function 0" on M such that +da = 0’«r, where *da is the Hodge star
of the two form da.

(3) There is a positive function 6" on M such that

§(1,0) = £ da(u, §(0) + p* a(w)a(o),

where p = ||Ry||, J: & — & is a complex structure on & given by rotation by 1/2, and
¢: TM — & is the composition of the projection TM — & along the line field spanned
by Ry and J.

Exercise 1.8.20. Prove this theorem.

If ¢ and a satisfy any of the equivalent items in the theorem above we say that g and
& are weakly compatible. If in addition ||R,|| = 1 and 6’ is a positive constant then we say
that ¢ and & are compatible (or strongly compatible).

In [CHS85], Chern and Hamilton defined compatibility between a metric and a contact
structure as above, but they demanded that 6’ = 2. We find the above choice more nat-
ural as it allows constant rescaling of the metric (which is quite natural in a Riemannian
setting) and also accommodates discrepancies stemming from the different conventions
in the definition of the exterior product of differential forms and their impact on the defi-
nition of the exterior derivative. Chern and Hamilton were studying various Riemannian
geometric conditions associated with compatible metrics. Specifically, they were study-
ing the Webster curvature of compatible metrics. Given a Riemannian metric ¢ on a 3-
manifold M and a contact form a with Reeb field R, we can define the Webster curvature
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to be
W = é(zk(e) (&) + k(&) +4)

where we have, locally, chosen orthonormal vectors v and v; that span & and &; is the
span of R, and v;. So W is a “weighted average of sectional curvatures". The main
theorem in [CHS85] is the following. Check this definition and the conventions in Chern
and Hamilton’s paper

Theorem 1.8.21 (Chern and Hamilton 1985, [CH85]). Every contact structure on a closed
3-manifold admits a contact form and a compatible Riemannian metric whose Webster curvature
is either a constant less than or equal to O or strictly positive.

This result can be thought of as a contact geometric version of the famous and well-
studied Yamabe problem that asks when a manifold admits a metric with constant sec-
tional curvature, see [LP87]. There has been a great deal of further study of the Riemann-
ian geometric properties of metrics compatible with contact structures, see [Bla02]®, but
the other direction, namely contact geometric properties of contact structures compatible
with Riemannian metrics, is less explored. Below we discuss a few known results. The
first global contact geometric result was the following.

Theorem 1.8.22 (Etnyre, Komendarczyk, Massot 2012, [EKM12]). Let (M, &) be a closed
contact manifold and g a Riemannian metric compatible with . If there is a constant C > 0 such
that

4

for all points p € M and planes 1 in T, M, then the pull-back of & to the universal cover of M is
the tight contact structure on S°.

The constant 4/9 in the theorem was improved to 1/4 in [GH16]. Recall the classical
sphere theorem in Riemannian geometry says that if a simply connected manifold ad-
mits a metric whose sectional curvatures are pinched as indicated in the theorem (but
with constant 1/4 instead of 4/9), then the manifold must be the sphere. We can think of
this as saying the curvature of a metric that a manifold supports can control the topol-
ogy of the manifold or, conversely, that the topology of a manifold can restrict the types
of metrics supported by the manifold. The theorem above says the same thing for met-
rics compatible with contact structures. In particular, the theorem gives a Riemannian
criterion that implies a contact structure must be tight (in fact, universally tight).

The idea behind the proof of this theorem rests on a “Darboux theorem with esti-
mates" and the relation between contact and complex convexity. Given a metric ¢ on a

5We note that notation and conventions in this book and the associated literature differ from those that are standard
in the contact geometry community. For example, they usually talk about negative contact structures not positive ones.
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manifold M the geodesic ball of radius r about a point p is
B, (r) = {union of geodesics of length r emanating from p}.

We note that B (r) is not always a ball, but will be for sufficiently small . In particular
the injectivity radius at p is

inj, = sup{r| B,(r) is an embedded ball}.

We can now define the tightness radius of (M, &) at the point p € M with respect to any
metric g to be
T, = sup{r < inj, | & restricted to B,(r) is tight}.

A lower bound on 7, can be thought of as a quantitative Darboux theorem as it will
give the size of a tight (and hence standard) ball about p. To give an estimate on 7,
we introduce another quantity. We call a domain U bounded by a hypersurface S in a
manifold M with a Riemannian metric g geodesically convex if any geodesic y tangent to
Y at a point p locally lies outside of U. That is there is some neighborhood O of p such
thaty N O NU = {p}. We can now define the convexity radius at p to be

conv, = sup{r < inj, | B,(r) is geodesically convex}.

It is well-known in Riemannian geometry that if the sectional curvatures of a metric are
bounded above by K > 0 then

.o T
CONnv, > min{inj —}
p ps
{ 2VK
and if the sectional curvatures are non-positive, then conv, = inj,. We can now state the
Darboux theorem with estimates.

Lemma 1.8.23. If g is a Riemannian metric compatible with the contact structure & on M then

Tp > Convp.

The result follows by using Hofer’s pseudo-holomorphic curve techniques to find
closed orbits in an overtwisted contact manifold [Hof93] together with a relation between
Riemannian geodesic convexity and pseudo-holomorphic convexity proven in [EKM12].
To prove the “contact sphere theorem above" we need one more ingredient.

Theorem 1.8.24 (Etnyre, Komendarczyk, Massot 2012, [EKM12]). Let (M, &) be a contact
manifold compatible with the Riemannian metric g. If r < inj, such that & restricted to B,(r) is
overtwisted, then one can see a closed leaf in the characteristic foliation of dBy(r).

Notice that this result says that, while we cannot guarantee & on B, (r) is tight, we can
say that if it is not, then it is obviously not tight (that is, we can see the overtwisted disk
on dB,(r)). This result is proven using facts about compatible metrics and characteristic
foliations on families of surfaces that we will be discussing in Section 8.1.
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Sketch of the proof of Theorem 1.8.22. By rescalling the metric, we can assume that C =
1. Due to the curvature restrictions and the classical Sphere Theorem, we know the uni-
versal cover of M is S3. We pull the contact structure and metric back to S* and now need
to argue that the contact structure is tight there. To this end, we assume that it is not and
derive a contradiction. Let D be an overtwisted disk.

Using arguments similar to those in the classical Sphere theorem we can assume that
there are two points p and g in S® such that S is the union of By(rp) and B,(r,) where 1,
the injectivity radius (which is the infimum of inj, for all x € M) and r, is less than the
convexity radius (which is the infimum of conv, for all x € M). In particular, we note
that dB,(r;) is contained in the interior of B,(r,) and similarly dB,(r,) is contained on the
interior of B,(r,). See Figure 1.8.34

By ()

e N

By(rp)

Figure 1.8.34. The decomposition of $3 into By(rp) and B,4(rg) and the overtwisted disks
D on the left and D’ on the right.

From Lemma 1.8.23 we know that the contact structure on B(r,) is tight and hence
standard (Eliashberg showed there is a unique tight contact structure, see Chapter 9). Ina
model for the standard tight 3-ball (see Section 3.2), we can see that there is a vector field
whose flow preserves the contact structure and pushes any compact set disjoint from the
origin into an arbitrarily small neighborhood of its boundary. As we can isotop the over-
twisted disk D to be disjoint from g, we can flow D to an overtwisted disk D’ contained
in B,(ry). Thus the contact structure on B,(r}) is overtwisted and Theorem 1.8.24 says
that we can see an overtwisted disk on dB,(r,) which is contained in B, (r;), but this con-
tradicts the fact that the contact structure on B,(r,) is tight! This disk D could not have
existed. O

Using similar ideas as in the proof of Lemma 1.8.23 one can also show.

Theorem 1.8.25 (Etnyre, Komendarczyk, Massot 2012, [EKM12]). Let (M, &) be a contact
3-manifold and g a weakly compatible Riemannian metric. Set

mg = sup ||[Vp = V(In o),
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where p = ||R|| is the length of the Reeb field for the contact form a implicated in the definition of
compatibility, 0’ is the instantaneous rotation of &, and V(In 0’)* is the component of the gradient
V(In 6’) that is orthogonal to &.

If

Kp(1) < —m§

forall p € M and n planes in T,M, then (M, &) is universally tight.

We note that this theorem gives a criterion for tightness in terms of a metric that is
only weakly compatible with the contact structure. This is important because a nega-
tively curved metric cannot be compatible with a contact structure because for such a
metric the Reeb flow traces out geodesics and one cannot foliate a negatively curved
manifold by geodesics [Zeg93].

ADD MORE

1.8.8. Low-dimensional topology. In this section we will discuss numerous applications
of contact geometry to low-dimensional topology and geometry. The first indication that
there were subtle connections between contact geometry and low-dimensional topology
was in the work of Bennequin and Eliashberg in the 1980s and 1990s. Bennequin estab-
lished his inequality [Ben83] discussed in Section 1.6.1 (see also Section 3.7). This was an
effective way to obtain lower bounds on the Seifert genus of a knot, which historically
was a difficult problem to understand. Whereas Eliashberg [Eli90a] was able to give a
proof of the famous Cerf theorem about diffeomorphisms of the 3-sphere extending over
the 4-ball, using his classification of tight contact structures on S* and holomorphic curve
techniques. Add more intro

Cerf’s theorem: One of the first indications that contact and symplectic geometry is
closely connected to subtle aspects of low-dimensional topology was Eliashberg’s proof
of Cerf’s theorem.

Theorem 1.8.26 (Cerf 1968, [Cer68]). Any diffeomorphism of S*> = dB* extends over B*.

Cerf’s theorem is frequently stated as I'y; = 0. Here I',, is the group of orientation-
preserving diffeomorphisms of $”~! modulo those that extend over B".

Cerf’s original proof involved a subtle analysis of families of smooth functions on
B* taking over 100 pages, while Eliashberg’s proof [Eli90a] is less than a page long! Of
course, this is not a fair comparison, as Eliashberg relies on a great deal of work in sym-
plectic and contact geometry. So it is likely that his proof is longer than Cerf’s. The
amazing thing is that all that other material was already developed to study interesting
questions in symplectic and contact geometry, and can then very easily be used to prove
this beautiful topological result.
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So, how does Eliashberg’s proof go? Given a diffeomorphism f: S* — S3, one con-
siders the pull-back f*&s4 of the standard tight contact structure ¢4 on S3. Since there is
a unique tight contact structure on S, see Theorem 5.1.1, we know that f*&;4 is isotopic
to & and hence by Theorem 1.2.10, f is isotopic to a diffeomorphism g: S® — S3 that
preserves &. (Of course, if ¢ can be isotoped to a diffeomorphism that extends over B4,
then so does f).

If N and S are two distinct points in S3 then S — {N, S} is S? x (0,1). After a con-
tact isotopy, we can arrange that g is the identity in a neighborhood of N and S. See
Figure 1.8.35.

N N,

y A \
8
> —
\
\ /
\ V4
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S S

Figure 1.8.35. On the left we see $3 and the foliation of S3 — {N, S} by spheres S;. On the
right is their image under g.

Exercise 1.8.27. Prove this last statement.

Hint: First, show that there is an isotopy of ¢ through contactomorphisms so that N
and S are preserved. This can be done by showing that there is a contact isotopy taking
any point in a contact manifold to any other point. To do this, consider a transverse
arc between the points, take a standard neighborhood of this arc (as in Section 1.2), and
find the isotopy in this neighborhood. This last part might be easier after reading about
contact vector fields in Section 3.1.

Now we can arrange that the characteristic foliation on each of the S; = S x {t} is
given as in Figure 1.8.36, see Section 9.1. Note the image S; = ¢(S;), for t € (0,1), is a
foliation of S®> — {N, S} by spheres and g sends the characteristic foliation of S; to the
characteristic foliation on S;. See Figure 1.8.35

Note that the unit ball B* in R* with its natural symplectic structure is a symplectic
filling of (S3, &st4). One may now use the theory of holomorphic curves in symplectic
manifolds, see Appendix B, to find a map ®@: (D? x [0,1] x (0,1)) — B* such that

(1) (D(a(D2 X [0/ 1] X (0/ 1))) = 53 - {Nr S}
(2) @ is injective on D? x (0, 1) x (0, 1).
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v

S

Figure 1.8.36. On the left we see one of the spheres S, its characteristic foliation in
black, and its foliation by boundaries of holomorphic disks in red. On the right we see
a schematic picture of s3, represented by the black sphere, its foliation by S; in blue, and
the foliation of B* by holomorphic disks in red. (We only drew the disks for one S; so as
not to clutter the figure.)

(3) D restricted to the interior of its domain is a diffeomorphism to the interior of
B*.
(4) ®(D? % [0,1] X {t}) is a ball with boundary S;.

(5) ®(D?x {i} x {t})is a singular point in the characteristic foliation of S; fori = 0, 1
and t € (0, 1). See Figure 1.8.36.

(6) ®(dD? x {s} x {t}) is transverse to the characteristic foliation of S; for s € (0, 1)
and t € (0, 1). See Figure 1.8.36.

(7) @: (D? x {s} x {t}) — B*is a holomorphic map (with respect to a complex
structure compatible with the symplectic form on B*).

Notice that ® on the interior of D? x [0, 1] x (0, 1) foliates the interior of B*.

We can similarly find @: (D? x [0,1] x (0, 1)) — B* with the same properties except
with respect to the S;.

Notice that the complement of the singular points in the characteristic foliation of
each S; is foliated by leaves of the characteristic foliation and also by the boundaries of
holomorphic disks coming from @ and similar for S;. See Figure 1.8.36. One may now ar-
gue that ¢ may be isotoped so that the boundaries of holomorphic disks on S; map to the
boundaries of holomorphic disks on S/. We know that diffeomorphisms of S! extend to
diffeomorphisms of D? and in fact this is true for families of such diffeomorphism. Thus,
we may extend g restricted to each boundary of a holomorphic disk in an S; to a diffeo-
morphism of the disk it bounds to the disk its image bounds in S;. This extends g over
B*. Of course, one must be careful about smoothness near N and S and the singularities
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of the characteristic foliations on the S;, but an analysis of the behavior of holomorphic
curves here will deal with this. See [GZ10] for a good, careful exposition of the details.

Bennequin type inequalities: The genus of a knot K in S3, denoted ¢(K), is the minimal
genus of a Seifert surface for K and the 4-genus of the knot, denoted g4(K), is the minimal
genus of a surface in B* with boundary K. Historically, it has been difficult to find the
genus of a knot. More recently, there are many techniques, such as the use of Heegaard
Floer homology, that can be used to find the genus of a knot, but they can be somewhat
complicated. Similarly, finding the 4-genus of a knot is still a very difficult problem. So
while understanding the genus and 4-genus of a knot is a subtle topological property,
contact geometry can provide insights.

Specifically, we recall from Section 1.6.1 that the Bennequin inequality says that for a
Legendrian knot L in the standard tight contact structure on S* we have

tb(L) + |rot(L)| < 2g(L) -1,

where g(L) is the minimal genus of a Seifert surface for L. We call g(L) the genus of L.
We also saw in Section 1.6.5 that this inequality can be strengthened to show that

tb(L) + |rot(L)| < 2g4(L) -1,

where ¢4(L) is the minimal genus of a surface in B* with boudnary L. We call g4(L) the
4-genus of L.

Now given a knot type K, one can draw front diagrams for Legendrian realizations
L of K and m(K) (this is the mirror of K, which is obtained from K by changed all the
crossings, and it is easy to see K and m(K) have the same genus and 4-genus) and see
which ones maximize the quantity tb(L) + | rot(L)|. This will give a lower bound on the
genus and 4-genus of K, and in many cases it will be sharp.

Here are a few specific applications.

Lemma 1.8.28. If K or m(K) admits a Legendrian representative L with tb(L)+|rot(L)|+1 > 0,
then K is not smoothly slice (that is g4(K) > 0).

The proof is immediate from the above inequality.

We now recall the Whitehead double of a knot. Given a knot K, let N be a neighbor-
hood of K. Identify N with the solid torus shown in at the top of Figure 1.8.37 so that the
product framing on that torus is mapped to the framing n on N. Then the image of the
knot shown in the solid torus is called the n-twisted Whitehead double of K, and denoted
W,,(K). There is a well-known conjecture about Whitehead doubles.

Conjecture 1.8.29. A knot K is smoothly slice if and only if its O-twisted Whitehead double
Wo(K) is slice.

Exercise 1.8.30. Show that if K is slice then Wj(K) is slice.
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o

K Ws(K) )

Figure 1.8.37. The solid torus and knot used in the definition of the Whitehead double.
On the bottom row we see a knot K and its 3-twisted Whitehead double.

We now note that one can show the other implication also holds under certain contact
geometric hypotheses.

Theorem 1.8.31 (Rudolpf 1995, [Rud95]). If a knot type K admits a Legendrian representative
L such that tb(L) > 0, then its O-twisted Whitehead double Wy(K) (and all iterated O-twisted
Whitehead doubles) are not smoothly slice.

Note the inequality above says that if K is slice then any Legendrian realization of K
will have to have Thurston-Bennequin invariant less than 0. So the theorem essentially
says that if K is not slice for a contact geometric reason, then none of its iterated 0-twisted
Whitehead doubles are either. We sketch the proof in a series of exercises.

Exercise 1.8.32. Given a Legendrian knot L show you can construct a tb(L)-twisted White-
head double of L using its front diagram. Denote this “Legendrian Whitehead double"
by WL.

Hint: Take the front diagram of L and a second copy of the front diagram pushed up
slightly. Now replace two parallel strands on the different copies of the diagram by a
“Legendrian clasp".

Exercise 1.8.33. Show that tb(WL) = 1 and rot(WL) = 0. Hence the smooth knot Wi,,(L)
is not slice.

Exercise 1.8.34. If K is the underlying smooth knot of L, then show that W, (K) is not
smoothly slice for any n < tb(L).
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Fibered knots and the Harer conjecture: The Harer conjecture postulates a method to
build all possible fibered knots in S3. Recall that an (oriented) link K in a 3-manifold M
is called fibered if there is a fibration p: (M — K) — S! such that the closure Z¢ of p~1(6)
is an embedded surface with boundary K, that is Xg is a Siefert surface for K. Since all
the L are diffeomorphic (and even isotopic in M), we can just consider one and call it X.
We call (K, X) a fibered pair.

Example 1.8.35. The unknot in S3 is fibered, since its complement is S! x R? and the
closure of a fiber is a disk Seifert surface for the unknot.

Example 1.8.36. The Hopf link H in S3, see Figure 1.8.38, is also fibered. This is easy to
see as the complement of H is T? X R, so any fibration of T? by circles will give a fibration
of the complement of H by open annuli.

Figure 1.8.38. The two Hopf bands. Note that the linking between the components of H.,
when the components are oriented as the boundary of the annulus, is +1.

Exercise 1.8.37. Show that there are infinitely many distinct fibrations of S*> — H, but only
two that give a fibration as described above (that is, whose fibers have closures that are
Seifert surfaces for H).

Example 1.8.38. A knot that sits on a Heegaard torus for S° is called a torus knot See
Section 6.5 for more details on torus knots and a construction of a Seifert surface for
them.

Exercise 1.8.39. Show that the Seifert surface constructed for torus knots in Section 6.5 is
a fiber in the fibration of the complement of the knot.

While there were many constructions of fibered knots in S 3 in 1982, Harer character-
ized how to construct them all.

Theorem 1.8.40 (Harer 1982, [Har82]). Any fibered pair (K, %) in S® can be obtained from the
unknot and disk it bounds by a sequence of “plumbings” and deplumbings of Hopf links and a
“twist”.
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More specifically, there is a fibered pair (K’',Z’) obtained from (K,X) by some number of
plumbings of Hopf links, a link (U’, D’) obtained from the unknot and a Seifert disk by some
number of plumbings of Hopf links, such that (K’, L") and (U’, D’) are related by a twist.

We will describe the plumbing of Hopf links and twists below, but first state Harer’s
conjecture. To state the conjecture, we use the more recent terminology for “plumbing a
Hopf link", and that is stabilization.

Conjecture 1.8.41 (Harer conjecture). Any fibered link in S® is obtained from the unknot by a
sequence of stabilizations and destabilizations.

Given two links K and K3 in $% and Seifert surfaces ©; and X, for them, respectively,
we define the plumbing of X and X as follows. Choose a properly embedded arc y; on
Li. One may choose a neighborhood N; of y; in Z; such that N; = [-1,1] x [-1,1] and
yi = {0} x [-1,1] and then isotop X; into a ball B; such that £; N dB; = N; and B; and B,
are disjoint. Finally, one may isotop B; so that B; N B, = N1 = N> where N is identified
with N, by switching the interval factors. See Figure 7.2.5. The resulting surface (after
the corners are smoothed) is said to be obtained from plumbing L1 and X, and we say
that its boundary is the link obtained by plumbing K; and K. (We note that the result of

7/]/
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Figure 1.8.39. The plumbing of the surface X1 and Xp.

plumbing X1 and X, depends on the choice of y; and the result of plumbing K; and K>
also depends on the choice of the X;.)

We now recall that there are two Hopf links H, and H_. They are shown in Fig-
ure 1.8.38. We say that a fibered pair (K’, L’) is obtained from (K, X) by plumbing a Hopf
band if it is obtained by plumbing X to either H, or H_. In this situation, also say (K, )
is obtained from (K’, ¥') by deplubming a Hopf band. As noted above, “plumbing a Hopf
band" is nowadays typically called stabilizing a fibered link. If one plumbs H, it is called
a positive stabilization and if one plumbs H_ it is called a negative stabilization.

Given a fibered pair (K, £) with an unknot knot U on the interior of £ such that the
framing of U given by I is either 2,0, or -2, then we say (K’, L’) is obtained from (K, )
by a twist if it is the image of (K, ) under the diffeomorphism from +1 surgery on U, if
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the framing is —2 or 0, and —1 surgery on U, if the framing is 0 or 2, to S3. See Figure 1.8.40

AU

Figure 1.8.40. Twist on a Seifert surface.The framing on U given by the Siefert surface is 0.

These surgeries will be either +1 or —1 surgery on the unknot U, and it is easy to see
from our discussion in Section 1.5.1 that the resulting manifold is diffeomorphic to S°.
This can be seen by a Rolfsen twist on the surgery curve and this changes K to K’. While
it is not obvious, under this operation X becomes a Seifert surface X’ for K" and K’ is still
tibered.

Example 1.8.42. Prove this last statement.
Hint: If you have not seen this before, it can be difficult to prove this. If you are having
difficulties, see Section 12.1.

Exercise 1.8.43. If one performs a +1 surgery on the curve U in Figure 1.8.40 one obtains

{A\za(tY:

Figure 1.8.41. Twist on a Seifert surface.The framing on U given by the Siefert surface is 0.
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The example of a fibered knot in Figure 1.8.41 first appeared in [Har82]. A few years
later, Melvin and Morton in [MMS86] showed that it cannot be obtained from the unknot
by plumbing Hopf bands.

Using contact topology, Giroux and Goodman prove the Harer conjecture, Conjec-
ture 1.8.41.

Theorem 1.8.44 (Giroux-Goodman 2006, [GG06]). Any two fibered pairs in S3 are related by
a sequence of stabilizations and destabilizations.

To see how such a theorem could be established, we need to discuss a few results
about fibered knots and contact structures. We will more fully discuss this connection in
Chapter 12. We first note that fibered pairs are also called open book decompositions. We
will denote an open book decomposition by the pair (B, ) where B is the fibered link
and 7t: (M — B) — S! is the fibration of the complement of B. Here are some facts about
contact structures on open book decompositions:

(1) In [TW75], Thurston and Winkelnkemper showed how to associate a contact
structure to (B, 7).

(2) All of the following statements are due to Giroux [Gir02], the contact structure
above is uniquely determined by (B, ). Denote the contact structure &p . We
say &g, is supported by (B, ).

(3) Every contact structure on a closed 3-manifold is supported by some open book
decomposition.

(4) If (B4, m4) is obtained from (B, i) by a positive stabilization, then &g, 5, is iso-
topic to &g, .

(5) If (B-, m-) is obtained from (B, 1) by a negative stabilization, then £p__ is over-
twisted and has ds-invariant one larger than that of &p .

(6) Let & and &’ are associated to the open book decompositions (B, 1) and (B’, '),
respectively. Then & is isotopic to & if and only if (B, nt) is related to (B’, ') by a
sequence of positive stabilizations and destabilizations.

The last fact is known as the Giroux correspondence and is a cornerstone of modern contact
geometry. This is the topic of Chapter 12.

We now sketch the proof of Harer conjecture. Given two fibered pairs (By, 119) and
(B1, ) in S3 (thought of as open book decompositions) we consider the contact struc-
tures &p, n; associated to them as above. We negatively stabilize (B;, 7t;) to get (B, 7t;).
The contact structures supported by the new open books are both overtwisted. With-
out loss of generality we can assume that the dz-invariant of &p; 7 is greater than or
equal to & B}, ) Thus we can negatively stabilize (B}, 7'(6) some number of times to get
an open book (Bj, 7j) such that 5Bé/r”3 has the same ds-invariant as & B - According
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to our discussion in Section 1.5.4, we know that gy v is homotopic to &p: ; as a plane
tield. Now Eliashberg’s classification of overtwisted contact structures discussed in Sec-
tion 1.6.1 tells us that these two contact structures are isotopic. Finally, the Giroux cor-
respondence now says that (Bj, 7ty) is related to (B}, 7}) by positive stabilizations and
destabilzations. Thus, the original open book decompositions (By, 1t9) and (B1, 7t1) are
related by stabilizations and destabilizations.

Property P: Add section

Heegaard Floer homology and the fiberdness and genus of knots: Add section
Characterizing knot by Floer and Khovanov homologies: Add section
Characterize knots by surgery: Add section

Smooth structures on 4-manifolds with boundary: Add section

Engel structures: Add section






Chapter 2

Characteristic foliations

Characteristic foliations on surfaces will be a key component in our analysis of contact
structures on 3-manifolds. In this section, give a detailed analysis of them. In the first
section, we define the divergence of a vector field and whether the divergence at a singu-
lar point of a singular foliation is zero or not. This is a key component in characterizing
which singular foliations can be realized as the characteristic foliation of a surface in a
contact manifold. Specifically, we will prove Giroux’s result [Gir91] that says a singular
foliation can be the characteristic foliation of a surface in a contact 3-manifold if and only
if its singularities have non-zero divergence.

In Section 2.2, we move to the discussion of generic properties of vector fields and
flows. We begin by discussing singular points of a vector field, that is, points where
it is zero. Using the linearization of the vector field at a singular point, we define a
non-degenerate singular, or more precisely, a hyperbolic singular point, to be one whose
linearization has eigenvalues that are not zero or purely imaginary. After noting that
“generic” vector fields have non-degenerate singular points, we then discuss the nature
of such singular points. More specifically, we discuss nodal and saddle singular points,
stable and unstable manifolds, and other useful features of singular points. We then
move on to a discussion of periodic orbits in a vector field. These are closed flow lines.
A fundamental feature of such flow is determined by its Poincaré return map and its
derivative. Using this, we can define when an orbit is degenerate, attracting, or repelling,
and then show that vector fields with non-degenerate periodic orbits are “generic”. We
end this section be discussing general flow lines. We discuss their w-limit sets, these are
then “limits" of the forward trajectory of a flow line, and the a-limit set, which is the
“limits" of the backward trajectories of a flow line. We then use these concepts to state
the famous Poincaré-Bendixson Theorem for the w-limit set of points for flows on S2.

113
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We use this to define the Poincaré-Bendixson Property and notice that this is a “generic”
property for vector fields on any compact surface.

In Section 2.3 we prove a theorem of Giroux, [Gir91], that shows any generic property
of a vector field is also a generic property of a characteristic foliation of a surface in
a contact manifold. So all the results from the previous section tell us that “generic”
characteristic foliations are quite nice. In the final section, we show how to understand
the twisting of the contact planes along an embedded Legendrian arc in a surface. This
will be a key result when studying convex surfaces in the next chapter.

Throughout this section (and the book, unless explicitly said otherwise) we will as-
sume our surfaces are oriented.

2.1. Divergence of vector fields and foliations on
surfaces

We want to consider the divergence of vector fields on an orientable surface X. To do this
we must pick an area form w on . We can now define the divergence of the vector field v
on X, with respect to w, to be the unique function div,(v) satisfying

Lyw = (diVa)(U)) w,

where £, w denotes the Lie derivative of @ with respect to v. Recall from the definition
of the Lie derivative this means that the flow of v is (infinitesimally) scaling w by the
divergence. So for example, div,,(v) = 0 if and only if the flow of v preserves w.

Cartan’s formula says
Ly = tpd +diy,

where 1, w denotes the contraction of w with v. Since w is a 2-form on a surface we know
dw = 0 so we can equivalently define the divergence of v to be

diyw = (divy(v)) .

We now make a simple computation to see how the divergence changes as we scale v
and w. To this end let f and g be two functions on X and notice that

difp(gw) = d(fgow) =d(fg) A ww + fgd,w,
in addition since d(f g) A w is a 3—form on a surface it is zero, and hence
(Lod(fg) ANw—d(fg) A tyw =0.
Thus, since 1,d(f §) = d(f g)(v), we see that
difo(g@) = (@(fR)(0) + f diva() @ = (g7(f)0) + f diva(®)) (g)
and in particular

(2.1.9) divee(fo) = (df + f ding) (v) + f div,, (v).
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We have shown the following.

Lemma 2.1.1. Let v be a vector field on X. and p a zero of v.

(1) The divergence div,(v) at p does not depend on w.
(2) If f is any positive function then

dive,(v)(p) = 0 if and only if div,(fv)(p) = 0.

The lemma above shows that at a zero of a vector field, the divergence is independent
of a choice of an area form. However, where the vector field is not zero this is far from
the case, the divergence can essentially be anything depending on the choice of the area
form.

Lemma 2.1.2. Let v be a vector field on a surface X that is non-zero at the point p. Then given any
function g defined near p there is some area form w on X such that in some small neighborhood of
p the divergence div,(v) is given by g. In particular, the divergence can be positive or negative
or 0 near the point p.

Proof. The Flow Box Theorem [dMP80] from dynamical systems says that there is a co-
ordinate chart for X near p in which v is one of the coordinate vector fields. More specif-
ically, there is an open set U C R2,V c L, and a diffeomorphism ¢p: V — U such that
¢.v = %, where R? has coordinates (x, ). One can find this theorem in most any book
on dynamical systems, for example [dMP80], but the proof is not hard, and the reader
should try to think of their own proof.

Now realizing § = go ¢~ : V — R as the divergence of % with respect to some area
form on V will establish the lemma. To this end, set

(6, ) = exp /O 3, ) dt

and w = f(x,y)dx A dy. One easily computes that the divergence of d, with respect to w
is

0 ) Ay

e (_ T flx,y)

O

We recall that in Section 1.3.1 we defined singular line fields on a surface * and they
are locally flow lines of a vector field up to multiplication by a non-zero function. Thus
the divergence of a singular point in a singular foliation is well-defined by Lemma 2.1.1.
We now see that this divergence characterizes when a singular foliation can be the char-
acteristic foliation for some contact structure.
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Theorem 2.1.3 (Giroux 1991, [Gir91]). Let F be a singular foliation on an oriented surface X.
Then F is the characteristic foliation induced on X for some contact structure if and only if all the
singularities of F have non-zero divergence.

Proof. We first assume that ¥ is the characteristic foliation on X induced by some contact
structure £ on X X [—1, 1], where £ = X X {0}. The contact form for & can be written

a:ﬁt+utdt

where f; is a 1-form on X and u; is a function on Z for all ¢ € [-1,1]. Clearly ¥ = Z; is
given by ker . We now compute da = df; +dt A % + du; A dt and hence
Pt

oz/\daz—ﬁt/\y/\dt+ﬁt/\dut/\dt+ufﬁt/\dt.

If x is a singularity of L then (a A da) = ugdBo A dt at x and we see that df is not equal
to 0 near x. We can let w be a area form on X that agrees with dfy near x. Recall that a
area form induces a bijection between vector fields and 1-forms on X:

D) - Q') :ve o
and so there is a vector field v on X such that 1,0 = fg. Now
diyw =dpy = w

from which we see that the divergence of v at x is 1. So the divergence of any singular
point of ¥ = X is non-zero.

We now assume that the divergence of the singularities of # is non-zero. We need
to construct a contact structure on £ X [—1, 1] such that the characteristic foliation on
L=Xx{0}is F.

We assume for now that ¥ is orientable so that ¥ is given as the flow lines of some
vector field v on X.. Now choose a area form @ on X and set § = 1,w. Let u be the unique
function such that d = uw. We claim there is a 1-form y on X such that y A § > 0 and
yAB > 0away from the singularities of . (Recall, a 2 form being greater than or equal to 0
means that it is a non-negative multiple of w.) We construct y below. Set §; = f+t(du+7y)
and

a = ﬁt +udt,

and compute
aANda=wdps+pr Ay)Adt = (uPw +B AY)Adt.
Notice that u is the divergence of v so at a singular point of 3, we see that u?> > 0 and

hence a A da > 0. At a non-singular point of  both terms in a A da are positive so a is a
contact form on X X [-1, 1] inducing # as the characteristic foliation on X x {0}.

We are left to find y.
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Exercise 2.1.4. Show there is an almost complex structure | on X that is compatible with
w in the sense that for any non-vanishing vector w, we have w(w, Jw) > 0.

We can now set y = (j,w. Notice that (8 A )(v, Jv) = (w(v, Jv))?, and so y has the
desired property.

If ¥ is not orientable, you can use the above argument to construct local contact forms
that define a contact structure on ~ X [—1, 1]. O

2.2. Generic properties of vector fields on surfaces

We begin by establishing some notation. If v is a vector field on a surface X and p is a
point in X, then we denote
yp: R—> L
the flow line of v through p. That is y, satisfies
yi(t) = 0(y(t)), and
yp(0)=p

In general, a flow line might not exist for all time, but we will usually be considering the
situation where they do, so our notation above reflects that.

2.2.1. Singular points. Now, consider a zero p of a vector field v on a surface X. Recall,
we call such a point p a singular point of v. We can consider the linearization of v at p:

Dv,: T,E — T,X.

We note that since v: ¥ — TX the differential of this map is dv,: )L — T,(,)(TX).
However, if Z is the zero section of TY then since v(p) € Z we see that we have the
splitting of the tangent space

Tv(p)(TZ) = Tv(p)Z S?) TPZ

where we are thinking of T,X as the kernel of dn: T,,)(TZ) — Ty and n: TE — Lis
the natural projection. Now the linearization map Dv, is simply dv, composed with the
projection Tp(,)Z ® TyX. — TpX.

Exercise 2.2.1. In local coordinates U ¢ R? around p, we can think of a vector field as a
map f,: U — R?since the coordinate system provides a trivialization of TU and sections
of a trivial bundle are equivalent to functions from the base to the fiber. Show that Dv,
in these local coordinates is simply the total derivative of f.

We call the singular point p simple if Dv, has no zero eigenvalues. It is known that a
simple singularity of v is isolated in a strong sense; namely, there are no singular points
near p in X; but, moreover, there is a neighborhood of v in the space of vector fields con-
taining vector fields that have an isolated singular point near p, see [dMP80, Section 2.3].
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Exercise 2.2.2. Show p is a simple singularity of v if and only if v is transverse to the zero
section of TY at p.

While simple singularities are somewhat nice, their perturbations can have drasti-
cally different behavior, see [dMP80, Section 2.3], so we would like to consider even nicer
singular points. Specifically, we call a simple singular point p a hyperbolic singular point
if Dv, has no purely imaginary eigenvalues. Two important properties of hyperbolic
singular points are:

(1) The set of vector fields with only hyperbolic singularities on X is open and dense
in the set of vector fields on X.

(2) The flow of a vector field v near a hyperbolic singular point p is locally equiv-
alent to the flow of its linearization. That is, there is a neighborhood U of p, a
neighborhood V of the origin in R?, and a homeomorphism ¢: U — V such
that flow lines of v on U are taken to flow lines of Dv, on V. (Here we are inter-
preting the linear map Dv, as a vector field on R2.) This fact is a special case of
the Hartman-Grobman Theorem.

Need to check regularity. These are all true for C” vector fields for r > 1, but what about
r = oo? For both of these facts, see [dMP80, Chapter 2]. As it is easy to understand linear
flows, we can (topologically) understand flows near hyperbolic singular points.

In Section 1.3.2 we gave examples of some special types of singular points, but we
now give a more precise definition. If p is a hyperbolic singularity of the vector field v,
then we say that p is an elliptic singular point, also known as a nodal singular point, if the
real parts of the eigenvalues of Dv, have the same sign. If the eigenvalues have real parts
with opposite signs, then we call the singular point a saddle singular point, or sometimes
it is called a hyperbolic singular point. This latter terminology, while somewhat common,
can be confusing as we see that “elliptic singular points” are “hyperbolic” in the sense of
the definition above, but from context it is usually clear what is meant by the term.

Example 2.2.3. In Figure 2.2.1 we see various hyperbolic singular points. The first is a
sink, and its linearization has negative real eigenvalues. The middle figure is a spiral sink,
and its linearization has complex eigenvalues with negative real parts. The last figure is
a saddle singularity, and its linearization has a positive and a negative eigenvalue.

If p is a singular point of the vector field v on a surface X then we define its stable
manifold to be the set of points that “flow to” p

Wep) = {q € Z: lim y,(t) = p}
and the unstable manifold to be the set of points that “flow away from” p

Wi(p) ={gq € Z: lim y,(t) = p}.
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Figure 2.2.1. Examples of hyperbolic singular points.
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Given a hyperbolic singular point p of v, we let E° be the subspace of T,M spanned by
the eigenvectors associated with eigenvalues having positive real part of the lineariza-
tion of Dvy,, and similarly, E* is the subspace of T, M spanned by the eigenvectors asso-
ciated with eigenvalues having negative real part of the linearization of Dv,. The Sta-
ble/Unstable Manifold Theorem [Rob99, Section 5.10] says:

(1) For a hyperbolic singular point p, the stable manifold W*(p), respectively unsta-
ble manifold W*(p), is the image of an injective immersion of R* where k is the
dimension of E?, respectively E*.

(2) The tangent space T, W*(p) = E® and T,W"(p) = E*

Example 2.2.4. An elliptic point p is called a source if all the flow lines are “going away
from” p. That is W"(p) is 2-dimensional and W*(p) = {p}. Similarly, p is a sink if all the
flow lines are “going towards” p. That is W*(p) is 2-dimensional and W*(p) = {p}.

/!
D Y -

W2 (p)
Figure 2.2.2. The stable and unstable manifolds of a saddle singularity.

For a saddle singular point p, both W*(p) and W*(p) have dimension 1. See Fig-
ure 2.2.2. These manifolds are also sometimes referred to as the stable and unstable sepa-
ratrix of p.
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Exercise 2.2.5. Let p be an elliptic point in a characteristic foliation of a surface in a contact
manifold. The point p has positive divergence if and only if it is a source. Similarly, the
point has negative divergence if and only if it is a sink.

The exercise shows that it is easy to determine if an elliptic point has positive or
negative divergence just by looking at the flow. This is not so easy for saddle points.

Exercise 2.2.6. Let p be a saddle point in a characteristic foliation of a surface in a contact
manifold. The point p has positive divergence if and only if the sum of the real parts of
the eigenvalues of the linearization at p is positive. Similarly, the point p has negative
divergence if and only if the sum of the real parts of the eigenvalues of the linearization
at p is negative. (Here, by linearization, we mean the linearization of any vector field
directing the characteristic foliation.)

Thus, we see that one can “see” the divergence of a saddle point by noting the rate
at which flow lines approach the stable manifold versus the rate at which they approach
the unstable manifold.

2.2.2. Periodic orbits. We now consider periodic orbits in the flow of a vector field v on
a surface X.. A periodic orbit of v is a closed flow line. More precisely, if p is a point
such that the flow line y, through p is periodic, meaning that there is some ¢y such that
yp(to) = 7(0), then the image of y, is caled a periodic orbit of v. Notice that the condition
on y, being a periodic orbit implies that y,(t + ty) = p(t) for all t. If tq is the minimal
positive value satisfying this, then we say ty is the period of the orbit. We also note that if
q is any point in the image of y,, then y, is also a periodic orbit with the same image as

Vp-

Exercise 2.2.7. Show that the image of y, is an embedded circle in X.

To study periodic orbits further, we need to consider their Poincaré return map. Let
I be an embedded interval transverse to v that intersects the image of y, at p. By the
continuous dependence on the initial conditions to solutions to differential equations, it
is easy to see that there is a subset | C [ such that for any g € | the flow line y,; will
intersect I. Let t; be the smallest positive value of t for which y,(t) € I. We define the
Poincaré return map

[: J—>1

by sending a point g € | to y,(t;) in I. See Figure 2.2.3. If, after possibly shrinking I and ],
we parameterize I by (—€, €) and | by (=0, 6) for 6 < € and map 0 to p, then we can think
of I, as a map (—€,€) — (=9, 6). While this map depends on the choice of transversal I
(and the subset ]), it is not hard to show that IT'(0) does not depend on these choices, as
the next exercises show.
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30 G

Figure 2.2.3. The Poincaré return map for the periodic orbit y,.

Exercise 2.2.8. Show that the conjugacy class of the germ of the Poincaré return map is
independent of choices. By this, we mean that if I is a different choice of transversal to
the flow through p, and ] is a choice of subset of I on which we can define the Poincaré
return map I1, then there is a diffeomorphism ¢: 1— qb(I ) of a subset I of I containing p
to a subset of I containing p, such that IT= ¢! o TT o ¢.
Hint: Use the flow of v to identify a neighborhood of the point p in I with a neighborhood
of pinI.
Exercise 2.2.9. Different choices of parameterizations of I by (¢, €) affect the map (—€, €) —
(=9, 6) by conjugation.
Exercise 2.2.10. Show that IT'(0) is independent of all choices made.

We call a periodic orbit y, degenerate if IT'(0) = 1 and otherwise we say the periodic

orbit is hyperbolic, or sometimes non-degenerate. 1If y, is a hyperbolic periodic orbit, then
we say it is repelling if IT'(0) > 1 and attracting if IT"(0) < 1.

Example 2.2.11. In Figure 2.2.4 we see a degenerate periodic orbit and an attracting pe-
riodic orbit. By reversing the direction of the flow in the diagram on the right, we see a
repelling periodic orbit.

We now note a few properties of periodic orbits.

(1) For a periodic orbit y, of period ¢y, one may choose a volume form @ on X and
compute

to
logl_I’(O):/0 div,v(yp(t)) dt.

See [HKc91, Theorem 12.15]. So IT'(0), or more properly log IT(0), is the average
divergence of v along the periodic orbit. Thus, IT'(0), or more properly log IT(0),
is sometimes referred to as the divergence of the periodic orbit.
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Figure 2.2.4. A degenerate and non-degenerate periodic orbit.
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(2) The set of vector fields with only hyperbolic singular points and periodic orbits
is residual in the set of all vector fields. That is, they are the intersection of a
countable number of open dense sets and are hence dense in the set of all vector
fields. See [dMP80, Section 3.2].

(3) The set of vector fields with only hyperbolic singular points and periodic orbits,
and with the stable and unstable manifolds of saddle singularities being disjoint,
is residual in the set of all vector fields. This statement is a simple case of the
Kupka-Smale Theorem. See [dMP80, Section 3.3].

Turning to characteristic foliations, we say the foliation has a property of a vector field
if any vector field directing the foliation has this property. For example, a (non-singular)
closed leaf of a characteristic foliation is said to be attracting/repelling if the foliation is
directed by a vector field having the leaf as a closed orbit and the closed orbit has this

property.

Exercise 2.2.12. Show that a closed (non-singular) leaf in a characteristic foliation is at-
tracting if and only if there is a 1-form § that defines the foliation near the leaf for which
dp > 0. Similarly, show that a closed (non-singular) leaf in the characteristic foliation is
repelling if and only if there is a 1-form f that defines the foliation near the leaf for which
dp < 0.

2.2.3. General flowlines. We now discuss general flow lines of the vector field v on a
surface X.. We begin by defining the w-limit set of a point p € L. The w-limit set is

w(p) = {q € Z| there exists t, — oo such that lim y,(t,) = q}.
n—o00

That is w(p) is the set of limit points of y,([0, )). We note that one may similarly define
the w-limit set of y,, denoted w(y}), as the w-limit set of any point on the flow line y,.
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We can similarly define the a-limit set of p to be
(p) = {9 € ] there exists £, — —oo such that lim 7, (t,) = 7).
n—oo

That is a(p) is the set of limit points of y,((—c0,0]), or we can also think of a(p) as w(p)
for the flow of —v.

It is clear that on a compact surface the w-limit set and the a-limit set are non-empty.
Some other simple properties of these sets are given in the following exercises.

Exercise 2.2.13. If X is compact, show that w(p) and a(p) are closed and connected.

Exercise 2.2.14. The sets w(p) and a(p) are invariant under the flow of v.

We now state the famous Poincaré-Bendixson Theorem, see [dMP80, Section 1.2].

Theorem 2.2.15 (Poincaré-Bendixson). If v is a vector field on the sphere S* with a finite
number of singular points, then the w-limit set of any point p is either
(1) a single singular point,
(2) a periodic orbit, or
(3) the union of critical points qo, . .., qx and flow lines vy, . .., Vi, such that w(yi) = qi+1
and a(y;) = qi, where the indicies are taken modulo k. See Figure 2.2.5.

w(p)
peT T > — o p
w(p)

Figure 2.2.5. Limit sets from the Poincaré-Bendixson Theorem.

We note that this result is not true on other surfaces.

Example 2.2.16. Consider a foliation of R? by lines of irrational slope. This will descend
to a foliation of the torus T? with each leaf being dense in T?. Given any vector field v on
T? directing this foliation we see that w(p)

We say a vector field v on any surface X has the Poincaré-Bendixson Property if the a
and w-limit sets of each point in X satisfy the conclusions of the above theorem. Even
though surfaces have flows that do not satisfy this property, they are rare.
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Theorem 2.2.17. The set of vector fields on a surface that satisfy the Poincaré-Bendixson Property
forms a residual set in the space of all vector fields.

2.3. Generic properties of characteristic foliations

In the previous section, we saw that a generic vector field had many nice properties.
From this, we can see that “most” surfaces in a contact manifold have nice characteristic
foliations. This will follow from the following result.

Theorem 2.3.1 (Giroux 1991, [Gir91]). Let P be a C™ generic property of a vector field on a
surface and let T be an oriented surface embedded in a contact manifold (M, &). Then by a C*
small isotopy of X we can arrange L is generated by a vector field satisfying P. Moreover, if ¢
already satisfies P on a closed subset of ©, then the perturbation can be assumed to fix this subset.

Proof. On a neighborhood N = X X [-1,1] we can write a contact from for £ by a =
Bs +us ds where the s are 1-forms on X and u; are functions on X, and s is the coordinate
on [—1,1]. If we choose an area form w on L, the just as in the proof of Lemma 1.2.13 we
see that w induces an isomorphisms

(X)) - QD) v o

from vector fields on £, denoted by X(Z), to 1-forms on X, denoted by Q'(Z). Thus we
have vector field vs on T corresponding to the ;. We can now find a vector field v, that
is C* close to vp and satisfies . We can extend this perturbation of v] to a perturbation
of all the v to v; so that v; = v, outside a small neighborhood of s = 0. Consider the
1-forms f; associated to the v; and let @’ = B + u; ds. Since the 8 are C* close to the
Bs and the contact condition a A da > 0 is an open condition we see that the v, can be
chosen so that a’ is a contact 1-form and a; = (1 — t)a + ta’ is a contact form for ¢t € [0, 1]
and agrees with a away from Y. x{0}. This gives a family of contact structure &; on N and
so Gray’s theorem, Theorem 1.2.10, says there is an isotopy ¢; : N — N that is fixed near
the boundary such that d¢(&p) = &;. Notice that the characteristic foliation on X x {0}
induced by ¢, is generated by a vector field, namely v, that satisfies # and thus so does
qbl‘l(Z x {0}) which is an isotopy of X x {0}.

Exercise 2.3.2. Check that this isotopy of Z = X X {0} is C* small.

We lastly note that wherever vy already satisfies #, we could choose v to just be vp and
thus a; is fixed here; thus Theorem 1.2.10 says the isotopy is too. m]

We note here that by the discussion in the previous section and Theorem 2.3.1 we
see that any surface in a contact manifold can be C* perturbed so that its characteristic
foliation has only hyperbolic singular points and periodic orbits, the stable and unstable
manifolds of the saddle points do not intersect, and the singular foliation satisfies the
Poincaré-Bendixson Property
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2.4. Families of vector fields on a surface

In Part II of this book, we will be interested in 1-parameter families of vector fields on a
surface, so we discuss properties of those here. Maybe move this to Chapter 8 since we
do not need this in the Part I

2.5. Twisting along leaves of a characteristic
foliation

In our study of convex surfaces it will be important to understand Legendrian arcs in
surfaces and how the characteristic foliation behaves near a singular point on the arc.

Lemma 2.5.1. Let L be a Legendrian arc in a surface . C (M, &) and x a point on L that is
an isolated singular point of L¢. If & crosses TX along L at x in a left-handed way then x is
a source (respectively, sink) of the characteristic foliation along L if the singular point is positive
(respectively negative). If & crosses T along L at x in a right-handed way then x is a sink (respec-
tively, source) of the characteristic foliation along L if the singular point is positive (respectively
negative).

Proof. Recall the characteristic foliation is the foliation associated with the singular line
field Iy = & N T X and the orientation on [ is given from the intersection of the oriented
planes &, followed by the orientation on T,Y.. We recall how this orientation is deter-
mined. The vector v; gives the orientation on I, if there is a vector v, € & such that vy, v,
orients &, and a vector v3 € T, X such that v1, v3 orients T, X and v1, v», v3 orients T, M.

We will consider the case of the contact structure passing X in a left-handed manner
at a positive singular point.

Exercise 2.5.2. Check the other cases.

Now in Figure 2.5.6 we see a positive singularity along a Legendrian arc. So the orienta-

Figure 2.5.6. The characteristic foliation along a Legendrian arc near a positive singular
point where the contact planes are twisting past the surface in a left-handed manner.

tion on &, and T, X agree and the singular point. We also see a point on the Legendrian arc
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near the singular point. The vector v; is a tangent vector to the arc pointing away from
the singularity. The vectors v, and v3 are shown in the figure, verifying that the singular
point is a source along the Legendrian arc. We know that vy, v, v3 orients M because the
orientation on M is given by the orientation on ¢ followed by the Reeb vector field. This
is an easy consequence of a A da orienting M since & is a positive contact structure on
M. m|

As discussed above, if a singular point is elliptic, then it will be a source if the singu-
larity is positive and a sink if it is negative. Thus we see that if the contact structure is
twisting past the surface in a right-handed manner and the singularities are generic, then
they must be hyperbolic singularities.



Chapter 3

Convex surfaces

This chapter is the core of this book. Convex surfaces are the main tool we will use to
analyze contact structures and Legendrian knots. The reason convex surfaces are so im-
portant comes down to the fact that the contact geometry near a convex surface is “more
or less" determined by a finite collection of embedded curves on the surface. In many
situations, we can cut a manifold along surfaces into simple pieces where we already
understand contact structures, and then we can understand the contact structure on the
original manifold by gluing these simple pieces together along the surfaces we cut along.
To be able to do this, we need to understand the contact structure near the surfaces. Re-
call that we know the characteristic foliation on a surface determines the contact structure
in a neighborhood of the surface (see Theorem 1.3.4). However, singular foliations can
be very complicated, so keeping track of these can be quite complicated. This limits the
effective use of the above strategy. But if we use convex surfaces instead of other types
of surfaces, we only need to keep track of the finite number of curves mentioned above.
This is much more tractable! The majority of the results in this section are from the foun-
dational paper [Gir91] of Giroux.

A convex surface X is simply a surface that has a neighborhood X x [-1, 1] on which
the contact structure is invariant in the [-1, 1]-direction. Said a different way, X is convex
if there is a vector field v transverse to X whose flow preserves the contact planes. Such
a vector field is called a contact vector field. Section 3.1 is devoted to the study of contact
vector fields. We then turn to a discussion of convex surfaces in Section 3.2. After defining
them, we give criteria in terms of differential forms and also in terms of the characteristic
foliation that will imply the surface is convex. The main result of this section says that a
surface X is convex if and only if its characteristic foliation is “divided” by an embedded
1-manifold I's. (We will frequently call an embedded 1-manifold a multi-curve.) This
means that I's cuts X into two surfaces X, and X_, I's is transverse to the characteristic
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foliation, and there is a vector field that directs the singular foliation, is pointing out of
X, and its divergence is positive on X, negative on X_. The multi-curve I'y is called the
dividing set of the convex surface X.

In Section 3.3, we prove one of the essential results about convex surfaces. This result
says that convex surfaces exist in abundance. Specifically, if X is a closed surface, then it
can be C* perturbed so that it is convex, and if X has Legendrian boundary, then it can
also be perturbed to be convex if the twisting of the contact planes along each boundary
component is non-positive. This is done by showing that one can construct a dividing set
for a “generic” foliation and then apply the work done in the previous section to conclude
the surface is convex.

We then turn to the next essential result about convex surfaces. In Section 3.4, we
show that it is the dividing curves that essentially determine the contact structure in a
neighborhood of a convex surface. Specifically, we show that given any singular folia-
tion that is divided by the dividing curve of the convex surface, it can be realized as the
characteristic foliation of the surface after a controlled C°-small perturbation. Thus, we
see that if two convex surfaces are diffeomorphic by a diffeomorphism that takes the di-
viding curves of one surface to the dividing curves of the other, then after perturbing one
of the surfaces (so that its characteristic foliation agrees with the other surface), the sur-
faces will have contactomorphic neighborhoods. Given this result, we can “normalize”
the characteristic foliation on convex tori and other simple surfaces, so we can assume
we know exactly what the foliation looks like! In addition, we can show that any curve
(or any graph) on a convex surface, satisfying a mild condition, can be made to be part
of the characteristic foliation of the surface after a small perturbation.

Now that we know we can find lots of Legendrian curves on a convex surface, we
study the classical invariants of these curves in Section 3.5. Specifically, we will see how
to compute the Thurston-Bennequin invariant of a Legendrian curve on a convex surface
in terms of the number of times the curve intersects the dividing set, and if the curve
is the boundary of the convex surface, then we can also compute its rotation number in
terms of the X, and X_ regions of the convex surface.

In Section 3.6, we establish the Giroux tightness criterion. This important result states
that a closed convex surface has a tight neighborhood if and only if it is either the sphere
and the dividing set is connected, or it is not the sphere and the dividing set has no com-
ponents that bound disks in the surface. With this key result in hand, in Section 3.7, we
establish the Bennequin inequality that says in a tight contact manifold for any Legen-
drian knot L that bounds a surface X, we have

tb(L) + |rot(L)| < —x(X).



3.1. Contact vector fields 129

We similarly have a result for closed surfaces if e(¢) is the Euler class of a tight contact
structure on a manifold M and I is a closed surface in M, we show that

le(E)([ZD] < —x(2)
if £ 2 S2, where [Z] is the homology class of Z. If & = S2, then ¢(&)([Z]) = 0.

In the final section of this chapter, we consider how to transfer information from one
convex surface to another. More concretely, suppose X and X’ are two convex surfaces,
where JY’ is a Legendrian knot that is contained in X, and X and ¥’ are otherwise disjoint.
We see that the dividing curves on X and ¥’ interleave along dY’. That is, between two
adjacent intersections of I'y with JX’, there is exactly one intersection point of I'y; with
dY’; and similarly with the roles of I'y and I'ss interchanged.

3.1. Contact vector fields

Given a contact manifold (M, &), a contact vector field v is a vector field whose flow ¢
preserves &. If o is a contact 1-form for £ then v is a contact vector field for & if and only
if

Lya =ga,

where ¢ : M — R is a function on M. This is easily seen since

J .
Lya = E@Mt:o

and the flow of v preserves ¢ if and only if ¢p;a = ga.

Given the contact form a, there is a unique vector field R, that satisfies
a(Ry) =1, g, da=0.
This vector field is called the Reeb vector field of . One easily computes
Lr,a =d(ig,@) + tr,(da) =0

So the Reeb vector field R, is a contact vector field. Moreover, the condition a(R,) = 1
implies that the vector field is transverse to &.

Exercise 3.1.1. Show a vector field v is a Reeb field for some contact 1-form for & if and
only if v is a contact vector field and transverse to &.

Exercise 3.1.2. Show a contact vector field v is always tangent to ¢ if and only if it is 0.

While not clear from the definition, the result below shows that there are actually
many contact vector fields.

Proposition 3.1.3 (Libermann 1959, [Lib59]). On a contact manifold (M?3, &), contact vector
fields are in one-to-one correspondence with sections of the quotient bundle TX /&,
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We will consider the transversely orientable case and leave the general case to the
reader. We begin by noticing if ¢ is transversely orientable, then we may choose a contact
form a defining £ and consider its Reeb vector field R,. Clearly R, is a non-zero section of
TM/&andso TM /& = M xR and sections of TM /£ are givenby HR, where H: M — R
is any function on M. The function H is called a contact Hamiltonian.

Proof. With the notation above, assume we are given a contact Hamiltonian H — that
is a section of TM /& — we will construct a contact vector field v. We begin by setting
v = w — HR, where w is a section of &. Notice that «(v) = —H and that dH — (dH(R,))«
is a 1-form on M that vanishes on R,. Recall from Section 1.2 that if Q! (m) is the set of
1-forms that vanish on R, and I'(£) denotes the sections of &, then the map

T(&) - QL (M): u s 1,da
is a bijection. Noting that t,da = 1,da we see that there is a unique w € I'(£) such that
twda = dH — (dH(R,))a.
We note that with this w, the vector field v is contact. Indeed
Lya =di,a+ ,da=d(-H) +dH — (dH(R,))a = —dH(R,)«.

Thus a section of TM /& uniquely determines a contact vector field and a contact vector
field v clearly gives a section of TM /& by setting H = —a(v). m]

Exercise 3.1.4. Prove the above proposition in the case that £ is not transversely ori-
entable.

The above proposition has an immediate useful corollary.

Corollary 3.1.5. Any locally defined contact vector field can always be extended to a globally
defined vector field.

Proof. Given a contact vector field v defined locally, it gives a section of TM/&. Extend
this section to a global section and consider the corresponding contact vector field. m]

Implicit in the proof of the proposition above is the following statement that we make
explicit here.

Lemma 3.1.6. Given a contact manifold (M, &), where & is defined as the kernel of the 1-form «.
A vector field v is a contact vector field if and only if there is a function H : M — R such that

a(v) = —-H, and

tpda = dH — (dH(R,))a.
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Given a contact vector field v for a contact manifold (M, &) the characteristic hypersur-
face of v is

C={x e Mlv(x) € &}.

We would like to understand when the characteristic hypersurface is a manifold. To this
end, we have the following exercises.

Exercise 3.1.7. Show that sections of TM /& that are transverse to the zero section are
generic in the C™ topology (for details on the topology see [Hir76]). In particular, if M is
compact then such sections are open and dense, while for open M they are residual. Note
for a coorientable contact structure, this is equivalent to saying that the set of functions
M — R that are transverse to zero are generic.

Lemma 3.1.8. For a generic contact vector field v the characteristic hypersurface is a surface.
Moreover, v is tangent to C and directs its characteristic foliation.

Proof. We consider the case of coorientable contact structures and leave the other case to
the reader. With the notation above C = H™1(0). Genericity implies 0 is a regular value of
H and hence C is a surface.

Recall Ly = ga for some function g. Now if x € C,w € T,C N &y and v # 0 then
day(v,w) = Lya(w) — d(t,a)(w) = ga(w) + dH(w) =0,

since w € TH™Y0) and also in &. Thus v,w € &, and da(v,w) = 0 implies that v is a
multiple of w.
Now if v = 0 then
gay = (Lya)y = (diya)y = —dH, =0

for vectors tangent to C. Thus @ = 0 on vectors tangent to C. (Or g(x) = 0 but then
dH, = 0 contradicting genericity.) Therefor singularities in C¢ occur at zeros of v. m]

3.2. Convex surface

In this section, we explore the main object of study in this book. A surface L in a contact
manifold (M, &) is a convex if there is a contact vector field v that is transverse to . There
are several conditions that are equivalent to a surface being convex.

Lemma 3.2.1. A surface X is convex if and only if there is an embedding ¢ : ¥ X R — M such
that ¢(Z X {0}) = £ and d¢p~1(&) is invariant under translations in the R direction. We call this
a vertically invariant contact structure.

We call the neighborhood of X in the lemma above a vertically invariant neighborhood.
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Proof. If X is convex let v be the transverse contact vector field. Set H = —a(v) for some
contact 1-form for &. Cut off H so that it is zero outside a small tubular neighborhood of
X (and nonzero in this neighborhood). Let v’ be the vector field generated by this new
function. The flow of v” gives ¢. (Note, we needed to cut off H so that we did not have
to worry about the flow not existing for all time or having periodic orbits.) Conversely,

if t is the coordinate on R then d¢ (%) is a contact vector field for & that is transverse to
2. O

We now state a fairly obvious lemma, but one that will be used frequently later in the
book. Recall that for a smooth manifold M, one may use the collar neighborhood theorem
to show that adding a product neighborhood to dM results in a manifold canonically
diffeomorphic to M (meaning that any two choices of the “obvious" diffeomorphism are
isotopic). The following lemma is a contact geometric version of this.

Lemma 3.2.2. Suppose (M, &) is a contact manifold with convex boundary L. Let &’ be a contact
structure on ¥. X [0, 1] that is invariant in the [0, 1]-direction and induces the same characteristic
foliation on ¥ as & does. Gluing ¥. X [0,1] to M will result in a manifold that is canonically
diffeomorphic to M, up to isotopy, and the result of gluing & and &’ together is contact isotopic to

&
Proof. We begin with a simple exercise.

Exercise 3.2.3. Let 1) be a contact structure on 2 X [0, 1] and " be one on £ x[1,2]. Assume
they are both invariant in the interval direction, and both induce the same characteristic
foliation on X X {pt}. Then the contact structure on X X [0, 2] obtained by gluing n and n’
together is isotopic to 17 (once X x [0, 2] is identified with X X [0, 1] via an diffeomorphism
that is the identity on L).

Hint: While there are several approaches to this exercise, we suggest considering the
Reconstruction Lemma, Lemma 1.3.9.

Now we may use the fact that £ = dM is convex to find a neighborhood X x [-1, 0] of
X in M on which ¢ is invariant in the interval direction. Now by the previous exercise we
see that the contact structure on X x [~1, 1] obtained by gluing &|sy(-1,0] and &’ together
is isotopic to &|yx(-1,0]- The lemma follows. O

Using the coordinates coming from Lemma 3.2.1 there is a contact 1-form « for £ such
that
a=p+udt,

where f is a 1-form on X and u is a function on X. We note:

(1) Ze = ker(p).
2) ZNC ={x € Z|u(x) = 0}.
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(3) for a to be a contact form we need

aANda=BAdB+dundt)+udtANdp
= (B Adu+udp)Adt>D0.
Lemma 3.2.4. Let X be a surface in a contact manifold (M, &), i: X — M the inclusion map,

and a a contact 1-form for &. Set p = i*a. The surface X is convex if and only if there is a function
u: X — Rsuch that

(3.2.10) wdB + B Adu > 0.

Proof. If X is convex we know such a u exists from the computation above. Conversely,
if such a u exists then on X X R we can consider the contact structure ker(g + u dt). The
characteristic foliation on X x {0} is the same as the one on £ ¢ M. Thus by Theorem 1.3.4
we know there is a contactomorphism from a neighborhood of ¥ x {0} to a neighborhood
of X.. Push the vector field % to M using the contactomorphism. This is a contact vector
field transverse to X. m]

We will now “dualize” this construction. Let w be an area form on X and define a
vector field w on X by

lpw = B.

Note: w is in the kernel of § so w directs X¢. That is w is tangent to the foliation at non-
singular points and is zero at singular points. If  is convex we know

BAdu+udp >0,

and hence
B A du +u(divy,w)w >0,
where div,w is defined in Section 2.1, which implies
—du(w)w + u(div,w)w > 0.

The last line follows because du A w = 0 (since this is 3-form on a surface) and hence
0 = tp(du A w) = du(w)w — du A (tpw). Thus

(3.2.11) —du(w) + u(div,w) > 0.

Exercise 3.2.5. Show that the set of functions u on a surface that satisfy Equation (3.2.10),
or dually Equation (3.2.11), forms a convex set, and different choices of u correspond to
different choices of vertically invariant vector field transverse to X.

Shortly we will see that convex surfaces are very common. For the moment let us see
that there are surfaces that are not convex.
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Example 3.2.6. Let (v, 0,z) be cylindrical coordinates on R3. Consider the contact manifold
M = R3/~ where ~ is the equivalence relation generated by z v z + 1 and & = ker(dz + r>d6)
Let T; be the torus {(r, 0, z)|r = c}. Then the characteristic foliation on T, is linear. If B is as
above it is easy to see that df = 0 on T.. Thus if T, is convex we need to find a functionu : T, — R
such that —du(w) > 0, where w is pointing along the foliation. Thus u must be decreasing along
the flow lines. But this is not possible.

There is another way a foliation can fail to be convex.

Exercise 3.2.7. Show that if there is a flow line from a negative singularity to a positive
singularity then the surface cannot be convex.

Hint: Assume the surface is convex. The contact form can be written f + u dt. At the
negative singularity u must be negative at the positive singularity u must be positive.

We will see in Theorem 3.3.6 below that generically a surface is convex if and only if
it does not violate either of the two conditions mentioned in the previous two exercises.

We now turn to our last characterization of convex surfaces. Let X be a surface and
¥ be a singular foliation on X. A multi-curve I' is said to divide ¥ if

D) Z\NT=XZ,[IZ-,
(2) T is transverse to ¥, and

(3) there is a area form w on X and a vector field w on £ so that
(a) =div,w > 0on X,
(b) w directs ¥, and
(c) w points transversely out of X, along I'.

Exercise 3.2.8. Show that if I'1 and I'; both divide ¥ then they are isotopic through di-
viding curves.

If ¥ in (M, &) is convex then near ¥ write a contact form for & as  + u dt. The multi-
curve I'y = {x € Z|u(x) = 0} (this is the intersection of X with the characteristic hyper-
surface) is called the dividing set of X.

Theorem 3.2.9 (Giroux 1991, [Gir91]). Let X be an orientable surface in (M, &) with Legen-
drian boundary (possibly empty). Then T is a convex surface if and only if L.¢ has dividing curves.
Moreover, if © is convex, then I'y will divide X¢.

Proof. Suppose L is convex. Let I'y be the dividing set of X.. Let § + u dt be a vertically
invariant contact form for & in a neighborhood of X.. We have I'y = u‘l(O), thus it is clear
that 2, = u~1([0,)) and - = u~!(~o0,0]) are the components of * \ I's. Moreover, if
I'y is not transverse to X¢ then there would be a vector v tangent to X¢ and I'y at some
point. Thus v € ker 8, du(v) = 0 and t,(8 Adu +u dB) = 0 at this point (recall u = 0 onIYy),
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contradicting the contact condition. (Note: we did not have to assume that the contact
vector field is generic. So even though the characteristic hypersurface might not be cut
out transversely, we still must have I'y is transverse to Lt and hence cut out transversely.)

We are now left to check condition (3) of the definition of dividing curve. The form
@’ = B Adu+udp is an area form on X. Let w be the vector field determined by 1, w’ = B.

Exercise 3.2.10. Show that w directs the characteristic foliation.

Hint: It is immediate from its definition that w’ is tangent to the foliation where it is
non-singular and 0 when it is singular. So the main thing to check is that w’ induces the
correct orientation on the foliation where it is non-singular.

We will now consider X away from the dividing curves (that is where u = 0). In this
region, a simple computation yields div,, (1
that +div,-1,, (w’) = J_r% > 0 on X, (away from the dividing set). Now let A be a small
tubular neighborhood of I'y, so that the characteristic foliation on A is by arcs transverse
to A\ (9Z N A). Let X, = L. N (Z\ A). On I let w by +1w’. This defines a (properly
oriented) area form on L \ A and a vector field that directs the foliation on X \ A for which

+div,w > 0 on X.. We are left to extend w over A so that +div,w > 0 on X..

w) = . Since div, fv = fdivs,v we see

Exercise 3.2.11. Show w can be so extended.

Hint: We have an explicit model for w in A. Write down any area form on A with the
desired properties and show that it can be patched into w near the boundary of A pre-
serving these properties. The proof of Lemma 2.1.2 might be helpful.

Now assume I' divides ;. We want to show that X is convex. Let Ly be a small
tubular neighborhood of I in X so that the characteristic foliation on ¥ is by arcs running
across Lo. (Note each component of X is an annulus or strip and its core is transverse to
L¢ thus it is possible to find Xy.) Let &), = X, N (X \ Z). On X, U X! let B = ,w. On
let u = £1. Thus on X/, U X’ one easily checks that

(3.2.12) udiv,w — du(w) > 0.

Or in other words, g + u dt, is a contact form on (X, U X’ ) X R. Of course = 1w is
well defined on all of X. We just need to extend u over Xy so that Equation (3.2.12) is
satisfied on all of . To this end, slightly enlarge Xy to X so that 2] is still foliated by arcs
transverse to the boundary and X is on the interior of Xj. See Figure 3.2.1. Parameterize
an arc in the foliation of ¥ as a flow line of w. Denote the parameterizationas f: [0,1] —
Yo. Also denote u|4 by u. Thinking of u as a function on [0,1] we see u(0) = 1 and
u(1) = -1. To extend u over I satisfying Equation(3.2.12) we need to solve the equation:
du

div,w — — > 0.
udaiwv,w dt
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0 '\——\1;—# 1

Xo
Figure 3.2.1. The region X{. The curve dividing the foliation I is shown in green, the
horizontal curves are the leaves of the foliation. The function u is defined in the region
shaded in light gray and needs to be extended over the dark gray region.

We can solve this with a function of the form
u(t) = g(t)ef(f(divwzv)(t)dt,

where g(t) satisfies g’(t) < 0, and

1
oo @ivaw)(®)

g(t) = )

B oo @ivow)®)

neart =0

neart = 1.

Itis easy to find such a ¢. Thus we have extended u over one arc in . One may easily see
that we can consistently extend over all arcs in this way. This extended u by construction
satisfies Equation (3.2.12) and hence we have a vertically invariant contact form on 2 xR.
In addition, the characteristic foliation on £ x {0} is the same as Z;. Thus a neighborhood
of £ x {0} in £ X R is contactomorphic to X in M. Using this contactomorphism we see =
is convex. O

Exercise 3.2.12. If X is a convex surface in a co-oriented contact manifold (M, &) notice
that & orients I'y. With this orientation show that 0X, =T's and dX_ = —T7.

Exercise 3.2.13. If X is a closed convex surface then the dividing set I'y cannot be empty.

Example 3.2.14. The unit 2-sphere in R3 with the contact structure & = ker(dz + r2d0) is
convex as the following exercise verifies. See Figure 3.2.2.

Exercise 3.2.15. Show that z% + %% is a contact vector field and induces the given divid-
ing set.

Alternatively, we can see the surface is convex as follows. From Section 2.1 we know
the divergence of the singular foliation must be positive near the north pole and negative

near the south pole. Away from neighborhoods of these poles, we have an annulus as
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Figure 3.2.2. Convex 2-sphere with dividing curves shown in green.

in the proof of the above theorem. Argue as in that proof to show that the foliation is
divided by the curve indicated in the figure.

Example 3.2.16. Here we revisit Example 3.2.6. Let M = R3/~ where (r,0,z) ~ (1,0, z +
1) have the contact structure & = ker(dz + r?>d0). Consider T, = {(r,0,z) : r = c} for a
tixed c so that the slope of the characteristic foliation is P As discussed in Example 3.2.6,
T. is not a convex torus. Pick two orbits B and C in (T.)s. We have T, \ (BUC) = A1 U A,
where A; is an annulus. Push the interiors of A1 and A, towards the z axis slightly.

Exercise 3.2.17. Check that the foliation is as shown in Figure 3.2.3. From our discussion
in Section 2.1 we see that the divergence of the foliation can be assumed to be positive

Figure 3.2.3. Non-convex torus, left, is perturbed into a convex torus right.

near the repelling closed orbit and negative near the attracting closed orbit. The comple-
ment of these neighborhoods can be assumed to be annuli. Arguing as in the proof of the
theorem above, show the foliation can be divided by the curves indicated in the figure
and hence the surface is convex.
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Note we easily could have arranged that our convex torus had 2n periodic orbits and
2n components to the dividing curve.

3.3. Finding convex surfaces

We are now ready to see that convex surfaces are plentiful.

Theorem 3.3.1 (Giroux 1991, [Gir91] for the closed case; Kanda 1998, [Kan97] in general).
Any closed surface L. in a contact manifold (M, &) is C*-close to a convex surface.

Any surface with Legendrian boundary satisfying tw(y, L) < 0 for all boundary components
y may be C° small perturbed near the boundary and then C® small perturbed on the interior to
become convex. If ¥ contains other Legendrian curves L satisfying tw(L,X) < 0 then ¥ may
be made convex after a C° small purturbation near the L and the boundary and a C*® small
perturbation elsewhere.

To prove this theorem we need a preliminary definition and result.

Definition 3.3.2. A singular foliation ¥ is called almost Morse-Smale if

(1) the singularities are non degenerate,

(2) each close orbit is non degenerate (that is the Poincaré return map is not degen-
erate), and

(3) there are no flow lines running from a negative singularity to a positive sin-
gularity (this could only happen by having a connection between two saddle
singularities).

Theorem 3.3.3 (Giroux 1991, [Gir91]). If dX is Legendrian and L is almost Morse-Smale,
then ¥ is convex.

Proof. We will show that such X has dividing curves. To this end, along each close leaf
put an annulus with boundary transverse to Ls. Around each elliptic singularity put a
small disk with boundary transverse to Ls. Along the stable (unstable) manifolds of a
positive (negative) hyperbolic singularity put a band. Let Z. be the union of the regions
just described associated to + singularities and periodic orbits. (One should check that
these unions define disjoint sets.) One may choose an area form on X, that agrees with
the orientation induced from ¥ and so that a vector field w directing the characteristic
foliation of X, has + divergence. To do this note that by the discussion in Section 2.1 the
divergence near the singularities is independent of the area form and near the periodic
points the area form can be chosen to have the desired divergence. Now on Z,, say, we
know the divergence is positive near the singularities and periodic orbits.

Exercise 3.3.4. Recalling that if o’ = efw then divyw = divyw + d f(w), show that one
may choose f so that +div,yw > 0 on X,.
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Figure 3.3.4. The regions X... We see X, is red and X_ in grey. NEED BETTER PICTURE

Hint: Choose a function f that is zero near the elliptic singularities and periodic orbits,
K near the hyperbolic singularities and 2K near the boundary of Z,.

Note X' = X\ (4 U X_) is a surface with a non-singular foliation which is transverse
to the boundary and without closed leaves (and sitting on an orientable surface). Thus
the components of X" are annuli or strips foliated by arcs. The vector field directing the
foliation on X’ has + divergence near the boundary components touching X..

Exercise 3.3.5. Extend the area form over ¥’ so that the divergence is 0 only near the core
of each annulus.

Thus the cores of these annuli form a dividing set for X and by Theorem 3.2.9, X is
convex. o

Though this theorem suffices for most applications, there is a stronger version. An
oriented singular foliation is said to satisfy the Poincaré Bendixson property if the limit
set of each flow line (in either positive or negative time) is a singular point, periodic orbit
or a union of singular points and connecting orbits.

Theorem 3.3.6 (Giroux 2000, [Gir00]). Let X be an oriented surface in (M, &) with Legen-
drian boundary such that L¢ satisfies the Poincaré-Bendixson property. Then X is convex if and
only if all the closed orbits are non-degenerate and there is no flow from a negative to a positive
singularity.

Exercise 3.3.7. Prove this theorem.

Hint: It is not hard to show that the conditions in the theorem are necessary for convexity,
see Example 3.2.6 and Exercise 3.2.7. The proof of sufficiency is very similar to the proof
of Theorem 3.3.3.

Proof of Theorem 3.3.1. The closed case is clear by Theorems 2.3.1 and 3.3.3, since (al-
most) Morse-Smale foliations are generic.
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Consider X with boundary. Let y be a boundary component of  and N a neighbor-
hood of y that is contactomorphic to a neighborhood N’ of the x-axis in R3/~, where
(x+1,y,z) ~ (x,y, z), with the contact structure ker(dz — ydx). By shrinking the neigh-
borhoods if necessary, the intersection . N N can be assumed to map to an annulus A in
N’ (prove this if it is not clear to you). The curve A N dN’ wraps around dN’ some num-
ber of times. Let N” be a smaller neighborhood of the x-axis and let A’ be a “uniformly
twisting” annulus (by which we mean that the angle formed by the annulus and the xy-
plane is changing at a constant rate) in N” that twists around JN” the same number of
times as A twists around JdN’. Note the signs of the singularities of A" along y alternate
and can be assumed to be non-degenerate. Now connect A’ N dN” to A N JIN’ to get an
annulus A”.

Exercise 3.3.8. Show that A is isotopic to A” by an isotopy fixing the boundary compo-
nents.

Replace A by A” to get C? isotopy of X near . Now repeat this construction for the other
boundary components.

Recall Lemma 2.5.1 says that if p is a singularity along the x-axis and ¢ is twisting
past A” in a right-handed way then p is a positive (negative) singularity of A7 if and only
if it is a sink (source) of the flow along y. The opposite is true if £ is twisting past A” in a
left handed manner. Thus if tw(y, ) > 0 then X cannot be made convex.

Exercise 3.3.9. If tw(y, L) < 0 then show that we may C? isotop L in a neighborhood of
dL, but fixing dX, so that L is Morse-Smale near X

Hint: Build a standard neighborhood of JX and see that you can isotop X in this neigh-
borhood to have the desired property.

By Theorem 2.3.1 we can C* perturb X away from the boundary so that it is almost
Morse-Smale on the rest of X and thus X is convex by Theorem 3.3.3. m]

3.4. Convex surfaces and characteristic foliations

We now explore the main property that makes convex surfaces so useful. In particular,
the following result will show that the dividing curves of a convex surface essentially
determine the contact structure in a neighborhood of the surface.

Theorem 3.4.1 (Giroux 1991, [Gir91]). Given a compact surface ¥ and a contact manifold
(M, &) leti: X — M be an embedding so that i(X) is a convex surface in (M, &), if X is not
closed then assume i(X) has Legendrian boundary. Let F be a singular foliation on X such that
F is divided by T = i~}(T'x). Then given any neighborhood U of i(X) in M, there is an isotopy
¢s : . — M,s €[0,1], such that

(1) ¢o=1,
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(2) ¢s is fixed on i"(T'y),

(3) ¢s(X) c U foralls,

(4) ¢s(X) is convex with dividing set I's,,
5) (P1(X))e = p1(F).

This theorem says that any singular foliation that a convex surface could possibly
have (that is, one that has the same dividing set), can actually be realized in a C° neigh-
borhood of the surface. This is called the Giroux realization principle or Giroux flexibil-
ity. Since Theorem 1.3.5 says the contact structure near the surface is determined by the
characteristic foliation, we see that the dividing curves essentially determine the contact
structure near the surface.

Exercise 3.4.2. Why do the dividing curves of a convex surface not “determine the contact
structure in a neighborhood of the surface"?

Proof. Let ¥ : © X R — M be a vertically invariant neighborhood of i(X) in U € M, so
that W(X x {0}) = i(X). Such a W clearly exists by Corollary 3.1.5. We will construct the
desired isotopy in X = X X R then use W to map it to M.

Since I' divides both X¢ and ¥ there is a neighborhood A of I in X so that both X¢ and
¥ foliate A by arcs transverse to dA\ (dZNA). LetZ, =Z.N(Z\A)and X, = X, XxR. By
Exercise 3.2.5 and the discussion in the proof of Theorem 3.2.9 we can find area forms w;,
vector fields w;, and functions u;, i = 0, 1, so that ag = 14, w0 +up dt is a contact 1-form for
&o = D*(&), a1 = 1y, w1 + uy dt is a contact form on X that induces F as the characteristic
foliation on X X {0}, and so that u; = +1 on L.

We concentrate on X, (the same arguments apply to X_). Note w1 = f wo, for some
positive function f. Referring to Equation (2.1.9) in Section 2.1 we see that

fdivie,wi = dive,(fwi),

Thus w] = fw, dilates wp on X,.. Now set ws = (1 — s)w] + swop, s € [0, 1]. All the vector
tields w; dilate wg on X, . Thus the 1-forms as = 14, wo + dt are all contact forms on X..

We have a family of 1-forms as on X, U X_ which we will extend over A X R. Let B
be a small neighborhood of A in . On Xy = B X R we have functions u; defined near
dB \ (dZ N B). They are all equal to +1 according as the boundary component is in .
We can also define the vector fields ws on B X R as a linear combination of wy and w; as
above. Note w; always generates a foliation by arcs transverse to dB \ (dZ N B). We may
now extend the u,’s across B as in the proof of Theorem 3.2.9. We can in addition ensure
that us is 0 on I’ for all s. We now have a one-parameter family of contact forms a; and
vertically invariant contact structures &s = ker a; on all of X. Moreover, (X X {0})s, = Z¢,
(Zx{0})s, = F, and I' X R is the characteristic hypersurface for all s. MORE DETAIL?
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We apply Moser’s method, as in Theorem 1.3.4. One may check that since all the a;
are vertically invariant, the vector field that generates the flow in Moser’s method is also
vertically invariant. With this observation, it is easy to see that the flow generated by this
vector field satisfies all the collusions of the theorem. m]

Remark 3.4.3. Convex surfaces are useful for many reasons, but one of the most impor-
tant ones is the Giroux realization principle. When you have a surface it can be useful
to know that you can perturb it to have a generic property (for example, that is how we
proved Theorem 3.3.1 that shows convex surfaces are generic), but with convex surfaces,
one may isotop them to have very non-generic properties as we will see in the example
below. Adapting these non-generic properties to a given situation is a key to essentially all of the
classification results in the coming chapter!

Example 3.4.4. Recall form Examples 3.2.16 we have convex tori with 2n dividing curves,
and 2n periodic orbits of slope %. Using Theorem 3.4.1 we can arrange that the charac-
teristic foliation on the torus is as shown in Figure 3.4.5. That is there are 2n lines of
singularities (n lines of “sources” and n lines of “sinks”) with slope %, called Legendrian
divides. Between each two adjacent dividing curves there is a line of singularities. More-
over, the rest of the foliation can be assumed to be by lines of slope s where s is any
rational number not equal to %. These curves are called ruling curves. A torus with such a
characteristic foliation is said to be in standard form.
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Figure 3.4.5. Two convex tori with the same dividing curves.

Another instance of the idea mentioned in the remark above, and extending the ex-
ample above, is that one can frequently arrange for a subgraph of the surface to be part of
the foliation on a convex surface (not in the example above, we could arrange for a curve
of any slope to be part of the characteristic foliation of the torus). This will a key to much
of our work in the following chapters. To state the result we need a definition. Say a
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properly embedded graph G in a convex surface X with fixed dividing set is non-isolating
if G N Ty transversely and every component of X \ G intersects I'y.

Theorem 3.4.5 (Honda 2000, [Hon00a]). Let X be an embedded convex surface in a contact
manifold (M, £). Let G be a properly embedded graph which is non-isolating. Then there is an
isotopy of L, rel boundary, as in Theorem 3.4.1 to a surface X' so that G is contained in the
characteristic foliation of *'.

This theorem is frequently referred to as the Legendrian realization principle (or LeRP
for short). A particularly useful immediate corollary of the above theorem is the follow-
ing result.

Corollary 3.4.6 (Kanda 1997, [Kan97]). Let C be a simple closed curve in a convex surface ©
that intersects the dividing curves transversely and non-trivially. Then X may be isotoped so that
C is a closed leaf in the characteristic foliation. m]

Proof of Theorem 3.4.5. According to Theorem 3.4.1 we only need to construct a singular
foliation on X that contains G and is also divided by I'z. To this end let o be a component
of £\ (G UTy). Assume X is in X, so that all the elliptic points in a foliation must be
positive (a similar argument applies if X is in X_).

The boundary of Iy contains simple closed curves and arcs (the arcs form circles
too, but piecewise-smooth circles). Each can either be in I's, G or JZ. To simplify the
discussion we will add dX to G, but to do this we will add a vertex between each pair of
intersections of ¥ and I's that does not contain a point of G N dX. Along the boundary
components coming from I's we have the foliation flowing out. Along a circle boundary
component coming from G, we let the foliation be the circle with the flow nearby flowing
away from the circle. See Figure 3.4.6

Figure 3.4.6. Building the singular foliation near a boundary component of ¥ containing
only part of I'y, left, and G, The shaded grey area is the neighborhood of I'y U G.

Along a boundary component consisting of arcs all coming from G let the foliation
have a positive elliptic points at the vertices and a positive hyperbolic point on the in-
terior of each edge. Finally, consider a boundary component c that is made up of arcs
from G and I's. If an arc in G is adjacent to arcs in I'y at both endpoints, put a positive
hyperbolic singularity in its interior. If there is a series of arcs from G then at each vertex
put a positive elliptic point on the interior of an arc from G that has both endpoints on
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other arcs from G put a positive hyperbolic point (with the arc being the stable manifolds
of the singularity). For any other arc from G just leave as a non singular Legendrian arc.

AT 43

Figure 3.4.7. Building the singular foliation near arcs from G and I'. The shaded grey
area is the neighborhood of I'y U G.

See Figure 3.4.7. If you have any “elliptic vertices” use positive hyperbolic singularities
to “shield” it from the inside of Xy See Figure 3.4.7.

We have now defined the foliation in a tubular neighborhood A of I'y U G. Moreover,
the flow is transverse to the boundary of X = ¥ \A, and along any boundary component
containing a portion of I's the flow is pointing out of the surface. Denote such boundary
components by d_. Along the other boundary components (which consist of circles in G)
it is flowing in, we denote these d,.. The non-isolating condition implies that d_ is non
empty.

It is well-known, see [Mil65a], that one may choose a Morse function on X with d_
a non-critical level set mapping to 0, d; a non-critical level set mapping to 1, no minima,
and only one maxima if d; is empty and no maxima if d; is not empty. The gradient
flow of this height function gives a foliation of X that extends the foliation on A. Note
there is at most a single elliptic point that is a source. The other singularities are all
hyperbolic and one may always arrange them to have positive divergence. Thus we
have constructed a foliation on Xy that has strictly positive divergence. Continuing on
the other pieces of £ \ (G UT'x) will eventually yield a foliation on X that is divided by I's
and has G as a union of leaves. m]

We now state a useful result that extends the standard Legendrian realization princi-
ple. It is sometimes called the super Legendrian realization principle.

Lemma 3.4.7. Suppose y is a connected curve on a convex surface X that is disjoint from the
dividing curves I'y and any component of X\ y that does not intersect I'y. has positive genus, then
after a C° small isotopy of ©. (not through convex surfaces) one may realize y as a Legendrian
curve in the characteristic foliation of L.

Proof. If y is a non-separating curve on L then  \ y will have one component and since
by Exercise 3.2.13 we know I’y is non-empty, we see that y is non-isolating and hence by
the standard Legendrian realization principle, Theorem 3.4.5, we can realize y as part of
the characteristic foliation of X after an isotopy.
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Now if y is separating, then X \ y has two components X1 U X, (we are, of course,
assuming that X is connected and the general case easily follows) and one of the compo-
nents, say X, intersects I's non-trivially. If X, also intersects I'y non-trivially, then we are
done as above, so we assume that I's N X, = 0. We will C° isotop X, though non-convex
surfaces, to a surface I’ by an isotopy supported in X, so that I'y; intersects both X1 and
Y. We can then Legendrian realize y as above.

To do this, we first choose a non-separating curve c in X, (we can do this since we
assumed that X had positive genus). We may apply the Legendrian realization principle
to realize c as a circle of singularities in the characteristic foliation of X.. We now study
a neighborhood N of c. We can assume that N is contactomorphic to a neighborhood
N’ of the x-axis in R3/~, where (x,vy,z) ~ (x + 1,y,z), with the contact structure & =
ker(dz — ydx) with £ N N mapping to the A = xy — plane N N’. Now replace A C ¥ with
A’ shown in Figure 3.4.8. Denote the new surface X’ and notice that X’ may be constructed

r Y

AAAAAAAY

Figure 3.4.8. The annulus A is obtained from the arc in the upper left by crossing with
the x-axis, while the annulus A’ is obtained by crossing the arc in the upper right with the
x-axis. The characteristic foliations on A and A’ are shown in the bottom left and right,

respectively.

in any open neighborhood of X. One may easily see that A" has three parallel circles of
singularities and that there are two dividing curves in A’. Thus y in X’ is non-isolating
and so can be Legendrian realized by Theorem 3.4.5 m]
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3.5. Legendrian curves on convex surfaces and the
relative Euler characteristic.

Now that we know we can have closed curves in the characteristic foliation of a convex
surface we wish to see how the contact planes twist along the surface. Recall if L is a
Legendrian curve on a surface X then tw(L, L) denotes the twisting of the contact planes
& along L measured with respect to the framing on L given by X. The following useful
theorem is due to Kanda in [Kan98].

Theorem 3.5.1. Let L be a Legendrian curve on a convex surface L., then
1
tw(L,X) = _E#(L NTy),

where # means the number of points in the set. If X is a Seifert surface, the the above formula
computes the Thurston Bennequin number of L. Moreover, in this case, one has

r(L) = x(Z4) = x(Z-)

Proof. Let v be a contact vector field for = such that the characteristic hypersurface C
of v satisfies I'y = C N X. The twisting of & relative to L is the same as the twisting of
& relative to v (since v is transverse to £). We claim that £ always “twists past” v in a
left-handed manner. Indeed, let N be a small tubular neighborhood of L. So N = L X D?
and we can fix the product structure so that the tips of v trace out the curve Lx {p} on dN
where p is a point in dD?. Now & can be represented by the 1-form f + u dt, where f is a
1-form on X and u is a function on X. Note in this set up v is %. Notice that the contact
planes intersect % only when u = 0. We will show that each such point contributes —1
difference in the framing of L coming from & relative to v (and hence X).

Let us say x is a point on I'y. Thus u(x) = 0. Orient L arbitrarily and let w; be vector
field along L giving this orientation. Near x we can choose another vector field w, along
L in TX such that {w;,w;} is an oriented basis for £ and p(w;) = 1 (here, of course,
we choose the orientation on X to agree with the chosen orientation along L). Consider
w = hwy + % so that w € &£. Near the dividing set, w gives the framing on N coming from
. Now

B+udt)w)=h+u=0,

so h = —u. Thus at all intersection points of L with I'y the curve on dN coming from v and
the curve coming form & intersect. Moreover, they intersect in a point with orientation
negative (i.e. & twists past v in a left-handed way). Thus each intersection of L with I'y
contributes a —% to tw(L, Z).

For the computation of r(L) recall the rotation number can be computed from the
singularities of the characteristic foliation from Equation (1.4.3). We may use the Giroux
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Realization Principal to arrange that the singularities of X are all non-degenerate without
moving L.

Exercise 3.5.2. Show that x(X.) = e.—h, where e, is the number of + elliptic singularities
in X, and &, is the number of + hyperbolic singularities of X.

From this exercise and Equation (1.4.3) we immediately see the desired formula for r(L).
O

The rotation number can be thought of a relative Euler characteristic, so we now
generalize the above discussion to compute the relative Euler class of a contact structure
on any surface. Let £ be any contact structure (or even simply a plane field) on a manifold
M with boundary. Assume |y is trivializable. Given any section s of &|yn we can
define the relative Euler class e(&, s) € H*(M,dM; Z) as follows: Let s’ be any extension
of s to a section of & of all of M. By genericity we can assume the image of s’ intersects
the zero section of £ transversely. Denote this intersection by Z. The relative Euler class
e(&, s) is the Poincaré dual of [Z]. It is standard to show the relative Euler class depends
only on the isotopy (thought non-zero sections) class of s.

Lemma 3.5.3. Let (M, &) be a contact manifold with convex boundary and s a section of &|gp.
Let ¥ be an oriented connected convex surface properly embedded in M. If a tangent vector field
to dX. ¢ dM, inducing the correct orientation on d¥., agrees with s along JX. then

e(&,s)([Z]) = x(Z4) — x(Z0).

The proof of this lemma is almost identical to part of the proof of Theorem 3.5.1.
The one difference (which is irrelevant) is that J~ might have more than one boundary
component.

Suppose dM has a convex torus boundary component T Fix a section of £ along the
other boundary components. By Theorem 3.4.1 we can change the characteristic foliation
on T without affecting the contact structure (up to isotopy). Thus we arrange that the
characteristic foliation on T is in standard form (Example 3.4.4) with ruling slope r. Now
let s be the section of &y that was given on dM \ T, and on T it is tangent to the ruling
curves.

Exercise 3.5.4. There are two seemingly different choices for this section along T, depend-
ing on the direction we traverse the ruling curves. Show these two choices are isotopic.

Exercise 3.5.5. Suppose we choose a different ruling slope r" and let s” be the correspond-
ing section of & along M. Show ¢(&, s) = e(&, s').
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3.6. Giroux’s tightness criterion

Giroux has shown us how to tell if a vertically invariant neighborhood of a convex surface
is tight.

Theorem 3.6.1 (Giroux 2001, [Gir01]). Let ¥ be a convex surface in (M, E). A vertically in-
variant neighborhood of X is tight if and only if ¥. # S? and Ty, contains no contractible curves or
Y. = S2 and Ty is connected.

This theorem is known as the Giroux criterion.

Proof. If © = S? and Ty is disconnected then we can use Theorem 3.4.5 to Legendrian
realize a circle disjoint from the dividing curves that bounds a disk D in S2. By The-
orem 3.5.1 we see that D is an overtwisted disk. If I's is connected then the vertically
invariant neighborhood of  can be identified with the neighborhood of the unit sphere
in R3 with the standard tight contact structure, see Example 3.2.14. Thus the contact
structure in the neighborhood is tight.

We now assume ¥ # S? and there is a simple closed curve y C Ty that bounds a
disk D in X. Let D’ be a slightly larger disk containing D and not intersecting I's \ y.
If I'y \ y # 0 then we may apply the Legendrian realization principle, Theorem 3.4.5,
to isotop X inside a vertically invariant neighborhood to I’ so that dD’ is a Legendrian
curve in Y. By Theorem 3.5.1 we have that D’ is an overtwisted disk.

If I'y \ y = 0 then since X has positive genus we may use the super Legendrian
realization principle, Lemma 3.4.7, to realize dD’ as a Legendrian curve and we can again
see that D’ is an overtwisted disk.

We are left to see that a surface X of positive genus with I'y having no components
bounding a disk has a tight neighborhood. To this end, let U be a vertically invariant
neighborhood of L. Let T = R2 be the universal cover of . Since no component of I's
bounds a disk in , I's will lift a union of properly embedded lines and arcs in Y. LetV be
the universal cover of U. This is simply the vertically invariant “neighborhood” of X. We
claim that the pull back contact structure on V is tight. To see this let G be a graph in X
that realizes the 1-skeleton of L. Clearly G is non-isolating so we may use Theorem 3.4.1
to isotope X to X’ so that G as a Legendrian graph in I’ and U is a vertically invariant
neighborhood of X’ too. (We now rename X/, X..) Let G be the graph lifted to L. If there is
an overtwisted disk in V then it lies over some disk D in X and we can assume the disk
D is a union of regions in b \ G. Thus we have 9D is Legendrian. The disk D is convex
and its dividing curves are a union of arcs (no closed disk since I'; is a union of lines and
intervals).

Exercise 3.6.2. Show there is a disk D’ in S? whose intersection with the equator has the
same configuration as I'p. See for example Figure 3.6.9.
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Figure 3.6.9. The annulus A is obtained from the arc in the upper left by crossing with
the x-axis, while the annulus A’ is obtained by crossing the arc in the upper right with the
x-axis. The characteristic foliations on A and A’ are shown in the bottom left and right,

respectively.

Of course the unit S? in the standard tight contact structure on R has the equator as
its dividing set so D’ N T's2 is the same as D N T's. Now on 5% we can draw the foliation
¥ that on D’ agrees with the characteristic foliation on D and on S? \ D’ is the foliation
constructed in the proof of Theorem 3.4.5. Since this foliation is divided by I's> we can
use Theorem 3.4.5 to realize it in a vertically invariant neighborhood N = S? x R of S? in
the standard tight contact structure on R3. Thus the contact structure on N is tight. Now
the contact structure on D’ X R and D X R are contactomorphic, but this contradicts the
fact that in D X R we assumed there was an overtwisted disk. m]

3.7. Bennequin type inequalities

We are now ready to demonstrate the first connection between topology and tight contact
structures.

Theorem 3.7.1. Let (M, &) be a tight contact 3-manifold. Any embedded closed surface © # S?
in M satisfies

le(@(ZD] < =x(2),
where e(&) is the Euler class of the contact structure. If L. = S? then

e(E)([X] = 0.

Remark 3.7.2. There is a similar inequality for the Euler class of a taut foliation (actually
one just needs a Reebless foliation), see [ET98, Thu86].

Remark 3.7.3. The inequality in this theorem implies that only finitely many homol-
ogy classes in H%(M; Z) can be realized as the Euler class of a tight contact structure,
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in marked contrast to the situation for overtwisted contact structures where any (even)
homology class is the Euler class of an overtwisted contact structure.

Exercise 3.7.4. Prove the first claim in the remark.

Hint: Recall that any element in Hp(M, Z) can be realized by an embedded surface. Pick
a basis of Hy(M, Z), realize them by surfaces and then think about what the inequality
says.

Proof. Given © # 5% in M use Theorem 3.3.1 to make it convex. Since & is tight I's is a
union of S’s that do not bound disks in X.. As usual write & \I's =X, UZX_. Clearly

X(Z) = x(Z4) + x(Xo)

since x(I'y) = 0. As in Exercise 1.6.4 one may easily check that

e(E)(X) = x(Z4) — x(X).
Subtracting the first equation form the second yields
e(&)(X) - x(X) = -2x(X-) = 0.
Thus —e(&)(X) < —x(X). By adding the equations together one may similarly show
e(&)(X) < —x(X), establishing the desired inequality.
If © = S? we know X \ Iy is the disjoint union of two disks thus e(&)(Z) = 0. O

Now we state the famous Bennequin inequality.

Theorem 3.7.5 (Bennequin 1983, [Ben83]; Eliashberg 1992, [E1i92]). Let (M, &) be a tight
contact manifold and K a knot in M bounding the embedded surface . If K is a transverse knot
then
sl(K) < —x(X2).
If K is a Legendrian knot then
tb(K) + [r(K)| < =x(X).

This theorem was proven for the standard tight contact structure on S and R3 by
Bennequin in [Ben83] and proven for all tight contact structures by Eliashberg in [E1i92].
In fact, it is easy to see that a Bennequin type inequality characterizes whether or not a
contact structure is tight.

Exercise 3.7.6. Show that a contact manifold (M, &) is overtwisted if and only if there is
a Legendrian unknot with tb = 0 if and only if there is a transverse unknot with sl = 0.

Exercise 3.7.7. Show that a contact manifold (M, &) is tight if and only if there is some
bound on the Thurston-Bennequin invariant of a knot in a fixed knot type if and only if
the Bennequin bound holds for all knots.
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Proof. Assume K be a Legendrian knot. We will prove tb(K) +r(K) < —x(X) but a similar
argument establishes tb(K) — r(K) < —x(X). We may assume that tb(K) < 0. Indeed we
may negatively stabilize K enough times so that tb(K) < 0 (recall each stabilization de-
creases tb(K) by 1). Since we are using negative stabilizations tb(K) + r(K) is unchanged.
Thus proving the inequality for the stabilized knot will imply the inequality for the orig-
inal knot.

Since tb(K) < 0 Theorem 3.3.1 says we can isotop L so that it is convex. By Theo-
rem 3.5.1 we know r(K) = x(X+) — x(Z-). We claim that

th(K) + x(Z4) + x(Z-) = x(X).

To see this note that by Theorem 3.5.1 there are precisely tb(K) arcs in I'y, denote their
union Iy, and so x(Z\ T';) = x(£) — tb(K). But we also know that y(Z\T;) = x(E\Ty) =
X(ZLUZD) = x(Z4) + x(X-), since all the components of I's not in I'; are circles. Thus we
have established the above equality.

The Giroux criterion, Theorem 3.6.1, says there are no disk components of £ \ I'y on
the interior of Z. So any disks in X\I'y must come from an arc in I'y separating a disk from
L (unless XL is a disk). Thus there are at most — tb(K) disk components in £\ I'y, and hence
there are at most — tb(K) disk components in X (note that this still holds even if T is a
disk). So x(Z+) equals the number of disk components plus the Euler characteristic of the
other components. The Euler characteristic of these other components in non-positive.
Thus we have shown

tb(K) < —x(Z4).

Now we have

tb(K) + r(K) < tb(K) + r(K) — 2tb(K) — 2x(24)
= —tb(K) + r(K) — 2x(Z+)
= —tb(K) + x(Z+) — x(Z-) = 2x(Z4)
= —tb(K) = x(£+) — x(E-) = —x(2).

To prove the inequality for transverse knots we use Lemma 1.4.31 which says if K is
a transverse knot then there is a Legendrian knot L such that its positive transverse push
off L, is transversely isotopic to K. From earlier we know sl(K) = tb(L) — r(L). Thus we
get sl(K) < —x(X) from the previously established inequality for Legendrian knots m]

NEED TO PROVE THE NEXT TWO THEOREMS. Maybe need to put them in a later
chapter. Probably need bypasses for the second one... Or do we even need these theo-
rems? They are nice but maybe not essential?
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Theorem 3.7.8. Let &1 and & be two tight vertically invariant contact structures on X R. The
contact structures are contactomorphic if and only if there is a diffeomorphism ¢ : © — X taking
the dividing curves I's, induced on © = ¥ x {0} by &; to the dividing curves I's, induced by &,.

Theorem 3.7.9. Let & and & be two overtwisted vertically invariant contact structures on
L X R. The contact structures are contactomorphic if and only if

X(Z}) = x(Z1) = 2(x(Z3) - x(£2)),
where L\ T, = Xi [[ 2.

3.8. Pairs of convex surfaces

Giroux flexibility is one of the key reasons that convex surfaces are so powerful in study-
ing contact structures. Another key feature of convex surfaces is that you can “transfer
information" from one convex surface to another if they agree along a Legendrian knot.

Lemma 3.8.1 (Kanda 1997, [Kan97]; Honda 2000, [Hon00a]). Suppose that ©. and X’ are two
convex surfaces and dY’ is Legendrian and contained in ¥.. Then the dividing curves of ¥ and
Y/ interlace along dY.. More specifically, between any two adjacent points of I's N JY there is a
point of I'sy N IL" and vice versa. See Figure 3.8.10.

<

)y

ZI

Figure 3.8.10. The interlacing of dividing curves for convex surfaces L and ¥’ that inter-
sect along a Legendrian knot 9%’.

Proof. We start by building a standard model for dX’. Consider R3/~, where (x, Y,z) ~
(x,y,z + 1), with the contact structure & = ker(sin(2nmz)dx + cos(2nnz)dy. Let L =
{(x,y,z) :x=0}and X' = {(x,y,z) : y = 0, x > 0}. Note both these surface are convex
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and the boundary of X’ is a Legendrian curve in X. In Figure 3.8.10 we see the situation
for n = 2. The choice of n in this model is clearly determined by tw(dX’, ¥’).

Exercise 3.8.2. Show that the situation described in Lemma 3.8.1 can always be modeled
as described above.

One may easily see in the model that the conclusion of the lemma holds. m|

Not only can we compare dividing curves using the lemma above, we can use the
model built in the proof to “round the edge" and get a new convex surface.

Lemma 3.8.3 (Honda 2000, [Hon00a]). Suppose that . and X' are convex surfaces and dL" =
dX is Legendrian. We may isotope . and X' in an arbitrarily small neighborhood of dX so that
the union of the surfaces is a smooth surface. Moreover, the surface will be convex with dividing
curves shown in Figure 3.8.11.

il
I

Figure 3.8.11. On the left are two convex surfaces that intersect along a Legendrian knot
in their boundary. On the right, the edge between the surfaces has been rounded forming
a new convex surface. The arrows on the left show the co-orientation on the surfaces.

Proof. Given I and Y’ in the model constructed in the previous proof, we define a new
surface X" obtained by “rounding the edge". Specifically, X" is formed from X N X’ by
replacing ¥ N I’ intersect a small neighborhood N of dX (thought of as the z-axis) with
the intersection of N with {(x, y,z) : (x — 6)?> + (y — 6)*> = 6>} For a suitably chosen 6. The
surface X" will be a smooth surface (actually just C!, but it can then be smoothed by a C?
small isotopy which of course does not change the characteristic foliation) with dividing
curve as shown in Figure 3.8.11. m]






Chapter 4

Continued fractions and
the Farey graph

In later chapters, it will be essential to keep track of embedded curves on a torus. When
we mention curves on a torus, we mean maps from the circle S 1 {0 the torus T2. In this
chapter, we will extensively study curves on tori. In the first section, we discuss how,
after choosing a basis for the first homology of a torus, to represent any embedded curve
as an ordered pair of relatively prime numbers and as elements of the rational numbers
together with infinity. We also discuss how to compute the intersection number of curves
in terms of these representations.

In Section 4.2 we introduce the Farey graph. This is a convenient way to describe
all embedded curves on the torus and to see various interactions between them. For
example, curves correspond to vertices of the Farey graph, and two curves form a basis
for the first homology of the torus if and only if they are connected by an edge in the
Farey graph.

We discuss continued fraction expansions of rational numbers in the next section. We
will see that the continued fraction of a rational number is closely connected to where
the number sits in the Farey graph. We can also use the continued fraction of a rational
number to find other curves on the torus that form a basis with a given curve. We expand
on the relation between continued fractions and the Farey graph in Section 4.4. More
specifically, we show that for a rational number r less than -1, its continued fraction
expansion describes a minimal path in the Farey graph from 0, anti-clockwise, to r. Along
the way, we define the notion of a continued fraction block in the Farey graph. These are
the basic building blocks in the minimal path mentioned above and will be central to
many of our classification results.

155
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In Section 4.5, we give estimates on the intersection number between two curves in
terms of their representation as rational numbers. In the last section, we discuss the
relation between continued fractions and the integer lattice in R?.

For much more on the Farey graph and continued fractions, we highly recommend
Hatcher’s excellent book [Hat22].

4.1. Curves on the torus

Before discussing a systematic way to describe embedded curves on a torus, we first
make a few simple observations that will be useful later. Notice that given a curve y on
T? then it represents a homology class [y] in H1(T?). We will study curves through their
homology class (and sometimes abuse notation referring to y and [y] as both the curve
and its homology class).

Exercise 4.1.1. Given two embedded curves )1 and y», then [y1] and [y2] form a basis for
H;(T?) if and only if y; and y, can be isotoped so that they intersect in exactly one point.

Exercise 4.1.2. A curve y on T? is embedded if and only if [y] is part of a basis for Hy(T?).

Exercise 4.1.3. Any automorphism of H1(T?) is induced by a unique, up to isotopy, dif-
feomorphism of T.

Since 111(T?) = H1(T?) = Z? the homotopy class of a curve on the torus is the same
as its homology class. To represent curves on the torus we will choose a basis for H(T?)
and denote it by A and p.

Exercise 4.1.4. Show that A and p can be represented by embedded curves on T?.

Now given any curve y on T? its homology class can be written

[y] =aA +bpu.

a
We will denote this by ( b)' So with the basis chosen, homology classes of curves are in
one-to-one correspondence with ordered pairs.

a

Exercise 4.1.5. Show that (b

) can be represented by an embedded curve if and only if a

and b are relatively prime.

Summarizing, given an embedded curve y we can represent it by the relatively prime

ordered pair (a), and hence the pair is uniquely determined by b/a € Q*, where Q" is the

b

extended rational numbers Q U {co}.
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Once we choose an orientation on T? then we have the intersection pairing
Hi(T>) x H(T?) — Z

defined by taking the algebraic intersection number between two curves representing the
two homology classes. That is given curves 1 and ) on the torus we can compute their
intersection number I(y1, 72) = y1 - )2, see [GP10], which roughly counts the number of
intersection points between the curves with a sign determined by the orientation on the
curves and the orientation on T?2. It is well-known that this defines a skew-symmetric,
bi-linear pairing on Hy(T?) (that is dual to the cup product pairing).

When choosing the basis A, i for H1(T?) we will always choose them so that
Ap=—-p-A=1,

and clearly we have A - A = 0 = u - u. Thus for two curves y; and ), represented by (Z)

and (2), respectively, we have

[y1] - [y2] = ad = be.

Exercise 4.1.6. Show that if 71 and ), are embedded curves then the minimal number of
intersections between is |ad — bc|.

Since y1 and y; can also be represented by b/a and d/c we will also use the notation
b/a-d/c=ad-bc.

From Exercise 4.1.1 we see that two numbers b/a and c/d correspond to curves that form
a basis for H1(T?) ifand only if b/a - d/c = +1.

4.2. The Farey graph

Warning: There are different conventions for the construction of the Farey graph. They all con-
tain the same information and are related by a simple homeomorphism of the graph. So some of
the discussion below might appear different than in some of the published literature.

The Farey graph is a convenient way to understand curves on a torus and relations
between curves. To define the Farey graph, let D be the unit disk in R?. We will think
of this as the hyperbolic plane with the circle at co adjoined. This interpretation is not
so important. The main thing is when we say two points on the boundary of D are con-
nected by a geodesic, we mean they are connected by a segment of a circle (or line) that
is orthogonal to JD. With this understood, we can ignore the fact that D is the hyperbolic
plane.

Label the point (1,0) on dD by 0 = , the point (0, +1) by +oo = £l and joint them
by a geodesic. If two points on JD with non-negative x-coordinate have been labeled by
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%, Z—: and are joined by an edge, then label the point on JD halfway between them (with
non-negative x-coordinate) by Z%Z:. Then connect this point to % by a geodesic and also

connect this point to % by a geodesic. Below we will see that if we continue this process
then all positive fractions will appear as labels on vertices in the graph. Now repeat this
process for the points on dD with non-positive x-coordinate except start with co = 'Tl.

See Figure 4.2.1.

Figure 4.2.1. A finite portion of the Farey graph.

Let us examine the construction of the Farey graph more closely to make clear its
relation to curves on a torus and several of its basic properties. First, recall that an element
of @ corresponds to an embedded curve in T?. In particular, p/q € Q* corresponds to

the curve y in the homology class gA + pu which we represent by the ordered pair (Z)

Thus when given the labels % and % as in the construction above, then Z:Z, corresponds

to the homology class in Hy(T?) that is the sum of the homology classes corresponding

to the curves given by the first two fractions. We denote Z:Z, by % @ % and call this the
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Farey sum of g and Z—:, this is also known as the mediant of the fractions. We will also use

p+
q+
From our discussion above, thinking of fractions as curves on T?, the Farey sum is just

the curve representing the sum of their homology classes. We will now prove:

the notation % ® k% to mean ]]zg,, that is the result of Farey summing ZL, to %, k times.

(1) If the pairs of integers p, g and p’, g’ are relatively prime, thensoisp +p’, g + g’
That is the Farey sum of fractions in lowest common terms is a fraction in lowest
common terms, and all the points in the Farey graph correspond to embedded
curves in the torus.

(2) If two vertices in the Farey graph are connected by an edge, then their labels
correspond to curves on T2 that form an integral basis for Hy(T?).

We prove these two facts at the same time and inductively. We start with the positive
rational numbers (that is labels on the Farey graph with positive x-coordinate). The start
of the construction only has the points 0 = $ and oo = % labeled. The next point to be
labeled is the point (1,0) and it is labeled % = % ) %. Now clearly in Hy(T?) the curve % is
the sum of the other two curves and since the sum of two basis elements is another basis
element we see from Exercises 4.1.2 and 4.1.5 that 1 corresponds to an embedded curve
and hence its fraction consists of relatively prime integers. Moreover, the sum of two
basis elements forms a basis with either of the two summands. Thus both items claimed

above are true for @ 3. One may now easily see that if we inductively assume that %

and Z—: satisfy the items above and are connected by an edge then their Farey sum does
as well. The argument for negative rationals is similar.

We next notice that

(38) The numbers appear in order as one moves clockwise from —oo to co. (Here of
course —00 = 00.)

4
q

. We clearly see that (g + ¢')p < (p +p')gq

To see this we again start with the positive rationals. If the statement is true for
Py

and %,

sayfi—) < %, then pq’ < qp’. Now consider e
and hence £ < Z:Z,. We similarly see that % < %. Thus we inductively see that the

claim holds. One may argue similarly for the negative rationals.

We also note that

(4) All numbers in the extended rationals Q" appear as labels in the Farey graph.

There are several ways to see that this is true, but we will give a simple proof in the next
section. Finally, improving on Item (2) above we have the following observation.

Lemma 4.2.1. Two points in Q* correspond to an integral basis of Z> = Hy(T?) if and only if
there is an edge in the Farey graph connecting them.
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Exercise 4.2.2. Proof this lemma.

15
Hint: If q and form an integral basis for Z? then the matrix with columns given
r

by these vectors has determinant +1. Show you can just consider the case when all the
terms are non-negative. Consider the case when either p or r is 0, then consider the
case when p = r # 0 and argue that there is an edge in the Farey graph between the
corresponding rational numbers. Finally if p # r and neither is 0, then form a new
matrix by subtracting the column with smaller second entry from the other one. Note that
this matrix will have the same determinant and if there is an edge between the rational
numbers corresponding to these two columns then there will be an edge for the original
two columns. Continue this process until you have reduced to a previously studied case.

Exercise 4.2.3. Suppose that g and £ are connected by an edge in the Farey graph. Then

S
clockwise of every other point, but here we mean that if you look at the shorter arc that

the points divide D? into, then along that segment g is clockwise of ¢.) Note. If either %

and £ is 0 or co then one must use the convention that co = ‘Tl and 0 = _% and for negative
fractions the denominator is negative. Of course, the statement has no meaning if one of
the fractions is 0 and the other is co.

show that Z L = -1 if and only if % is clockwise of L. (Of course, on dD? every point is

We will denote by (a,b) the vertices in the Farey graph that are strictly clockwise
of the vertex labeled a and strictly anticlockwise of the vertex labeled b. Notice that if
a < b then this notation agrees with the standard notation for intervals in the real line,
but if a > b then the interval will contain numbers larger than a, less than b, and co. The
interval [a, b] will denote the same region, except it will contain the endpoints a and b.
We similarly will use the notation (a, b] and [a, D).

At various times it will be convenient to have another view of the Farey graph. Recall
there is an isometry of the hyperbolic metric on D? to the hyperbolic metric on upper half
space in R?. On the circle at infinity, this will be stereographic projection from S — {co}
to R'. So we can think of the vertices of the Farey graph as being in R and the edges of
the graph as being in the upper half-plane. See Figure 4.2.2. We will use both models for
the Farey graph depending on context.
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Figure 4.2.2. An alternate view of a finite portion of the Farey graph.

4.3. Continued fractions

A rational number r may be represented as a continued fraction

1

r=dag—

a1 —

ay —
1

an

with ap € Z and the other a; < —2. We will denote this by r = [ag; a1, ..., a,].

In later chapters, we will frequently consider fractions r of the form r < -1, and in
that case in their continued fraction we can take all the 4; < -2, and to emphasize this we

will drop the semicolon and use [ag, a1, ..., a,].

It is not hard to find continued fractions. Below we add a few examples and exercises
for completeness.

Example 4.3.1. Consider —21/8. We note that the greatest integer less than —21/8 is
|-21/8] = -3 so we can write —21/8 = -3 — 1/a. Solving for a we get a = —8/3 and
|-8/3] = =3. So =8/3 = =3 — 1/b. Solving for be we find b = —3. From this we see that
-21/8 =[-3,-3,-3].

Arguing as above we easily see 19/2 = [9; -2].
2
Exercise 4.3.2. Compute the continued fraction expansion of ——*— where p > 1.
ps-p+1

Exercise 4.3.3. Compute the continued fraction expansion of _(;;Zz+)_nl—1 where n > 1 and

1 < p < q are relatively prime integers.

Exercise 4.3.4. Give an algorithm to compute the continued fraction expansion of any

re Q.
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If we know thatr = g = [ag; a1, ..., a,] then we define
r" =lag;a1,...,an-1],
with the convention that if n = 0 then % = co0; we also define
r =lag;ai,...,a, +1]

if r is not a positive integer and equals oo if it is a positive integer. In the next lemma we
explain how to describe ¢ and r* via the Farey graph. See Figure 4.3.3.

Figure 4.3.3. The rational numbers r* and r¢.

Lemma 4.3.5. Suppose that r = g is not a non-negative integer. The number r* is the largest
rational number bigger than r with an edge to r in the Farey graph and v is the smallest rational
number less than r with an edge to r in the Farey graph. Moreover, there is an edge in the Farey
graph between r* and r¢, and r is the Farey sum of r* and r¢, that is if r* = Z—Z and r¢ = Z—Z then

B pa + pc
q°+q°
If r is a positive integer then r® = coand r* =r — 1.

In preparation for the proof of this lemma, we start with a couple of exercises, but
first given r = [ag; a1, ..., a,] we set
Pk
- = [ao}ﬁlf- . .,ﬂk]
qk
fork=0,...,nandp_1=1,p2=0,9-1 =0,and g—» = 1. In particular Z—” =r

n

Exercise 4.3.6. Inductively show that

Pk+1 = Ak+1Pk — Pk-1 and Gr41 = Ak1Gk — Jr—-1-

) prr_q/
p/

I
H
—_

Exercise 4.3.7. If % and Zi: satisfy % . Z—: =p'q—q'p = £1, then pr,T_q



4.3. Continued fractions 163

Proof of Lemma 4.3.5. We assume for now that Z—: = [ao,...a,] is negative. Using the
notation established after the statement of the lemma we see that

@:@andﬂ——aoal_1

qgo 1 q1 ai
and so Do p
0 P1
7 0 = qJop1 — poqg1 =
From Exercise 4.3.6 we clearly see that
k+1 Pk kK Pk-1
Pl Pk _ = pr(aks19x — Gr-1) — qx(@xs1pk — Pr-1) = Pr P
dk+1 gk k. qk-1
and hence we can conclude that % . Z:—j = —1 and hence from Exercise 4.2.3 we see that

pnl

7. is anticlockwise of and there is an edge in the Farey graph between them.

Now not1ce that 3 - ”"TH = 1 and thus by Exercise 4.3.7 we can inductively see that

if we set £ F = [ag,a1,...,a, + 1] then g F = = 1. Thus Exercise 4.2.3 tells us that L is
clockwise of % and there is an edge in the Farey graph between them.

Finally since [ay, ..., a,-1] is obtained from [ay, .. an 1,an + 1] by droppmg the last

term, we see from the flrst paragraph of the proof that p Z% = -1. Thus & o s clock-
wise of p - - and there is an edge in the Farey graph between them Settmg 7 = Z:—‘i

and combmmg the above results says that one sees the numbers 2 q—u, %, and ~z moving

clockwise on the Farey graph and there is an edge in the Farey graph between any pair
of the numbers.

Exercise 4.3.8. Show that the absolute value of the numerators (and the denominators)

of Z—Z and Z—z are less than the absolute value of the numerator (and the denominator) of
p

E.

Exercise 4.3.9. Show that % = Z—z & Z—Z.

Hint: If two numbers r and s share an edge in the Farey graph, then there are exactly two
other numbers that have an edge to both r and s. One will be r @ s.

This completes the proof of the lemma for negative %. If % is positive but not an integer,
then the same arguments hold. If %’ is an integer then one may easily check that the
claimed result is true. (Notice the difference between this case and the others is that ag
will be a positive number.) m]

We are now ready to give a simple proof of Item (4) from the previous section that
claims that all elements of Q" appear as labels on vertices in the Farey graph. We induct
on the absolute value of the denominator. It is clear from construction that all fractions
with denominator 0 or +1 appear. So now we assume that all fractions with denominators



164 4. Continued fractions and the Farey graph

having absolute value less than k appear in the Farey graph. If % has |g| = k, then from

Exercise 4.3.8 we know that Z—Z and Z—Z satisfy |g%|,|g¢| < k. Thus they appear as labels on

vertices in the Farey graph and then so must E—Z ® 5—5 = g.

Here we list some useful facts regarding continued fractions where . As before, let

ap, a1, ,a, be positive integers and [ay, ..., a;] = % Then
1

Lemma 4.3.10.
(1) Ifa; = 2 forall i, then p; > pi-1, qi > qi—1 and p; > q;. In particular, % > 0 forall i.
(2) Ifa; > 2 forall i and ay > k, then p; > (k —1)g; + 1.

3) Iflai, ..., a0] = Ff:—il.

@) B [ay, .., a- 1)

©®) %:[ﬂi,...,ao—u

Exercise 4.3.11. Prove the lemma above.

4.4. Paths in the Farey graph

In the next chapter, and the rest of the book, we will be interested in minimal paths
between vertices in the Farey graph. We review soem basic properties of such paths in
this section. By a path in the Farey graph we mean a sequence of vertices vy,...,v,
(we will use the same notation to refer to a vertex and its label) such that v; - v;_1 = -1
for each i. Notice that this means that we have a sequence of edges starting at vy and
moving clockwise to v, (notice our path moves monotonically in one direction. That is,
it is not allowed to go back and forth). We call the path minimal if there is no subset of
the vertices that satisfy the same condition; or said another way, a path is minimal if it is
the shortest path in the Farey graph starting at vgp and moving clockwise to v,,. If a path
is not minimal then there is some i such that v;_1 - v;41 = —1. In this case, we can shorten
the path by removing v;. Clearly, any path can be shortened to a minimal path. One may
similarly discuss paths and minimal paths that move anticlockwise, for example for a
path as above vy, ..., vgp would be an anticlockwise path with v; - v, = 1.

A key type of minimal path is a continued fraction block. While we normally consider
clockwise paths, it will be convenient to describe continued fraction blocks as anticlock-
wise paths. We say the path vy, ..., v, is a continued fraction block if there is a vertex ¢
such that f - vg = 1 and

Vp = V1Dt =09 kt
for k =1,...n. See Figure 4.4.4.

Here are a few other ways to think about a continued fraction block. A path v, ..., v,
is a continued fraction block if it is a minimal path and each vertex v;, for i > 1, is the
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t vy U3 () U1 Vo
Figure 4.4.4. A continued fraction block.

farthest anticlockwise jump that can be made from v;_; and the path still be minimal.
So we can say that a continued fraction block is a sequence of maximal anti-clockwise
jumps for a minimal path. To see that this is equivalent to the first definition we start by
considering vg and v1 with vy - v1 = 1. From Exercise 4.3.9 there are two vertices with an
edge to vp and v1. One is the Farey sum of the two the other we will denote as ¢.

Exercise 4.4.1. Check that v1 = vg & t.

Clearly v1 @ t is another step in the path and since there is an edge from v; to t and
from vy @ t to t it is easy to see that vy @ t is the largest jump that one can make from v,
and still have a minimal path. Thus we must have v, = v1 ®t. One can inductively check
that v; = v;_1 ® t, so both ways to think of a continued fraction block are the same.

Given the above description, one sometimes says that a continued fraction block is a
sequence of “half-maximal jumps". This makes sense because a maximal jump from v;
would go to the vertex t and then the path would be able to be shortened. So a “maximal
jump" among minimal paths is a“half-maximal jump" among all paths.

We have another way to think of a continued fraction block, which is sometimes given
as the actual definition. We will explore that in the following exercise.

Exercise 4.4.2. A path vy, ...,v, is a continued fraction block if there is a change of basis
for H1(T?) that takes vy, ..., v, to =1,-2,...,—n +1,—n. (Recall, to associate curves on a
torus to elements of Q, one must choose a basis.)

We will now see that any minimal path can be thought of as a composition of con-
tinued fraction blocks. Indeed suppose vy, ..., v, is a minimal anticlockwise path in the
Farey graph. There is some k such that vy, ..., v, is a continued fraction block (notice
that any two vertices sharing an edge can be thought of as a continued fraction block).
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We now consider the possibilities for vi.1. Suppose v’ would have been the next ver-
tex in a continued fraction block if vy, ..., vr were extended. We know that v;,1; must
have an edge to v; and we know that there is an edge between vy and v’. Thus all the
possible “next" vertices in the path must be in [¢’, vx] and have an edge to vx. Thus the
possibilities are

w; =0 @ lvg.
If vx11 = w; then we say that the next continued fraction block is I down from the previous
one. So there will be some k’ such that vy,1, ..., v is a continued fraction block. We can

continue in this manner to see that any minimal path in the Farey graph is a sequence of
continued fraction blocks.

Suppose we are given a rational number g—] < —1 with continued fraction

p
= =lag,a1,...,a,].
q

We can build a minimal path in the Farey graph by starting with the vertex [ag, a1, . .., a,],
going to [ag, a1, ..., a,-1, 4, +1] and adding the edge between these two vertices (that ex-
ists by Lemma 4.3.5), then we have the vertex [ag, a1, ..., a,-1, 4, + 2] and add the edge
back to the previous vertex. We can continue “adding 1 to the last element in the contin-
ued faction", with the understanding that [ag, a1, ...,ar, 1] = [ag,a1,...,ar + 1], until
we reach —1. By Lemma 4.3.5 we see that this process creates a minimal path in the Farey
graph that goes from % clockwise to —1.

give an example or two, add figures and maybe some exercises

We now analyze this path more thoroughly. Consider the vertices
Ola,-1 = [110, ai,... ,lln], Ola,|-2 = [ao, e, Ap-1,ay + 1], ey

vo = [ao, ..., an-1,an + (|lan| = 1)] = [ao, ..., an-2,a,-1 +1].
These are the first |a,| vertices in the path we just constructed. We note that they are part
of a continued fraction block. To see this notice that if we let t = [ag, a1, ...,a,-1], then
according to Lemma 4.3.5 there is an edge in the Farey graph between t and all the v;.
Notice that since there is an edge between vy and ¢ and there is also an edge between v;
and both vg and ¢, that v1 = vy & ¢.

Exercise 4.4.3. Prove the last statement and more generally that vy = v ® kt.

This observation explains the terminology “continued fraction block" defined above.

To continue the path from [ag, a1, ..., a,-1 + 1] we obtain another continued fraction
block from [ag, a1, ..., a,-1 + 1] to [ag, a1, ..., a,-2 + 1] and so on until our last continued
fraction block [ag +1] to —1. Notice that whenever a; = -2 then there is no corresponding
continued fraction block.



4.5. Intersection of curves on the torus 167

Summarizing what we have proven about the path above: we have k continued frac-
tion blocks where k — 1 is the number of a; not equal to -2 for i < n (notice that there will
always be at least one edge for a,, but not for the a; = —2). The continued fraction block
associated to [ag, a1, ...,a; + 1] has length |a;| — 1 and |a;| — 2 edges while the continued
fraction associated to [ag, a1, . ..,a,] has |a,| vertices and |a, | — 1 edges.

We would now like to consider building the path from -1 to % < —1 starting from —1.

We have the continued fraction expansion 7= [ag,...,a,] with a; < =2.

Exercise 4.4.4. Show that % is in the interval [r;, s;] for all i where r; = [ag,...,a;-1 + 1]
fors; =[ag,...,a;-1].
Hint: Consider Lemma 4.3.5

Given the above exercise, the start of the path from —1 anticlockwise to % is
-1,-2,...,a0+1.

We will now inductively see how to proceed. That is suppose we have created our path
from —1to[ag,...,ar+ 1] for k < n and agq to ax,; are all -2 with k+1 < n and ay,41 <
—2. Then the next part of the path is a continued fraction block from [ay, ..., 4k + 1] to
lao, ..., ak+141 + 1] thatis [ + 1 down from the previous continued fraction block.

Exercise 4.4.5. Prove this last statement.

Hint: Consider the path from [a¢ + 1] to [ag, =2, ..., =2, ax+1] where there are k, —2s and
ar+1 # —2. Show this continued fraction block is k + 1 down from —1,...,a9 + 1. Then
use a change of basis to prove this in the general case.

This process will create the path from -1 to % except for the last continued fraction block
will go from [ay, ..., a,-1 + 1] to [ag, ..., a,].

Exercise 4.4.6. We now consider paths that do not begin at —1 and go to Z < -1. Given
any path from ¢ clockwise to %, show that there is a change of basis for H;(T?) that will
make ; = —1 and %’ < -1

With the above exercise in hand, we can use the above discussion to create any path in
the Farey graph from a continued fraction.

4.5. Intersection of curves on the torus

In future sections, it will be useful to have bounds on the intersection number between
curves on a torus (this is particularly useful when applying the Imbalance Principle, The-
orem 5.4.18). To state our results, we recall that our conventions for vertices in the Farey
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graph require all denominators to be positive (so any negative fraction has a negative
numerator). In addition, recall that

=ad - bc.

SH RN

d
c
We first make a simple observation about the sign of intersections between two curves.

Lemma 4.5.1. Given any rational numbers Z—’ and ’qi,, then we have

’

L

q 9
lfgszi:and

p—,~E>O

7 49
ift> 5.

Proof. If% > g we clearly have p’q > q’p and so p’q —g’p > 0. Hence 7 '% < 0. We have
a similar computation if % < %. O
We are now ready for our first bound on intersection numbers.

Lemma 4.5.2. Suppose k and | are integers such that k < | < g. Then

'k.E
q

> l-E‘.
q

In addition zf’;—: €(k—1,k)and Z > k, then

p

> k-—‘.
q

P g

Q'E

P
k-1)-C
( )q

Proof. Write p = mq + r withr € [0,q — 1]. Now
k~§:mq+r—qk:(m—k)q+r>(m—l)q+r:l-§

By Lemma 4.5.1 we know the left and right numbers are positive, thus establishing the
first inequality of the lemma.
Now since Zi: is strictly between k — 1 and k, we know from the construction of the
Farey graph that there are positive integers a and b such that
p’ k-1 k

?ZQT@I?T
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Thus we see

4
k—1)- 2
(k-1) p

The first equality follows since the sign of the intersection of s with k and with k-1 is the
same by Lemma 4.5.1, the first inequality follows from the fact that 2 and b are positive
integers, and the last inequality was proven above. m|

Our last estimate on intersection numbers handles the case when there is no integer be-
P

P
ween 5 and E.
teeqadq

Lemma 4.5.3. Suppose ag = {%J L1, ..., 0y = g is the shortest clockwise path from {%J to %’.

Then

s Pl < g’
and sz—: € (a;_1,a;) then

Pp| ai_l.ﬁ‘.

q q

Exercise 4.5.4. Adapt the proof of Lemma 4.5.2 to prove the last lemma.

4.6. The integer lattice Z>






Chapter 5

Tight contact structures

All classification results that we explain here rely on Eliashberg’s fundamental theorem
that the 3-ball has a unique contact structure up to isotopy.

Theorem 5.0.1 (Eliashberg 1992, [E1i92]). Any two tight contact structures on the 3-ball, B,
that induce the same characteristic foliation on dB? are isotopic through contact structures. More-

over, if the contact structures agreed near dB2, then the isotopy can be taken to be the identity near
JB3.

This theorem will be proven in Section 9.1 using an argument due to Giroux [Gir00],
but for now, we explore how to use convex surface theory to classify contact structures
on other manifolds using this theorem. Though not mentioned in the theorem, it is clear
that there is indeed a tight contact structure on B> as we can take B to be the unit ball
in R® with its standard contact structure and this latter contact structure is tight by the
Bennequin inequality, see Section 1.6. Moreover, this contact structure on B* has convex
boundary, see Example 3.2.14, and the dividing set consists of a single circle. Thus, using
Giroux flexibility, that is Theorem 3.4.1, we can arrange that the characteristic foliation
on dB? is any singular foliation that is divided by a single curve.

In Section 5.1, we will show how to classify tight contact structures on S® and S! x
S2. We will carefully go through the steps of both proofs. Classification on S? is quite
simple, but the classification on S! x S? is a bit more complicated. The latter result is
the paradigm for subsequent classification results, so we will first give a proof of this
result with all the details spelled out, but then give a second proof where some of the
“well-known" parts are left out. It is the second proof that will resemble the proofs we
give for other manifolds, so the reader is encouraged to convince themselves that the
second proof is indeed equivalent to the first proof. The second proof focuses on the
“main ideas” and leaves out some details that should be easy for the reader to fill in. The

171
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subsequent classification results focus on these main ideas as if all the minor details are
presented, the main thread of the argument can be lost. Nonetheless, if the reader has
gotten comfortable that the second proof of the classification of tight contact structures
on S!x S% is equivalent to the first, then they should have no trouble following the proofs
later in the book.

We then, in Section 5.2, turn to notation for the set of tight contact structures up to
isotopy on a given manifold, with special attention paid to manifolds with boundary.

A key feature in our classification results are basic slices and bypass attachments,
which are discussed in Sections 5.3 and 5.4, respectively. More specifically, in Section 5.3
we show that there are exactly two basic slices. That is, there are exactly two tight, mini-
mally twisting contact structures on T2 x [0, 1] with two dividing curves on each bound-
ary component such that the homology class of the dividing curves on T? X {0} and on
T? x {1} form a basis for the first homology of T?. Here, minimally twisting is a technical
condition indicating that convex tori parallel to the boundary in T2 X [0, 1] have dividing
slope “between” the dividing slopes on the boundary. In the following section, we dis-
cuss bypasses. These are the fundamental way that one goes from one convex surface to
another, through surfaces that are not (necessarily) convex. More specifically, a bypass is
a convex disk in a contact manifold intersecting a convex surface in a single arc intersect-
ing the dividing set 3 times, having Legendrian boundary with contact twisting —1, and
a few other technical conditions. Given a bypass for a convex torus with two dividing
curves (and other technical conditions), a “one-sided neighborhood” of the torus and by-
pass disk forms a basic slice. So basic slices and “attaching” a bypass to a convex torus
(in a nice way) are very closely related. We also discuss how pushing a convex surface
past a dividing curve on a general convex surface affects the dividing curves.

Sections 5.5, 5.6, and 5.7 are devoted to the classification of tight contact structures on
T? x [0, 1] (here we only consider minimally twisting ones), solid tori, and lens spaces.
These sections should be considered together, as their proofs are intertwined. Specifi-
cally, we show a upper bound on the number of minimally twisting contact structures on
T2 x [0, 1] with certain boundary conditions, which is an upper bound on the number of
tight contact structures on solid tori with certain boundary conditions, which is a upper
bound on tight contact structures on a certain lens space, and we then provide a lower
bound on the number of tight contact structures on this lens space which agrees with the
tirst established upper bound. So the proof of any of these results relies on results from
all three sections. We also note that these three sections is our first use of our “executive
summary of main results” and “proofs of main results” format discussed in the Intro-
duction. Recall the “executive summary of main results” is meant to be a survey of the
main results about the classification of tight contact structures on the relevant manifolds.
Proofs are not presented in this subsection as they might detract from a clear picture of
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the classification results and their corollaries. The proofs are then collected in the “proofs
of main results” subsection. We hope this makes the presentation helpful as a research
reference and as a learning reference.

In Section 5.8 we give the complete classification of tight contact structures on the
3-torus T° up to isotopy and contactomoprhism. Finally, in Section 5.9 we consider tight
contact structures on T2 X [0, 1] again. This time, we consider contact structures that are
not minimally twisting, but still have only two dividing curves on their boundary.

5.1. Simple classification results

In this section, we will give three classification results that indicate how to use Eliash-
berg’s theorem above to classify contact structures on other 3-manifolds. The proofs will
become progressively more complicated with the last one being the prototype of how
one uses convex surfaces to classify contact structures on a given manifold. We begin by
considering tight contact structures on the 3-sphere.

Theorem 5.1.1 (Eliashberg 1992, [Eli92]). Up to contact isotopy there is exactly one tight
contact structure on S3.

Proof. The existence of a tight contact structure on S° follows from Bennequin’s theo-
rem, Theorem 1.6.6, and also from Theorem 1.6.13 since S> is the convex boundary of a
symplectic ball.

Let & and & be two tight contact structures on S°. Given a point p € S® there is a
smooth isotopy of S® that will take & at p to & at p. Pushing &’ forward by this isotopy
gives a contact isotopy of &’ so that £ and &’ agree at p. Now the proof of Darboux’s
theorem, Theorem 1.2.2, shows that we may further isotop &’ so that £ and & agree in a
neighborhood N of p. Now let B’ be a closed 3-ball centered at p and contained in N and
B=2§3 \ B’. Now & and &’ restricted to B are two tight contact structures on the 3-ball B
that agree along dB. Thus by Theorem 5.0.1 we see that &’ is isotopic to £ on B through
contact structures and this isotopy is fixed near dB. Thus we still have that £’ and & agree
on B’ and we have found our isotopy from &’ to & on S3. m]

The next simplest classification result is for tight contact structures on S x 52

Theorem 5.1.2. Up to contact isotopy there is a unique tight contact structure on S x S2.

Proof. The existence of a tight contact structure on S! x S? follows from Theorem 1.6.13
since it is the convex boundary of a symplectic structure on S! X D3 (that is a Weinstein
domain with a single 0-handle and a single 1-handle).

Let & and &’ be two tight contact structures on S x S2. Fixing a point p € S! we can
consider the spheres S = {p} X S?in (S! x $2,&)and S’ = {p} X S? in (S x S2,&’). We can
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isotopy both spheres to make them convex by Theorem 3.3.1 and by the Giroux criterion,
Theorem 3.6.1, we know the dividing curve I on S is a single circle as is the dividing
curves [ on §’. Since I' divides S¢ we know there is some identification of S with S’ so
that S¢ is divided by I on S’. Now by the Giroux realization principle, Theorem 3.4.1,
we can isotop S’ so that S, is this foliation. Now there is a smooth isotopy of St x §2
that takes S’ to S and under the isotopy S, is taken to S¢. Pushing &’ forward by this
isotopy results in a contact structure (that we still call £’) such that £ and &’ induce the
same characteristic foliation on S. Since we know the characteristic foliation determines
the contact structure in a neighborhood of a surface, Theorem 1.3.4, we see that we can
isotopy &’ in a neighborhood of S so that & and &’ agree in a neighborhood N = (—¢, €)xS?
of S.

Now let y be a circle in S! X S? that is isotopic to S! x {g} for some point g € S?
and intersects N in a Legendrian arc that is transverse to S. We may isotop y, relative to
¥ N N, so that it is Legendrian in £ and isotop y, relative to y N N, to a curves )’ that is
Legendrian in &’. After possibly stabilizing these Legendrian curves, we can assume that
they both have the same contact framing.

Exercise 5.1.3. Show that there is an isotopy of S! x S? relative to N that takes y” to y and
if we push &’ forward by this isotopy, then & and & agree along y = ).

Theorem 1.2.6 says Legendrian knots have unique neighborhoods, but the proof actually
shows that we may isotop ¢&’, relative to N, so that £ and &’ agree in a neighborhood
N’ =S'x D?of y.

We now note that S* x S2\ (N UN’) is B3

Exercise 5.1.4. Prove this last statement.

Let S? be a 2-sphere in N UN’ so that S? bounds a 3-ball B® and S! x S = NUN’UB3.
Since $2 ¢ N U N’ we know that & and & induce the same characteristic foliation on $2
and hence by Eliashberg’s classification of tight contact structures on B3, Theorem 5.0.1,
we know that we can isotop &’ on B3 to & through contact structures by an isotopy fixed
near the boundary. This completes the isotopy of & to & on St x S2. m]

The previous proofs already demonstrated how to use convex surfaces to classify contact
structures on a manifold, but our next result will give a prototype of the convex surface
theory techniques and another important building block for many of the classification
results we will see in the rest of this section (and the rest of the book).

Theorem 5.1.5 (Kanda 1997, [Kan97)). Let F be a singular foliation on the boundary of S'x D?
that is divided by two parallel curves of slope n (that is each curve is in the homology class of
[St x {p}] + n[{q} x D?]). Then up to contact isotopy there is a unique tight contact structure
on S! x D? that induces F on the boundary.
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We will give the proof of this theorem twice. The first time we will include all the
details, and the second time we will give a quick proof that any expert in convex sur-
faces would understand and could easily turn into the detailed proof if necessary. As
we progress in the book, the proofs will start to look more like the second proof, so we
encourage the reader to make sure they understand how to unpack the second proof to
recreate the first proof.

First Proof. We first establish the existence of a tight contact structure satisfying the hy-
pothesis of the theorem. To this end recall the standard contact structure on R? is tight
because the Bennequin inequality holds, see Section 1.6, and thus any of its contact sub-
manifold will be tight. Now let N be a neighborhood of any Legendrian knot, to be spe-
cific, we consider the maximal Thurston-Bennequin invariant Legendrian unknot given
in Example 1.4.16. We know that the contact structure on this neighborhood is tight;
moreover, by Theorem 1.2.6 we know that any two Legendrian circles have contacto-
morphic neighborhoods. Thus we can assume N is a neighborhood of the x axis in
R3/~ where (x,y,z) ~ (x + 1,y,z) and we equip this space with the contact structure
ker(dz — y dx). Notice that y% + z%
S! x D? where D? is a round disk in the yz-plane, then dN is convex. One may easily
compute that the dividing set on JN consists of two dividing curves of slope 0. We can
apply a diffeomorphism to N to get a new tight contact structure with any integral divid-
ing slope. Finally, using Giroux realization principle, Theorem 3.4.1, we know that we
can realize any singular foliation as the characteristic foliation on JN that is divided by

is a contact vector field and if N is of the form

the given dividing curves.

Let & and & be two tight contact structures on S x D? as in the statement of the
theorem. Since they both induce the same characteristic foliation on d(S! x D?) we can
use Theorem 1.3.4 to isotop &’ to agree with & in a neighborhood N of the boundary.
Moreover, since the characteristic foliation on the boundary admits dividing curves, we
know by Theorem 3.2.9 it is convex and so we can assume the neighborhood on which
the contact structures agree is vertically invariant. Using the Giroux realization principle,
that is Theorem 3.4.1, we may arrange that a torus T in N that is parallel to J(S x D?)
has characteristic foliation that is in standard form, see Example 3.4.4, with ruling curves
of slope oo (that is the ruling curves are meridians). See Figure 5.1.1.

Let D be a disk in S x D? with boundary a ruling curve on T (and intersecting T only
in its boundary). Note that dD intersects the dividing curves on J(S! x D?) exactly twice
and hence by Theorem 3.5.1 we know that tw(dD,T) = —1. Since the framing given to
dD by T and by D is the same we see that tw(dD, D) = —1. Since the twisting is negative
we can apply Theorem 3.3.1 to isotop D to be convex in £ and isotop it to D’ so that it is
convex in &’. We know by Theorem 3.5.1 that the dividing curves on these disks intersect
the boundary exactly twice and by Theorem 3.6.1 that there are no closed curves in the
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Figure 5.1.1. A cross-section of S1 x D2. On the left, the neighborhood N is shown in red
and the neighborhood N’ is shown in blue. The torus T is shown in black. On the right,
N U N’ is shown in red while the ball B is shown in brown.

dividing set. Thus the dividing set on both disks consists of a single arc. Thus using the
Giroux realization principle, that is Theorem 3.4.1, we may arrange that the characteristic
foliation on D’ is the same as the foliation on D. Now there is a smooth isotopy of 5! x D?
that is fixed on N and takes D’ to D and the image of the characteristic foliation on D’
agrees with the characteristic foliation on D. Pushing &’ forward by this isotopy gives an
isotopy of &’ so that £ and &’ induce the same characteristic foliation on D. Once again
we can use Theorem 1.3.4 to isotop &’ to agree with & in a neighborhood N’ of D, by an
isotopy that is fixed on N. Thus we see that &’ can be isotoped to agree with £ on N UN".

Now notice that there is a sphere S embedded in NUN’ that bounds a ball B in S'xD?
so that NUN’UB = S!' x D2. Moreover & and &’ agree in a neighborhood of the boundary
of B and thus by Eliashberg’s classification of tight contact structures on the 3-ball, that is
Theorem 5.0.1, we know that &’ can be isotoped to agree with & on B by an isotopy fixed
near the boundary of B. This final isotopy makes & agree with & on all of S! x D? and
completes the proof. m]

In the first paragraph of the above proof, we constructed a neighborhood N of any Leg-
endrian knot L such that JN is convex with two dividing curves of slope equal to the
contact framing. As in Example 3.4.4 we can assume that the characteristic foliation on
JN consists of two Legendrian divides parallel to the dividing curves and ruling curves
of any slope not equal to the dividing slope. Such a neighborhood of L will be called a
standard neighborhood of L.
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We are now ready for the “streamlined" proof.

Second Proof. The existence of a tight contact structure as in the theorem is established
as in the previous proof.

Given two tight contact structures & and & on S! x D? as in the statement of the
theorem, we know that we can isotopy &’ to & in a neighborhood of the boundary since
they induce the same characteristic foliation. We can assume that a meridional curve i is
Legendrian by Giroux flexibility. Since u intersects the dividing curves two times (since
the dividing curves are longitudinal) we know its twisting relative to the boundary is
—1. Let D be the disk u bounds. The twisting of the contact planes relative to D is
also —1 so we can make D convex in both £ and &’. We know the dividing set of D
contains no closed curves, by Giroux’s tightness criterion, and that they intersect dD two
times. Thus the dividing curves on D for both & and &’ consist of a single arc and we
can isotop so that the dividing curves agree and by Giroux flexibility, we can also assume
their characteristic foliations are the same. Thus we can isotop &’ so that so that it agrees
with & in a neighborhood of D too. Now & and &’ agree on the complement of a ball in
S!'x D?, thus we can isotope one to the other by Eliashberg’s classification of tight contact
structures on the 3-ball. m]

Exercise 5.1.6. Review the above two proofs to make sure you are comfortable that if you
read the second proof, you could quickly understand how to create the first proof. In
other words, that you see the second proof is rigorous.

We end this section by noting an important consequence of the previous theorem.

Corollary 5.1.7. Given a tight contact structure on S' x D? for which the boundary is convex
with two dividing curves of slope n, then one can find a convex torus T in S' X D? that is isotopic
to d(S' x D?) and has two dividing curves of slope s if and only if s € (-0, n].

Proof. If we can prove the corollary for any 7 then it is true for all n as there is a diffeo-
morphism of S! X D? taking any longitude to any other longitude. To prove the theorem
we consider a model contact structure. On S! X R?, with angular coordinate ¢ on S! and
polar coordinates (r, 0) on R?, consider the contact structure & = ker(d¢ + r> d0). Notice
that as a goes increases in the interval (0, o), the tori T, = {(¢, 7, 0) : r = a} have linear
characteristic foliation of slope —1/r2. Thus the slopes range from —co to 0 (not including
the endpoints). So we may choose a such that T, has slope n for some negative integer n.
We may now perturb the torus T, to a convex torus T as in Example 3.2.6 so that T has
two dividing curves of slope n. Thus if S is the solid torus in S! x R? that T bounds and
& = &'|s, then by Theorem 5.1.5 (S, &) is the unique tight contact structure on the solid
torus with two dividing curves of slope n. We can see from the model and the perturba-
tion of T, from Example 3.2.6, that T; for b < a — € sits inside of (S, &), for some small €.



178 5. Tight contact structures

We can then perturb T, to be convex with two dividing curves of slope —1/b2. As € can
be assumed to be arbitrarily small in Example 3.2.6, we see that any slope in (=0, 1] is
realized as the dividing slope of a convex torus.

To see that slopes outside (—oo, 1] cannot be realized by convex tori in (S, &) we will
need to develop a little more theory. We will prove this at the end of Section 5.5. m]

5.2. Isotopy classes of contact structures

We will denote the set of isotopy classes of tight contact structures on a manifold M by
Tight(M).
With this notation Theorem 5.1.1 and 5.1.2 can be restated as
| Tight(S®)| = 1 and | Tight(S' x §?)| =1,
respectively.

If the manifold M has boundary and ¥ is a singular foliation on dM, then the set
of isotopy classes of tight contact structures on M inducing the foliation ¥ on JM is
denoted by

Tight(M; F).
If I is a collection of curves on dM and ¥ is a singular foliation on dM that is divided by
I' then we denote the set of isotopy classes of tight contact structures on M inducing the
foliation ¥ on JM is denoted by

Tight(M;T).

The notation indicates that this set does not depend on # and that is indeed the case.

Lemma 5.2.1. Suppose that Fi,i = 0,1, are two singular foliations on dM that are both di-
vided by the multi-curve I'. Then there is a one-to-one correspondence between Tight(M; Fo) and
Tight(M; 71).

So when we use the notation Tight(M;T) this will always mean Tight(M; ¥) for any
fixed singular foliation ¥ on dM that is divided by I".

Proof. O

Using the notation established above we can rephrase Theorems 5.0.1
| Tight(B>;T)| = 1
where I is a simple closed curve on dB%. And Theorem 5.1.5 is equivalent to
| Tight(S* x §%,T)| = 1

where I consists of two longitudinal curves on dS! x D.
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If M is a manifold with a torus boundary and there is a preferred basis for H;(dM)
then the dividing curves on dM are determined by the slope of the curves which is given
by an element in Q~, see Section 4.1, and the number of dividing curves, which is an even
number. We will use the notation

Tight(M; s)
to denote Tight(M;T') where I consists of two curves of slope s on dM. Using this nota-
tion Theorem 5.1.5 can be stated

| Tight(S* x §%;n)| = 1

where we are using longitude-meridian coordinates on dS! x D? and the longitude is
given by the product structure.

5.3. Basic slices

In this section we will discuss a basic building block for all the classification results to
come in the rest of this chapter.

5.3.1. Executive summary of the main results. The contact manifold (T? x [0,1], &) is
called a basic slice if

(1) & istight.
(2) T; = T?> X {i} is convex with #I', = 2, fori =0, 1.

(3) v, v1 form an oriented integral basis for Hy(T? x {0}; Z), where v; is a minimal
length integral vector with slope equal to the slope s; of the dividing curves I'r;.

(4) the slope of the dividing curves on any convex torus T in M parallel to the
boundary is in [sg, s1] (see the end of Section 4.2 for this notation) this condi-
tion is called minimal twisting.

As a reminder about the last bullet point, a slope being in [sg, s1] means that if we view
slopes on the Farey graph, then the slope is clockwise of sy and counterclockwise of s1.

Theorem 5.3.1 (Giroux 2000, [Gir00]; Honda 2000, [Hon00a]). For each pair of slopes so and
s1 connected by an edge in the Farey graph, there are exactly two basic slices with dividing slopes
so and s1. Moreover, their relative Euler classes are given by

+(v1 —vo) € Hi(T?% Z) = HX(T? x [0,1], (T? x [0,1]); 2),

where the v; are as in Item (3) above.

MIGHT need to say something about which components of v; are negative to get the
right formula
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We will denote the isotopy classes of minimally twisting, tight contact structures on
T? x [0, 1] with T; being convex with two dividing curves of slope s;, for i = 0,1, by

Tight, . (T? x [0,1]; 50, 51)-

min
So the theorem above can be paraphrased as

| Tight,, . (T? % [0,1]; 50, 51)| =2
if sp and s1 share an edge in the Farey graph.

Once we have classified basic slices we can also observe the sorts of convex tori that
can be realized inside them.

Corollary 5.3.2. Let (T? x [0,1], &) be a basic slice with dividing slopes so and sy in its back
and front boundary components, respectively. A slopes can be realized as the dividing slope on a
convex torus T parallel to the boundary of T?> X [0, 1] if and only if s € [so, s1]. A slope s can be
realized as the slope of a linearly foliated torus parallel to the boundary of T? X [0, 1] if and only

if s € (so, 51)-
5.3.2. Proof of the main results. We start with the classification of basic slices.

Proof of Theorem 5.3.1. Note that given any basic slice there is a diffeomorphism of T% x
[0, 1] taking s to co and s1 to —1. So we will assume these are our slopes. With that the
proof clearly follows from Lemmaa 5.3.3 and 5.3.7 below. m]

We first establish an upper bound on the number of basic slices with the given divid-
ing slopes.

Lemma 5.3.3. There are at most two basic slices with sy = co and s1 = —1.

Proof. Arguing as in the proof of Theorem 5.1.5, we will show that given a contact struc-
ture on T2 X [0, 1] we can cut T? X [0, 1] along convex surfaces until we obtain a 3-ball
with a unique tight contact structure on it. The number of possible tight contact struc-
tures will then be determined by the number of choices we had for the dividing curves
on the surfaces we cut along. Our proof below will be in the style of the second, more
succinct, proof of Theorem 5.1.5. The reader is encouraged to expand this proof to be in
the style of the first proof of Theorem 5.1.5.

Let (T? x [0,1], &) be a basic slice. So T; is convex with two dividing curves, i = 0,1,
and the slope of the dividing curves on Ty, T; is oo, —1, respectively. We can assume the
characteristic foliation on Ty U Tj is standard (see Exercise 3.2.16) with ruling slope 0 (that
is the ruling curves are vertical). Now take a vertical annulus A = S1x[0,1] the boundary
component S; = S! x {i} a ruling curve in T;, and A N J(T? x [0,1]) = JA. Note the
twisting number of S; with respect to A is —1. This is because the twisting with respect
to A is the same as with respect to T;, and the twisting on T; is computed to be —1, using
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Theorem 3.5.1, as the curve S; intersects the dividing curves twice. Using Theorem 3.3.1
we can now perturb A to be convex with standard boundary.

Since £ is tight and the dividing curves on A intersect each boundary component
twice we know that I'4 is either two boundary parallel arcs (that is, each cobounds a disk
with the boundary of A) or two arcs running from one boundary component of A to the

other. See Figure 5.3.2

[

Figure 5.3.2. Three possible dividing curves on the annulus A. (The top and bottom of
each rectangle are identified to form the annulus.)

If the components of I'y were boundary parallel then we could Legendrian realize a
vertical simple close curve L on A with twisting number 0. We could then find a torus T
in T? x [0, 1] that contained L and was convex. Since the twisting of L with respect to T is
0, we know the dividing curves must also be vertical. This contradicts the fact that & has
minimal twisting. Thus the dividing curves must run from one boundary component of
A to the other.

We can fix an identification of the boundary components of A so that for each curve
cinTy, c N Sy is taken to c N S1. After identifying the boundary components of A, T'4
with consist of two simple closed curves of slope & for some integer 1. We call h = h(A)
the holonomy of A. In Figure 5.3.2, with the natural identifications of the right and left
side of the rectangles, the holonomy is 0 and 1 for the two rightmost pictures. (Note we
never really identify the boundary components of A we are just using the identification
to define h.)

We now show that we can isotop A so as to increase or decrease h(A) by 1 (and
hence after further isotopy we can increase or decrease the holonomy by any integer).
Thus, once this is achieved, up to isotopy, there is only one possible configuration for
the dividing curves on A. To see how to change the slope of the dividing curves on A
Let T/ be a parallel copy of T; in a vertically invariant neighborhood of T;. Now let A’
be a parallel copy of A in a vertically invariant neighborhood of A with boundary on the
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Ty U T/. Consult Figure 5.3.3 throughout this construction. Notice that A U A” cut T} into

A’ C

Figure 5.3.3. Both figures are S x [0, 1] cross sections of the basic slice (identify the top
and bottoms of the squares). On the left are the tori and annuli used in the isotopy of A.
On the right is C before edge rounding

two annuli, one of which, denoted Tl.”, is disjoint from a vertically invariant neighborhood
of A. Now A’ U TO” U T} is an annulus with boundary on A, we can add two sub-annuli
of Ato A’ UT) UT/ to construct an annulus C that has the same boundary as A.

Exercise 5.3.4. Show the pieces that make up C can be assumed to be convex surfaces
with Legendrian boundary.

We now round the corners on C, as discussed in Section 3.8, to create a smooth convex
annulus (which we still denote by C).

Exercise 5.3.5. Show C is isotopic, rel boundary, to A and h(C) = h(A) £ 1 where the +1
depends on which side of A the annulus A’ sits. For the latter consult Figure 5.3.4.

Thus up to isotoping A rel boundary, there is only one possibility for I'4. Now if we
cut T? x [0, 1] open along A and round the corners we get solid torus S with convex
boundary.

Exercise 5.3.6. Show that the dividing curves on dS consist of two curves each of slope
Should we do this? It is the first time we are doing this and will be used many times in
the rest of the book!

Using Theorem 3.4.1 we can assume the characteristic foliation on dS is standard
with ruling slope 0. Thus we can find a meridional disk D with dD a ruling curve in
dS. The twisting along dD is —2 so we can make D convex. There are two possibilities
for the dividing curves on D. See Figure 5.3.5. After cutting S along D we get the 3-ball
which has a unique tight contact structure. Thus there are only two possible basic slices
corresponding to the different possibilities for the dividing curves on D. m]
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I

\

Figure 5.3.4. The piecewise smooth annulus C is shown on the top and the annulus with
edges rounded is shown on the bottom. In this example the original annulus A had holo-
nomy 1 and the new annulus C has holonomy 0.

10

Figure 5.3.5. Possible dividing curves on D.

We are now left to prove that two basic slices exist and compute the relative Euler class.
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Lemma 5.3.7. There are two basic slices with sg = oo and s1 = —1 and they are distinguished by

relative Euler classes which are given by (iol) € HX(T? x [0,1]; Z) = H\(T?; Z).

Proof. Consider T? X R with the contact structure & = ker(sin(2mz) dx + cos(2mz) dy),
where (x, y) are coordinates on T? and z is the coordinate on R. When this contact struc-
ture is pulled back to the universal cover R? it is contactomorphic to the standard contact
structure, and hence it is tight (see Exercise 1.1.17). Thus the contact structure on T?x R
and any subset of it is tight. Consider T2 X [0, %] C T? x R. The foliation on T2 x {0} is lin-
ear of slope oo and the foliation on T? x {3} is linear of slope —1. Thus we can perturb the
boundary (as in Example 3.2.16) to be convex with two dividing curves on each boundary
component of slope co and —1 respectively. Denote this contact manifold (T2 X [0, 1], &).
To show (T? x [0, 1], £) is a basic slice we only need to check that it is minimally twisting
(the other properties are clear from the construction). We note that in T2 X [0, 1] the [0, 1]
factor just represents an interval and is not the z-coordinate on T? x R (though it is a
rescaling of it).

For this, we need a basic result about linear twisting of characteristic foliations. To
this end, let M, ,» = T?x[a, b] with the contact structure & = ker(sin(27nz) dx+cos(2nz) dy),
where the slope of the characteristic foliation on T? X {a} and T? x {b} is r and 7/, respec-
tively, and 0 < b — a < 1/2. Note, the characteristic foliations on T? x {t} is linear and
moving from r to 7’ in a left-handed manner as ¢ goes from a to b.

Lemma 5.3.8. If s is a slope not in the interval [r, r’] then there is no convex torus in (M, ,, &)
with dividing slope s.

Remark 5.3.9. There is also no such linearly foliated torus as we could perturb it to be
convex with dividing curves having the same slope.

Proof. If the lemma is not true then there is a convex torus T parallel to each boundary
component of M, ,» with slope s not between r and r’. There is another (abstract) slope
s’ such that s’ < s < r’ < r and the minimal integral vectors v and v” corresponding to
slopes s and s’ from an oriented basis of T?. By “abstract” slope we just mean a slope of
a curve on T2 not necessarily related to dividing curves on a torus in M, in any way.

Exercise 5.3.10. Prove such a slope s’ exists
Hint: Consider the Farey graph, Section 4.2.

There is a linear diffeomorphism of T2 taking s to 0 and s’ to co.

Exercise 5.3.11. Show that this diffeomorphism sends r and 7’ to some negative slope.

Let ¢ be the corresponding diffeomorphism of M, ;. Note ¢.¢ is a subset of the contact
structure ker(sin(27z) dx + cos(2nz) dy), on T? x (0, }1).
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Exercise 5.3.12. Prove this assertion.

Hint: The map ¢ is a linear map on the torus and hence ¢.¢ is a contact structure on
T? x [0, 1] that induces linear foliations on T? x {point} whose slopes rotate from ¢(r) to
¢(r'). Now use Theorem 1.3.7.

Exercise 5.3.13. Show that (T2 x (0, }I), ker(sin(2mz) dx + cos(2mz) dy)) embeds in S3 with
the standard tight contact structure such that the x-direction maps to a meridian of an
unknot and the y-direction maps to a longitude for the same unknot.

Hint: See Exercise 1.1.19.

From the previous two exercises we see that ¢(M, ,-) with ¢.£ embeds in S3 with the
standard contact structure. Moreover the slope of the characteristic foliation on ¢(T) is
0. But from the construction of this embedding ¢(T) bounds a solid torus such that the
curve of slope 0 is a meridian for the torus. Thus a meridional disk for this solid torus
with boundary a leaf in the characteristic foliation is an overtwisted disk, contradicting
the tightness of the standard contact structure on S°. m]

We now return to the proof of Lemma 5.3.7. We left off trying to show that (T? x
[0,1], &) is minimally twisting. Recall (T? X [0, 1], &) is obtained from (T2 x [0, %], & =
ker(sin(27mtz) dx + cos(2mz) dy)) by perturbing the boundary to be convex. We discuss the
perturbation of T2 X {0} more carefully (a similar discussion holds for T2 X {%}). There is
some function f : T?> — [0, 8] such that the graph of f in T? X R is the perturbation of
T? x {0} that makes it convex. Note that f;(p) = t f(p) for any ¢ € (0,1] is also a function
whose graph is a perturbation of T? x {0} making it convex. Let (M;, &) be the contact
manifold obtained from T2 x [0, %] by perturbing T?x {0} by f; (and similarly for T?x { % D).
Notice that M; is contained in T? X [0, % + t0] and hence Lemma 5.3.8 shows that there
are no convex tori (parallel to the boundary) in (M;, &) with slope outside [elt, -1+ €]
where €; is some small number depending on t and going to zero as t goes to zero (to see
this recall the slope of the characteristic foliation on T2 X {0} is co and so for T? x {r} for r
just less than 0 will have very large positive slope, and we have an analogous statement
when r is just larger than %). Note there is a canonical way (up to isotopy) to identify M;
with T2 x [0, 1], we use t only to make precise the physical subset of T x R that we are
talking about.

We now claim that for any ¢ € (0, 1] we can think of (M, &1) as a subset of (M;, &;).
More specifically there is a contactomorphism of (Mj, 1) onto a subset of (M;, &) that
does not change the slopes of curves on the T? factor of M;. Once this is proven we
will see that (M, &) = (M, &1) is minimally twisting since if there were a convex torus T
parallel to the boundary with slope s not in [co, —1] then we could find such a torus (with
slope s) inside (M, &) for any ¢ contradicting our discussion in the previous paragraph.
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To prove our claim we use a simple version of an important technique called “dis-
cretization of isotopy” (see Section 8.2 for the full description). For each t € (0, 1] there
is a vertically invariant neighborhood U; of the graph of f; in T? x R. For each f let
O; = {t" € (0,1] : the graph of f» C U;} and O; be an open connected interval in O;
containing f. Fixing typ we want to show that (M1, &1) is a subset of (My,, &,). If tp is in
O1 then the graph of f;, is in Uj the vertically invariant neighborhood of Tj, the graph of
f = f1. Thus we can use the invariant neighborhood structure to find two tori T and T}
that are translates of T in the product neighborhood structure such that the graph of f;,
separates T] and T}". See Figulr[((]e 5.3.6. As in the proof of Lemma 5.2.1 we see that whether

—
T2 x {0} T? x {3}

pd
T]/ T T]//

Figure 5.3.6. Part of T?> X R showing T}, is contained in an invariant neighborhood of Ty .

wecut T2 x R along T1, Tl’ or Tl” we will get contact manifolds isotopic to (M, &1). Since
one of T{ or T, is inside (M, &) we see that (M, &1) can be thought of as a subset of
(Myy, &ty)- We can also think of (My,, &) as a subset of (M, &1) since one of T or T} will
be outside of My,. (Recall, we are only discussing altering one boundary component but
we must alter the other one in a similar fashion.) Now suppose tj is not in O; but that
O, N O1 # 0. Let £ be a point in the intersection. As above (Mj, £1) can be thought of as
a subset of (My,, &t,) and (My,, &) can be though of as a subset of (My,, &,).

Exercise 5.3.14. Finish this line of argument to show that for any fixed ty € (0, 1] we may
always think of (M, &) as a subset of (My,, &,).

Hint: For a fixed t the interval [tg, 1] is compact so it can be covered by a finite number
of the Oy’s.

Exercise 5.3.15. Show that given any subset T2 X [a, b] of (T? X R, & = ker(sin(27z) dx +
cos(2mz) dy)) where b — a < 1 and the slopes of the characteristic foliations on T? x {a}
and T2 x {b} form a basis for Z2, one can perturb the boundary components to be convex
to obtain a basic slice.

We now compute the Euler class of (M, &). Let A be a vertical annulus. Thatis A is a
vertical curve in the torus T2 times [0, 1]. We can assume the boundary of L are Legen-
drian ruling curves in dM. Perturb A to be convex. From the proof of Lemma 5.3.3 we
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know that there are two dividing curves on A that run from one boundary component to
the other. Thus Lemma 3.5.3 implies that e(£)(A) = 0. Now if A’ is a horizontal annulus
we can assume that A’ N (T? x {0}) is a Legendrian divide and the other boundary com-
ponent is a Legendrian ruling curve that intersects the dividing curves on J(T? x [0, 1])
twice. Now make A’ convex. From the discussion in Section 3.8 and the Giroux tightness
criterion for convex surfaces, Theorem 3.6.1, we see that A" has exactly one dividing curve
beginning and ending on A’N(T?x{1}). Thus from Lemma 3.5.3 we see that e(&)(A’) = +1.

+1
From this we can conclude that the Poincaré dual of ¢(&) is (B ) € H(T?; Z) and we note

0 1 1
here. To see this consider the map W(x, y,t) = (-x, -y, t) of T? X [0, 1] to itself. The map
W preserves the dividing curves on J(T? x [0,1]) and W.& is minimally twisting, thus

that (il) = F ((_1) - (0)) = F(v1 — vp). We do not actually need to know the sign

+1 Tl
W.£ is a basic slice. Also note that acting on Hy(T?; Z) we see W, (B ) = (B ) Thus

(T? % [0,1],&) and (T? X [0, 1], W.(&)) are distinct (up to isotopy) basic slices realizing the
claimed relative Euler classes. O

Exercise 5.3.16. Identify the exact relative Euler class of (T? %X [0, 1], &) in the proof above.

Exercise 5.3.17. Show that the basic slice you get from perturbing the boundary of (T? x
[%, §], & = ker(sin(2mz) dx + cos(2mz) dy)) to be convex will give the basic slice (T? x
[0,1], W.¢) from the proof.

Examining our model (M, &) for a basic slice we can prove our corollary about the
slopes that can be realized by dividing slopes in a basic slice.

Proof of Corollary 5.3.2. All the existence statements are clear from the model for the
basic slice constructed at the end of the proof of the previous lemma. The non-existence
part follows from Lemma 5.3.8 except for the case of a linear foliation of slope sp or s;. O

5.4. Bypasses and basic slices again

Bypasses are the fundamental way of going from one convex surface to another and
we will see that a “bypass attachment" to a convex torus with the appropriate dividing
curves will yield a basic slice.

Let X be a convex surface and a a Legendrian arc in I that intersects the dividing
curves I'y in 3 points p1, p2, p3s (Where p1, p3 are the end points of the arc). Then a bypass
for X (along a), see Figure 5.4.7, is a convex disk D with Legendrian boundary such that

(1) DNX=a,
(2) tb(dD) = -1,
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(3) dID=aUBp,
(4) an B ={p1,ps} are corners of D and elliptic singularities of D.

Figure 5.4.7. A piece of ¥ and the bypass D.

After isotopy we can assume (by Giroux flexibility theorem 3.4.1) that the character-
istic foliation on D is given in Figure 5.4.8.

Figure 5.4.8. Standard foliation on a bypass.

If there is a natural orientation on the disk D then the sign of the singularity on the
interior of « is called the sign of the bypass.

Theorem 5.4.1 (Honda 2000, [Hon00a]). Let X be a convex surface and D a bypass for ¥ along
a C L. Inside any open neighborhood of ©.U D there is a (one sided) neighborhood N = £.x [0, 1]
of LU D with £ = =X X {0} (where N is oriented as the product of © and [0, 1]) such that I'y



5.4. Bypasses and basic slices again 189

is related to I'sy 1y as shown in Figure 5.4.9. We say £’ = L x {1} is obtained from X by
attaching a bypass from the front.

If we have the same setup except that ¥. = ¥. x {1} then I's is related to T'sy(1y as shown in
Figure 5.4.9. We say ' = ¥ X {1} is obtained from X by attaching a bypass from the back.

If one says that X’ is obtained from X by attaching a bypass, it is assumed that the
bypass is attached from the front.

>C

s

Figure 5.4.9. Result of a bypass attachment. The original surface © with attaching arc a,
left. The surface X’ obtained from a bypass attachment from the front is shown on the
upper right, and the attachment from the back is shown on the lower right.

Remark 5.4.2. If the endpoints of the attaching arc agree, that is p; = p3, then the bypass
is called degenerate.

Exercise 5.4.3. Show a degenerate bypass can be attached to a surface and have a sim-
ilar effect on the dividing curves as a regular bypass. What exactly is the effect on the
dividing curves? (Maybe read the following proof first.)

Proof. There are many ways to try to prove this theorem and the reader is encouraged to
think about their own way of showing this. The main idea is to use the Edge Rounding
Lemma 3.8.3. With that said, we give an argument for the theorem. Though it might
seem a bit convoluted, the goal of this proof is to try to only round one edge at a time.
(If the reader pursues the most obvious proof they will have to deal with three surfaces
coming together in a triple point like three coordinate planes in R>.)
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Using the transverse contact vector field v we get by definition of X being convex,
we can construct a vertically invariant (one-sided) neighborhood X x [0, €] of £ with D
attached to L X €. To achieve this we push D forward using the flow of v. Now extend «
in X x {€} to the simple closed curve in Figure 5.4.10 and let A be a neighborhood of a” in

o’

O )

A

-
)

o

—

-
|

Figure 5.4.10. The arc o, left. The shaded region on the right is the annulus A.

Y. x {e} that is standardly ruled by curves parallel to a’. Use v to flow a’ forward to get
an annulus A” and flowing D by v again we can assume that D is attached to the top of
A’ to obtain the annulus A” seen in Figure 5.4.11.

M) /)

Figure 5.4.11. The annulus A”, left, and the annulus B, right. (The right and left sides of
each picture are identified.)

Exercise 5.4.4. Show we can round the corners of A” by a C small isotopy to obtain the
annulus B that has smooth Legendrian boundary. See Figure 5.4.11.

Hint: Show this situation can be modeled as follows: Let Q be three quadrants in the xy-
plane in R3. Consider the radially symmetric tight contact structure on R>. Show, after
possibly perturbing A” rel boundary, a neighborhood of the corner of A” is contactomor-
phic to a neighborhood of the origin in R? so that a neighborhood of the corner in A” is
taken to Q. Now in this explicit model prove the corner can be rounded.
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The annulus B is convex so there is a contact vector field w for B. Moreover, we
can assume that w is tangent to £ X {€¢} along A and the flow of a’ by w produces the
Legendrian ruling of A.

Exercise 5.4.5. Show we can find a w with such properties.

Let C = BXx[-0, 0] be a vertically invariant neighborhood of B obtained from B by the
flow of w. The boundary of C not identified with part of the boundary of ~ X [0, €] (this
is called the upper boundary) is shown on the left in Figure 5.4.12. When the corners on

B x {e}

-~/ r

B x {—¢€}

Figure 5.4.12. The upper boundary of JC, left. Upper boundary of C after corners are
rounded, right. (The left and right sides of each picture are identified. The middle strip in
both pictures is the upper boundary of JB times an interval.

these boundary components are rounded you get the picture on the right in Figure 5.4.12.
Let N’ = X x [0, e] U C. Figure 5.4.13 shows the upper boundary of N’. Let N be N’ with

[

N

Figure 5.4.13. Top view of N’, left. Top view of N, right.

corners rounded. Then the upper boundary of N is shown in Figure 5.4.13 and N is a
neighborhood of X U D. This completes the proof the theorem. m]
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Exercise 5.4.6. If X’ be obtained from X by a bypass attachment then show
X(E) = x(ZL) = x(Z4) = x(Z-).

Theorem 5.4.7 (Honda 2002, [HonO02]). Let T be a convex surface and X be obtained from XL
by a bypass attachment in a tight contact manifold. Then

(1) T'sy = I's (this is called a trivial bypass attachment),

@) Tef =Tzl +2,

) IFe| = Ig| -2,

(4) TI'sy is obtained from I'y, by a positive Dehn twist about some curve in X,

(5) TI'sy is obtained from I'y, by a “mystery move”, see Figure 5.4.14.

Na %

Figure 5.4.14. The Mystery Moves.

Proof. Let a be the arc of attachment and p1, p2, p3 the points where « intersects the
dividing curves. As above we take the end points of a to be p; and p3. Let y; be the
component of the dividing set in which p; sits.

Case (I): all the y;’s are distinct. In this case it is easy to see that )7 is joined to y2, 72
is joined to y3 and y3 is joined to y1. So in X all the y;’s are distinct but on X’ they have
all been joint. Thus Conclusion (3) of the theorem holds.

Case (II): all the y;’s are the same. There are six possible configurations for the bypass
here. See Figure 5.4.15. In Configurations 2., 3. and 4. we see that we have increased
the number of dividing curves by two so the Conclusion (2) of the theorem holds. The
tigure shows regions where there might be topology, if there were no topology in any of
these regions (by which we mean that the red and green arcs cobound a disk) then a con-
tractible dividing curve is formed. Thus this cannot happen in a tight contact structure
so we will never see such bypasses. In Configurations 1., 5. and 6. if all regions do not
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*% ; +\@/@\

Figure 5.4.15. The six configurations in Case (II).
have topology in them, then the dividing curves after the bypass attachment are isotopic
to the dividing curves before the attachment. So we have a trivial bypass attachment
and Conclusion (1) of the theorem holds. Finally, if all the regions have topology, then
attaching the bypass is the same as applying a Dehn twist to the dividing curves. That is
Conclusion (4) of the theorem holds.

>
>

6@ @ @b
R

Exercise 5.4.8. Show Conclusion (4) of the theorem holds in these cases.
Hint: See Figure 5.4.16 for Configuration (1). The other configurations are similar.

- D
) >

Figure 5.4.16. A right-handed Dehn twist along the curve on the left changes the dividing
curves as shown.

Case (III): y1 = y3 but y, is distinct. In this situation one easily sees conclusion (4) of
the theorem holds. See Figure 5.4.17. If the endpoints of the attaching arc are switched
from what is shown in Figure 5.4.17 then we see conclusion (5).

Case (IV): If y1 # y3 but y; agrees with y1 or ). As similar analysis as to Case (II)
show either conclusion (1), (4) or (5) happens. O

We now apply the above theorem to see what happens when we attach bypasses to
low genus surfaces.
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Figure 5.4.17. The configuration in Case (III).

Example 5.4.9. If £ = S? is a convex sphere in a tight contact manifold then any by-
pass attachment must be trivial! This is clear since I's has only one component. See
Figure 5.4.15.

Example 5.4.10. If © = T2 is a convex torus in a tight contact manifold then the situation
in Theorem 5.4.7 also simplifies. Specifically, we can have:

(1) Trivial bypass attachment (if the bypass attaching arc intersects only one divid-
ing curve on X and does not wind around any topology).

(2) Attachment that increases the number of dividing curves (if the bypass attaching
arc intersects only one dividing curve on X and winds around some topology).

(3) Attachment that decreases the number of dividing curves (if the bypass attach-
ing arc intersects three different dividing curves on X)

(4) Attachment that performs a right-handed Dehn twist (if the attaching arc in-
volves only two dividing curves of L). Note: This can only happen when [z | = 2.

We note that in the first two cases, the attaching arc from the bypass must have con-
secutive intersections with a single dividing curve more than once. When this does not
happen, we say the intersections of the bypass with the dividing curves are efficient and
in this case, only the last two cases can happen.

5.4.1. Basicslices again. The last case in the example above is going to be very important
for our use of convex surfaces to classify contact structures so we elaborate on this further
in the following theorem which we will generalize shortly.

Theorem 5.4.11 (Honda 2000, [Hon00a]). Let T be a convex torus in a tight contact structure.
Assume that T is standardly foliated with dividing slope co and ruling slope r with =1 < r < 0.
Assume there is a bypass D attached to T along a ruling curve. There is a (one-sided) neighborhood
N =T?x[0,1] of T U D with T x {0} = T such that

(1) If IT7| > 2 then |Tpayqqy| = |Ur| — 2 and the dividing slope is unchanged.

(2) If [T7| = 2 then the dividing slope on T?> x {1} is —1 and T2y iy | = 2.

Moreover in Case (2), N is a basic slice.
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Proof. Part (1) is immediate from Theorem 5.4.7. Part (2) is also obvious if r > —1, see

\ |\

Figure 5.4.18. A bypass attached along a ruling curve slope r with =1 < r < 0.

All conditions for a basic slice are clearly satisfied except for minimal twisting. To
show minimal twisting we embed N into a standard model where we know the twisting
is minimal. To this end consider T? x R with the contact structure & = ker(sin(27z) dx +
cos(2mz) dy), used in the proof of Lemma 5.3.7 concerning basic slices. We can perturb
To=T?>%x{0}and T = T? x {%} to be convex with two dividing curves each and having
slope co and -1, resspectively. We further perturb these tori so that the characteristic
foliations are standard with both having ruling slope —%, p > q > 0. Let A be a convex
annulus between these two tori whose boundary is a ruling curve on each of the tori. So
JdANT;isa (p,—q)-curve on T;. The dividing curves on Ty are (0, 1)-curves. So by the
discussion in Section 4.1 concerning curves on tori we know

1.2 =2p.
v p

BAmFTO:Z 0

Similarly

—_ =2(p —q).
7 (r—9)

Since g # 0, we see that JA N Tj intersects I'4 more times than dA NT1. From Lemma 3.8.1

8
we know that the dividing curves I'4 intersect the boundary component of dpA = JANTy,

8A01“T1 =2
8

2p times, and the other boundary component d1A = JANT;, 2(p—¢q) times. Since we are in
a tight contact structure I'4 consists of arcs and possibly circles parallel to the boundary of
A. Since p > p —q we see that at least one arc with one boundary component on dpA must
have its other endpoint on dyA too. Thus this arc a, together with an arc on dyA bounds a
disk D in A. If this disk contains no other components of I'4 then we may use the Giroux
Flexibility, Theorem 3.4.1, to realize a characteristic foliation on A that on a disk slightly
larger than D is the foliation shown in Figure 5.4.8. Thus we have a bypass on A for
To; moreover, this bypass is entirely contained in the region T? x [0,1/8]. Attaching this
bypass to Ty will result in a region contactomorphic to N contained in T2 X [0, 1/8].
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Exercise 5.4.12. Prove this last statement.

By Lemma 5.3.8 this is minimally twisting so N must also be minimally twisting.

We are left to consider the case when r = —1. In this case the argument is as above
except the bypass is degenerate. As indicated via Exercise 5.4.3 this makes no difference
and thus the conclusions of the proof still hold. m]

We now state a generalization of the previous theorem that tells us how to attach
bypasses to arbitrary tori with two dividing curves. While this is clearly a corollary of
the previous theorem, it is important enough in its own right to be called a theorem.

Theorem 5.4.13. Let T be a convex torus with two dividing curves of slope s and characteristic
foliation in standard form, see Example 3.4.4, and ruling slope r # s. Suppose D is a bypass for
T that can be attached from the front side along a ruling curve. If T" is the convex surface that
results after attaching the bypass D to T, then T is convex with two dividing curves of slope s’
where s’ is the point in the interval [s, r] (in the Farey graph) that is closest to r connected to s
by an edge.

Given the same setup with D attached to the back side of T, then the conclusion is the same
except s’ is the point in the interval [r, s] that is closest to r connected to s by an edge.

Proof. We will only consider the case when s = oo and the bypass is attached from the
front, with the other cases immediately following by a change of basis (and for bypasses
attached from the back, an orientation reversing change of basis).

For r € [-1,0) notice that Theorem 5.4.11 gives the desired result as —1 is the point
in [oo, r] closest to r with an edge to co. Now suppose r € [n,n + 1) for some integer
n. There is a change of basis that fixes co and sends n to —1. It is easy to see that n + 1
goes to 0 under this change of basis. In this basis  is in [-1, 0). So from the case already
considered, we know attaching the bypass will result in a convex torus with dividing
slope —1. Changing back to the original basis the next dividing set has slope n and it is
clear that 7 is the point closest to 7 in [co, r] with an edge to co (note the only points in
the Farey graph with an edge to co are the integers). This completes the proof. m|

5.4.2. Finding bypasses. We have seen that bypasses allow you to understand how con-
vex surfaces change. In the proof of Theorem 5.4.11 we saw how to find a bypass in a
specific situation. We now discuss how to formalize this as a way to find bypasses in
other particular situations.

Lemma 5.4.14. Let X be a convex surface and X be a convex surface with Legendrian boundary
such that one component of L’ a subset of L. Moreover, assume ¥’ N X C JX'. If I's; has
an outermost “boundary parallel” dividing curve y and |I's/| # 1 then X' may be isotoped rel
boundary so that y is isotopic in ¥’ to a Legendrian curve B such that the disk B cuts off from X’
is a bypass for X along part of L.
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An arc properly embedded in a surface with boundary is called boundary parallel if one
of the components of the complement of the arc is a disk. If the arc is part of a dividing
set then we say it is outermost if the disk it separates off contains no other components of
the dividing set.

Remark 5.4.15. Because of this lemma, boundary parallel dividing curves are frequently
called bypasses. This is an abuse of language, but should not cause confusion if one
is careful. One should be careful as there are extra hypotheses in the lemma (that is
ITs/| # 1), but this is not essential as long as X’ is not a disk or an annulus due to the
Super Legendrian Realization Principle, that is Lemma 3.4.7.

Exercise 5.4.16. Use the Legendrian Realization Principle to prove Lemma 5.4.14.
Hint: See the proof of Theorem 5.4.11.

We now consider two of the most used versions of the above lemma.

Lemma 5.4.17. Suppose X and X' are surfaces as in Lemma 5.4.14. Assume further that ©' is a
disk. If tb(dL') < —1 then there is a bypass for ¥.

Proof. If th(dX') = —n then there will be n arcs in I's;. At least one of them must be
boundary parallel and outermost. So if n > 1 Lemma 5.4.14 finishes the proof. m]

The following lemma formalizes the argument we made at the end of the proof of
Theorem 5.4.11.

Lemma 5.4.18 (Imbalance Principle: Honda 2000, [Hon00a]). Suppose ¥ and X' are surfaces
as in Lemma 5.4.14. Moreover, assume that ¥’ = S' X [0, 1] with S' x {0} c X (and of course
dY' Legendrian). If tw(S' x {0}, X’) < tw(S' x {1}, X’) < O then there is a bypass for T.

Proof. It is clear that I's; will have more than one component. The dividing set I's, will
intersect S! x {i}, —2tw(S! x {i}, X’) times. Thus not all arc starting at S! X {0} can run to
S x {1}. So at least one must be boundary parallel and outermost. Thus Lemma 5.4.14
finishes the proof. m|

5.5. Contact structures on thickened tori

In this section we classify minimally twisting contact structures on T2 x [0, 1] and discuss
many of their properties.

5.5.1. Executive summary of main results. Recall a contact structure on T2 x [0, 1] with
convex boundary is called minimally twisting if the slope of the dividing curves on any
convex torus parallel to the boundary is between sy and s1, the slopes of the dividing
curveson Ty = Tx{0} and Ty = Tx{1}, respectively. Also recall Tighty;n (T?x[0,1], s0, 51)
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is the set of minimally twisting tight contact structures on T2 x [0, 1] with convex bound-
ary and each boundary component having two dividing curves with slope sg on Tp and
s1 on T1. We have the following two cases for minimally twisting contact structures. The
tirst theorem considers thickened tori with the same dividing slope on the back and front
boundary components.

Theorem 5.5.1 (Giroux 2000, [Gir00]; Honda 2000, [Hon00a]). There is a bijection
h:Tightyin(T? % [0,1], 50, 50) = Z.

The map h is called the “holonomy map”. Moreover, up to contactomorphism, there is a unique
tight contact structure on T* x [0, 1] with the given boundary data.

Recall from Section 4.3 that we can write a rational number 7 in terms of its continued
fraction

r= [ﬂo}ﬂl,---,ﬂn] :uO_—lf

where the a; < -2 are integers for i > 0 and a9 can be any integer. Also, recall that the

semicolon is replaced by a comma if a9 < 2.

Theorem 5.5.2 (Giroux 2000, [Gir00]; Honda 2000, [Hon00a]). Suppose that r < —1 and has
continued fraction expansion [ag, ... ,a,]. Then

|Tightyin(T? X [0,1];7,=1)] = (a0 + 1)(a1 + 1) - - (ap-1 + D).

That is there are |(ag+1)(a1+1) - - - (an—1+1)a, | contact structures up to isotopy in Tight i (T?x
[0, 1]; 7, =1). Moreover, these contact structures are also distinct up to contactomorphism and are
distinguished by their relative Euler classes, see Corollary 5.5.13 for the computation of the Euler
classes.

In Section 4.3 we discussed continued fraction expansions, so it is easy to apply this
theorem.

Example 5.5.3. To compute the number of elements in Tight,_. (T? X [0,1]; -21/8,-1) we
note that —21/8 = [-3, -3, —-3] so

| Tight, . (T>x [0,1];-21/8,-1)| =2-2-3 = 12.

min

If we have a thickened torus with dividing curves having slopes not satisfying the
hypothesis of this theorem, we can still determine, as explained in the next examples, the
number of minimally twisting contact structures.

Example 5.5.4. We determine the number of elements in Tight . (T?>x[0,1];(n+1)/n,2).

To this end, we note that the linear diffeomorphism

o)

min
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sends (n + 1)/n to —n and 2 to —1. This diffeomorphism induces a diffeomorphism of
T? x [0, 1] that identifies Tight iy (T? X [0,1]; (n + 1)/n,2) with Tight(T? x [0, 1]; —n, —-1).
So the theorem tells us that

ITightmin(T* % [0,1];(n +1)/n,2)| =n — 1.
Example 5.5.5. As another example, we determine the number of elements in Tight (T?x
[0,1]; =(2 +3n)/(3 + 4n), —1/2). Note that the linear diffeomorphism

-1 -1

0 -1
sends —(2+3n)/(3+4n) to —(2+3n)(1+n) and —1/2 to —1. Thus as above we can identify
Tight, . (T>X[0,1]; —(2+3n)/(3+4n), —=1/2) with Tight, . (T?>x[0, 1]; —(2+3n)/(1+n), -1).
One may easily compute that —(2 + 3n)/(1 + n) = [-3, —=(n + 1)] and so we know

|Tightmin(T?> % [0,1];—(2 +3n)/(3 + 4n),-1/2)| = 2(n + 1).

min(T? % 10,11,7/5,2)
Hint: Find a linear diffeomorphism of T? that sends o to 1 and —1 to 2, then invert it and

proceed as in the previous examples. It is clear why —1 goes to —2 by why did we send
oo to 1?

min

Exercise 5.5.6. Compute the number of elements in Tight

Exercise 5.5.7. Given any two sets of curves I'g and I'1 with distinct slopes we can find a
linear diffeomorphism of T? inducing a diffeomorphism of T? x [0, 1] that arranges their
slopes to satisfy the hypothesis of the theorem.

Remark 5.5.8. This exercise shows that the previous two theorems classify all minimally
twisting contact structures on T2 X [0, 1]. Non-minimally twisting contact structures on
T? x [0, 1] will be considered in Section 5.9. In Section 8.4 we will consider the situation
when the dividing curves on the boundary components have more than two dividing
curves.

Exercise 5.5.9. Show that if ¢ is a tight contact structure on T2 %[0, 1] with convex bound-
ary that is not minimally twisting, then any slope can be realized as the slope of a convex
torus parallel to the boundary.

Hint: It might help to read the proof of Theorem 5.5.2 first.

Before moving on we rephrase Theorem 5.5.2 in a way that can be useful in applica-
tions. To do so we need to discuss decorated paths in the Farey graph. Given a minimal
path in the Farey graph, see Section 4.4, we call it a decorated path if each edge has been
given a + or — sign. We say two decorations of a path P differ by shuffling in continued
fraction blocks if they have the same number of + signs (and hence — signs) in each con-
tinued fraction block. Notice that this means that the ordering of the signs in a continued
faction block is unimportant. Shuffling in continued fraction blocks gives an equivalence
relation on decorated paths.
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Theorem 5.5.10. The contact structures in Tigh’cmm(T2 X [0, 1]; so, s1) are in one-to-one corre-
spondence with equivalence classes of decorations in a minimal path in the Farey graph from s

clockwise to sq.

It can sometimes be much easier to use this theorem than to change coordinates and
use Theorem 5.5.1.

Example 5.5.11. We use Theorem 5.5.10 to compute the number of elements in Tight, . (T*x
[0,1];5/19,1). To this end, we locate 5/19 and 1 on the Farey graph and construct a min-
imal path. See Figure 5.5.19. Notice that there are two continued fraction blocks in the

3
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Figure 5.5.19. A minimal path in the Farey graph from 5/19 clockwise to 1. The continued
fraction blocks are represented in different colors. (Some of the distances are not to scale.)

path from 5/19 to 1, with the first having 4 edges and the second having 2. Since there
are 5 ways to decorate the edges of a continued fraction block with 4 edges and 3 ways
for the one with 2 edges, we see that

ITightmin(T? x [0,1];5/19,1)| = 15.

Maybe give a few homework problems on this too?

Given any decorated path P in the Farey graph from s clockwise to s; one can con-
struct a contact structure on T2 x [0, 1]. Indeed, suppose the path P has 1 edges, denoted
e1,- -+ , e, as we move from sy to s1, and the vertices of ¢; are el(.) and el.1 (moving clockwise
from the first vertex to the second). Now on T? x [(i — 1)/n,i/n] consider the basic slice
with boundary data e? and el.1 and having relative Euler class i(el.1 - e?) where the sign is
determined by the sign on the edge. See Section 5.3 for the discussion of basic slices. The
union of these basic slices gives a contact structure £p on T2 x[0,1].
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Recall, in Section 4.4 we discussed shortening a non-minimal path in the Farey graph.
We can a shortening of a decorated path consistent if the two edges that are replaced by a
single edge have the same sign, and in this case we label the new edge with the sign of the
two edges that are removed. The theorems above tell us when a, possibly non-minimal,
path P in the Farey graph corresponds to a tight contact structure.

Corollary 5.5.12. Let P be a decorated path in the Farey graph. The contact structure Ep on
T2 x [0, 1] constructed above is tight if and only if the path can be consistently shortened to a
minimal decorated path.

In the proof of Theorems 5.5.2 and 5.5.10 we will see that given an element in & €
Tightmin
sp clockwise to s1 such that £ = &p, and P is unique upto shuffling in continued fraction
blocks. With this notation in hand, we can compute the relative Euler class of a minimally
twisting contact structure.

(T? x [0,1]; s, s1) there is a minimal decorated path P in the Farey graph from

Corollary 5.5.13. Given a contact structure Ep in Tightmm(T2 % [0, 1]; so, s1) described by the
decorated path P with edges e; as above, then the relative Euler class of Ep is Poincaré dual to

n
Z ei(ez‘l - 6?),
i=1
where recall the elj are the end points of the edge e; thought of as elements in Hy(T?), and €; is the
sign on e;.

With this in mind, we can discuss gluing two contact structures on thickened tori
together.

Corollary 5.5.14. Let & € Tightmm(T2 X [0,1];s0,51) and & € Tightmm(T2 x [0, 1]; 81, 52)
be associated to the decorated paths P and P’, respectively. Then the result of gluing the front
boundary of (T? x [0,1], &) to the back boundary of (T? x [0,1], &) results in a tight contact
structure if and only if the path P U P’ can be consistently shortened to a minimal decorated path
from s to ss.

Remark 5.5.15. We note that in this last corollary, the contact structure obtained by gluing
& and &’ together does not have to be minimally twisting. It will be if and only if s, is not
in the interval [sg, s1].

Next, we state a very useful corollary of the classification result for minimally twist-
ing contact structures on thickened tori.

Corollary 5.5.16. Suppose & € Tightmm(T2 % [0,1];s0,51) then a slope s can be realized as the
dividing slope on a convex torus parallel to the boundary if and only if s € [so, s1]. Moreover, if it
can be realized, then it can be realized by a convex torus with only two dividing curves and such
a convex torus is unique up to contactomorphism.
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Should we state the same theorem for prelagranian tori? it is a bit more complicated...

We finally consider when a minimally twisting contact structure is universally tight.

Corollary 5.5.17. Given a minimal decorated path P in the Farey graph from sg clockwise to s,
the contact structure p is universally tight if and only if all the signs in P are the same.

5.5.2. Proofs of the main results. We are now ready to start proving our main theorems
about minimally twisting contact structures on thickened tori. We begin when there is no
twisting at all.

Proof of Theorem 5.5.1. Set M = T2 X [0, 1]. We assume that we have a minimally twist-
ing contact structure on M and JM has a standard foliation with ruling slope sg = s1 = co.
Let A be a vertical annulus (that is S' x [0, 1] with St a curve of slope 0 on T?) with bound-
ary ruling curves on dM. Make A convex. First note that all the dividing curves on A
run from one boundary component to the other. In other words, there are no boundary
parallel dividing curves, because if there were we would have a bypass on A which when
attached to dN would produce a convex torus with dividing slope not equal to —1.

Exercise 5.5.18. Show that if we cut M along A and round the corners we get S! x D?
with boundary having dividing curves of slope —1.

There is a unique such tight contact structure on S x D2. Thus the contact structure
on M is determined by the dividing curves on A.

Now pick an identification ¢ : S! x {0} — S! x {1} of the boundary components of
A (for example, use the product structure on A). Given a contact structure on M we can
always isotop A so that ¢(T4 N(S'x{0})) = TaN(S!x{1}). So a component of T'4 becomes
a (k,1) curve on A/~= T?, where ~ is induced by ¢. Define h(A) = k. From the above
discussion if two contact structures on M have the same (A) then they are isotopic.

Below we will show that any annulus isotopic to A must realize the same k, so that
k is an invariant of the contact structure; but first, we show that any integer can be h(A)
for some tight contact structure. Indeed let &y be a tight contact structure on an [0, 1]-
invariant neighborhood of a convex torus with dividing slope co. Then k(A) for this
contact structure is clearly 0. Now set ¢i(x,y,t) = (x,y + tk,t). (Here (x,y) are the
obvious coordinates on T2 and ¢ is the coordinate on [0, 1].) This is a diffeomorphism of
M. Moreover, it is clear that h(A) = k for the contact structure & = (¢px).(&o).

Exercise 5.5.19. Show that &y is minimally twisting since it is [0, 1]-invariant. Thus con-
clude that all the & are minimally twisting.

We have model contact structures realizing all possible k € Z and our discussion
above shows that any tight minimally twisting contact structure is isotopic to one of
these. Note that all these contact structures are contactomorphic by definition.
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We now show that & is not isotopic to &g if k # k’. We do this by showing that if A’ is
any annulus in (M, &) isotopic to A then h(A”) = k. This shows that / is a map on contact
structures not just on the pairs (A4, £). Assume in & there is an annulus A’ isotopic to A,
rel boundary, such that #(A”) = k # 0. Let M =R xS! x [0, 1] be a covering space of N.
There is a lift A’ of A’ to N. The annulus A’ splits M into two pieces M7 and M. Form
one of M or M the slope on A’ looks negative, suppose itis Mj. Let Abe alift of A to M
(note this implies A’ and A are disjoint). Let N be the region between A’ and A. It is easy
to see N is a solid torus. Let C; and C; be the two components of OM = R! x S! x {0,1}
between A’ and A.

Exercise 5.5.20. Show that (after rounding the edges of N) dN is convex with two divid-
ing curves of slope m.
Hint: this is very similar the discussion surrounding Figure 5.3.4.

Notice that if |1(A’)| > 1 then we can assume the ruling curves of dN are meridional
and take a meridional disk D with boundary a ruling curve. Moreover, dD intersects the
dividing curves 2(|h(A’)| — 1) times and thus there is more than one component to the
dividing curves on D when it is made convex. From this we know there is a boundary
parallel dividing curve and we can Legendrian realize a bypass for N on D. When we
attach this bypass, Lemma 5.4.13 says that we get a convex torus in N with dividing slope
0. That is there is a solid torus N’ in N with convex boundary having two dividing curves
of slope 0. We know from Theorem 5.1.5 that there is a unique tight contact structure on
N’, and N’ is a standard neighborhood of a Legendrian knot with the contact planes
twisting 0 times relative to the product structure on N.

Let sz be a lift of A to N, and set N; equal to the region between A and ZZ_ This is a
solid torus containing N (and N’). Moreover, arguing as in the exercise above, the slope
of the dividing curves on N; is —1. There is a contactomorphism of N, to a standard
neighborhood of a maximal Thurston-Bennequin unknot in S® with the standard contact
structure that sends the product framing on N; to the 0 framing on the unknot (since
the Thurston-Bennequin of the unknot is —1). But from the above construction inside
this neighborhood of the Legendrian unknot, there is a neighborhood N’ of a Legendrian
knot (in the same knot type) with twisting equal to 0. This contradicts the Bennequin
inequality. Thus the annulus A’ could not have existed in the first place. m]

We are now ready to prove half of our main theorem about minimally twisting contact
structure on thickened tori.

Proof of half of Theorem 5.5.2 and Corollary 5.5.13. Here we will prove that
I Tightmin(T? % [0,1];7, =1)| < |(ag + 1)(a1 + 1)+ (a5-1 + D)ay|

the other inequality necessary to prove the theorem will be established in Section 5.7.
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Consider the manifold M = T?x [0, 1]. We wish to get an upper bound on the number
of tight minimally twisting contact structures on M such that T; = T? x {i},i = 0,1, is
convex with two dividing curves I'; of slope sp = —%, p > g > 0, and slope s1 = —1.
Given such a contact structure on M the strategy will be to break M into pieces on which
any contact structure under consideration will restrict to basic slices. From this, we get
an upper bound since each basic slice admits only two possible contact structures. This
tirst upper bound is not good enough, so we introduce “shuffling” which will give the
desired upper bound.

We begin by taking the characteristic foliation on M to be standard with dividing
slope s; on the respective boundary components and ruling slope 0. Let A = S x [0,1]
where S! is a circle on T? with slope 0. We also take dA to be Legendrian ruling curves
on dM. Note

tw(S! x {0}, A) = —%(s1 x {0} NTy) = — '_Tl . g‘ =—p
tw(S! x {1}, A) = —%(s1 x{1}NTy) = - ‘_7,{, . %‘ =-1.

Thus the Imbalance Principle, Lemma 5.4.18, gives a bypass D for T; along S! x {0}.
Attaching D to Ty we get a neighborhood of Ty U D that we denote T2 X [0,1/2]. Hence
by Theorem 5.4.13 we can write M as

M = (T2x[0,1/2]) U (T x [1/2,1]),

where T2 x [0,1/2] is a basic slice; moreover, we know that the dividing slopes on T? x
{1/2} is the slope in [-p/g, 0] closest to 0 with an edge to —p/q. From the discussion in
Section 4.4 we know that this slope is [ao, . .., a,-1, a4, + 1].

As above we can find a bypass for the back face of T? x {1/2} along the annulus A
and with this create another basic slice. Now continuing in this manner we can break
T2 x [0, 1] into a collection of basic slices and the edges in the Farey graph corresponding
to the basic slices will form a minimal path from —p/q to —1. From our discussion in
Section 4.4 we know there are

k=la,+1|+|ay-1+2|+...+ |ap+2|

edges in this minimal path. So we have broken T? x [0, 1] into basic slices denoted B; =
T? x [i'Tl, %] fori = 1,...n. (Note what we called T? x [0,1/2], we now are calling
T2x[0, 1/k].) Moreover, if the dividing slope on the back face of B; has continued fraction
expansion [ty, . .., t;] then on its front face the dividing curves have expansion [t, ..., t;+
1]. Since each basic slice has only two possible contact structures we have proven the
upper bound of 2F for the number of possible tight minimally twisting contact structures
on M. This number is much larger than the upper bound for which we are looking. To
improve the upper bound we recall from Section 4.4 that the B;’s can be grouped into



5.5. Contact structures on thickened tori 205

natural “continued fraction blocks”. That is we can break M up into k’ + 1 pieces M;
where k’ is the number of 4; that are not equal to =2 (when i < n, that is wheni = n
we will count that 2, whether or not it is —2). The slopes of the dividing curves on the
front face and back face of M; is [ay,...,ay + 1] and respectively [ao, ..., a;41 + 1], for
i=2,...,k —1, where i’ is the i*", a; that is not —2. For i = 1 we have —% = (ag,...,ax)
and (ao, ..., a,-1 + 1), respectively, and for i = k" we have a9 + 1 and —1, respectively. We
now find a better upper bound on the number of tight contact structures on a continued

fraction block.

Lemma 5.5.21. A continued fraction block of length m has at most m+1 tight minimally twisting
contact structures.

From Section 4.4 we know that the continued fraction blocks M; have length |a;/| — 2
except for the first one that will have length |a,| — 1. Thus the lemma says the basic slices
will have at most |a; + 1| minimally twisting contact structures except for the first one
which has |a,|. For all the a; that are equal to —2 notice that |a; + 1| = 1 so we conclude
that

ITightmin(T? X [0,1];7,-1)| < (a0 + 1)(a1 + 1)+ (an—1 + 1)au|.

Proof of Lemma 5.5.21. As shown in Excercise 4.4.2 we can assume that the dividing
slopes for our continued fraction block are sp = —1 and s; = —m — 1. Arguing as in the
i-1 i

previous proof we can break T? x [0,1] into m pieces B; = T? % (=, =,i=1,...,m,

each of which is a basic slice. Moreover the dividing slope on Ti-1 is —i. By Theorem 5.3.1
each B; admits two tight minimally twisting contact structures”xlfvhich we denote &, and
&—. We immediately get the upper bound of 2™. To improve this upper bound we notice
that we can “shuffle the basic slice layers”. That is any contact structure on T2 x [0,1]
is isotopic to one in which all the &£,’s, say, come first, followed by all the £_’s. Thus
there is an integer k = 0, ..., m that counts the number of say &, regions, and the contact
structure on T2 x [0, 1] is completely determined by this integer. If we can establish this,

then the upper bound on the contact structures on this continued fraction block follows.

It is clearly sufficient to show that adjacent layers can be shuffled. That is the contin-
ued fraction block B1 U- - -U B, is isotopic to the continued fraction block with B; and B;1
exchanged for any i. If the adjacent layers have the same sign there is nothing to prove.
So we assume B; and B;11 have signs — and + respectively. Let A be an annulus running
from T?x {i —1} to T>x {i + 1} such that T? x {j} N A is a Legendrian ruling curve of slope
Oforj=1i-1,i,i+1. Make A convex. There are two essentially distinct possibilities for
the dividing curves on A, either the bypasses can be nested or not. See Figure 5.5.20.

If the bypasses are not nested then we can clearly attach them in any order. That is
we can attach the + one first then the — one. This would make B; have sign + and B;11
have sign —. So the only difficulty is shuffling the layer is when the bypasses are nested.
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Figure 5.5.20. Two possible configurations of dividing curves. Nested bypasses on the
right and non-nested on the left.

Supposing the bypasses are nested we isotop A to A’ by “adding copies of T;—; and T;”.
See Figure 5.5.21. This isotopy is essentially the same as the one we did in the proof of

Al

Tiq T; Tiv Tiq T; Tiv

Figure 5.5.21. Isotoping A, left, to A’, right. This is a cross section of T2x[0,1] = B; UBj,1,
so the top and bottom of the figures should be identified.

Lemma 5.3.3 to change the holonomy when classifying basic slices, so if the isotopy is
not clear from the figure, please see the proof of that lemma for the details of the isotopy:.
The slope of the dividing curves on T;_; is —1; and the slope of the dividing curves on
T; is —%. Thus the dividing curves on A" are as shown in Figure 5.5.22. In particular, the
bypasses are no longer nested and we can shuffle the layers.

We cannot shuffle layers between different continued fraction blocks. This will follow
from the computation of the relative Euler class below, but you should think about what
goes wrong with the above proof. m]

As noted above, this completes the proof of (half of) our theorem except for the fact that

the relative Euler class distinguishes the contact structures in Tight, . (T? x [0, 1]; 7, -1).

Before we do this we give a proof of Corollary 5.5.13.
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Figure 5.5.22. Dividing curves on A’. The middle annulus corresponds to T;. We did not
draw T;_1 in the figure since it does not affect the nesting of the bypasses. NEW PICTURE!
also check rounding!

To this end, we notice that in the proof above we saw that any contact structure in
|Tightuin(T? X [0,1];7,-1)| is the union of basic slices and we know what the relative
Euler class of a basic slice is from Theorem 5.3.1. Thus the corollary follows immediately
from the following exercise.

Exercise 5.5.22. Suppose we have contact manifolds (M, &1) and (My, &) that can be
glued together on one of their boundary components. Also, assume that a section o;
of the contact planes has been chosen along the boundary of each manifold and that
the sections agree on the component they are glued along. Let ¢ be the section of the
boundary of the glued manifold M; U M. Then the relative Euler class satisfies

e(E1U &, 0) =e(&1,01) @ e(&2,02)

in H2(M1 U M3, d(M; U M>)) which is a quotient of H?(M;i, dM;) ® H*(M,, dM;), which
is where the sum on the left-hand side of the equality takes place.

We now must show that the contact structures on T? x [0, 1] that come as the union
of basic slices corresponding to a decorated minimal path in the Farey graph from —p/q
to —1 have different relative Euler classes unless they differ by shuffling in a continued
fraction block.

To see this, consider the continued fraction blocks M;,i = 1... k that make up such a
contact structure. For convenience of notation, k is not the same as the k in the discussion
above and we label the continued fraction block in reverse order from above. That is M;
has a front fact having dividing slope —1. We will show that all the relative Euler classes
are different by seeing how they evaluate on the annulus with slope 0.
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We start by considering a general continued fraction block. Recall, that the vertices
in the continued faction block are formed as follows. We start with a vertex vy and ¢t
such that t - 9 = 1. Then the other vertices are v; = vy @ it. Notice that the basic slice
corresponding to v; and v;,1 has relative Euler class Poincaré dual to £t = +(viy1 — v;).
Thus if there are m basic slices in the continued fraction block then evaluating its relative
Euler class on the annulus of with slope 0 will result in numbers between —m|0 - t| and
m|0-t|. Applying this observation to the continued fraction block M; which corresponds
to the path with vertices —1,-2,...,a9 + 1 so the block has |ag| — 1 basic slices. Thus
our observation says that the relative Euler class evaluated on the 0 sloped annulus will
result in numbers between —|ag + 1| and |ag + 1|. Now suppose the continued fraction
block M, was one down from M;, see Section 4.4 for the terminology. Then the vertices
in the continued fraction block are of the form (ag + 1) & iag and hence the relative Euler
class of each basic slice in this continued fraction block evaluates to +a on the 0 sloped
annulus. Notice that this number is larger than those coming from all possible configura-
tions of bypasses for M. If M, is further a continued fraction block that is more than one
down from M; then each of its basic slices will have an even larger (in absolute value)
evaluation on the annulus of slope 0.

Exercise 5.5.23. Prove the last claim in the proof above.

Exercise 5.5.24. Show that the evaluation of the relative Euler class of each basic slice in
M; on the 0 sloped annulus will have an absolute value larger than the corresponding
quantity for all the other previous continued fraction blocks combined.

Given the previous exercise, the following exercise should be fairly clear.

Exercise 5.5.25. If two elements of Tight,, m(T2 x[0,1]; 7, —1) have the same relative Euler
classes then they must correspond to the same decorated paths in the Farey graph from
—p/q to =1, upto shuffling in continued fraction blocks.

Since two decorated minimal paths in the Farey graph from —p/g to —1 correspond
to the same contact structure if they differ by shuffling in continued faction blocks, the
previous exercise shows that contact structures determined by a decorated minimal path
will have the same relative Euler class if and only if the paths are related by shuffling
in continued fraction blocks. So once we prove that all such paths give elements of
Tight (T? x [0,1];7,—1) in Section 5.7, the proof will be complete. O

min
The rephrasing of Theorem 5.5.2 in terms of the Farey graph follows immediately from
the proof of Theorem 5.5.2.

Proof of Theorem 5.5.10. When 5o = —p/g and s; = —1 the proof of Theorem 5.5.2 shows

that any contact structure in Tight (T?x[0,1]; so, s1) can be broken into basic slices cor-

min

responding to the edges in a minimal path in the Farey graph from —p/g to —1 and hence
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is determined by decorations on the path; moreover, if two decorations differ by shuffling
in a continued fraction block, then they correspond to the same contact structure. Lastly,
if they do not differ by shuffling, then their relative Euler classes will be different. Thus
Theorem 5.5.10 follows in this case. The general case follows from a change of basis, see
Exercise 5.5.7. O

We now explain when a general path in the Farey graph represents a tight minimally
twisting contact structure.

Proof of Corollary 5.5.12. Let P be a decorated path in the Farey graph from sq to s;
that is not minimal. Suppose that some shortening of the path is inconsistent. We will
show that the contact structure p corresponding to this path (see the definition of p just
before the statement of Corollary 5.5.12) is overtwisted. More precisely, given such a path
P, there are two adjacent edges with opposite signs that can be shortened. We will show
that the union of the basic slices that correspond to these two edges is overtwisted. Notice
that after changing the basis we can assume that the first basic slice is in Tight,, . (T? X
[0,1/2]; -2, -3/2) and the second is in Tight, . (T? x [1,2];-3/2,-1). Let us say the first

min

basic slice is positive so has relative Euler class Poincaré dual to ( 1) and the second

.. ) ) 1 .
basic slice has relative Euler class Poincaré dual to ( . Now consider a convex annulus

A of slope oo in T? X [0, 2] that has boundary ruling curves on the boundary of T2 X [0, 2].
We can moreover assume that A intersects T? X {1} in a ruling curve. Thus A is split into
two convex annuli A; and A;. Evaluating the relative Euler class of the first basic slice on

A1 will yield
1 0
[3)-()-

and evaluating the relative Euler class of the second basic slice on A; will yield

SRHEE

We also know that dA; intersects the dividing curves on T? x {0} two times, and the
dividing curves on T? x {1/2} four times. Similarly A, intersects the dividing curves on
T? x {1/2} four times, and the dividing curves on T? x {1} two times. Given this, and the
fact that there cannot be contractible dividing curves (by the Giroux tightness criterion,
Theorem 3.6.1) and some dividing curves must go from one boundary component to the
other (or the basic slices would not be minimally twisting, see the proof of Lemma 5.3.3)
we see that the dividing curves on A; and A; must be as shown in Figure 5.5.23. If
I's, is as shown in the middle of the figure, then on A; U A, there is a dividing curve
that bounds a disk and thus the contact structure is overtwisted by the Giroux criterion,
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Figure 5.5.23. On the left is the only possibility for the dividing set I'4,, up to holonomy
(see the proof of Lemma 5.3.3 for the definition of holonomy) which will not be relevant for
our discussion. The middle and right annuli show the only two possible configurations for
the dividing set I 4,, up to holonomy. (The top and bottom of each rectangle are identified
to form the annulus.)

Theorem 3.6.1. If I'4, is as shown on the right of the figure, then one may “isotop A, along
Ti/» and T;" as in the proof of Lemma 5.3.3 where we showed how to change holonomy,
so that the dividing curves on A; are as in the middle annulus in Figure 5.5.23. Thus we
see that &p is overtwisted.

To prove that a path that can be consistently shortened corresponds to a tight mini-
mally twisting contact structure we will need the following simple lemma.

Lemma 5.5.26. Given a basic slices (T> % [0,1/2], &) € Tight, . (T> % [0,1/2]; -2, -3/2) and
(T?> x [1/2,1);&) € Tightmin(T2 x [1/2,1]; -3/2, 1) with the same sign +. Then the contact
manifold (T? x [0,1], & U &’) is a basic slice with sign +.

Proof. We start with a basic slice (T? x [0,1],&”) € Tight,, in(TZ x [0,1]; -2, 1) with sign
+. From Corollary 5.3.2 we can find a convex torus T parallel to the boundary of T2x[0, 1]
that has two dividing curves of slope —3/2. We can assume that T = T? x {1/2}.

Exercise 5.5.27. Show that T will break T2x[0, 1] two to two basic slices one on T?x[0, 1/2]
and the other on T? x [1/2,1].

Exercise 5.5.28. Show that &” restricted to T? x [0,1/2] and to T? x [1/2,1] is a + basic
slice.

Hint: Consider the relative Euler classes and how they glue together to give the relative
Euler class of &”.

It is clear now that &” restricted to T? x [0, 1/2] is & and restricted to T? x [1/2,1] is &’.
Thus gluing & and &’ together yields £” as claimed in the lemma. m]
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Notice whenever a decorated path P can be consistently shortened, the lemma says that
we can replace P with a shorter decorated path P’ such that £p and £ps are the same
contact structure. Consistently shortening P to a minimal decorated path P” will yield
an element of Tightmm(T2 % [0,1]; s, 51) by Theorem 5.5.2 and thus &p is tight. O
Next up is the proof of Corollary 5.5.14. Recall this says when we can glue two minimally
twisting contact structures on a thickened torus, the result a tight contact structure.

Proof of Corollary 5.5.14. Let {p and &pr be two minimally twisting contact structures
corresponding to the minimal decorated paths P and P’ with the dividing slope on the
front face of £p agreeing with the dividing slope on the back face of £g. Then the result
of gluing £p and &pr is the contact structure described by the path P U P’. The tightness
of this contact structure is now determined by Corollary 5.5.12. m]

We now consider the slopes that can be realized by convex tori in a thickened torus.

Proof of Corollary 5.5.16. Suppose & € Tight,, m(TZ % [0,1]; 50, s1). Since & is minimally
twisting we know that no slope outside [so, s1] can be realized by a convex torus parallel
to the boundary. On the other hand, since (T? x [0, 1], &) can be broken into basic slices
with slopes corresponding to the vertices of the minimal path from sy clockwise to s, we
can appeal to Corollary 5.3.2 concerning the realization of convex tori with certain slopes
in basic slices to see that we can realize any slope in [so, s1] as a convex torus parallel to

the boundary with two dividing curves.

Given a convex torus T with two dividing curves of slope s in £. Notice that T cuts
T? x [0, 1] into two thickened tori, so we obtain an element of Tight, ,, (T? x [0,1]; 50, 5)
in (T?x[0,1]; s, s1). Each of these corresponds to decorated paths
in the Farey graph, say P; and P,. When we glue these two contact structures together
we obtain ¢ which is tight. Thus the decorated path Py U P, can consistently be shortened

and an element of Tight

to a minimal decorated path from sy to s1 by Corollary 5.5.14.

Exercise 5.5.29. Show that P; and P, are uniquely determined by & and the slope s.

So we see that if we had two convex tori T and T” with two dividing curves each of
slope s, then they would both break (T? x [0,1], &) into two minimally twisting contact
structures on thickened tori &1 and &z, and & and &) respectively, corresponding to the
decorated paths P; and P,. But since the decorated paths are the same there is a contac-
tomorphism from &; to &} and from &; to &5. We can combine these contactomorphism
to get a contactomorphism form ¢ to itself taking T to T". ]

We are finally ready to determine which minimally twisting contact structures on
thickened tori are universally tight.
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Proof of Corollary 5.5.17. ADD PROOF! m]
We end this section by tying up a loose end and proving the last half of Corollary 5.1.7.

Proof of half of Corollary 5.1.7. We are left to see that given the unique tight contact
structure & on S! x D? with convex boundary having two dividing curves of slope in-
tegral slope 7, then any slope s ¢ (—oo, n] cannot be realized by a convex torus isotopic
to the boundary of S! x D2. Suppose such a torus T exists. Then T splits S! x D? into
two pieces. The first is a solid torus S with convex boundary having dividing slope s
and the second is a thickened torus T2 x [0, 1] with dividing slopes sgp = s and s1 = n.
We know that the contact structure on the latter piece must be minimally twisting, or
by Exercise 5.5.9 we could realize any slope as the dividing slope of a convex torus. In
particular, we can find a torus T’ with dividing slope co. A Legendrian divide on T’ will
bound a meridional disk in S! x D? and since the twisting of the contact planes relative
to the disk is 0 (since the twisting is the same as the twisting relative T’). So this is an
overtwisted disk, contradicting the fact that ¢ is tight. Thus the contact structure on the
thickened torus is minimally twisting as claimed. From Corollary 5.5.16 we know that
in the thickened torus we can find a torus parallel to the boundary that has any dividing
slope in [s, n]. Since s is not in (—oo, 1] we see that we can choose this slope to be co and
as above this gives an overtwisted disk. Since ¢ is tight we see that the torus T cannot
exist. O

5.6. Contact structures on solid tori

In this section we will discuss a useful way to think about solid tori. We will then classify
tight contact structures on solid tori and discuss several useful properties.

5.6.1. Executive summary of main results. We begin by discussing a way to think about
solid tori that will be useful for discussing surgery and other constructions. We first recall
a simple fact.

Exercise 5.6.1. Show that the quotient space of the annulus by one of its boundary com-
ponents is diffeomorphic to the disk.

Hint: It should be easy to prove that the quotient space is homeomorphic to the disk, so
the difficulty is understanding the smooth structure on the quotient space.

We now consider a parametric version of this exercise. That is we start with T?x [0, 1]
and fix some basis of Hi(T?) so that we can discuss curves on T? as elements of Q*, see
Section 4.1. We can now foliate T? x {0} by curves of slope r € Q*. Let S, be the quotient
space of T? X [0, 1] where each of the leaves of the foliation on T? x {0} are collapsed to a
point.
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Exercise 5.6.2. Show that S, is diffeomorphic to the solid torus.

Hint: One can change coordinates on T2 so that T2 is S! x S! where the second S? factor
is the slope r curve. Now T2 x [0, 1] is S? X (S! x [0, 1]) and we see that this exercise is the
same as the previous exercise we have crossed everything by S'.

Notice that the slope on dS, that bounds the meridional disk of the solid torus is r. We
say that S, is the solid torus with lower meridian r. Notice that S, is what one would
naturally call S' x D2. The reason for making this definition is that we will see many
situations where there is a natural coordinate system on the boundary of a solid torus
and in this coordinate system the meridian has some slope other than oo, so instead of
having to make a change of coordinates that might complicate an argument, we simply
use the preferred coordinate system and just explicitly say that the meridian has slope r.

We can similarly foliate T? X {1} by curves of slope r and let S” be the quotient space
of T? x [0, 1] that collapses each of the leaves to a point. We say S” is the solid torus with
upper meridian r.

We note that for the torus S, the co-orientation on dS, (induced from the orientation
on dS,) points out of the solid torus, while for S” it points into the solid torus.

We are now ready to state the main classification result for solid tori.
Theorem 5.6.3 (Giroux 2000, [Gir00]; Honda 2000, [Hon00a]). Let —p/q < —1 have contin-
ued fraction expansion [ay, . .., a], then
|Tight(50; —p/q)| =|(ap+1)(a1 +1)---(ay-1+ Day,].

Moreover, these contact structures are also distinct up to contactomorphism and are distinguished
by their relative Euler classes.

Since the solid torus S! x D? is S., we would like to have a formula for the tight
contact structures on S.. To this end, we define a function ® : Q — Z as follows. If
r € (—1,0) then set

O(r) = |(bo + 1)(b1 + 1) -+ (bp-1 + )by
where 1/r = [by, ..., b,]. For other rational numbers, we set
1 re”Z
O(r) =
O(r-[r]) rez,
where [r] is the smallest integer greater than r. Notice that the function is 1-periodic:

D(r+1) = D(r).

Theorem 5.6.4 (Giroux 2000, [Gir00]; Honda 2000, [Hon00a]). For any rational number r
we have

|Tight(So<,; r)| = d(r).
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Moreover, these contact structures are also distinct up to contactomorphism and are distinguished
by their relative Euler classes.

Give formula for other lower meridians

Exercise 5.6.5. Give a formula for | Tight(S™, r)| for any r € Q".
Hint: read the proof of Theorem 5.6.4 first.

Give some examples and homeworks

Just as for thickened tori, we can interpret our classification result in terms of paths
in the Farey graph.

Theorem 5.6.6. Let P be a minimal path in the Farey graph from m clockwise to r. The contact
structures in Tight(S,,; r) are in one-to-one correspondence with equivalence classes of decora-
tions on P with all but the first edge decorated. Here, two decorations are equivalent if they differ
by shuffling signs in a continued fraction block (and doing nothing with the non-decorated edge),
see the discussion before Theorem 5.5.10 for shuffling in continued fraction blocks.

Similarly, if P is a minimal path in the Farey graph from r clockwise to m, then the contact
structures in Tight(S™;r) are in one-to-one correspondence with equivalence classes of decora-
tions on P with all but the last edge decorated.

Give some examples and homeworks

Given our classification results, we can determine when we can glue a tight structure
on a solid torus to a tight structure on a thickened torus to obtain a tight structure on the
new solid torus.

Corollary 5.6.7. Given a tight contact structure & € Tight(S,; r) corresponding to the decorated
path P and a minimally twisting contact structure & € Tight, . (T?x [0, 1]; 7, s) corresponding
to the decorated path P’, then the result of gluing & and & along their boundaries with the same
dividing slope will give a tight structure in Tight(S,,; s) if and only if m ¢ [r,s] and P U P’ can
be consistently shortened to a minimal path.

Consistently shortening a non-minimal decorated path in the Farey graph was dis-
cussed just before Corollary 5.5.12. We have the same definition here when two adjacent
edges with a sign can be shortened; however, for the path P the first edge does not have
a sign so if this edge is part of a pair of edges that can be shortened, then it is always
consistent and the new edge created after shortening has no sign. Sometimes, one labels
the unlabeled edge with a 0, and when shortening an edge with a 0 the sign on the other
edge is “absorbed" by the 0 (0 times anything is 0).

Exercise 5.6.8. State and prove a version of the corollary for gluing solid tori with upper
meridians to thickened tori.
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Just as for thickened tori, we can determine which dividing slopes can be realized by
convex tori parallel to the boundary of a solid torus.

Corollary 5.6.9. Given a tight contact structure & € Tight(S,,; s) then a slope can be realized as
the slope r of a convex torus parallel to the boundary of the solid torus if and only if r € (m, s].
And if the slope can be realized, then it can be realized by a convex torus with two dividing curves.

Unlike for thickened tori, we do not have a uniqueness statement for convex tori with
a given dividing slope. We will illustrate this in a context that will be useful later when
studying Legendrian knots.

Corollary 5.6.10. Suppose & € Tight(Se;s). Given a slope s € (oo, s] there is some integer n
such that r € [n,n + 1) and there are exactly |n — |s]| + 1 distinct convex tori in (Se, &) with
two dividing curves of slope s, up to contactomorphism.

Exercise 5.6.11. State and prove a version of the corollary for solid tori with any lower
meridian or any upper meridian.

Lastly, we observe that we can determine when a tight contact structure on a solid
torus is universally tight.

Corollary 5.6.12. Given a minimal decorated path P in the Farey graph from m clockwise to s
with the first edge left unsigned, the contact structure Ep on Sy, is universally tight if and only if
all the signs in P are the same.

5.6.2. Proofs of the main results. We begin with the proof of our main classification
result on solid tori from which all other results will follow.

Proof of half of Theorem 5.6.3. We will show that
|Tight(S%; —p/q)| < (a0 + 1)(a1 + 1) -+ (an-1 + Day|

and the other inequality will be proven in Section 5.7.

Let C be the core of the solid torus. By Lemma 1.4.34 we can realize C as a Leg-
endrian knot L with very negative twisting. Using the framing on L coming from the
product structure on the solid torus we can say the contact twisting is —m. Let N be a
standard neighborhood of L (See the end of Section 5.1 for the definition of a standard
neighborhood).

Exercise 5.6.13. In the basis for H;(T?) we are using to measure slopes on tori parallel to
dS%, show that the slope of the dividing curves on dN is —1/m

Now let M = S?\ N. We have a tight contact structure on the thickened torus M with
boundary slopes so = =1/m and s1 = p/q.
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Exercise 5.6.14. Show that the contact structure on M is minimally twisting.

Notice that —1 is in the interval [-1/m, p/q] so by Corollary 5.5.16 we know that there is
a convex torus T parallel to the boundary of M with two dividing curves of slope —1. We
canuse T to split S” into two pieces. One N’ is a solid torus with upper meridian 0 and the
other M’ is a thickened torus with a minimally twisting contact structure having dividing
slope —1 on its back face and p/q on its front face. Notice that N’ has a unique tight
contact structure by Theorem 5.1.5. Thus the number if possible tight contact structures
on S with dividing slope p/q is bounded above by the number of tight structures on N’
and the minimally twisting contact structures on M’. That is

|Tight(S%; p/q)| = |Tight,,;,,(T> x [0, 1]; -1, p/q)|
which gives the claimed upper bound by Theorem 5.5.2.

We are left to prove the claim about the relative Euler classes distinguishing the con-
tact structures. Recall in the proof of Theorem 5.5.2 about minimally twisting contact
structures on thickened tori, we distinguished the contact structures by the relative Euler
characteristic evaluated on an annulus of slope 0. In our current context that annulus can
be extended to a meridional disk for S° and thus all of the contact structures on M’ are
distinguished by evaluating on the meridional disk intersected with M’. Thus all of the
potential tight contact structures on S° are distinguished by evaluating the relative Euler
class on the meridional disk. That is, the relative Euler class of tight contact structures on
S? distinguishes them. m|

We now turn to the case of classifying tight contact structures on solid tori with lower
meridian co.

Proof of Theorem 5.6.4. We begin by noticing that h: T?x[0,1]toT?x[0,1]: (0, ¢, t) —
(¢,0,1 —t) is an orientation preserving diffeomorphism. Moreover, & will send curves
of slope o0 on T? x {0} to curvse of slope 0 on T? x {1} and curves of slope r on T2 x {1}
to curves of slope 1/r on T? x {0}. Thus h induces a bijection

Tight(Seo; r) — Tight(S%;1/r).
This establishes the theorem for 1/r € (-1, 0) by appealing to Theorem 5.6.3.

Recall S, is naturally identified with S! x D? and we can use the angular coordi-
nate ¢ on S!, and polar coordinates (7, 0) on D?. Now observe that the diffeomorphism
gnt Seo = Seot (¢, 7,0) = (¢, 7,0+ n¢) will send a slope r on dSe, to v + n.

Exercise 5.6.15. Prove this last statement.

Thus g, induces a bijection

Tight(Seo; 7) — Tight(Sco; 7 + 1),
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which establishes the theorem for any r ¢ Z from the above observation. Finally, for
r € Z we see that the dividing curves on S are longitudinal, and thus by Theorem 5.1.5
we see that | Tight(Se; 7)| = 1 in this case. Thus completing the proof. o

We now move to the proof of the classification of tight contact structures on solid tori
in terms of decorated paths in the Farey graph.

Proof of Theorem 5.6.6. Using the diffeomorphisms discussed in the last proof it suffices
to check the theorem for Tight(S°; r) with r < —1. In this case given any & € Tight(S; r)
the proof of Theorem 5.6.3 shows that we can split £ into a minimally twisting tight con-
tact structure on T? X [0, 1] with dividing slopes 7 and —1 on the back and front bound-
aries, respectively, and a tight contact structure in Tight(S°; —1). Since Tight(S% —1) con-
min(T2X[0,1];7,-1)
are determined by a decorated path in the Farey graph from r to —1 up to shuffling in
continued fraction blocks, we see that any contact structure in Tight(S’; r) is given by a

tains a unique isotopy class of contact structure and elements in Tight

path as claimed. Moreover, given such a path we can glue the corresponding unique
contact structure on S° with dividing curves of slope —1 to the thickened torus given by
truncating the path to go from r to —1, and the result must be tight or there would be
too few contact structures in Tight(S’; 7). So contact structures in Tight(S%; r) are given by
decorated paths from r to 0 and any such path gives an element in Tight(S%; r). Finally,
the Euler class computation in the proof of Theorem 5.6.3 shows that contact structures
given by two such paths are isotopic if and only if they differ by shuffling in continued
fraction blocks. m]

We now consider gluing tight contact structures on the solid torus to tight contact
structures on the thickened torus.

Proof of Corollary 5.6.7. Given a tight contact structure & € Tight(S,,; r) corresponding
to the decorated path P and a minimally twisting contact structure & € Tight, . (T? X
[0,1];7,s) corresponding to the decorated path P’. We may split P into a path Py and P;
where Py have two vertices m and m* while P; is a minimal path from m*¢ to . From the
last proof, we know that we can split £ into a tight contact structure £p, on S, with divid-
ing curves of slope m° and a minimally twisting tight contact structure &p, on T? X [0, 1]
with dividing slopes m“ and r. Now gluing the contact structure {p, and &’ correspond-
ing to P’ will result in an overtwisted contact structure if P; U P’ cannot be consistently
shortened. Moreover, if P; U P’ can be shortened but m € [r,s] then we can realize a
convex torus T in the thickened torus with dividing slope m and a Legendrian divide on
this torus will bound a meridional disk in the solid torus. Since the twisting of the contact
planes with respect to this disk will be zero (since it is zero on the torus T) we see that we
have an overtwisted disk. Thus one implication of the corollary follows.
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Now assume that P; U P’ can consistently be shortened, and m ¢ [r, s]. We are left to
show that & glued to &’ is tight. For this, we need a lemma.

Lemma 5.6.16. Given a tight contact structure on a solid torus S' X D? = S, with dividing
slope n € Z and any integer m < n then we find a convex torus T,, parallel to the boundary
of the solid torus with two dividing curves of slope m. The torus T,, separates S' X D? into a
smaller solid torus with a convex boundary having dividing slope m and a contact structure on a
thickened torus in Tight, . (T?x[0,1]; m, n). Moreover, T,, may be chosen so that any decorated
minimal path from m clockwise to n is realized by this splitting.

Notice that the lemma says that if you glue a solid torus with longitudinal divides
to a thickened torus whose upper boundary has dividing curves that are also longitudes
for the solid torus then the resulting contact structure will be the unique tight contact
structure on the solid torus. With this in hand, we note that we can split P; into P{ and
P7 where P{ has vertices that have an edge to m and only the first vertex in P} does.
Now Py U P{ describes a unique tight contact structure on a solid torus with longitudinal
divides, while P U P’ can be consistently shortened to a path P”. Thus the result of
gluing & to &’ is the same as the result of gluing the contact structure given by Py U P{ on
the solid torus (that is the unique contact structure with the given dividing curves) to the
contact structure given by P” and this is tight by the proof of Theorem 5.6.4. m]

We now prove the lemma above to complete the proof of Corollary 5.6.7.
Proof of Lemma 5.6.16. ADD PROOF m]

We would now like to determine which dividing slopes can be realized by a convex
torus parallel to the boundary of a solid torus with a tight contact structure.

Proof of Corollary 5.6.9. As in the proof of Corollary 5.6.7 we may split S, into two solid
tori S, with dividing slope [ where  is a longitude for S,, and a thickened torus T?x[0, 1]
with dividing slopes so = [ adn s; = s. We know from Corollary 5.1.7 that any slope in
(m, I] can be realized by a convex torus with two dividing curves isotopic to the boundary
of the solid torus. And by Corollary 5.5.16 we know that any slope in [/, s] can be realized
by a convex torus isotopic to the boundary with two dividing curves. Thus we can realize
any slope in (m, s] as the dividing slope of a convex torus isotopic to the boundary of S,.

It is easy to argue that slopes outside (1, s] cannot be realized by convex tori.

Exercise 5.6.17. Prove this.

Hint: If this exercise is not easy, then see the second half of the proof of Corollary 5.1.7 at
the end of Section 5.5 where is similar argument is given. m|
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We will now classify, up to contactomorphism, how many convex tori of a given slope
exist in a solid torus with a tight contact structure.

Proof of Corollary 5.6.10. ADD PROOF O

We end by proving which tight contact structures on a solid torus are universally
tight.

Proof of Corollary 5.6.12. ADD PROOF m]

5.7. Contact structures on lens spaces

In this section we recall the definition of lens spaces and interpret them in terms of tori
with upper and lower meridians as discussed in the previous section. We then give the
classification of tight contact structures on lens spaces and discuss their properties.

5.7.1. Executive summary of main results. Recall a lens space L(p, q) is the 3-manifold
obtained from S® by performing —% surgery on the unknot. Using Rolfsen twists (see

Section 1.5), we may assume that —% < —1. As discussed in Section 1.5, performing

—% surgery on a knot is the result of removing a tubular neighborhood of the knot and

gluing in a solid torus so that the meridian maps to the —% curve on the boundary of
the complement of the neighborhood (we are using longitude-meridian coordinates to
identify curves on a torus with elements of Q). Using our notation from the previous
section, we could also say that this surgery is obtained by removing the neighborhood N

of the knot and replacing it with a solid torus with lower meridian —g, thatis S_p.
q

Exercise 5.7.1. Show that the complement of a neighborhood of the unknot in S? is a solid
torus with upper meridian 0.

Thus we see that L(p, q) can be thought of as the union of two solid tori S’ and S_».
q

Another way to say this is L(p, ) is obtained from T2 X [0, 1] by collapsing the slope

—% curves on T2 x {0} and the slope 0 curves on T? X {1}.

Theorem 5.7.2 (Giroux 2000, [Gir00]; Honda 2000, [Hon00a]). Let —g < —1. Given the

continued fraction expansion —% = [ao, ..., a,] with a; < =2, the classification of tight contact

structures on L(p, q) is given by

[Tight(L(p, 9))| = 1(a0 + (a1 +1) -+ - (a, + 1)

Moreover, all these structures are distinguished by their T-invariant.

Recall that the I'-invariant, discussed in Section 1.6, can be thought of as a “half Euler
class". In fact, when p is odd, tight contact structures on L(p, q) are distinguished by their
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Euler class, but for even p one sometimes needs the full power of the I'-invariant. We
also note that a simple case of this theorem was originally proven by the first author in
[Etn00].

Example 5.7.3. It is known that two lens spaces L(p, q1) and L(p, 42) are homotopy equiv-

alent if and only if

2

gi1q2 = +n°~ mod p

for some n € Z, [Whi41].

So, L(7,1) and L(7,2) are homotopy equivalent since 42 =~ 2.1 mod 7. However,
notice that

—7=[-7]and -7/2=[-4,-2],

so according to the classification above L(7, 1) has 6 contact structures while L(7,2) has
3. Thus we see that L(7,1) and L(7, 2) are not diffeomorphic. So tight structures on lens
spaces are sensitive enough to distinguish distinct homotopy equivalent 3-manifolds!
The fact that L(7,1) and L(7,2) are not diffeomorphic was, of course, already known
since we know that L(p, 1) and L(p, 42) are diffeomorphic if and only if

gig2 = +1 modp or g1 =42 modyp,

see [Bro60], but this example shows that tight contact structures can see subtle distinc-
tions in the topology of 3-manifolds.

Let us consider L(11,2) and L(11, 5). By the above fact we know that these lens spaces
are diffeomorphic since 10 = —1 mod 11. However,

~11/2 = [-6,-2] and —11/5 = [-3,-2,-2,-2,-2],

so the classification of tight contact structures says that L(11,2) has 5 tight contact struc-
tures while L(11,5) has 2. While this seems to contradict the above classification of lens
spaces it turns out that L(11,2) and L(11, 5) are orientation reversing diffeomorphic, but
not orientation preserving diffeomorphic and contact structures are sensitive to the orien-
tation of a manifold (recall by “contact structure” we mean "positive contact structure").
So again, we see that tight contact structures can distinguish the oriented diffeomorphism
type of some 3-manifolds.

Refining the above statement about the diffeomorphism type of lens spaces L(p, q1)
and L(p, q2) are orientation preserving diffeomorphic if and only if

g192 =1 mod p,

here we are assuming that g; < p is positive, see [Rol76, Chapter 9]. So again we see that
L(11,2) and L(11, 5) not being orientation preserving diffeomorphic was known, but this
example does point out the subtle features that tight contact structures can detect.
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Exercise 5.7.4. Show that the number of tight contact structures on a lens space can dis-
tinguish the oriented diffeomorphism types of the lens spaces L(p, q) for a fixed p < 11.
Hint: For p = 11 you will need to use the fact that if M and N are diffeomorphic then
the number of tight contact structures on M and N are the same and the number of tight
contact structures on —M and —N are the same.

While tight contact structures can distinguish many homotopy equivalent, non-diffeomorphic
lens spaces, it cannot distinguish them all. For example, if we consider L(16,7) and
L(16,9), we see that 7 -9 = 63 = —1 mod 16 so these lens spaces are orientation re-
versing diffeomorphic, but not orientation preserving diffeomorphic. We have -16/7 =
[-3,-2,-2,-3]and -16/9 = [-2, =5, —2], so each lens space has 4 tight contact structures
and when you reverse orientations on both they also have 4 tight contact structures.

Just like for the classification of minimally twisting contact structures on thickened
tori and tight contact structures on solid tori, we can also state the classification in terms
of paths in the Farey graph. We will call a minimal path in the Farey graph partially
decorated, if each edge in the path, except for the first and last edge, has a sign.

Theorem 5.7.5. The contact structures in Tight(L(p, q)) are in one-to-one correspondence with
equivalence classes of partial decorations on a minimal path in the Farey graph from —p/q clock-
wise to 0. Here equivalence is up to shuffling signs in continued fraction blocks.

In the next two exercises, we note that this last theorem can be particularly useful if
one has a non-standard description of a lens space.

Exercise 5.7.6. Let L; be the quotient space of T? X [0, 1] where the curves of slope r are
collapsed on T? x {0} and the curves of slope s are collapsed on T? X {1}. Show that L¢ is
a lens space and in terms of r and s find p and g such that L; is diffeomorphic to L(p, g).
Hint: Find a change of basis for H; (T?) that takes s to 0 and 7 to some number less than
—1 (recall when we say number we mean an element of Q* so r can be taken to —co).

Exercise 5.7.7. Describe the classification of tight contact structures on Lj in terms of
paths in the Farey graph.

Let T be the Heegaard torus for L(p, q), that is the torus that separates L(p, q) into two
solid tori. From the classification of tight contact structures on lens spaces we note that
possible dividing slopes on a convex realization of T are constrained.

Corollary 5.7.8. Given any tight contact structure & on L(p, q), the Heegaard torus T in L(p, q)
can be realized as a convex torus with dividing slope s if and only if s € (—p/q,0). Moreover, if
the slope s can be realized by a convex torus isotopic to T, then it can also be realized by one with
two dividing curves.

Exercise 5.7.9. Rephrase the corollary for tight contact structures on L;.
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Remark 5.7.10. The 3-sphere S® can be thought of as the lens space L(1,0) which is ob-
tained as —oco surgery on the unknot. The main theorem, Theorem 5.7.2 does not apply
since we do not have a continued fraction expansion of —oo, but the statement in The-
orem 5.7.5 does hold. One may verify that the proofs of these two theorems may be
adapted to show that S® has a unique contact structure, thus giving another (more com-
plicated) proof of Theorem 5.1.1. However, from this perspective we can see that Corol-
lary 5.7.8 holds for S3. As this result is important for us later on, we will state it as its
own corollary.

Corollary 5.7.11. One can realize a slope as the dividing slope on a convex Heegaard torus for
S3 if and only if it is negative. (Here we are thinking of S3 as L(1,0) = LY ..)

We end by noting that we can determine which tight contact structures on L(p, q) are
universally tight.

Corollary 5.7.12. A tight contact structure on L(p, q) is universally tight if and only if it corre-
sponds to a partially decorated path in the Farey graph with all signs the same.

In particular, L(p, q) for q # p — 1 has exactly two universally tight contact structures, that
are the same plane field but with opposite orientations, and L(p, p — 1) has exactly one.

5.7.2. Proofs of the main results. We begin by proving our main classification result for
lens spaces, Theorem 5.7.2, and this will in turn complete the proof of our classification
of tight structures on solid tori and thickened tori.

Proof of Theorem 5.7.2 and completing the proofs of Theorems 5.5.2 and 5.6.3. We be-
gin by recalling that in Lemma 1.6.30 we used Legendrian surgery and the I'-invariant to
show that

[Tight(L(p, )| = (a0 + 1)(a1 + 1) -+~ (an + D).

Thus once we prove the inequality

[Tight(L(p, 9))| < (a0 + 1)(a1 + 1) - (ay, + 1))

in a manner similar to the partial proofs of Theorems 5.5.2 and 5.6.3 above, the proof of
Theorem 5.7.2 will be done.

For the second inequality we will show below that there is a torus T in L(p, q) such
that L(p,q) \ T is the union of two solid tori Vp U V;, where V} is a solid torus with
lower meridian —p/gq and convex boundary with two dividing curves of slope r¢ =
[ao0,...,a,-1,a,+1] while V{ is a solid torus with upper meridian 0 and convex boundary
having dividing slope . Given this, we note that by Lemma 4.3.5 the dividing curves on
dV) are longitudinal and hence there is a unique tight contact structure on V) by Theo-
rem 5.1.5. So all the possible contact structures on L(p, q) come from the possible contact
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structures on V; and by Theorem 5.6.3 that satisfies
[Tight(L(p, 9))| < |Tight(S% )| < [(ao + 1)(a1 + 1) - -+ (an + 1)
establishing our second inequality.

We now show the claimed torus T above exists. Let C be the core of the torus S_p» C

L(p, q). We can realize C as a Legendrian knot, by Lemma 1.4.34, and let N be a standgrd
neighborhood of it. Let s be the slope of the dividing curves on dN. From Corollary 5.6.9
we know that any slope in (=p/q, s] can be realized by a convex torus parallel to the
boundary of N. From Lemma 4.3.5 we know that r° is clockwise of —p/q so we can find
some s’ in (—p/q, r¢] that can be realized as the dividing slope on a convex torus T’ in N
that is parallel to dN. Now T’ will cut L(p, g) into two solid tori. One, V|, is contained in
N and the other, V], has upper meridian 0. So V] is a torus with upper meridian 0 that
supports a tight contact structure and has convex boundary with two dividing curves of
slope r. Once again, appealing to Corollary 5.6.9 we see that there is a convex torus T in
V] that is parallel to the boundary and has dividing slope 7. This proves the existence of
T and establishes the second inequality above.

The proofs of Theorems 5.5.2 and 5.6.3 are also complete since in the previous two
sections we saw that

[Tight(S% p/q)| < |Tight,,;,,(T? x [0,1];—p/q, -1)|
< |(ao + 1)(a1 + 1) -+ (@n-1 + 1)a|
and we have just shown that
[(ag+1)(ay +1)---(ap—q + 1)a,| < |Tight(L(p’, q’))|
< [Tight(S% p/q)|

where —p’/q" = [ao, ..., an-1,a, — 1]. m]

We now turn to the description of tight contact structure on lens space in terms of par-
tially decorated paths in the Farey graph.

Proof of Theorem 5.7.5. In the proof of Theorem 5.7.2 we saw that we can uniquely break
any tight contact structure on L(p, q) into three pieces. Specifically, a tight contact struc-
ture on S” with dividing slope —1, a tight structure on S_pjq with dividing slope (—p/q)¢,
and a tight contact structure on the thickened torus T?x[0, 1] with dividing slopes (—p/q)°
and —1. (We are using the notation for solid tori with upper and lower meridians estab-
lished at the beginning of Section 5.6.) The contact structure on the thickened torus must
be minimally twisting or else the contact structure on L(p, q) would be overtwisted since
by Exercise 5.5.9 we know that any slope can be realized as a dividing slope in a non-
minimally twisting contact structure. Thus Theorem 5.5.10 says that the contact structure
on T? x [0,1] is determined by a decorated path from (—p/q)¢ to —1 up to shuffling in
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continued fraction blocks. Theorem 5.6.4 tells us that the contact structures on the two
solid tori are unique. Thus the contact structure on L(p, q) is given by a partially deco-
rated path from —p/g to 0, and from the proof of Theorem 5.7.2 we know each such path
gives a tight contact structure. ad

We now move to the proof of Corolloary 5.7.8 and Corollary 5.7.11 about the slopes that
can be realized as the dividing slope of Heegaard tori in lens spaces.

Proof of Corollary 5.7.8 and Corollary 5.7.11. We will consider the case when L(p, q) is
not S and leave the S° case as an exercise.

Given a tight contact structure & on L(p, g) we use the decomposition into two solid
tori and a thickened torus from the proof of Theorem 5.7.5. Theorem 5.5.16 tells us that
any slope in [(=p/q)°, —=1] can be realized by a convex torus with two dividing curves
in the T? x [0,1] and Theorem 5.6.9 allows us to realize any slope in (-p/q, (-p/q)],
respectively [-1,0), by a convex torus with two dividing curves in S_,,, respectively S°.
Thus we see that any slope in (—p /g, 0) can be realized as the dividing slope on a convex
torus isotopic to the Heegaard torus.

Now suppose that there is a convex torus T in L(p, q) with dividing slope s ¢ (—p/g,0).

Exercise 5.7.13. Show that we can assume that the torus has only two dividing curves.

Notice that T breaks L(p, ) into two solid tori. Oneis S_,; with dividing slope s and the
other is 5% with dividing slope s. Theorem 5.6.9 tells us that in 5_,/; we can realize any
slope in (-=p/q, s) as the dividing slope of a torus parallel to the boundary of the solid
torus and similarly in S we can realize any slope in (s, 0). Since s ¢ (—p/q,0) it is easy to
see that we can realize any slope by a convex torus in L(p, ). In particular, we can find
a convex torus of slope 0. A Legendrian divide on this torus will bound an embedded
(meridional) disk in S° and have twisting 0, that is it will bound an overtwisted disk.
This contradicts the fact that & is tight and hence any s ¢ (-p /g, 0) cannot be realized by
a convex torus isotopic to the Heegaard torus in L(p, ). O

We end with determining which contact structures on L(p, q) are universally tight.

Proof of Corollary 5.7.12. GIVE PROOF OF FIRST PART
We now observe that a path from —p/q < —1 clockwise to 0 will have at least two

edges and it will have exactly two edges if and only if —p/q = —p/(p = 1).

Exercise 5.7.14. Prove the last statement.

When there are only two edges, there is a unique partially decorated path (since there
is no sign on the first or last edge). Thus there is a unique tight contact structure on
L(p,p — 1), and from above it is universally tight. On the other hand, if a path has more
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than two edges there will be an edge with a sign. If the contact structure is universally
tight all the signs must be the same. Thus there are exactly two universally tight contact
structures. O

5.8. Contact structures on the 3-torus

In this section we will construct an infinite family of tight contact structures on the 3-
torus and prove that these are all tight contact structures up to contactomorphism. We
will also give the classification of tight contact structures on the manifold, up to isotopy.

5.8.1. Executive summary of main results. We begin by constructing some tight contact
structures on T2. For each positive integer n we have the following tight contact struc-
tures on T® = R3/~, where ~ is the equivalence relation generated by unit translation in
each coordinate direction:

&n = ker(sin(2nnz) dx + cos(2nnz) dy).
We will refer to “directions” in T by their corresponding directions in R3,

Theorem 5.8.1 (Kanda 1997, [Kan97]; Giroux 2000, [Gir00]). If £ is a tight contact structure
on T3 then it is contactomorphic to &, for exactly one n. All tight contact structures on T® have
Euler class 0 and are universally tight.

While Kanda’s paper appeared before Giroux’s paper, Kanda acknowledges in his
paper that Giroux also had a proof that was presented in talks prior to the publication of
[Kan97]. That proof appeared in [Gir00]. We also note that another proof of this theorem
was given by Honda in [Hon00b].

We can also classify tight contact structures on T up to isotopy.

Theorem 5.8.2. There is a one-to-one correspondence between Tight(T3) and

{(A, k)|A € Hy(T?) is primitive and k is a negative integer}.
p 8 8!

Recall that Hy(T?) is isomorphic to Z° and we call an element in Hp(T?) primitive if it
is part of a basis for Hy(T?).

Exercise 5.8.3. Show that A € Hy(T?) is primitive if it can be realized as the homology
class of a linear incompressible torus in T3, where linear means that it will lift to copies
of R? in the universal cover of T°.

In the proof of the previous theorem we will see that there is a unique linear torus T?
in any tight contact structure & on T° such that every linear homology class on T? admits
a Legendrian representative with twisting 0. We will call this the base torus. Given the
base torus T2, any Legendrian knot isotopic to a linear closed curve that intersects T2 one
time will have twisting k for some positive integer k. We say that the contact structure
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has Giroux torsion k — 1 in this case. See Section 9.3 for more on Giroux torsion (we note
that the definition of Giroux torsion is not in terms of the twisting mentioned above, but
is a consequence of it).

Corollary 5.8.4. Two tight contact structures on T? are isotopic if and only if they have the same
base tori and Giroux torsion.

5.8.2. Proofs of the main results. We begin the proof of Theorem 5.8.1 by showing that
all the contact structures &,, are distinct.

Proposition 5.8.5. The contact structures &, are distinct.

The proof of this proposition shows that the different &,, have Legendrian knots with
different contact framings for different n.

Proof. Identify Hy(T®) with Z3 by picking as a basis the loops in each of the coordinate
directions.

Lemma 5.8.6. Any Legendrian knot L in (T?, &,,) (with tw(L) < 0) isotopic to the linear simple
closed curve in the homology class (a, b, c), where a, b, c are all prime to one another, satisfies

tw(L) < —n|c|,

where the twisting of L is measured with respect to any incompressible torus containing L. More-
over, there is a linear Legendrian knot with tw(L) = —n|c|.

For |c| # O the assumption that tw(L) < 0 is not necessary because if there were a
Legendrian knot as in the lemma with tw(L) > 0 then one could stabilize the knot until it
had twisting 0 which would then contradict the inequality in the lemma. Moreover, one
can show that the hypothesis that tw(L) < 0 is never necessary but it requires extra work
and we do not need that result for the proof of Theorem 5.8.5.

Exercise 5.8.7. Show that the assumption that tw(L) < 0 is not needed.
Hint: If this is difficult read the rest of this section first.

Notice that this lemma says that the &, can be distinguished by the fact that the
smooth knot realizing the linear simple closed curve in the homology class (0,0, 1) has
different Legendrian representatives. For example, &, admits a Legendrian representa-
tive with tw = —n while for &, with k < n all Legendrian representatives must have
tw < —n. Hence all the &, are distinct and are distinguished by the “Legendrian knot
theory they support”. It turns out that all contact structures can be “distinguished by
their Legendrian or transverse knot theory", see [EV10]. O

We are now left to prove the lemma.
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Proof of Lemma 5.8.6. We begin by considering the case where L is in the homology class
(0,0, +1). We will prove this result by contradiction. Assume L is a Legendrian knot
isotopic to the linear simple closed curve in the homology class (0,0, 1) with tw(L) = —n+
1 (note if the inequality in the lemma is violated we can always find such a Legendrian
knot by stabilization). Let A be the T? in T® corresponding to the xz-plane and let B be
the torus corresponding to the yz-plane.

Exercise 5.8.8. Show that A and B are convex and compute that each torus A and B
has a dividing set with 2n dividing curves running in the (1,0,0) and (0, 1, 0) direction,
respectively.

Hint: Consider the explicit model we have for &, above.

There is a finite cover of T° that unwraps the xy directions (but not the z direction) in
T3 in which there are lifts f, }L and B of L, A, and B so that Lis disjoint from AU B. Note
tw(L) (measured in the cover) is equal to tw(L). Furthermore A and B are convex each
having 2n dividing curves running in the (1,0, 0) and (0, 1, 0) direction, respectively.

Exercise 5.8.9. Prove the claims about E, Z, and B.

Let S be the manifold obtained by removing small vertically invariant neighborhoods of
A and B and rounding the resulting corners. Clearly S = S! x D? and using the edge
rounding lemma (Lemma 3.8.3) we see that there are two dividing curves on dS with
slope —n.

Exercise 5.8.10. Prove this.
Hint: Consider how the dividing curves intersect a meridian and a longitude on S.

We know the contact structure &, is universally tight since when pulled back to the uni-
versal cover we have the standard contact structure on R?, see Examples 1.1.11. Thus the
contact structure on S is tight. By Theorem 5.1.5 there is a unique tight contact structure
on S. Note L is the core of S and with respect to the product structure on S the twisting
of L is one greater than the slope of the dividing curves. Let S C (S3, &stq) be a standard
neighborhood of the Legendrian unknot U with tb(L) = —1. Since there is a diffeomor-
phism from S to §’ taking the dividing curves on S to the dividing curves on S’ we know
(again by Theorem 5.1.5) the contact structure on S is contactomorphic to the one on S’.
Now L is a Legendrian knot in S’ with twisting number equal to 0. But in S this is an
unknot with tb = 0 and hence violates the Bennequin inequality (Theorem 3.7.5). Thus
our hypothesized L cannot exist.

For the case (a, b, +£1) we need the following lemma, which we prove later.

Lemma 5.8.11. Let A € SL(3,Z) and W4 : T®> — T® be the induced diffeomorphism of T°.
Assume W 4 preserves the xy-plane in T> then WV 4 is isotopic to a contactomorphism of &,.
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Given this lemma we can clearly apply a contactomorphism to (T3, &,) taking (a, b, +1)
to (0,0, 1) and thus this case is reduced to the first case considered above.

Now consider the case with (a,b, c), and |c| > 1. Let L be a Legendrian knot isotopic
to a linear simple closed curve in the homology class (a, b, c). Denote by @ : T> — T3 the
|c| fold covering map of T° that unwraps the z-direction. Clearly ®*&,, = &, |- Let L be a
lift of L.

Exercise 5.8.12. Show that tw(L) = tw(L) (recall the twisting is measured with respect to
any incompressible torus containing the Legendrian knot and the incompressible torus
can also be lifted to the cover.)

Hint: See Figure 5.8.24.

7
— 77

/71
L 77
7

Figure 5.8.24. On the left is the knot L sitting in the xz-plane (or an isotopic copy of it).
On the right is the two fold cover of the xz-plane. Note there are two lifts of L we have

chosen one tobe L. As always, dashed lines are dividing curves.

So we have

tw(L) = tw(L) < —n|c|.

Exercise 5.8.13. In all the above cases find a Legendrian knot realizing the corresponding
upper bound.

We are finally left to consider the case (a,b,0). It is easy to see that for any such
homology class there is a constant k such that the torus {(x, y,z)|z = k} in T3 is foliated
by (a,b) curves. Thus any leaf in this foliation is a Legendrian simple closed curve with
tw = 0. O
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Proof of Lemma 5.8.11. Under the hypothesis that W, preserves the xy-plane we can
write

A=

S o [

b e
d f1,
08
where g(ad — bc) = 1. Note this implies ¢ = +1 and we assume g = 1. The other case is
handled similarly. Let
a(t) b(t)
(C(t) d(t)

be a path a matrices from the identity matrix to

o)

In addition let e(t) and f(t) be two functions on the unit interval starting at e and f,
respectively and ending at 0. Finally set

a(t) b(t) e(t)
A(t) = c(t) dt) f(b)|,
0 0 g

) € SL(2,R),t €10,1],

and note that A(f) is a path of matrices in SL(3, R) from the identity to A. The matrices
A(t) do not necessarily induce diffeomorphisms of T® but we can pull back the 1-form on
R3 defining &, with A(t) to get
ar =[a(t) cos(2nmz) + c(t)sin(2nnz)] dx

+ [b(t) cos(2nmz) + d(t) sin(2nmnz)] dy

+ [e(t) cos(2nmz) + f(t)sin(2nnz)] dz.
Note all these forms are invariant under the unit translations in the coordinate directions.
So they all define 1-forms on T3. Also, a is the 1-form a defining &, and a1 = W, a. Thus

we have a one-parameter family of contact structures from &, to W', &,. Thus using Gray’s
theorem,Theorem 1.2.10, we can find an isotopy of W4 so that it preserves &. ]

We are now ready for the classification of contact structures on T° up to contactomor-
phism.

Proof of Theorem 5.8.1. We are given a contact structure & on T>. We would like to find
two incompressible tori Tp and Ty such that

(1) T;is convex fori =0, 1,
(2) ToNTh = L a Legendrian simple closed curve and
(3) —2tw(L) = #I'r;, fori =0, 1.
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If we find such tori then we can construct a contactomorphism to (T3, &n), where n =
—tw(L). Indeed, from Theorem 3.5.1 we see that tw(L) = —%#(FT,. N L) so each component
of I'; intersects L once. Let h; be the homology class of L on T; and h; the homology
class of a component of I'r;, then h;, h} form a basis for Hy(T;). Thus we can find a dif-
feomorphism f from T° to T° = R3/~ taking L to the z axis, &, to the homology class
of the x-axis and h] to the homology class of the y-axis. By isotoping f we can assume
f takes the dividing curves on T to the dividing curves on the xz-plane (we are giving
T3 = R3/~ the contact structure &,) and the dividing curves on Tj to the dividing curves
on the yz-plane. There is a further isotopy of f so that f takes the characteristic folia-
tions of Tp and T; to the characteristic foliations on the xz- and yz-planes, respectively.
Thus we can isotop f to be a contactomorphism on a neighborhood of Tp U Ti. Now the
complement of this neighborhood is a solid torus S.

Exercise 5.8.14. Show that there are two dividing curves on dS and they have slope —n.
Hint: Work in R3/~ .

We can now use Theorem 5.1.5 to further isotop f so that it is a contactomorphism
from (T3, &) to (T3, &,).

So the proof is done once we find the tori Ty and T; satisfying the conditions above.
To this end, we choose:

(1) a convex linear torus T with the minimal number of dividing curves among all
such tori, and

(2) a Legendrian knot L’ isotopic to a linear simple closed curve that intersects T
transversely one time, and that has maximial possible twisting tw(L’) (but non-
positive).

By a linear torus in T° we mean one that lifts to linear R? in the universal cover. We also
note that T will have 2 dividing curves, but we only know this a postiori. Let y be a linear
non-homologous simple closed curve in T which has intersection with each connected
component of I'r equal to 1. Using Theorem 3.4.5, we can Legendrian realize y on T.

Exercise 5.8.15. There is a convex torus S that contains L’ and y as Legendrian curves.
Moreover, we can assume that SNT = V.

Hint: This argument is identical to the one used in Theorem 3.3.1. Basically, find nice
strips containing the arcs that could be convex. Extend them to a torus in any way you
can. Then C* perturb this torus away from the strips to make it convex.

If the dividing curves of S are not homotopic to SNT then S and T will be the desired
tori Ty and Tq. Indeed, note that the number of dividing curves on S and T are the same,
since

1 1
tw(y) = —5#(F5 Ny) < —E#rs,
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and
1 1
tZU(’}/) = —E#(FT N ')/) = —E#FT.

However, we chose T so that #I'7 is minimal thus we must have #I'r = #I's. Moreover,
the above inequality must be an equality, and thus S and T satisfy all the conditions
necessary for Tp and Tj.

Now suppose that dividing curves of S are homotopic to SNT. We will then choose a
linear closed curve y” on T that intersects each component of I'r once and also intersects
y once. We can assume that y N )’ is the point where L’ intersects T. We can Legendrian
realize y” on T and as above construct a torus S’ that is convex, contains L’ and " and
S'NT = y’. Also as above if the dividing curves on S’ are not homotopic to S’NT then S’
and T will be desired tori Ty and T7.

Exercise 5.8.16. Show that in the previous two cases, T is not the base torus of the contact
structure.

We are left to consider the case where the dividing curves on S are homotopic to SNT
and the dividing curves on S’ are homotopic to S’ N T. Notice that in the constructions
above, we can assume that S N'S” = L’. We now claim that S and S’ can be taken to
be Ty and Ti. To see this we only need to verify Property (3). To this end we first note
that homologically each dividing curve in I's (and I's/) intersects L’ one time, because the
dividing curves are homotopic to S N T (and S’ N T). The actual number of intersection
points between each dividing curve in I's (and I's’) and L’ is one. We see this as follows:
if this were not the case then there would be an arc ¢ in I's \ (I's N L) that cobounded a
disk D in S\ L’ with an arc on L. See Figure 5.8.25. Thus there is a simple closed curve L”

()
L’ -\\j /\ y

Figure 5.8.25. On the left, dividing curves on S that intersect L’ more than once. On the
right, we see a case where ¢ intersects y.

on S that intersects I's two fewer times than L" and is homotopic to L’. By the Legendrian
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realization principal, Theorem 3.4.5, we can assume L” is a Legendrian simple closed
curve on an isotoped copy of S. Moreover, Theorem 3.5.1 says that

1 1
tw(L") = —5#(Ts N L") > 5#(Ts N L) = tw(L')

contradicting the choice of L', if L” intersects T once. The only way for L” to intersect T
more than once is for D to intersect y. The simplest case of this is shown on the right of
Figure 5.8.25. If this happens we have a bypass for T along S. Notice that ) intersected the
dividing curves of T efficiently, so we understand how attaching a bypass to T will affect
I'r, see Example 5.4.10. If I'r has more than two components, then pushing T across the
bypass will decrease the number of components in the dividing set of T which contradicts
our choice of T. Thus we must have that #I'r is 2 and when we push T past the bypass we
change the slope of I'r but not the number of curves. Once we push T across the bypass
we can not realize L” so that it intersects the new T exactly once and thus contradicts the
choice of L’ completing the proof. (We note that the disk D might intersect T in many
arcs, so we will have to attach several bypasses to T before we can realize L”, but this
does not change the conclusion.) m]

We now turn to the classification of tight contact structures on T° up to isotopy.

Proof of Theorem 5.8.2 and Corollary 5.8.4. Given any tight contact structure & on T3
we can use Theorem 5.8.1 to get a contactomorphism ¢ : T3 — T2 taking &, to & for
some 711, where &, is defined just before Theorem 5.8.1. Let T be the image of the torus in
T3 given by the xy-plane (see the beginning of the section for our convention of T° as the
quotient of R3 by Z3). This is clearly a base torus in (T3,&),and £ has a unique base torus.
By Lemma 5.8.6 we know that any Legendrian knot isotopic to a linear closed curve and
intersecting T one time has twisting —n and no larger. So the map

@ : Tight(T%) — {(A, k)|A € Hy(T?) is primitive and k is a negative integer}
sending & to (T, —n) is well-defined.

We first claim that this map is surjective.

Exercise 5.8.17. Given any linear torus T in T3 show that there is a diffeomorphism from
T3 = R3/Z3 to T° sending the torus corresponding to the xy-plane to T.

Given the exercise, we can find a tight contact structure with base torus any pre-assigned
linear torus in T° and realizing any negative k as the maximal twisting of Legendrian
knots isotopic to a linear closed curve intersecting the base torus one time. Thus @ is
surjective.

We now show that if ®(&) = D(&’) = (A, k) then & is isotopic to & which will complete
the proof of the theorem and corollary. By hypothesis, £ and & have homologous base
tori in T°.
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Exercise 5.8.18. Show that the base tori are isotopic (that is if two incompressible tori in
T? are homologous then they are isotopic).

We can assume the base tori in £ and &’ have the same characteristic foliation. Thus
there is an isotopy of T° taking the base torus of & to that of & so that the characteristic
foliation is preserved. Push & forward by this isotopy to get a contact structure, which
we still call &, that has the exact same base torus T. Let L and L’ be isotopic linear closed
curves that intersect the base torus T one time each, in the same point of T, and such
that L is Legendrian in £ and L’ is Legendrian in &’ with both having twisting k. We can
smoothly isotopy L to L, relative to T, and then push & forward by this isotopy so L = L’
is Legendrian in both & and &’. A further isotopy of & near L will result in & agreeing
with & along L. Take linear curves y and y’ on T that intersect each dividing curve of T
exactly once and intersect each other once where L intersects T. Now let Ty, respectively
T1, be tori in (T3, &) that contain L and y, respectively L and y’. Let TO’ and Tl’ be similar
tori in (T3, &’). (Actually, we can take T; = T/ but we want to emphasize that they are in
different contact structures and will be isotoping them independently.) We can make T;
convex relative to L and similarly for T’

Looking at the proof of Theorem 5.8.1 we know that T; has 2|k| dividing curves ho-
motopic to T; N T and T/ also has 2|k| dividing curves homotopic to T/ N T (this is because
T is the base torus in both cases, see Exercise 5.8.16). We can now realize the characteris-
tic foliation on T on T; using Giroux flexibility. Thus there is a smooth isotopy taking T;
to T/ (relative to L) and the characteristic foliation on T; to the characteristic foliation on
T!. Pushing forward & by this isotopy we see that T; = T and ¢ and &’ induce the same
foliation on these tori. Since we know the characteristic foliation determines the contact
structure in a neighborhood of a surface, Theorem 1.3.4, we see that we can isotopy & in
a neighborhood of Tp U Tj so that £ and & agree in that neighborhood. The complement
of this neighborhood of a solid torus, so arguing as in the first paragraph of the proof of
Theorem 5.8.1 we see that £ is isotopic to &'. O

5.9. Contact structures on thickened tori again

We would now like to classify non-minimally twisting contact structures on T2 x [0, 1].

5.9.1. Executive summary of main results. To state the classification result, we first con-
struct various model contact structures. Let (Ny = T? x [0, 1], &) be the basic slice with

1
dividing slopes sgp = —co and s1 = 0 and having relative Euler class Poincaré dual to ( 1) .
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Let Nux be (Ny, E) rotated anticlockwise by %&t. I Now set
& =Nn U N,
52_ ZNRUNsTn UNZHUN%n

and similarly define &' = Ny U -+ U N @ty for all positive integers k. Also define
2
cfr =NoUN z

and for each k > 1set & = £7 U &, . Intuitively, & goes through k half twists as you go
from the back fact of T? x [0, 1] to the front face. The structures 5;(“ and & differ in that
the orientation on the contact planes along the back face of T2 x [0, 1] is opposite.

Exercise 5.9.1. Show that all the contact structures 5;{—' contact embed in T? x R with the
contact structure ker(sin(2mz) dx + cos(27z) dy) and thus are universally tight.

We are now ready for the first classification result.

Theorem 5.9.2 (Honda 2000, [Hon00a]). A complete non-repeating list of non-minimally
twisting tight contact structures on T? X [0, 1] with convex boundary, and each boundary com-
ponent having two dividing curves of slope oo, is given by &; where k runs through all positive
integers.

The relative Euler class of these contact structures is

P.D.(e(&2, ,5)) = (8)

P.D.(e(&5,_1,9)) = = (3)

Remark 5.9.3. As there is a diffeomorphism from T2 x [0, 1] to T2 X [0, 1] that takes the oo
sloped curve to a curve of any slope s, the above theorem gives a complete classification
of non-minimally twisting contact structures on T2 X [0, 1] with both boundaries having
the same pair of dividing curves.

We now consider non-minimally twisting contact structures on thickened tori with
distinct dividing slopes.

Theorem 5.9.4. Let & be a tight contact structure on T? X [0, 1] with convex boundary having
minimal number of dividing curves with dividing slopes so and s1, then we may isotop & so that &
restricted to T?>X [%, 1] is minimally twisting with dividing slopes s 1=50 and sy and & restricted

INote we are denoting the manifold and the contact structure by N ux . In this section we will frequently blur the line
between contact manifold and contact structure. This should not cause any confusion since all manifolds in this section
are T2 x [0, 1].
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to T> x [0, 3| is non-minimally twisting with dividing slopes so and s 1 =sp. In addition, the

contact structures on the pieces are uniquely determined by &.

Moreover, if & is a minimally twisting contact structure on T? x | %, 1] with dividing slopes

51 # s1and & = cf;f on T2 x [0, %] then the result of gluing & and & together is tight if and
only if the path describing & has only one sign on all the edges and that sign agrees, respectively
disagree, with & if k is odd, respectively even.

We can factor non-minimally twisting contact structures in another way too.

Exercise 5.9.5. In the theorem above we factored the minimally twisting contact structure
off of the front boundary of T?x[0, 1], but one could also factor it off of the back boundary
of T2 x [0, 1]. Prove this and give the criteria for the result of gluing a minimally twisting
contact structure to the back boundary of a non-minimally twisting contact structure to
be tight. should we say what the gluing criteria is just so it is in print?

We end with the easy observation from the above results.

Corollary 5.9.6. Any non-minimally twisting tight contact structure on T? X [0, 1] with convex
boundary having two dividing curves each, is universally tight.

5.9.2. Proofs of the main results. We begin by classifying the non-minimally twisting
contact structures on T2 X [0, 1] with the same dividing slope on both boundary compo-
nents.

Proof of Theorem 5.9.2. We break the proof into two pieces.

Lemma 5.9.7. Let & be a non-minimally twisting tight contact structure on T? X [0, 1] satisfying
the hypothesis of Theorem 5.9.2. Then & is isotopic to & for some choice of sign and some k.

Lemma 5.9.8. The contact structures E;f are all distinct.
This theorem clearly follows from these lemmas. O
We now turn to the proofs of the lemmas.

Proof of Lemma 5.9.7. Given &, set N = T?x[0, 1] and assume JN is standard with ruling
slope 0. Let A be a vertical annulus in N (i.e. A = S! x [0,1] with S a curve on T? of
slope 0) with boundary ruling curves. Assume |I'4| is minimal among all annuli isotopic
rel boundary to A. Orient A so that S! x {0} is oriented up (that is % is positively tangent

to S! x {0}). Note A must have boundary parallel dividing curves.

Exercise 5.9.9. Prove that if A did not have boundary parallel dividing curves then the
contact structure is minimally twisting (and hence invariant in the [0, 1]-direction).
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Cut N open along A and round corners to get M a solid torus. Let D be a meridianal
disk to the solid torus. Note the boundary of D is broken into four pieces; two ag and a4
that run along A, one that runs along 1p, and one that runs along T;. We can choose D so
that the parts of dD that run along Ty and T; do not intersect any dividing curves. In this
case all the dividing curves on D run from ag to a;.

Exercise 5.9.10. Show that if a dividing curve on D began and ended on ay, say, then you
could find a bypass for A and decrease |I'4|.

HINT: You need to be careful if the outermost boundary parallel dividing curve is adja-
cent to the boundary of one of the a;’s.

Thus there is only one possible configuration for the dividing curves on D. Since
cutting M along D yields the unique tight contact structure on the 3-ball we see that the
contact structure on N is determined by the dividing curves on A. The topological type
of the dividing curves on A is determined by the number of simple closed curves k inT'4
and the signs of the bypasses on the front and back face.

Exercise 5.9.11. Show that the sign of the bypass on the front face of N is determined by
k and the sign of the bypass on back face of N.

Exercise 5.9.12. Given a fixed k show that é; and é]: have a vertical annulus with k
simple closed dividing curves.

Exercise 5.9.13. Show that no vertical annulus in 5; has fewer that k simple closed
curves.

HINT: Recall all the &x’s embed in various tight contact structures on T3. Use the classifi-
cation of contact structures on T3. If you are stuck read the next proof.

These exercises and the above discussion clearly finish the proof of the lemma. m]
We now turn to distinguishing all the &;.

Proof of Lemma 5.9.8. We begin by observing that all the & ’s are distinct up to isotopy.
Indeed note that

(T>x[0,1],&3,)/~
is contactomorphic to (T3, &,,), where ~ glues the front and back face by the identity.

Exercise 5.9.14. Prove this last statement.

Since the &,,’s on T? are distinct for distinct m’s so are the 5; m’s.

Note & is contactomorphic to &5 = via a diffeomorphism that rotates the T? by .
Thus all the &, are distinct up to isotopy too. If we glue Nz to the front of &5 | we get
a contact manifold contactomorphic to &5 . Thus all the &, are distinct up to isotopy.
We can similarly see that all the &, are distinct up to isotopy.
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We are left to show the four sets of contact structures S,+, S,—, S+ and S,_ are non-
overlapping, where S, is the set of é;m_l’s, S, is the set of all &1 S and similarly for
the S,+ and S._. The key to this is to observe that the annulus A from the previous proof
will have a positive bypass on the back face of any element in S, or S, and a negative
bypass otherwise. Similarly, A will have a positive bypass on the front face of S, and
S.- and a negative one otherwise. CHECK the signs of the bypasses.

Exercise 5.9.15. Check these assertions.

1
HINT: Recall the relative Euler class of Ny is Poincaré dual to (1)

We are not done yet since we have only shown the bypasses on the obvious annulus
in contact structures form the various sets have different signs. To really show these sets
are disjoint we do the following: if we glue N -~z to the back of any element in S, or Sy4
we see the resulting contact structure is contactomorphic to an element in S,- or S,_,
respectively. In particular, the contact structure is tight after gluing. However if we glue

—z to the back of any element of S.— or S,- then we get overtwisted contact structures.

Exercise 5.9.16. Find the overtwisted disk
HINT: Look on the annulus A.

Thus the sets S+ US,+ and S.— U S,_ are disjoint. Similarly, by gluing Ny to the font
of various contact manifolds you see the sets S+ U S, and S,- U S, are disjoint. This
completes the proof. ]

We now consider the case of non-minimally twisting contact structures with different
dividing slopes on the front and back faces of T2 x [0, 1].

Proof of Theorem 5.9.4. Let & be a tight contact structure on T? x [0,1] with convex
boundary having minimal number of dividing curves with dividing slopes so and s;.
Without loss of generality, we can assume that s) = co. Assume the boundary compo-
nents are in standard form and T; has ruling slope co. Consider the annulus A of slope
oo with one boundary component a Legendrian divide on Ty and the other a ruling curve
on T;. We can make A convex and we note that the dividing set does not intersect A N Ty
so all the non-closed dividing curves have boundary on A N Ti. Thus by the Imbalance
Principle, Theorem 5.4.18, we can find a bypass for T; along A unless [JANI'y| =2and A
has no closed dividing curves (since in this case there is only one dividing curve and we
cannot realize a bypass). Below we will show that this latter case cannot happen. Thus
be have a bypass for T; along A. When we attach the bypass we will create a basic slice,
see Theorem 5.4.11, and the dividing slope on the new torus will have an edge to s, be
anticlockwise of a1, and be as close to o as possible. If we continue attaching bypasses
we will have broken T?x[0, 1] into a sequence of basic slices, which we denote T2 x [%, 1] ,
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and T2 x [O, %] that has dividing curves on the front and back boundaries of slope co. The
former case is clearly a minimally twisting contact structure as claimed in the theorem
and the latter is a non-minimally twisting contact structure. We prove the uniqueness of
the contact structures on these pieces later.

We now verify the claim above that A cannot have a dividing curve with one compo-
nent (which implies that |[A N T'y;| = 2 and A has no closed dividing curves). Since A is
an annulus of slope oo the dividing slope of T} must be an integer n (since it must have
an edge to oo in the Farey graph). Consider an annulus A’ of slope n + 2 with boundary
ruling curves on Ty and T;. The Imbalance Principle implies that there is a bypass for Ty
on A’ and attaching this bypass will result in a basic slice with the slope of the new torus
co. Thus we have split T? x [0, 1] into two pieces: a sequence of basic slices, which we
denote T2 X [%, 1| and a tight contact structure on T? X [0, 3| with dividing slope on both
boundary components having slope co. The latter contact structure cannot be minimally
twisting, or the original £ would be minimally twisting. Since it is not minimally twisting
then we know that there is an annulus A as above that has closed dividing curves on it.

Thus we can assume that we were never in this case in the first place.

We now consider gluing a minimally twisting contact structure & on T2 x [%, 1] cor-

responding to a decorated path P from oo to r (see Theorem 5.5.10) to &;° on T? x [O, %]
We assume, for now, that r > 0. Recall from the proof of Lemma 5.9.7 that the vertical
annulus A has a bypass on T% of a fixed sign depending on + and k. Consider the last
basic slice used to build &; (recall their definition from the beginning of this section). We
note that it has a slope 0 dividing curve on its back boundary and slope oo on its front
boundary. Thus we can find a torus T with dividing slope slope ¢ (recall this is the fur-
thest clockwise vertex in the Farey graph with an edge back to r, see Section 4.3) in this
basic slice. So T will divide T2 x [0, %] into T2 x [0, 411/ %] and T2 x [}L, %] , where the contact
structure on the latter is a minimally twisting contact structure with dividing slope on its
back boundary 0 and on its front boundary is 7. Notice that since this minimally twisting
contact structure is obtained by splitting a basic slice all the signs in the decorated path
P’ determining the contact structure are the same and agree with that of the basic slice.
Gluing T? X [i, %] to T? x [%, 1] results in a contact structure given by the decorated path
P’ UP. Since there is an edge from r to r we know that the contact structure will be tight
if and only if the path can consistently be shortened to a single edge, see Theorem 5.5.14.

Thus all the signs in P must be the same.

Now suppose that all the signs of P are the same and are consistent with ;.

Exercise 5.9.17. Show that the result of gluing T%x [O, %] to T?x [%, 1] can be embedded in
T? x R with the contact structure ker(sin(27z) dx +cos(27z) dy) and hence are universally
tight.
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Exercise 5.9.18. Prove the above gluing result in the case when r < 0.
Hint: You might need to consider Exercise 5.3.15 since you will need to consider the last
two basis slices in the definition of & ;(—'

This completes the proof. m]

We finally prove that all the non-minimally twisting contact structures on T2 x [0, 1]
are universally tight.

Proof. The corollary is an immediate consequence of the discussion in the last two para-
graphs of the previous proof. m]






Chapter 6

Legendrian knots

In this chapter, we investigate some essential elements of contact geometric knot theory—
that is, the theory of Legendrian and transverse knots. The study of Legendrian and
transverse knots is an extremely rich and still highly active research area in both low and
high-dimensional contact geometry. There are many remarkable combinatorial, analyti-
cal, and topological tools to study these objects. Legendrian contact homology, various
Floer homologies, and (microlocal) sheaf theoretic invariants are a few that one can men-
tion. Our focus here will be on the topological side of Legendrian and transverse knots.
In particular, we would like to explain a strong interplay between convex surfaces and
the theory of Legendrian and transverse knots in 3-dimensions.

We begin in Section 6.1 by discussing neighborhoods of Legendrian and transverse
knots. The key result in this section is that understanding Legendrian knots is equiva-
lent to understanding their standard neighborhoods. In particular, we can use standard
neighborhoods to understand stabilizations and destabilizations of Legendrian knots.

Surgery on Legendrian knots is the prime focus of Section 6.2. Recall from Section 1.5
that one can construct contact structures in every homotopy class of plane field by sim-
ple surgeries on transverse knots, and in Section 1.6 we saw that one could construct
many tight contact structures by Legendrian surgery on Legendrian knots in the stan-
dard tight contact structure on S°. In Section 6.2, we will see how to perform general
“contact surgeries” on any Legendrian knot and show that any contact structure on any
closed 3-manifold can be obtained as a sequence of contact surgeries on Legendrian knots
in the standard tight contact structure on S*. We also give several algorithms to under-
stand these surgeries in terms of simpler surgeries; specifically, contact (+1)-surgeries on
Legendrian knots. We also discuss ways to understand Lutz twists (and half-Lutz twists)
in terms of contact surgery and also relations between contact surgery diagrams related
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to handle slides in the smooth category, as discussed in Section 1.5.1. Finally, we dis-
cuss how to compute the “standard invariants”, see Section 1.5.4, for contact structures
obtained via contact (+1)-surgery.

Section 6.3 we discuss the relation between the classification of Legendrian knots in
a given knot type and the classification of transverse knots in that knot type.

In Section 6.4 and 6.5, we classify Legendrian (and transverse) realizations of the
unknot and torus knots, respectively. We show that these knot types are Legendrian
simple — meaning that they are determined by their rotation number and Thurston-
Bennequin invariant — and we determine their mountain ranges.

Finally, in Section 6.6, we consider Legendrian knots in overtwisted contact struc-
tures. In an overtwisted contact structure, one has two types of Legendrian knots: loose,
which are knots whose complement is overtwisted, and non-loose, whose complement
is tight. We will see that loose knots are determined by their classical invariants up to
contactomorphism smoothly isotopic to the identity, and that they realize all possible
pairs of integers as rotation number and Thurston-Bennequin invariants. On the other
hand, we see that these classical invariants for non-loose knots are restricted. We also
give a classification of non-loose Legendrian unknots. More specifically, we see that they
only exist in one of the infinitely many overtwisted contact structures on S* and have a
somewhat surprising mountain range.

6.1. Neighborhoods of Legendrian and transverse
knots

In this section, we will see that one can study Legendrian knots by studying their “stan-
dard neighborhoods” and that transverse knots do not have such canonical neighbor-
hoods.

6.1.1. Executive summary of main results. Recall from Theorem 1.2.6, that any Legen-
drian knot L in a contact manifold (M, &) has a neighborhood contactomorphic to a neigh-
borhood of the x-axis in (R3, &;4)/~ where (x,y,z) ~ (x+1, v, z). This neighborhood can
be chosen to have convex boundary with two dividing curves whose slope is given by
the twisting of the contact planes (just take the neighborhood of the x-axis to be a round
disk about the origin in the yz-plane times S'). This is called a standard neighborhood of
a Legendrian knot L. Conversely any such solid torus is a standard neighborhood of a
unique Legendrian knot.

Lemma 6.1.1. If S is a solid torus in a contact manifold (M, &) with convex boundary having two
dividing curves with longitudinal slope, then S is a standard neighborhood of a unique Legendrian
knot and the contact framing is given by the slope of the dividing curoves.
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A simple corollary of this says that studying Legendrian knots in a contact manifold
is equivalent to studying their standard neighborhoods.

Lemma 6.1.2. Two Legendrian knots are Legendrian isotopic if and only if their standard neigh-
borhoods are ambiently contact isotopic.

In Section 1.4.3 we defined stabilization for Legendrian knots in (R3, &414) in terms of
their front diagram. Notice that the stabilization can be done in an arbitrarily small neigh-
borhood of the Legendrian knot. Thus given an oriented Legendrian knot L in (M, &) it
has a standard neighborhood N (L) contactomorphic to a standard neighborhood N (L) of
a Legendrian knot L’ in (R3, &s14) s0 that the orientation on L and L’ agree under the con-
tactomorphism. We now define the +-stabilization of L to the image of the *-stabilization
S+(L’) under this contactomorphism. We denote this by S.(L). We now interpret stabi-
lization in terms of standard neighborhoods. Let N(L) be a standard neighborhood of a
Legendrian knot. We can identify N(L) with S! X D? and use this identification to talk
about slopes on dN(L) (in the language set up in Section 5.6, N(L) is being identified with
a solid torus Se with lower meridian oo). In these coordinates the slope of the dividing
curves is some integer n given by the contact twisting (if the framing on N(L) is given
by a Seifert surface, then n = tb(L)). We can stabilize L in this neighborhood and thus
take a standard neighborhood N(S.(L)) inside of N(L). Notice that N(S.(L)) has convex
boundary having two dividing curves with slope n — 1 since stabilization decreases the
the contact framing. Thus the region R, = N(L) — N(S+(L)) is diffeomorphic to T x [0, 1]
with convex boundary having dividing slopes n — 1 and n. This is a basic slice. Thus
there are two possible contact structures on R: (see Section 5.3). From Section 5.3 we

know that the relative Euler class of basic slices with the given dividing curves is (_?1)

To make sense of this we need an oriented basis for T2, we orient the longitude in the
same direction as L and the meridian so that the longitude followed by the meridian is
an oriented basis of T2 thought of as the boundary of N(L). Given this, we call R, with

0
relative Euler class (1) the positive basic slice and R- the negative basic slice. We have

now mostly proven the following result.

Lemma 6.1.3. The difference between a standard neighborhood of the stabilized Legendrian S, (L)
and the standard neighborhood of L is a positive basic slice and similarly the difference between
the standard neighborhoods of S_(L) and L is a negative basic slice.

Exercise 6.1.4. Prove this lemma.

We can turn the above discussion around to see when Legendrian knot L destabilizes,
that is when there is a Legendrian knot L” such that L is a stabilization of L’. We say L
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positive destabilizes if L = S.(L’) and negatively destabilizes if L = S_(L’). This will be
very helpful in our classification of Legendrian representatives of certain knot types.

Theorem 6.1.5. The following are equivalent for a Legendrian knot L with contact twisting n
(here we have fixed a framing on L to describe the contact framing as an integer).

(1) L *-destabilizes.

(2) The standard neighborhood N (L) is contained in a solid torus S with convex boundary
having two dividing curves of slope n + 1 such that S — N(L) is a + basic slice.

(3) There is a £-bypass for IN (L) that is outside of N(L) and attached along a ruling curve
of slope larger than n + 1.

(4) There is a +-bypass for L on a convex surface containing L that induces a framing larger
than n + 1.

To summarize, any Legendrian knot can be stabilized as many times as desired, but
destabilization is much more difficult and one must find a bypass or a suitable “thicken-
ing" of its standard neighborhood to say that it can be destabilized.

We note a useful corollary of the above theorem.

Corollary 6.1.6. If N(L) is a standard neighborhood of a Legendrian knot L, then any Legendrian
knot L’ in N (L) that is smoothly isotopic to L is obtained from L by some number of stabilizations.

Exercise 6.1.7. Prove this corollary.

It can sometimes be useful to consider neighborhoods of Legendrian knots where the
coordinates describing the slopes on the boundary are not the “standard" ones discussed
above. We can understand this by a simple coordinate change. Suppose we have a solid
torus S, in a contact manifold (we are using the notation of a solid torus with lower
meridian m from Section 5.6). If S;;, has convex boundary with two dividing curves of
slope r, where r and m share an edge in the Farey graph, then S,, is a standard neigh-
borhood of a Legendrian knot L. A stabilization of L will have a standard neighborhood
with dividing slope 7" where 1’ is the first slope anti-clockwise of » with an edge to m in
the Farey graph. Similarly, a destabilization of L will have a standard neighborhood with
dividing slope r” where r” is the first slope clockwise of r with an edge to m in the Farey
graph.

We can also consider solid tori S with upper meridian m. Again S™ has convex
boundary with two dividing curves of slope r where r has an edge in the Farey graph
to m, then S™ is a standard neighborhood of a Legendrian knot L. A stabilization of L
will have a standard neighborhood with dividing curves of slope 7" where r’ is the first
slope clockwise of r with an edge to m and a destabilization of L will have a standard
neighborhood with dividing slope r”” where 7" is the first slope anti-clockwise of r with
an edge to m.
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Exercise 6.1.8. Verify the statements above about standard neighborhoods of Legendrian
knots with lower or upper meridian m.

We now consider the boundary of a standard neighborhood of a Legendrian knot.

Theorem 6.1.9. Let N(L) be a standard neighborhood of a Legendrian knot L. Assume that
IN(L) is in standard form (see Section 3.4.4).

(1) Both Legendrian divides are Legendrian isotopic to L.

(2) If the ruling slope is integral and greater than the dividing slope, then a ruling curve is
Legendrian isotopic to L.

(3) If the ruling slope is integral and less than the dividing slope, then the ruling curve is
Legendrian isotopic to (Sy o S_)¥(L) where k is the difference between the dividing slope
and the ruling slope.

We now turn to transverse knot. Theorem 1.2.4 guarantees that any transverse knot
T in a contact manifold (M, &) is contactomorphic to a neighborhood of the z-axis in
(R3, &stq)/~, where (x,y,2) ~ (x,y,z + 1) where &4 is give by ker(dz — r? d6). Notice
that the neighborhoods of the z-axis has neighborhoods N;, = {(r,0,z) : ¥ < 1o} and the
characteristic foliation on dNy, is a linear foliation with slopes increasing as rg increases.
It is not hard to see that most of these neighborhoods with different radii are not contac-
tomorphic, and if we ask the contactomorphism to preserve the framing on the z-axis,
then none of them are contactomorphic. Thus, unlike for Legendrian knots, it is not easy
to study transverse knots via their “standard neighborhoods", since there really is no
“standard neighborhood". In Section 6.3 we will see that one can study transverse knots
by studying their Legendrian approximations (see Section 1.4.4), this gives an avenue to
classify and study transverse knots.

6.1.2. Proofs of main results. In order to prove Lemma 6.1.1 concerning solid tori with
convex boundary having two longitudinal dividing curves uniquely determining a Leg-
endrian knot that is a standard neighborhood, we need to study the space of contact
structures on such a torus. We know that there is a unique & € Tight(S1 x D2 n) from
Theorem 5.1.5. Let Z(S! x D?, &) be the space of contact structures on S! x D? that are
isotopic to & (and agree with & near the boundary).

Lemma 6.1.10. The space E(S' x D?, &) is simply connected.

This lemma will be proven in Section ??, make sure to add proof but given the lemma
we are ready to prove Lemma 6.1.1.

Proof of Lemma 6.1.1. Given Lemma 6.1.10 we can use Lemma 1.2.19 to see that classi-
fying Legendrian knots in (S! x D?, &) up to Legendrian isotopy is the same as classifying
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them up to contactomorphism (where the contactomorphisms are smoothly isotopic to
the identity). Now suppose that L and L’ are two Legendrian knots in (S! x D?, &) that
are both smoothly isotopic to the core of the torus and have contact twisting n (relative
to the framing on the core coming from the product structure on the solid torus) where n
is the slope of the dividing curves on d(S! x D?). Then by Theorem 1.2.6 there is a fram-
ing preserving contactomorphism ¢ from a standard neighborhood N of L to a standard
neighborhood N’ of L’ that takes L to L. Notice that both (5! x D?)\ N and (S x D?)\ N’
are diffeomorphic to T? x [0, 1] and both have minimally twisting contact structures and
dividing slope n on both boundary components. Thus by Theorem 5.5.1 we can extend
¢ to all of S! x D2. Thus we have constructed a contactomorphism of (8! x D?, &) that
takes L to L’ and is smoothly isotopic to the identity (since it preserves the framing). O

We are now ready to show that two Legendrian knots are Legendrian isotopic if and
only if their standard neighborhoods are ambiently contact isotopic.

Proof of Lemma 6.1.2. We first clarify that when we say that two standard neighbor-
hoods are ambiently contact isotopic, we of course mean that the standard neighbor-
hoods have been arranged to have the same characteristic foliation on their boundary.
With this understood, we suppose that L and L’ are Legendrian isotopic knots in any
contact manifold. Let N and N’ be standard neighborhoods of L and L’, respectively, and
arrange that the characteristic foliation on their boundaries are the same. Lemma 1.2.17
gives us an ambient contact isotopy taking L to L’. Thus after a contact isotopy we can
think of N and N’ as two standard neighborhoods of a fixed Legendrian knot L = L’. Let
N” be a standard neighborhood of L contained in the interior of N N N’ for which the
characteristic foliation on JN” agrees with the characteristic foliation on JN. Notice that
N”\N is T?x [0, 1] and the contact structure is invariant in the [0, 1]-direction (assuming
we have chosen the correct product structure on T? x [0, 1], see Theorem 5.5.1). Thus
there is a contact vector field transverse to JN” and JN whose flow takes dN" to JN and
we see there is an ambient contact isotopy taking N” to N. We may similarly construct
an ambient contact isotopy from N’ to N” and hence we have a contact isotopy taking N
to N'.

Now suppose we have two Legendiran knots L and L" with standard neighborhoods
N and N’, respectively, that are ambiently contact isotopic. Thus there is a Legendrian
isotopy of L to a Legendrian knot in N’. But now L and L’ are two Legendrian knots in
N’ with the same contact twisting and that twisting agrees with the slope of the dividing
curves on dN’. Now Lemma 6.1.1 gives a further Legendrian isotopy of L taking it to
L. m|
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Turning to destabilizations of Legendrian knots we are ready to prove Theorem 6.1.5.
Recall this theorem says that the following are equivalent for a Legendrian knot L with
contact twisting n:

(1) L +-destabilizes.

(2) The standard neighborhood N(L) is contained in a solid torus S with convex
boundary having two dividing curves of slope n + 1 such that S — N(L) is a +
basic slice.

(3) There is a +-bypass for N(L) that is outside of N(L) and attached along a ruling
curve of slope larger than n + 1.

(4) Thereis a +-bypass for L on a convex surface containing L that induces a framing
larger than n + 1.

Proof of Theorem 6.1.5. We first show that Item (1) implies Item (2). So, suppose that
L positively destabilizes. That is there is some L’ such that L = S,(L’). Let N(L") be
a standard neighborhood of L’. Notice that the contact twisting of L’ is n + 1 (since
stabilization reduces contact twisting by 1 and so the dividing curves on dN(L’) have
slope n + 1. Clearly, if we set S = N(L’) then this solid torus has the properties needed in
Item (2) by Lemma 6.1.3. The same argument works when L negatively destabilizes.

We can easily see that Item (2) implies Item (1) since the solid S torus given in Item (2)
will be the neighborhood of a Legendrian knot L’, and the fact that L is the appropriate
stabilization of L’ follows from Lemma 6.1.3.

Item (3) clearly implies Item (2) since Theorem 5.4.13 tells us how the slope of divid-
ing curves changes when we attach a bypass and the other implication is also clear as we
can find a bypass attached along the claimed slope in a basic slice.

Now if we have a solid torus S as in Item (2) then we can find an annulus A with
one boundary component a ruling curve of slope n + 2 on dS and the other boundary
component on L. The twisting of the contact planes along L relative to A is —2 and the
twisting along the other boundary component is —1. Thus we can make A convex. The
dividing curves of A intersect L four times and the other boundary component two times.
Thus there must be a dividing curve on A that co-bounds a disk with an arc on L. We
may now use Giroux Flexibility, Theorem 3.4.1, to create a bypass for L on A.

We note that in the last argument, assuming Item (2) is true, we created a bypass for
the neighborhood of L on an annulus, thus we have also shown Item (2) implies Item (4).

Finally, we assume that we have a bypass for L along a surface X such that the framing
X induces on L is greater than the contact framing. We may use Giroux Flexibility again
to arrange that a neighborhood of L on X is foliated by copies of L (that is the annular
neighborhood of L will look like a neighborhood of a ruling curve on a convex torus).
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We can now take a standard neighborhood N of L that intersects X in one of the curves
parallel to L. Notice that X \ (2N N) is still a convex surface and we have a bypass for N
attached along a ruling curve of slope larger than n. Thus we see that Item (4) implies
Item (3). O

We end this section by proving Theorem 6.1.9 that tells us about various knots on the
boundary of a standard neighborhood of a Legendrian knot.

Proof of Theorem 6.1.9. Let L be a Legendrian knot and N(L) a standard neighborhood
of L. Recall the model for a standard neighborhood given at the start of this section.
Specifically, N(L) is contactomorphic to S'xD? in (R3, &s;4)/~ where (x, y,z) ~ (x+1,y, z)
where D? is the disk of radius € in the yz-plane. Notice that A = {y = 0} N N(L) is an
annulus whose characteristic foliation is by circles parallel to L and of course L is the core
of this annulus. It is clear that we can take dA to be the two Legendrian divides on dN(L).
Thus we see that either Legendrian divide on dN(L) is Legendrian isotopic to L (via the
leaves in the characteristic foliation of A).

Fix a framing on L so that the dividing curves on JN(L) have slope 0. Let L’ be a
ruling curve on dN (L) with integral slope n > 0. Let A be an annulus with one boundary
component on L and the other on L’. Notice that A induces the framing n on L and thus
the contact twisting along L is —n. Similarly, the contact twisting along L’ relative to A
is —n. So we can make A convex. Note that all the dividing curves of A must go from
one boundary component of A to the other. This is true since if not, there would be a
bypass for L along A and Theorem 6.1.5 would say L destabilizes to some Legendrian L”.
But now if N(L”) is a standard neighborhood of L” then N(L) \ N(L”) is T? x [0, 1] with
dividing slope 1 on T>x{0} and 0 on T?X{1}. This says that in T?X[0, 1] we can realize any
slopein [1, 0]. Since oo is in this interval the contact structure is overtwisted (a Legendrian
divide on a convex torus with this slope would bound a disk, which would thus be an
overtwisted disk). Now we can use Giroux Flexibility to arrange that the characteristic
foliation of A has 2n lines of singularities going from one boundary component to the
other and then the rest of A is foliated by “ruling curves". These ruling curves provide a
Legendrian isotopy from L to L'.

As above we suppose the dividing curves on dN(L) have slope 0. Let L’ be a ruling
curve on dN(L) with integral slope n < 0. Notice that L’ is smoothly isotopic to L.

Exercise 6.1.11. Show that the framing induced on L’ from dN(L) differs from the framing
on L’ induced from L (that is from the framing on L) is —n

Notice that from Theorem 3.5.1 we know that the twisting of the contact planes along
L’ relative to dN(L) is —n. Thus the contact twisting of L’ in the framing of L is —2n. Thus
if we consider L’ pushed into the interior of N(L) we see from Corollary 6.1.6 that it is
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simply L stabilized 2n times. We are left to see that L’ is L stabilized positively n times
and negatively n times. This will follow if L and L” have the same rotation number (or if
L is a non-null-homologous knot then the relative rotation number between L and L’ is
0). This will easily follow from a more general description of rotation numbers for curves
on convex tori discussed in Section 6.5. m]

6.2. Contact surgery

In this section we will discuss surgery on Legendrian knots and see that one can construct
all contact structures on a manifold by such surgeries. We will also see how to describe
such surgeries in terms of the Farey graph as well in terms of surgeries on Legendrian
knots described in terms of their front diagrams.

6.2.1. Executive summary of main results. Recall that the contact structure gives a Leg-
endrian knot L C (M, &) natural framing. Using this framing we can identify slopes on
the boundary of a neighborhood of L by an extended rational number r € Q" (see Sec-
tion 4.1). We say (ML (r), £1(r)) is the result of contact (r)-surgery on L if it is obtained from
(M, &) by removing a standard neighborhood N(L) of L, then gluing in a solid torus so
that the boundary of the meridional disk of the torus is glued to the r slope curve on
JdM — N(L), and finally extending &|ur\n (1) Over the torus by a tight contact structure on
the torus.

If L is null-homologous, then it is the boundary of a surface X and inherits a framing
from X. Dehn surgery on L is described in terms of the framing coming from X and
we know that tb(L) is simply the contact framing minus the framing coming from X
(see Section 1.5.1 for a discussion of Dehn surgery). Thus the 3-manifold obtained from
contact (r)-surgery on L is the same is the result of Dehn r + tb(L) surgery on L. When
writing contact surgery on a Legendrian knot in a front diagram we will always put the r
in parentheses and a surgery coefficient without parentheses will always denote a Dehn
surgery coefficient (that is in terms of the Seifert framing). See Figure 6.2.1.

(r) r—1 r—1

Figure 6.2.1. On the left is contact (r)-surgery on the Legendrian unknot. In the middle,
the Dehn surgery coefficient is shown on the Legendrian unknot. On the right is a smooth
representation of the unknot with this the Dehn surgery coefficient corresponding to the
contact surgery described on the left.
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Remark 6.2.1. Notice that this definitely does not describe a unique tight contact struc-
tures for all r since there might be many choices for the extension of &|j\n(1) over the
solid torus.

To better understand this, we describe the surgery differently. Recall, as discussed in
the previous section, that the standard neighborhood N(L) can be thought of as a solid
torus Se with lower meridian co and having convex boundary with two dividing curves
of slope 0 (the slope is 0 since we are using the framing on L coming from the contact
planes). The result of contact (r)-surgery is removing S from M and replacing it with S,
with a contact structure in Tight(S,; 0). We classified contact structures in Tight(S,;0) in
Section 5.6. In particular, if r = 1/n for any integer 7, then there is a unique tight contact
structure in Tight(S,; 0) and contact (r)-surgery is completely well-defined. For r = 0 we
see that Tight(Sp, 0) is empty since a meridional disk can have boundary a dividing curve
and hence the contact structure is overtwisted. Thus contact (0)-surgery is not defined.
For other r, there are choices for contact (r)-surgery and one must specify what choice is
made in a given situation. In Section 5.6 we saw how to compute the number of contact
structures in Tight(S,; 0) in terms of the continued fraction of r and also in terms of paths
in the Farey graph from r clockwise to 0 with + decorations on the all the edges except
the first.

We saw in Section 1.6.3 that if L was a Legendrian knot in (S3, &std), Or more gen-
erally any Stein fillable contact manifold, then contact (—1)-surgery produced a contact
structure that was also Stein fillable. So we see that such a contact surgery holds a spe-
cial place among all contact surgeries. Contact (—1)-surgery is usually called Legendrian
surgery. One can show that some other contact surgeries that preserve Stein fallibility.

Lemma 6.2.2. Forany r < 0, contact (r)-surgery on L is equivalent to contact (—1)-surgeries on
all components of a link obtained from L by a sequence of stabilizations and Legendrian push-offs
of L.

Moreover, if (M, &) is symplectically fillable in any sense, then contact (r)-surgery is also
symplectically fillable in the same sense.

We note here that a Legendrian push-off of L is a copy of L obtained by pushing L
slightly in the direction of a Reeb vector field.

The second part of the lemma follows immediately from the first and the fact that
Legendrian surgery preserves all types of symplectic fillability. The latter fact will be
explained in Chapter 7.

We cannot effect contact (r)-surgery for any r by a sequence of Legendrian surgeries,
but if we consider both (+1) and (—1) contact surgeries we can achieve any contact (r)-
surgery.
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Lemma 6.2.3. Any contact (r)-surgery on a Legendrian knot L is equivalent of contact (+1)-
surgery on the components of a link obtained from L by a sequence of stabilizations and Legendrian

push-offs of L.

In the next subsection we will give an explicit algorithm to convert a given contact
surgery into a sequence of contact (+1)-surgery and to convert a description of a contact
surgery in terms of the Farey graph (recall from above that a contact surgery can be
described by a decorated path in the Farey graph) into one in terms of contact (+1)-
surgeries on the Legendrian and its Legendrian push-offs and stabilizations.

We now state two useful lemmas about contact surgery. The first is “cancellation
result”.

Lemma 6.2.4 (Ding and Geiges 2001, [DGO01]). For any Legendrian knot L in a contact man-
ifold (M, &) performing contact (+1)-surgery on L and contact (¥1)-contact surgery on a Legen-
drian push-off of L results in (M, &). That is contact (+1) and contact (—1)-surgery on the same
knot cancel.

Our second useful observation is that Lutz twists can be performed via contact surgery.

Lemma 6.2.5. Let L be an oriented Legendrian knot in a contact manifold (M, ). Let L’ be a
Legendrian push-off of L negatively stabilized twice. Performing a half-Lutz twist on the trans-
verse push-off Ly of L results in the same contact structure obtained from contact (+1)-surgery
on both L and L'. See Figure 6.2.11.

S

Figure 6.2.2. The black arc is a portion of the Legendrian knot L, while the other compo-
nents are Legendrian push-offs and stabilizations of L. Contact (+1)-surgery on the link
on the left link is equivalent to a half-Lutz twist on the transverse push-off of L while con-
tact (+1)-surgery on the right link is equivalent to a full-Lutz twist.

It was first observed in [EH02a] that one can “undo" a half-Lutz twist via contact
(—1)-surgeries which implies this lemma given the previous lemma. The lemma was first
explicitly stated in [DG04]. Since a Lutz twist is the same as two half-Lutz twists, it is
clear that one can obtain a full-Lutz twist by a sequence of four contact (+1)-surgeries.
See Figure 6.2.11.

The operation of contact surgery, in principle, captures the entire complexity of con-
tact geometry of closed, oriented 3-manifolds. This is via the following extension of the
Lickorish-Wallace theorem for 3-manifolds.
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Theorem 6.2.6 (Ding-Geiges 2004, [DGS04]). Every closed, co-oriented, contact 3-manifold
(M, &) can be obtained by contact (+1) surgery along a Legendrian link in (S3, Estq).

Compare with [EH02a]. We note that the proof of this theorem will show that one
can choose that only one of the contact surgery coefficients is positive and the rest are
negative. As mentioned above, if a contact surgery diagram only involves negative co-
efficients, the resulting contact structure will be Stein fillable. However, there exist tight
but not Stein fillable contact structures, and in particular, such a contact structure must
contain positive coefficients in any contact surgery description.

Just as for smooth 3-manifolds, a given contact structure can be described by more
than one contact surgery diagram. For example, one can use Lemma 6.2.4 to add can-
celing (+1) and (—1)-contact surgery pairs to a diagram. Here, we discuss other useful
modifications of contact surgery diagrams that are the contact geometric analog of “han-
dle slides" in smooth topology.

Lemma 6.2.7. The contact surgery diagrams in Figure 6.2.3 and Figure 6.2.4 represent the same
contact manifold.

-

(r) ()
—

S— ——
+ + /
e

U /'/ @

Figure 6.2.3. Equivalent contact surgery diagrams. The red curves above the black curves
on the left are copies of the black curves shifted up outside the region shown.

The next alteration one can make to a contact surgery diagram is analogous to con-
verting a 1-handle into “dotted circle notation", [GS99].

Lemma 6.2.8. One may replace a 1-handle used in the description of a contact manifold with a
(+1)-surgery on a maximal Thurston-Bennequin invariant unknot as shown in Figure 6.2.5.

We note that these results seem to have been known for some time, and implicitly
used in some papers, but a version of them was first written down with careful proofs in
[DGO09], thought there the handle slides were actually different.
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Figure 6.2.4. Equivalent contact surgery diagrams. The red curves near the black curves
on the left are copies of the black curves shifted up outside the region shown.
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Figure 6.2.5. Equivalent contact surgery diagrams. The blue tangle has arbitrary surgery coefficients.

It will be useful to be able to compute the invariants of the homotopy class of a contact
structure, see 1.5.2, obtained from contact surgery on a Legendrian link. Given the above
results, we will restrict to the case of contact (+1)-surgery on a Legendrian link'. Recall
these homotopy invariants are the Euler class e(¢), its refinement: I'-invariant I'(£), and

1We note that there are (more complicated) formulas to compute these invariants for any contact surgeries as was
shown in [EKO24].
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the ds-invariant d3(&). We first compute the first and last invariants as they are more
straightforward. Recall that the ds-invariant is only defined when the Euler class of the
plane field is torsion (and a similar invariant can be defined when the Euler class is not
torsion, see [Gom98]).

Theorem 6.2.9. Suppose that the contact structure & on M is obtained from (S, Etq) by con-
tact surgery on the link Ly U - - - U Ly, where contact (—1)-surgery is performed on the first n
components of the link and contact (+1)-surgery is performed on the last m components.

(1) The Poincaré dual of the Euler class of & is given by

n+m

P.D.(e(é) = ) rot(L)luil,

i=1
where [;] is the homology class of the meridian to L; in M.
(2) If e(&) is torsion then we have that

B(8) = (6 = 30(M) = 20c(X) = 1) + m,

where X is the 4-manifold obtained from B* by attaching 2-handles to the L; with the
given framings, M is its intersection form, o(M) is the signature of M, and c? is com-
puted as follows. Let v be the column vector whose it" entry is rot(L;), then

where vT is the transpose of 1.

This theorem is due to Gompf in [Gom98] in the case of contact (—1)-surgeries and
was generalized to the above theorem by Ding, Geiges, and Stipsicz in [DGS04].

We now turn to the I'-invariant which is a refinement of the Euler class and is deter-
mined by it if H1(M) has no 2-torsion. We recall that I is a map from the set of spin struc-
tures on M to the set of elements in H;(M) which, when multiplied by 2, are Poincaré
dual to e(&) (that is the set of “half-Euler classes"). We will represent spin structures in a
surgery diagram for M using characteristic sublinks, see Appendix 1.4.

Theorem 6.2.10. Suppose that the contact structure & on M is obtained from (S3, Estq) by con-
tact (£1)-surgery on the link Ly U --- U L. Let I be the matrix with i, j entry link(L;, L;) where
link(L;, L;) is the smooth surgery coefficient on L, and m be the column vector with it entry
the homology class of the meridian ;. If the spin structure s is represented by the characteristic
sub-link (L;)ej, then

0,9 = 5 | D ot + ) (1 |

i=1 i€]

where (Im); is the it" entry in the vector Im.
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This theorem is again due to Gompf in [Gom98] in the case of contact (—1)-surgeries
and was generalized to the above theorem by Kegel, Onaran, and the first author in
[EKO24].

6.2.2. Proofs of main results. We begin by describing an algorithm to turn any contact
(r)-surgery L, for r < 0, into a sequence of contact (—1)-surgeries on L (recall this is
also called Legendrian surgery) and its Legendrian push-offs and stabilizations. To this
end, we first note that if N(L) is a standard neighborhood of L where, as a solid torus,
we think of it as S! x D? = S, and the contact structure on it is the unique element
in Tight(S«;0), then Legendrian surgery on L is the result of removing S., = N(L) and
replacing it with S_; with the unique tight contact structure in Tight(S_1;0). We would
like to reinterpret this if we are using “non-standard" coordinates on dN(L). Suppose
we have chosen coordinate on dN(L) so that the meridional slope is m. Then N(L) is a
solid torus with lower meridian m, that is S,, and the dividing curves on JN(L) must
be longitudinal with respect to m. That is their slope s has an edge to m in the Farey
graph. Notice that this is a unique slope m’ in (11, s) that has an edge to both m and s (for
example if m and s are both negative then m’ = s ® m). Then Legendrian surgery on L is
the result of removing S, = N(L) and replacing it with S, with the unique tight contact
structure in Tight(S,,/; 7).

Before describing the algorithm, we first consider some examples of converting a
contact (r)-surgery where the contact structure on the solid torus is described by a path
in the Farey graph to a sequence of Legendrian surgery on L and its Legendrian push-offs
and stabilizations.

Example 6.2.11. Suppose we want to perform contact (—4)-surgery on L where the con-
tact structure on the solid torus glued in during the surgery is given by the path in the
Farey graph shown on the left in Figure 6.2.6. We note that N(L) is S, with the unique
contact structure in Tight(S«;0). This corresponds to the path shown in the middle of
Figure 6.2.6. Recall our discussion of stabilization of Legendrian knots in terms of their
standard neighborhoods from the previous section. If we stabilize L positively twice and
negatively once then we have the standard neighborhood N (S20S_(L)) inside of N(L), its
boundary has dividing slope —3 and its complement in N(L) is a tight contact structure
onT? x [0,1] given by the path shown on the right of Figure 6.2.6. If we perform Legen-
drian surgery on 52 o S_(L), then, as discussed above, we will remove N(S2 o S_(L)) and
replace it with the solid torus S_4. Thus after this Legendrian surgery, the original N(L)
has been replaced by the solid torus with the contact structure given on the left of Fig-
ure 6.2.6. That is we have effected the contact (—4)-surgery on L by Legendrian surgery
on S2 o S_(L). See the top row of Figure 6.2.7

From this example, it is easy to see that any contact (—4)-surgery on L can be achieved
by Legendrian surgery on some three-fold stabilization of L and moreover any negative
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—4 oo P 4 4

Figure 6.2.6. On the left is a path shown in red that describes the contact structure on
a solid torus used to perform a contact (—4)-surgery on L. (The arc in green shows the
slopes that can be realized by convex tori in this solid tori.) In the middle we see the
contact structure on N(L). On the right we see in red the path corresponding to the contact
structure on the complement of N (S%r o0 S_(L)) in N(L) and in blue the solid torus N (SE o

S_(L)).

integer surgery can be similarly achieved. This proves a special case of the first part of
Lemma 6.2.2.

Example 6.2.12. We now consider contact (—1/2)-surgery on L. Recall that this contact
surgery is unique, but we note that it is represented by replacing the standard neigh-
borhood of N(L), thought of as S., by a solid torus with lower meridian —1/2 with its
unique tight contact structure. If we perform Legendrian surgery on L we remove N(L)
and replace it with S_;. The contact structure on S_; is shown in Figure 6.2.8. We note
that the contact structure on S_; has convex boundary with dividing slope 0. That is, it
is a neighborhood of a unique Legendrian knot L’. If we perform Legendrian surgery
on L” we remove S_1 and, according to our discussion above, replace it with S_;/,. That
is contact (—1/2)-surgery on L can be achieved by Legendrian surgery on L followed by
Legendrian surgery on L’. We would now like to identify L’. According to Theorem 6.1.9
L’ is Legendrian isotopic to a dividing curve on dS_q, but dS_; is also dS« so this Leg-
endrian divide is also Legendrian isotopic to L and can be thought of as a Legendrian
push-off of L along the Reeb vector field. See Figure 6.2.7

Thus we see that contact (—1/2)-surgery can be achieved by Legendrian surgery on
L and a Legendrian push-off of L. It is clear that any contact (1/n)-surgery, for a neg-
ative integer n can similarly be achieved. This proves a special case of the first part of
Lemma 6.2.2.
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Figure 6.2.7. Converting contact surgery into a sequence of Legendrian surgeries. Rows
1, 2, and 3 illustrate Examples 6.2.11, 6.2.12, and 6.2.13, respectively, in the case that L is
the maximal Thurston-Bennequin Legendrian unknot. The contact surgeries on the left
are realized by Legendrian surgery on the links shown on the left.

0 0 0

~1/2 ~1/2 ~1/2

o o o

Figure 6.2.8. On the left is we see in red the path corresponding to the contact structure
on the complement of N(L) (The arc in green shows the slopes that can be realized by
convex tori in this solid tori.) In the middle we see the contact structure on S_; which
is a standard neighborhood of a Legendrian knot L’. On the right we see in red the path
corresponding to the contact structure S_y /, that is glued to the complement of N(L) = S«
when performing contact (—1/2)-surgery.

We consider one more example, combining elements of the above two examples, be-

fore giving the general algorithm.
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Example 6.2.13. Suppose we want to perform contact (-=7/5)-surgery on L where the
contact structure on the solid torus glued in during the surgery is given by the path in the
Farey graph shown on the left in Figure 6.2.9. We note that N(L) is Se with the unique

0 0
+ +
-1 -1
-4/3
-7/5
-3/2
-2 -2
(o] (o.¢]

Figure 6.2.9. On the left is a path shown in red that describes the contact structure on a
solid torus used to perform a contact (-=7/5)-surgery on L. (The arc in green shows the
slopes that can be realized by convex tori in this solid tori.) On the right we see the region
between N(L) and N(5+(L)) in red and the neighborhood N(S+(L)) in blue.

contact structure in Tight(Se;0). Recall our discussion of stabilization of Legendrian
knots in terms of their standard neighborhoods from the previous section. If we stabilize
L positively once then we have the standard neighborhood N(S.(L)) inside of N(L), its
boundary has dividing slope —1 and its complement in N(L) is a tight contact structure
on T? x [0, 1] given by the path shown on the middle of Figure 6.2.9.

Performing Legendrian surgery on S, (L) will remove N(S.(L)), thought of as S, with
convex boundary having dividing slope —1 and replacing it with S_, with convex bound-
ary having dividing slope —1. This is a standard neighborhood of a Legendrian knot L’
and is shown on the left in Figure 6.2.10. As discussed above, we we perform Legendrian
surgery on L’ we will remove its standard neighborhood and replace it with S_3/,. The
contact structure on Sz, has convex boundary with dividing slope —1 and is a standard
neighborhood of some Legendrian knot L”. The contact structure on S_3/, is shown in
the middle of Figure 6.2.10. If we stabilize L” negatively and consider its standard neigh-
borhood N(S-(L”)) we see the dividing slope on dN(S_(L")) is —4/3 (notice that in the
consistent coordinates we use to describe slopes on all our tori, the meridional slope of
N(S_(L")) is =3/2). The complement of JN(S_(L")) in S3/, (thought of as the standard
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-1 -1 -1
-4/3 —4/3 —4/3
-7/5 -7/5 -7/5
-3/2 -3/2 -3/2
) -2 -2

Figure 6.2.10. On the left, shown in red, is the contact structure on S_, that is the result
of Legendrian surgery on S4(L). In the middle is the result of surgery on L’ determined
by the solid torus S_, which is a solid torus S_3, that is a standard neighborhood of a
Legendrian L”. On the right we see the T? x [0,1] in red that is the result of negatively
stabilizing L” and in blue we see the standard neighborhood of the stabilized knot.

neighborhood of L”) is T? X [0, 1] and the contact structure is shown on the right of Fig-
ure 6.2.10. Performing Legendrian surgery on S_(L"”) will remove N(S_(L"”)) and replace
it with S_7/5 with its unique tight contact structure. Notice that this sequence of surgeries
has had the effect of removing N (L) and replacing it with the desired contact structure.

We are left to identify L” and L” in terms of L. As argued in the previous examples,
we see that L’ is a Legendrian push-off of S,(L) and so is L”. Thus the contact (-7/5)-
surgery is achieved by Legendrian surgery on the link obtained by positively stabilizing
L, taking two Legendrian push-offs of the stabilization and negatively stabilizing the
second Legendrian push-off. One can clearly do any contact (-7/5)-surgery on L in a
similar manner. See Figure 6.2.7.

We are now ready to present the general algorithm for turning a negative contact
surgery on a Legendrian knot into a sequence of Legendrian surgeries on an associated
link. To this end, it will be helpful to consider arbitrary coordinates on a solid torus. So
a Legendrian knot L can have standard neighborhood N(L) which is a torus with lower
meridian m and dividing slope s where s and m are connected by an edge in the Farey
graph. In these coordinates a contact surgery with a negative coefficient will correspond
to a smooth surgery slope r where r € (m,s). (Recall our conventions for discussing
intervals of slopes on the Farey graph from the end of Section 4.2.)

Algorithm to convert contact surgery into a sequence of Legendrian surgeries. Given a
Legendrian knot L and surgery slope r as above, we first produce a sequence of slopes in
the interval [m, s] as follows.
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(1) Let sg = s and mg = m.

(2) Given s;—1 and m;_q consider the points ¢y = s;,c1,...cj, in (m;, s;] so that they
form a continued fraction block and r € (c;-1, ¢;]. (For example, if both s;_1 and
m;-1 are negative, or both positive, then ¢; = s;_1 ® jm;;1.) Notice that each c;
has an edge to m;_;

(a) If[; =1, then let s; = s;—1 aand m; = c1.
(b) If I; # 1, then let s; = ¢c;_1 and m; = m;_1.

(3) If r = m;, then stop, otherwise repeat the above step to get the next s; and m;.

Note the above procedure produces a sequence of slopes sy, ..., si that start at s and
move anti-clockwise towards r (but not necessarily strictly anti-clockwise) and a se-
quence of slopes my, ..., my that start at m and move clockwise with my = r.

Let N; be the solid torus with meridional slope m; and dividing slope s;. By the
definition of the s; and m; it is clear that each N; is a solid torus with longitudinal dividing
curves and hence is a standard neighborhood of a Legendrian knot L;.

By construction, Ny is the original N(L). We now see how N; is obtained from N;_i.
If s; and m; are obtained from s;_; and m;_; as in Item (2a), then N; is the result of Leg-
endrian surgery on L;_1 in N;_1. We also notice that in this case, L; is Legendrian isotopic
to a dividing curve on JN;, and since dN; = dN,_; it is also isotopic to L;—1. In particular,
it is a Legendrian push-off of L;_1. If s; and m; are obtained from s;_1 and m;_; as in
Item (2b), then N; is the standard neighborhood of L;_; after it has been stabilized I; — 1
times and thus L; is this stabilized knot. Notice for the construction of the m; and s; to
terminate, we must have that the final torus Ny is obtained from Nj_; by Legendrian
surgery on Lj_1.

We note that if we perform all of these stabilizations and surgeries in N(L) then this
will result in a solid torus with lower meridian r. That is, if L is in M then this is equiv-
alent to removing N(L) from M and replacing it with S,. We now consider the contact
structure on S,. Let A; = N;\N;_1. Notice that the torus S, is AgU- - -UA_1UNy. Note that
A; = IN; will be empty if the ith slopes are obtained from the (i—1)* slopes as in Item (1a)
and A; will be a T? x [0, 1] in the other case. In this latter case, the contact structure on
A; will be a continued fraction block determined by the stabilizations done to get from
L;i—1 to L;. Thus the path in the Farey graph given by Ag U - - - U Aj_1 U N will be a mini-
mal path from s = sy anti-clockwise to r and any decorations on this path determining a
contact structure in Tight(S,; s) can be achieved by some choice of stabilizations. That is
we have shown that any negative contact surgery on L that corresponds to a sequence of
Legendrian surgeries on L and its Legendrian push-offs and stabilizations.

Exercise 6.2.14. Consider the three examples above and see how they were constructed
from this algorithm.
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Exercise 6.2.15. Suppose that L is a Legendrian knot with Thurston-Bennequin invariant
3. Describe how to do contact (1 — 3) surgery on L in terms of Legendrian surgery and
similarly for contact (-1 — 3)-surgery.

Exercise 6.2.16. Suppose that L is a Legendrian knot with Thurston-Bennequin invariant
2. Describe how to do contact (32 — 2) surgery on L in terms of Legendrian surgery.

Proof of Lemma 6.2.2. The first part of the lemma follows from the above algorithm and
the second follows from Lemma 7.4.27. m|

We are now ready to show that any contact surgery on L can be achieved by a se-
quence of contact (+1)-surgeries on a link L and its Legendrian push-offs and stabiliza-
tions.

Proof of Lemma 6.2.3. Recall that if N(L) is a standard neighborhood of L in (M, &),
thought of using standard coordinates on dN(L) (so that N(L) is S«), then contact (+1)-
surgery on L is the result of removing N(L) form M and replacing it with S; with its
unique tight contact structure. We would like to interpret this for N(L) with any coordi-
nates on its boundary. So if N(L) is S, for some slope m and the dividing slope on dN(L)
is s for some slope with an edge to m in the Farey graph, then notice that there is a unique
slope m’ with an edge to s and m that is not contained in [m, s]. Contact (+1)-surgery on
L is the result of removing N(L) from M and replacing it with S, with its unique tight
contact structure.

We now return to N (L) with standard coordinates on dN(L) such that the dividing
slope is 0 (that is we are using the contact framing on L). Performing contact (+1)-surgery
on L will result in a solid torus S; and Sy has dividing slope 0. So S; is a standard neigh-
borhood of a Legendrian knot L’. As observed above, we know that L" is Legendrian
isotopic to a ruling curve on dS; = JN(L) and hence Legendrian isotopic to L. In fact, L’
is a Legendrian push-off of L. Contact (+1)-surgery on L’ we will result in a solid torus
S1/2. Continuing we see that if we perform contact (+1)-surgery on L and n — 1 Legen-
drian push-offs of L then this is the same as removing N (L) from M and replacing it with
S1/» with its unique tight contact structure.

Suppose we wish to perform contact (r)-surgery on L for some r > 0. Notice that
there is a unique k such that klj <r< % Perform contact (1)-surgery on L and n Leg-
endrian push-offs of L. This will result in a solid torus Sj (1) with convex boundary
having dividing slope 0. This is a standard neighborhood of a Legendrian knot L’, which
as above is simply a Legendrian push-off of L. Notice that r € [1/(k + 1),0] so contact r
surgery on L’ is a negative contact surgery and from the algorithm above can be achieved
by a sequence of Legendrian surgeries on L’ and its Legendrian push-offs and stabiliza-
tions. O
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We now turn to the proof of the “cancellation lemma".

Proof of Lemma 6.2.4. From the above discussion, it is clear that if we use the contact
framing on L then its standard neighborhood N(L) is Se, with convex boundary having
dividing curves of slope 0. Contact (+1)-surgery removes S, and replaces it with S; with
the same dividing curves on the boundary. Now S is a standard neighborhood of some
Legendrian knot L’ and contact (—1)-surgery on L’ removes S; and replaces it with Se.
That is it undoes the previous surgery. Now we observe, as we did above. that L’ is a
Legendrian push-off of L. Thus concluding the proof in this case. The case where we
initially perform contact (—1)-surgery on L is analogous. m|

With the above discussion of contact surgery in terms of the Farey graph, the proof
that one can perform a half-Lutz twist via contact surgery is relatively simple.

Proof of Lemma 6.2.5. We recall and reformulate how to perform a Lutz twist. Let T be a
transverse knot in (M, &). We take a standard neighborhood N(T') of T. Recall this means
that N(T) is D? x S! in R3/~, where (x,vy,z) ~ (x,y,z + 1), with the contact structure
&stg = ker(cosrdz + rsinr dO), where th is the disk of radius t about the origin in the
xy-plane. Notice that the characteristic foliation on dN(T) is a linear foliation of some
negative slope a, after possibly shrinking N(T) and changing the framing on N(T) we
can assume that a = 0. We consider 8(Dt2 x S1) as t decreases from ¢ to 0 the slopes of
the linear characteristic foliations go from 0 to —co (though never make it to —co). A half-
Lutz twist removes N(T) from M and replaces it with a torus with the same meridian,
but where the slopes of the foliations on the tori range from 0 to —co continue to twist to
0 and finally twist from 0 to —co (though this time making it to —c0). See Section 1.5.3 for
more details.

0 0 0 0

(0] o o0 o0

Figure 6.2.11. The first diagram shows the neighborhood N(L) and the green indicates
that the slopes realized by linear characteristic foliations are in (o0, 0] and when perturbed
to S is a standard neighborhood of L. The second diagram shows the torus S” that we
replace S by in the first stop of our two step Lutz twist. The third diagram shows the torus
S’ shown in blue and $” — S’ is shown in red. The final diagram shows S the result of
contact (+1)-surgery on L.
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We note that we could make this a two step process. See Figure 6.2.11. We could first
remove a neighborhood N(T) of the transverse knot T and replace it with a solid torus
with lower meridian 1 and where the contact structure induces characteristic foliations
on the concentric tori that go from 0 anti-clockwise to 1 (but not reaching 1). The core of
this solid torus is a transverse knot T” and we could take a neighborhood N(T”) of it with
boundary having linear foliation of slope 2. Notice that the characteristic foliations on
the concentric tori range from 2 anti-clockwise to 1 (but not reaching 1). We could then
replace a neighborhood of this transverse knot by one with lower meridian co so we see
that the characteristic foliations on this new torus range from 2 anti-clockwise to —co. It
is clear that these two steps replicate the half-Lutz twist.

Notice that we would get the same result if we perturbed the boundary of N(T) to
get a new solid torus S with convex boundary having two dividing curves of slope 0 (all
convex tori will have standard foliation on the boundary, see Example 3.4.4), removed
this and replaced with a solid torus S” with meridional slope 1 and then perturbed the
boundary of N(T”) to get a new solid torus S’ with convex boundary having two divid-
ing curves of slope 2, removed this and replaced with a solid torus S with meridional
slope —co. But S is a neighborhood of a Legendrian knot L and the replacement of S
by S” is contact (+1)-surgery on L. The second perturbed neighborhood S’ is a stan-
dard neighborhood of a Legendrian knot L” and the replacement of 5" by S"” is a contact
(+1)-surgery on L’. We are left to see that T is the transverse push-off of L and L’ is a
Legendrian push-off of L that has been negatively stabilized twice. The first statement is
clear from Lemma 1.4.31 that shows transverse knots can be Legendrian approximated.
For the second statement note that the Legendrian defined by S” and by S are the same
since these two standard neighborhoods share the same boundary and hence the same
Legendrian divides, and we know the Legendrian divides are isotopic to the Legendrian
curve defined by the neighborhood, see Theorem 6.1.9. Now S’ is contained in §” and is
a standard neighborhood of the Legendrian L’. From Corollary 6.1.6 we know that L’ is
a stabilization of L, and from Section 6.1 it is clear that it is two-fold stabilization. In the
next section, we will see that two Legendrian knots with the same transverse push-off
must be related by negative stabilization. Thus L’ is obtained from L by two negative
stabilizations. O

It is sometimes convenient not to use the Farey graph to convert general contact surg-
eries into a sequence of contact (+)-surgeries. An algorithm for doing this was first de-
scribed in work of Ding, Geiges, and Stipsicz [DGS04].

The DGS Algorithm. Let L be a Legendrian knot in (M, £). We consider contact ()-
surgery along L. There are two cases:
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When r < 0. Write r as a continued fraction

r=lag, a1, ,au]

where a9 < —1 and the other a; < —2. Then contact (r)-surgery along L can be described

as Legendrian surgery along the link Lo UL; U --- U L, where

e [ is the Legendrian represented by the original Legendrian knot L with |ag + 1]
additional stabilizations,

e fori > 2, L;is obtained from a Legendrian push-off of L;,_; with |a1+2| additional
stabilizations,

When r > 0. Write r = % where p, g are relatively prime integers. Let k € Z be the
smallest positive integer such that ﬁ is negative. Then contact (r)-surgery along L can
be described as contact (+1)-surgery on k Legendrian push-offs of L followed by contact
(p/(p — kp))-surgery on L and this last surgery can be written as a sequence of contact
(—1)-surgeries as described above. More specifically, if

o —kp [bo,,b1--- , by]
where by < —1 and the other b; < —2. Then contact (r)-surgery along L can be described
as contact surgery along a Legendrian link (L' U ---L¥) U (Lo U - - - U L,,) where

e fori=1,...,k L' are parallel Legendrian push-offs of the Legendrian knot L,

e [ is obtained from a Legendrian push-off of Lk by |a; + 1| additional stabiliza-
tions.

e forj > 2, L;is obtained from a Legendrian push-off of L;_; with |a;+2| additional
stabilizations,

e the contact surgery coefficient on each Li,i=1,---,k is 1 and the coefficient is
-loneachL;,j=1,---,n.

Exercise 6.2.17. Show that the above algorithm does achieve tb(L) — » Dehn surgery on
L.
Hint: It might be easier to consider some of the exercises below first.

We note that there is another way to realize contact (7)-surgery on L for r < 0 which
we now discuss as it can sometimes make computing invariants of the contact structure,
like the ds-invariant, easier. Indeed let

p/q=1tb(L)+7r=[co;c1,...,cnl
where ¢y < tb(L) because r < 0, and the other ¢; < —2. Consider the link in Figure 6.2.12.

Legendrian realizes the component K; as a Legendrian knot with tb(K;) = ¢; + 1. Legen-
drian surgery on this link is the same as some contact (r)-surgery on L. Moreover, any

contact (r)-surgery can be so realized.
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Figure 6.2.12. Two surgery pictures representing p/q Dehn surgery on L. (Here Ko = L.)

Exercise 6.2.18. Show that the smooth surgery is equivalent to tb(L) + r Dehn surgery on
L.
Hint: This can easily be done with slam dunk moves. See Section 1.5.1.

Exercise 6.2.19. Show that any contact (r)-surgery on L for r < 0 can be achieved by the
above construction.

Hint: The link in Figure 6.2.12 is contained in a standard neighborhood of L. Show that
after surgery, you can realize all possible relative Euler classes of contact structures on
the solid torus that results from the surgery.

Exercise 6.2.20. Show that the two algorithms for performing contact (r)-surgery on L via
Legendrian surgeries are equivalent as smooth surgery diagrams and one must perform
the same number of stabilizations in each algorithm.

Hint: Start with Figure 6.2.12 and handle slide (see Section 1.5.1 for handle slides) K>
over Kj, the K3 over the knot K, became after its slide. Continue with the other K;.

We now turn to the proof that every contact structure can be obtained by contact
surgery on some link in (S3, Esta).

Proof of Theorem 6.2.6. We first notice that if we perform contact (+1)-surgery on the
unknot in (53, &) with Thurston-Bennequin invariant —2 we get an overtwisted contact
structure & on S3. Indeed, the smooth surgery coefficient is —1 so the smooth manifold
will be S* and contact (+1)-surgery will replace the standard neighborhood N(L) with
S_1 and dS_1 will have dividing curves of slope —2. Thus the slopes realizable by convex
tori parallel to the boundary of the solid torus will be in (=1, =2], and in particular, there
is a torus T with dividing slope 0. A Legendrian dividing curve on T will bound a disk
in the complement of a neighborhood of L, and thus the contact structure is overtwisted.

We now claim that given two overtwisted contact manifolds (M, &1) and (My, &2) one
can find a Legendrian link in (Mj, £1) on which contact (-1)-surgery will give (My, &>).
The theorem clearly follows. To see this we first recall from Section 1.5 that any smooth,
closed 3-manifold is obtained from S* by Dehn surgery on a link, and thus it is easy to
see that one can obtain M from M; by Dehn surgery on a link in M;. Let L; be the
components of this link and r; be the surgery coefficients (recall by using the slam dunk
operation we can assume that all the r; are integers). In Section 6.6 we will see that we
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can Legendrian realize the link so that the L; have Thurston-Bennequin invariant r; + 1.
Thus contact (+1)-surgery on this link will produce a contact structure &; on Mp.

Recall from the proof of Theorem 1.5.22 that one can get from one homotopy class of
plane field on M, to another by a sequence of half-Lutz twists. Combining Lemmas 6.2.4
and 6.2.5 show that we can then get from one to the other by a sequence of contact (—1)-
surgeries. Since an overtwisted contact structure is determined by its homotopy class of
plane field, this says we can get from (M, &7) to (M2, &2) by contact (—1)-surgery. ]

We will not establish our lemmas showing how one may manipulate a surgery dia-
gram. In particular, we will prove Lemma 6.2.7 by establishing the moves in Figures 6.2.3
and 6.2.4. To this end, we first need some preliminary results.

Lemma 6.2.21. The red curve on the left, respectively right, of Figure 6.2.13 is an unknot with
Thurston-Bennequin invariant —1 in the manifold obtained by contact (=1)-surgery, respectively
contact (+1)-surgery, on L.

Figure 6.2.13. Legendrian knot L shown in black. The curves in red are maximal
Thurston-Bennequin invariant Legendrian unknots in the surgered manifolds. (Outside
the region of L shown, the red curves are copies of the black curves shifted slightly up.)

Proof. We consider the picture on the left first. Notice that before surgery, the red curve,
which we denote L’, links L exactly tb(L) — 1 times. We will begin by showing that we
may assume that L’ is a ruling curve on the boundary of a standard neighborhood of L.

We clearly see that tb(L") = tb(L) — 2. Let T be the torus boundary of a neighborhood
of L.

Exercise 6.2.22. Show that the framing of L’ given by T and given by the Seifert surface
for L’ differ by tb(L) — 1.

Hint: If you are having trouble, see our discussion of framings on torus knots in the proof
of Lemma 6.5.3.

From the exercise, we see that the contact twisting of L” with respect to T is =1 and
hence we can make T convex by the Legendrian realization principle, Theorem 3.4.5.
Notice that we could have assumed that L’ and hence T were contained in a standard
neighborhood of L and also outside a smaller standard neighborhood of L. Thus T is
contained in T2 x [ with an I-invariant contact structure on it. Thus, when we make T
convex, it must have dividing slope tb(L). Moreover, since the contact twisting along L’
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is =1, L’ can only intersect the dividing curves 2 times (see Theorem 3.5.1). So we see that
T has 2 dividing curves. In other words, T can be taken to be the boundary of a standard
neighborhood N of L. We can arrange for T to be in standard form with ruling curves
parallel to L.

When we perform contact (—1)-surgery on L, we remove N and then glue in a new
solid torus S so that the meridian is mapped to a curve of slope tb(L) — 1; that is, to
L’. Now we can take S to have a contact structure with convex boundary and ruling
curves of slope oo (that is, the ruling curves bound meridional disks in S). Now it is clear
that the meridional ruling curves in S are Legendrian unknots with Thurston-Bennequin
invariant —1.

Exercise 6.2.23. If this last statement is not clear, then prove it!
Hint: compare the framing on the ruling curve coming from dS and from the meridional
disk it bounds. Also, recall how to compute the contact twisting of the curve on dS.

This completes the claim for contact (—1)-surgery on L. The proof for contact (+1)-
surgery is very similar and left as an exercise to the reader. m]

Lemma 6.2.24. Suppose L is a Legendrian unknot with tb(L) = =1 and L is the union of two
arcs L = a Ub such that aN'b = da = Ib, then L maybe be C° isotoped near da so that a is
Legendrian isotopic to b so that da is fixed and the tangent vectors at da are fixed. The specific
modification is described in the proof.

Proof. We begin by letting D be a disk that L bounds. We may isotop the disk so that
along L it is tangent to the contact planes only at 2 and b. Using a local model, a neigh-

borhood of L, we can arrange he characteristic foliation of D near L to be as shown on the
left-hand side of Figure 6.2.14.

b

a

Figure 6.2.14. On the left, we see the characteristic foliation on D near L. The points da
are elliptic singularities. In the middle, we see the characteristic foliation on D, and on the
right, we see the deformation of D to D’ in an arbitrarily small neighborhood of da.

Exercise 6.2.25. Provide the details of the claim above.
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Now one can make the disk convex, by Theorem 3.3.1, without moving D near L. We
can now use Giroux realization, Theorem 3.4.1, to arrange that the characteristic foliation
on D is shown in the middle of Figure 6.2.14. Finally, in any arbitrarily small neighbor-
hood of da we may alter D to a disk D’ so that the characteristic foliation on D’ is as
shown on the right-hand side of Figure 6.2.14.

Exercise 6.2.26. Use a local model for a point to show that this can be done.

The characteristic foliation on D’ now gives the claimed isotopy. O

Remark 6.2.27. In the proof above, one can see that if da consists of cusps in a front
diagram for L, then the isotopy from D to D’ is “squeezing" the cusps so that they become
more tangent.

We are now ready to establish the moves in Figures 6.2.3 and 6.2.4.

Proof of Lemma 6.2.7. The proof that the diagrams in Figure 6.2.3 represent the same
contact manifold is given in Figure 6.2.15. More specifically, focus on the upper row. On

1)

(+1) (+1) (+1)

Figure 6.2.15. On the upper left, we see contact (—1)-surgery on L and another Legendrian
curve in red. In the upper middle, we see that the red Legendrian curve has been isotoped,
and we see the blue curve, which is a meridian of the surgered Legendrian L. On the upper
right, we see the result of isotoping the red curve across the blue unknot. We have a similar
isotopy in the lower row, except here one performs a Type 1 Legendrian Reidemeister
move in the center figure.

the left, we see a black Legendrian knot on which contact (—1)-surgery has been done,
and another Legendrian knot represented in red. If we can show that the red knot on
the left is Legendrian isotopic to the red curve on the right, then any Legendrian surgery
on the red curve on the right will be equivalent to the same surgery on the right. The
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isotopy is given in the figure. Since the blue curve in the middle is a maximal Thurston-
Bennequin invariant unknot by Lemma 6.2.21, we may isotop the middle red curve to
the red curve on the left by Lemma 6.2.24. The isotopy in the second row is similar.

We turn to Figure 6.2.4. The proof of the top handle slide in that figure is given in
Figure 6.2.16. Once again, we see the blue curve in the upper left is a maximal Thurston-

(-1)

NV —
/X

X
(-1)
\\\_7_______‘_______,¢/’
N///
b/
(-1)

/

Figure 6.2.16. In the upper left corner, we see contact (—1)-surgery on the black Legen-
drian knot L, its blue meridional curve, and another Legendrian knot in red. In the next
four diagrams (moving right to left and top to bottom) we see Legendrian isotopies of the
blue and red curves. In the bottom right corner, we see the result of sliding the red knot
over the blue unknot.

Bennequin invariant Legendrian uknot after contact (-1)-surgery on the black Legen-
drian knot L. The majority of the figure consists of Legendrian isotopies of this blue
curve given by Legendrian Reidemeister moves, see Theorem 1.4.22. Then at the end we
isotop the red curve over the blue unknot as we did above.

The proof of the bottom handle slide in Figure 6.2.4 is left to the reader. It is very
similar to, but easier than, the last argument (and involves two Type 1 Legendrian Rei-
dermester moves). O
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We now turn to our last “surgery manipulation" lemma, that is Lemma 6.2.8 that tells
us how to replace a Stein 1-handle with contact (+1)-surgery on the maximal Thurston-
Bennequin unknot. Before we begin the proof, we give a few exercises that we will need
in the proof.

Exercise 6.2.28. Show that contact (+1)-surgery on the maximal Thurston-Bennequin un-
knot in (S3, &414) is the unique tight contact structure on Sl x §2,

Hint: Consider our description of contact surgery earlier in the section and a concrete
model for the tight contact structure on S? x 52.

Exercise 6.2.29. Let L be any Legendrian representative of St x {pt} in S! x S? with its
tight contact structure. Show that Legendrian surgery on L gives (S3, Esta).

Hint: First verify that any smooth integeral surgery on S! x {pt} in S! x S gives S3. Now
consider our discussion of contact surgery above.

Proof of Lemma 6.2.8. We need to see that the two diagrams in Figure 6.2.5 represent the
same contact manifold. We begin by taking the black Legendrian representative of S! x

{pt} shown in Figure 6.2.17. a Legendrian push-off of it, shown in red, and performing
(=)

/
Legendrian Legendrian
tangle tangle

Figure 6.2.17. On the left is a presentation of a contact manifold, and on the right is a
presentation giving the same contact manifold.

contact (—1)-surgery on the red curve and contact (+1)-surgery on the black curve. By the
cancellation lemma, Lemma 6.2.4, we see that this does not affect the resulting contact
manifold.

We get the top diagram in Figure 6.2.18 from the right-hand diagram in Figure 6.2.17
by performing the handle slide shown on the top of Figure 6.2.3. The bottom diagram in
Figure 6.2.18 is obtained from the top by a Legendrian isotopy (this can be seen since the
contact structure on S! x 52 is invariant in the S! direction). Now the Stein 1-handle and
red curve may be isotoped away from the rest of the diagram, and we see that they may
then be removed from the diagram using Exercise 6.2.29. This results in the diagram at
the bottom of Figure 6.2.5, thus completing the proof. m]

We now turn to the computation of the homotopy class invariants of a contact struc-
ture produced by surgery on a link in (S3, &gta).

Proof of Theorem 6.2.9. PROVE! m]

Proof of Theorem 6.2.10. PROVE! m]
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Figure 6.2.18. The top diagram shows the result of handle sliding the curves in Fig-
ure 6.2.17 over the red curve. The bottom diagram is obtained by a Legendrian isotopy.

6.3. Classification of Legendrian and transverse
knots

In this section we will discuss the relation between the classification of Legendrian and
transverse knots as well as a general strategy to classify them. In the following few sec-
tions we will implement this strategy for the unknot and torus knots.

6.3.1. Executive summary of main results. We begin by noting the relation between the
classification of smooth, transverse, and Legendrian knots.

Theorem 6.3.1. Two Legendrian knots L1 and Ly are smoothly isotopic if and only if they are
related by stabilizations. The same is true for two transverse knots.

It is obvious that two Legendrian knots that are Legendrian isotopic must be smoothly
isotopic, so the real content of this theorem is that any two Legendrian knots in the same
smooth knot type are Legendrian isotopic after some number of stabilizations. We will
give a proof of this in any contact manifold using convex surfaces below, but note that in
(R3, &st4) there is a “simpler" proof using the Legendrian Reidemeister moves discussed
in Section 1.4.

Exercise 6.3.2. Proof that two Legendrian knots in (R3, &) that are smoothly isotopic
are Legendrian isotopic after sufficiently many stabilizations. This result was originally
proven by Fuchs and Tabachnikov [FT97].
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Hint: Show that after sufficiently many stabilizations any smooth Reidemeister move can
be done by Legendrian Reidemeister moves.

We now consider the relation between transverse and Legendrian knots.

Theorem 6.3.3 (In (R3, &4. Epstein, Fuchs, and Meyer 2001, [EFM01]; In a general con-
tact manifold, Etnyre and Honda 2001, [EHO1a]). Two Legendrian knots Ly and Ly have
transversely isotopic positive transverse push-off if and only if they are Legendrian isotopic after
some number of negative stabilizations.

Note that this theorem says the classification of transverse knots up to transverse
isotopy in a knot type K is equivalent to the classification of Legendrian knots in the knot
type K up to Legendrian isotopy and negative stabilization. Thus if one can determine
the mountain range for Legendrian knots in the knot type K (that is understand the set of
Legendrian knots £(K)) then one may easily write down the classification of transverse
knots in the knot type K, by looking at the asymptotic behavior of the mountain range as
one approaches negative infinity along lines of slope 1 in the mountain range.

Example 6.3.4. Here we illustrate how to determine the transverse classification of knots
in a knot type from the Legendrian classification. In Figure 6.3.19 we see the mountain
range for Legendrian representatives of the (2, 3)-cable of the right-handed trefoil and
at the bottom of the figure we see the self-linking numbers of transverse representatives
of this knot type and the number of representatives for each self-linking number. We

5 -4-3-2-101 2 3 4 5

/\/\
/\/\/\
/\/\/\/\
/\/\/\/\/\
/\/\/\/\/\/\

S S

7 5 3 1 -1 -2

Figure 6.3.19. The mountain range for the (3, 2)-cable of the right-handed trefoil and along
the bottom are the self-linking numbers of transverse representatives of the cable.

N W &= U &

will show that this is indeed the classification of Legendrian knots in this knot type in
Section 10.2. If we look at the line with slope 1 passing through the point (6, —1) we
see that there is only one Legendrian knot for each integer point on the line when the
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second entry is very negative. From the above theorem, that means that there is only one
transverse push-off of Legendrian knots on this line. That is, there is a unique transverse
knot in this knot type with self-linking 7 (recall the self-linking of a transverse push-off
of L is tb(L) — rot(L)). We see the same for the line of slope 1 through the point (6,1),
but when considering the line of slope 1 through the point (5,2) we see that there are
two Legendrian knots for each integer point on this line. So the above theorem says
there are two distinct transverse knots that are transverse push-offs of these Legendrian
knots. That is, there are two transverse knots with self-linking number 3. Continuing
we see that for each odd integer less than or equal to 7 there is exactly one transverse
representative of this knot having this as its self-linking number, except there are two
when the self-linking number of 3.

Here is the standard way in which we will classify Legendrian knots in a given knot
type K.

e Step 1. Identify the maximal Thurston-Bennequin invariant in the knot type of
K and classify Legendrian knots realizing this.

e Step 2. Identify and classify the non-maximal Thurston-Bennequin Legendrian
knots in the knot type of K that do not destabilize.

e Step 3. Prove that all other Legendrian knots destabilize to one of the identified
Legendrian knots in Step 1. and 2.

e Step 4. Determine which stabilizations of the maximal Thurston-Bennequin in-
variant knots and non-destabilizable knots are Legendrian isotopic.

Later in this chapter we will classify Legendrian knots in the knot types of the unknot
and torus knots. Here we will see that the second step in the process above is not relevant
as there are no non-destabilizable knots that do not have maximal Thurston-Bennequin
invariant. We will see an example where Step 2 is essential in Section 10.2.

In our study of Legendrian knots, it will frequently be useful to know the maximal
possible Thurston-Bennequin invariant of Legendrian representatives of a knot type. We
will denote this quantity E(K) for the knot K. Notice that this is an invariant of the
smooth knot K. In our results below we will use K to denote the set of smooth knots in
the knot type K, and we will use £(K) to denote the set of all Legendrian representatives
in the knot type of K.

Recall from Lemmas 1.2.17 and 1.4.1 that the classification of Legendrian knots up to
Legendrian isotopy is equivalent to the classification up to ambient contact isotopy and
for Legendrian knots in (S3, &sq) and (B3, E414) this is also equivalent to the classification
up to contactomorphisms that are smoothly isotopic to the identity. We end this section
by noting one other equivalence type of classification that can be useful when trying to
classify Legendrian knots.
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Theorem 6.3.5. Two Legendrian knots in (S°, Eg4) are Legendrian isotopic if and only if the
complements of their standard neighborhoods are contactomorphic.

This result was implicit in much of the early literature on the classification of Legen-
drian knots, e.g. [EH01a], but was first stated in [Etn05] and a careful proof was given in
[Keg18].

6.3.2. Proofs of main results. We begin with the proof of Theorem 6.3.1 that says that
two Legendrian knots are smoothly isotopic if and only if they are Legendrian isotopic
after sufficiently many stabilizations.

Proof of Theorem 6.3.1. Can’t find in the literature for a general contact manifold! We
can prove with state transition, so we need to put off proof till Part II. O

We are not ready to prove that the transverse classification of knots in a knot type is
equivalent to the Legendrian classification up to negative stabilization.

Proof of Theorem 6.3.3. We first note that if L and L’ are related by negative stabilization
then their positive transverse push-offs are transversely isotopic. We first observe that
the transverse push-off L, has a neighborhood N with boundary convex and containing
L as a Legendrian divide. Notice that by Lemma 6.1.1 we know that N is a standard
neighborhood of L. We choose a framing on N so that the dividing curves have slope
0. Now inside of N we know there is a torus T whose characteristic foliation is linear of
slope —1. Let L” be a leaf in this foliation. We note that the positive transverse push-off
of L” is the same as L, (see the definition of transverse push-off in Section 1.4.4). The
contact framing of L” relative to T is 0 and with respect to the framing on N it is -1 (if
this is not clear see the exercise in the proof of Theorem 6.1.9). Thus L” is a Legendrian
knot in the standard neighborhood N of L with contact twisting one less than L. From
Corollary 6.1.6 we know that L” is a stabilization of L. Since L” and L’ have the same
transverse push-off, they must be the same stabilization of L (since the self-linking of the
transverse push-off is tb(L) — rot(L)). Thus L and L” have the same transverse push-off.

Now assume that L and L’ are two Legendrian knots with the same positive trans-
verse push-off. Let N(L) and N(L’) be standard neighborhoods of L and L’ respectively.
The transverse push-off of L and L’ can be assumed to be inside of N(L) and N(L’), re-
spectively. Since the transverse push-offs are transversely isotopic we know there is an
ambient contact isotopy taking one to the other, see Exercise 1.2.18. Thus, after a contact
isotopy, we can assume that N(L) and N(L’) contain the same transverse knot T that is a
transverse push-off of both L and L’. Take a neighborhood N of T inside N(L)NN(L’). We
can choose N small enough so that its boundary has linear characteristic foliation with
slope some very negative integer. Let L” be a leaf in that foliation. From the definition of
Legendrian approximation it is clear that T is the transverse push-off of L”. Since L"” is
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in N(L) we know by Corollary 6.1.6 that it is a stabilization of L and since the transverse
push-offs of L and L” are the same L” must be a negative stabilization of L. The same
argument shows that L” is a negative stabilization of L” as well. m]

Turning to the proof that a Legendrian knot in (S 3, &sta) is determined by its comple-
ment we first note the following simple result.

Lemma 6.3.6. Given two Legendrian knots Lo and Ly in a contact manifold (M, &) and a con-
tactomorphism ¢ from the complement of a standard neighborhood of Ly to the complement of a
standard neighborhood of L, that sends the meridian of Lo to the meridian of L1, then ¢ can be
extended to a contactomorphism of (M, &) that sends Lo to L;.

Proof. Since ¢ sends the meridian of one knot to the meridian of the other, one can
smoothly extend ¢ over the neighborhoods of the knots to get a diffeomorphism from
M to M.

Exercise 6.3.7. Proof that ¢ can be so extended.

Since there is a unique tight contact structure on a solid torus with longitudinal di-
viding curves, by Theorem 5.1.5, the extension of ¢ can be isotoped to be a contacto-
morphism on neighborhoods of the knots without changing the fact that it is a contacto-
morphism in the complements of the neighborhoods. Thus we have arranged that ¢ is
extended to a contactomorphism of (M, &) that takes a standard neighborhood of L to a
standard neighborhood of L1. Now Lemma 6.1.1 says we can further isotope ¢ so that it
takes Lo to L1. O

Proof of Theorem 6.3.5. Let Ly and L1 be Legendrian knots in (S3, &stq) with standard
neighborhoods N(Lg) and N(L;). Suppose that ¢: (S \ N(Lg)) — (S*> \ N(L1)) is a con-
tactomorphism. A result of Gordon and Luecke [GL89] says that any diffeomorphism of
the complement of a knot to the complement of another knot must take the meridian to
the meridian. Thus the previous lemma tells us that ¢ can be extended to a contactomor-
phism of (S3, &4) taking Lo to L;. Since any diffeomorphism of S® is smoothly isotopic
to the identity we know by Lemma 1.4.1 that Lo and L; are Legendrian isotopic.

The implication that Legendrian isotopic knots have contactomorphic complements
easily follows from the fact that Legendrian isotopy between knots implies ambient con-
tact isotopy, see Lemma 1.2.17. O

6.4. Classification of Legendrian and transverse
unknots

The main theorem here is the following result of Eliashberg and Fraser [EF98, EF09].
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Theorem 6.4.1 (Eliashberg and Fraser, 1998 and 2009, [EF98, EF09]). If U is the unknot in
any tight contact manifold (M, &), then there is a unique element L € L(U) with tb(L) = -1
(and L will have rot = 0) and all other elements of L(U) are stabilizations of L. See Figure 6.4.20
for a front diagram of L.

From the theorem it is clear that the mountain range for U is given in Figure 6.4.20
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Figure 6.4.20. The mountain range for the unknot is shown on the left and a front diagram
for the Legendrian unknot with tb = —1 is shown on the right.

We will use convex surfaces to give a quick proof of this theorem, which is quite
different than the original proof due to Eliashberg and Fraser and also holds in any tight
contact manifolds.

Proof. The Bennequin inequality, Theorem 3.7.5, tells us that
tb(L) + rot(L) < —x(D?) = -1

for all Legendrian unknots. Thus we know that tb(L) must always be less than or equal
to —1. We will show

(1) any L € L(U) with tb(L) < —1 destabilizes, and
(2) there is a unique element L € L(U) with tb(L) = —1.

The theorem then clearly follows.

For Item (1) let L € L(U) with tb(L) < —1. Let D be a disk that L bounds. Notice
that tw(L, D) = tb(L) < —1 so we can use Theorem 3.3.1 to make D convex. Then by
Theorem 3.5.1 we know that the dividing set on D intersects the boundary -2 tb(L) > 2
time. Thus we see there must be a boundary parallel arc. Thus Lemma 5.4.14 gives a
bypass for L along D and since the framing of L given by D is larger than the framing
given by & we see that L destabilizes (see Theorem 6.1.5).

Turning to Item (2) we will first consider the case of (S3, &s4). We suppose L,L’ €
L(U) both have tb = —1. Let N and N’ be standard neighborhoods of L and L’ re-
spectively. Set C = S*>\ N and C’ = S\ N’. Notice that C and C’ are solid tori that
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are naturally S (that is have upper meridian 0, see Section 5.6) and dividing slope —1.
There is a unique tight contact structure on S° with convex boundary having two divid-
ing curves of slope —1 (see Theorem 5.1.5) and so there is a contactomorphism from C to
C’ and thus L and L’ are Legendrian isotopic by Theorem 6.3.5.

Exercise 6.4.2. Give a direct proof that L and L’ are isotopic by either using front diagrams
or the characteristic foliations on disks L and L’ bound. (Or, better, try to give arguments
using both.)

We now consider an arbitrary tight contact manifold (M, &).

Exercise 6.4.3. Show that two Legendrian knots in (B3, &414) are Legendrian isotopic in
B? if and only they are Legendrian isotopic in (S3, &)

Given L, L’ € L(U) in (M, &) with both have tb = —1. Let D and D’ be the disks that
L and L’ bound, respectively. We note that we can use Giroux flexibility, Theorem 3.4.1,
to arrange that the characteristic foliation on D and D’ are as shown in Figure 6.4.21.

Figure 6.4.21. Characteristic foliation on D and D’. The orange line is just a leaf in the
foliation and should be considered when trying to solve the exercise.

Exercise 6.4.4. Use the characteristic foliation on D and D’ to show that L and L’ can be
Legendrian isotoped to be in a small neighborhood of distinct Legendrian arcs.

In particular, we can assume that D and D’ are disjoint. Given this, we can find a
B3 containing D and D’, and hence L and L’. From above we know that L and L’ are
Legendrian isotopic in B. O

6.5. Classification of Legendrian and transverse
torus knots

Next we provide a complete classification, due to the first author and Honda [EHO01a], of
Legendrian knots in the knot types of torus knots in any tight contact manifold.
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6.5.1. Executive summary. We start by establishing notation for torus knots. Let N be a
neighborhood of the unknot in a manifold M, u be the curve on N that bounds a disk in
N, and A be the curves on JN that bounds a disk in M \ N. Using this basis for Hi(dN)
we can represent any embedded curve y by its homology class p[A] + g[u] for relatively
prime integers p and g, see Section 4.1. An embedded curve on dN realizing p[A] + q[u]
is called a (p, q)-torus knot and is denoted T, 4. We say T, ; is a positive torus knot if pq > 0
and a negative torus knot if pg < 0. For convenience, one might want to just consider the
case of M = S3 in which case JN is a Heegaard torus of S°.

Example 6.5.1. In Figure 6.5.22 we see on the left the torus knot T; o which is clearly the
unknot, and on the right we see the torus knot T 3 which is easy to see is the right-handed
trefoil.

Figure 6.5.22. The torus knots T1 ¢ and 713 3.

We note note some important facts about torus knots.

Exercise 6.5.2. Show that T}, ; is isotopic to T , and that T—p, —q is isotopic to T}, 4.
Hint: Notice that the unknot U is isotopic to —U and if U’ is a meridian to the unknot
then U and U’ are isotopic.

Lemma 6.5.3. The torus knot T, ; bounds a Seifert surface of genus
(rP-Dig-1)
2
and if Fr is the framing of T, 5 given by the torus N and Fa is the framing given to Ty, ; by the
Seifert surface then
Fr—F5 = pa.

We begin with a simple statement about all torus knots.

Theorem 6.5.4 (Etnyre and Honda, 2001, [EHO1a]). Torus knots are Legendrian simple, that
is two Legendrian knots in the knot type T, 5 are Legendrian isotopic if and only if they have the
same Thurston-Bennequin invariants and rotation numbers.

This theorem is an immediate corollary of the two theorems below that completely
classify Legendrian torus knots. We begin with positive torus knots.
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Theorem 6.5.5 (Etnyre and Honda, 2001, [EHO1a]). If 7, 4 is a positive torus knot, then there
is a unique Legendrian knot L € L(7},4) with

tb(L) =pg-p—q.

Moreover, rot(L) = 0 and any other element in L(7, ;) is a stabilization of L.

The front diagram of the maximal Thurston-Bennequin invariant Legendrian (p, q)-
torus knot in (R3, &,;4) is shown in Figure 6.5.23.

p strands

g strands

Figure 6.5.23. The positive (p, q)-torus knot with tb = pq — p — 4. All other Legendrian
representatives of this knot are stabilizations of this knot.

Exercise 6.5.6. Compute the Thurston-Bennequin invariant and rotation number of the
knot in Figure 6.5.23.

Exercise 6.5.7. Find a Legendrian isotopy between the front diagram for the maximal
Thurstong-Bennequin invariant (p, q)-torus knot and the (g4.p)-torus knot. (We know
from the theorem above that these are isotopic, but try to find a sequence of Legendrian
Reidemeister moves, see Theorem 1.4.22.)

The above theorem completely classifies Legendrian representatives of positive (p, g)-
torus knots. In particular, we can easily write down the mountain range for £(7, 4), see
Figure 6.5.24. We note that the mountain range for any positive (p, )-torus knot sat-
urates the Bennequin bound, that is any pair of integers allowable by the Bennequin
bound (and the fact that their sum must be odd) is realized as the rotation number and
Thurston-Bennequin invariant of a (p, q)-torus knot.

Notice that the symmetry of (p, q)-torus knots from Exercise 6.5.2 when talking about
negative (p, q)-torus knots we may assume that —g > p > 1 without any loss of generality.
Theorem 6.5.8 (Etnyre and Honda, 2001, [EHO1a]). If T, ; is a negative torus knot with
—q >p>1,then

(1) The maximal Thurston-Bennequin invariant of 7, 4 is pq.
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Figure 6.5.24. The mountain range for the positive (p, q)-torus knots.

(2) Any knot in L(7,,4) is a stabilization of one with tb = pq.

(3) If k is a positive integer such that —k — 1 < % < —k then there are exactly 2k knots in
L(7,5) with tb = pq and they are determined by their rotation numbers which are

{i(q—p+2pn):0§n< q;p}

(4) The knot T, ; is Legendrian simple, that is two knots in L(7,,q) are Legendrian isotopic
if and only if they have the same tb and rot.

We will explore the mountain ranges for negative torus knots in the examples below
and in particular parse the expression in the theorem for rotation numbers in the exam-
ples below, but first we consider the front diagrams for negative torus knots in (R?, &)
with tb = pg. To this end, write —q = (11 + n2 + 1)p + e where 0 < ¢ < p and the n; are
positive integers. Then Figure 6.5.25 shows the desired front diagrams.

Exercise 6.5.9. Compute the Thurston-Bennequin invariant and rotation numbers of the
Legendrian knots depicted in Figure 6.5.25. Show that the possible rotation numbers
realized agree with those in Item (3) of the theorem.

Example 6.5.10. Consider the torus knot T —3. From the theorem above we know the
maximal Thurston-Bennequin invariant of Legendrian representatives is —6 and the ro-
tation numbers are

3-2 1
+3-2-2-2 f 0<n<—=—-.
( n) or <n 5 5
That is the rotation numbers for Legendrian representatives of T, —3 with tb = —6 are

-1, 1. So the mountain range for £(73,-3) is shown in Figure 6.5.26.
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0

A=

p strands

N

or

A

v
//

e e

Figure 6.5.25. The negative (p, q)-torus knots with tb = pg is shown in the upper right,
where the boxes are replaced with copies of B or A as indicated. All other Legendrian
representatives of this knot are stabilizations of these knots.
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Figure 6.5.26. The mountain range for the positive (2, —3)-torus knots.

More generally, consider T, _(x+1), The maximal Thurston-Bennequin invariant of
Legendrian representatives is —4n — 2. The possible rotation numbers for such repre-
sentatives are

2k+1-2 1
+(2k+1-2-2-2n) for OSn<T=k—E.
One easily sees that this yields all odd numbers between -2k + 1 and 2k — 1. Thus the
mountain range for £(7;,—(2k+1)) is shown in Figure 6.5.27.
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Figure 6.5.27. The mountain range for the positive (2, —(2k + 1))-torus knots.

Example 6.5.11. Consider the torus knot T3 —19. From the theorem above we know the
maximal Thurston-Bennequin invariant of Legendrian representatives is —30 and the ro-
tation numbers for such knot are

10-3

7
+(10-3-2-3n) for 0<n< =3

This gives possible rotation numbers of
-7,-5,-1,1,5,7
Thus we see that the mountain range for £(73,-19) is shown in Figure 6.5.28.

-7 =5 -1 1 5 7
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T NN NN NN NN,

Figure 6.5.28. The mountain range for the positive (3, —10)-torus knots.

One can see the mountain range of the (4, —9)-torus knot in Example 1.4.38.
Exercise 6.5.12. Draw front diagrams for all the examples discussed above.

Exercise 6.5.13. Given positive integers m and n, show there exist negative torus knots
T, ; with mountain ranges having exactly 2n “peaks" and “valleys" of depth m.
Hint: Read the proof of the classification result first.

One might wonder why the classification of Legendrian positive torus knots and neg-
ative torus knots is so different. This really comes down to slopes that can be realized as
dividing slopes on certain convex tori. Specifically, we will see in the proofs of these
results that the following simple result is key.
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Lemma 6.5.14. Let (M, &) be any tight contact manifold and S a solid torus in M whose core is
in the knot type of the unknot. The boundary of S can be made convex with slope r if and only
if r € (—00,0), and in addition we may assume that dS has two dividing curves. Moreover, if S
has convex boundary of slope r then for any s # r we can find a convex torus T disjoint from and
isotopic to dS with two dividing curves of slope s.

In particular, in (S3,&stq) we can find a convex Heegaard torus of slope r if and only if
r € (—o0,0).

We end this section by discussing transverse torus knots.

Theorem 6.5.15. The torus knot T, ; is transversely simple. Any odd integer less than or equal
to

pq—p—q forpg>0
pg+q-p for —q>p>0,

can be realized as the self-linking number of a transverse (p, q)-torus knot.

While this theorem is a simple corollary of the classification of Legendrian torus
knots, it was originally proven for positive torus knots by the first author in [Etn99] using
different techniques.

Exercise 6.5.16. Prove this theorem.

6.5.2. Proofs of main results. We begin by constructing Seifert surfaces for torus knots
and comparing the framings coming from the Seifert surface and the torus containing the
knot.

Proof of Lemma 6.5.3. Let T be a torus bounding a solid torus S in the knot type of the
unknot. Let u be the curve in T bounding a disk D, in § and A the curve bounding a
disk D) outside of S. Then we can construct a (p, q) torus knot by first taking p disjoint
copies of A and g disjoint copies of u and then at replacing each of the pgq intersection
point between the curves with a “resolved curves". See Figure 6.5.29.

To construct the Seifert surface for T, ; we take p disjoint copies of the disk D) and
q disjoint copies of D;,. We now resolve their intersection points as follows: remove
a small neighborhood of each intersection point from the disks and replace it with a
strip having part of its boundary on the disk and the other part is the “resolving arcs"
used to create the torus knot above. See Figure 6.5.30 for this construction near a single
intersection point. We now compute the Euler characteristic of this surface. Notice the
surface constructed is homotopy equivalent to a 1-complex with a vertex for each disk
and an edge for each strip. That is the Euler characteristic is p + g — pg. From this, it is
easy to see that the genus of the surface is as claimed.
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Figure 6.5.29. On the left we see the disks D, and Dy. In the middle, we see the torus
represented by a square with opposite edges identified and on the torus two copies of A
and three copies of u. Note they intersect in 6 points. On the top right we see a resolution
of the intersection points leading to the positive (p, q)-torus knot and on the bottom right
we see the resolution leading to the negative (p, —g)-torus knot.

=

S w6

Figure 6.5.30. On the left we see two disks near an intersection point on T (shown in
green). In the middle diagram, we see the result of removing a neighborhood of the inter-
section point from each disk. On the right, we see a disk thought of as [0, 1] x [0, 1] that
can be glued to the middle figure. On the top we see the strip and below that we see it
mapped into the neighborhood of the intersection point.

Turning to the framing induced on the torus knot from T and the Seifert surface we
can take a vector normal to the knot and tangent to T. This is the framing given by T.
Rotate the vectors giving this framing in the normal bundle to the knot by 7t/2. Notice
that away from the resolved double points. This agrees with the framing given by the
Seifert surface.
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Exercise 6.5.17. Show that in a neighborhood of the resolved double point the framing
given by T and by the Seifert surface differ by +1 depending on whether one did the
resolution to get a positive torus knot or a negative torus knot.

Since there were pg double-points that were resolved we see that the difference be-
tween the two framings is pq. m]

We are now ready for the classification of Legendrian positive torus knots.

Proof of Theorem 6.5.4. Suppose pgq > 0. We first note that the Bennequin inequality,
Theorem 3.7.5, and the Seifert surface for a (p, )-torus knot constructed in Lemma 6.5.3
tells us that any L € £(7}, 4) has tb(L) < pq — p — q. The theorem clearly follows once the
following two items are verified.

(1) any element of £(7,,,) destabilizes to an element with tb = pq —p — g, and
(2) there is a unique element in £(7}, 4) withtb = pg —p —q.

To prove Item (1) let L be any element in .£(7), ) with tb(L) < pg —q —q. Let T be any
torus containing L and bounding a solid torus with core in the knot type of the unknot.
By Lemma 6.5.3 we know that the twisting of the contact planes relative to T is less than
—p — g and hence we can isotop T relative to L to make T convex by Theorem 3.3.1. Using
Lemma 6.5.14 we can find a torus T’ isotopic to T that has two dividing curves of slope
—1. Assume that the ruling slope of T" is q/p. Let A be an annulus with one boundary
component on L and the other on a ruling curve of T’. We note that JA N T’ intersects
the dividing curves on T’, 2(p + g) times and the dividing curves on T, 2|tw(L,T)| >
2(p +2) times. Thus the contact twisting along each boundary component relative to A is
negative. So we may make A convex. Notice that the dividing set on A must contain an
arc parallel to the boundary component L. Thus Lemma 5.4.14 says there is a bypass for
L on A and Theorem 6.1.5 says that L destabilizes.

We now turn to the proof of Item (2). In this case assume that we have two Legendrian
representatives L and L’ in £(7;,4) with tb = pg — p — q. Then as above we can put L and
L’ on convex tori T and T".

Exercise 6.5.18. Show that any curve y on a torus with a negative slope not equal to -1
will intersect the curve of slope q/p more than p + g times.

Given the exercise, we see that both T and T’ must have two dividing curves of slope
—1 (since otherwise their tb would be less than pg —p —g). We can use Giroux flexibility to
arrange that T and T” are in standard form with ruling curves of slope g/p and L and L’
are among the ruling curves. Now T and T” bound solid tori S and S’, respectively, in the
knot type of the unknot; in fact, they are standard neighborhoods of Legendrian unknots
with tb = —1. From Theorem 6.4.1 we know these Legendrian unknots are isotopic and
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hence Lemma 6.1.2 says there is an ambient contact isotopy that takes S to S’ and, in
particular, T to T’. After this isotopy L and L’ are ruling curves on the same convex torus
and hence Legendrian isotopic through ruling curveson T = T". m|

We now turn to the classification of Legendrian negative torus knots. We start with
determining the maximal Thurston-Bennequin invariant of negative torus knots.

Lemma 6.5.19. If pq < 0 then E(TM) =pq.

Proof. Note that Figure 6.5.25 describes a negative Legendrian torus knot with tb = pq.
So. it will be enough prove that there is no negative Legendrian torus knot with tb >
pq. Suppose not. That is, we suppose there exists a Legendrian negative torus knot
L with tb(L) = pg + 1. Now by attaching a Stein 2-handle to D* = 9S° along L, we
obtain a Stein manifold W. It is easy to check that the boundary 3-manifold is dW =
S3(pq) = L(p, g#)#L(q, px) where px, g, modulo p, g, are multiplicative inverses of p, g,
respectively, and which obviously includes a 2-sphere S. On the other hand, a theorem
of Eliashberg in [Eli90a] says, under this circumstances, that there must be an embedded
3-ball D in W such that dD = S. We prove now that this is not possible, and hence
get the desired contradiction. Assume there is such a ball, then there are essentially
two possibilities for W. Either W has a 1-handle, i.e. W = W’ U 1-handle or W is the
boundary sum of two 4- manifolds, say W = WiiiW,. The former possibility is impossible
as this would imply that our simply connected W has Hi(W) # 0. The latter possibility of
W = Wi§W,, after using a Mayer-Vietoris type argument, will lead one of the summands
to be an integral homology sphere which cannot happen as dW is a connected sum of
non-trivial lens spaces. o

Proof of Theorem 6.5.8. We are assuming that —g > p > 0 and we recall the items
claimed in the theorem.

(1) The maximal Thurston-Bennquin invariant of T, ; is pg.
(2) Any knot in £(7},4) is a stabilization of one with tb = pg.

(3) If k is a positive integer such that -k — 1 < % < —k then there are exactly 2k
knots in £L(7}, ;) with tb = pg and they are determined by their rotation numbers
which are

{i(q—p+2pn:0§n < qr%p}

(4) The knot T 4 is Legendrian simple, that is two knots in .£(7, ;) are Legendrian
isotopic if and only if they have the same tb and rot.

Item (1) was proven in Lemma 6.5.19, so we start with the proof of Item (2). Suppose
L € L(7,,) and tb(L) < pq. Let T be a torus containing L that bounds a solid torus
with core an unknot. According to Lemma 6.5.3 we know that tw(L,T) < 0, thus we
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can isotop T, relative to L, so that it is convex by Theorem 3.3.1. From Lemma 6.5.14, we
can find a torus T’ isotopic to T with dividing slope q/p. Let A be an annulus with one
boundary component L and the other a dividing curve on T”. It is easy to see that A can
be made convex (see the argument in the previous proof, if this is not clear). Notice that
the dividing set of A must contain an arc that is parallel to L. Thus Lemma 5.4.14 says
there is a bypass for L on A and Theorem 6.1.5 says that L destabilizes.

Turning to Item (3) let L € £(7,,4) have tb(L) = pg. As above we can put L on a
convex torus T that bounds a solid torus S in the knot type of an unknot. By Lemma 6.5.3
we know tw(L,T) = 0, and thus the dividing slope of T must be g/p and L will be one
of the Legendrian divides on T. Recall that we are assuming there is a positive integer k
such that -k -1 < q/p < —k, so by Lemma 6.5.14 there are convex tori T’ and T” isotopic
to, and disjoint from T, with two dividing curves of slope —k and —k — 1 respectively. Let
S’ and S” be the solid tori that T’ and T” bound (if we are in S® then T’ and T” bound
solid tori on both sides, one is S and one is S, we choose the one with lower meridian
oo and the torus S was also chosen this way, see Section 5.6 for terminology). We note
that we must have S” € S C S’ since if any of the inclusions were reversed then the

2 x [0, 1] difference between two of the tori would contain a convex torus with dividing
slope oo and its Legendrian divide would bound an overtwisted disk. Notice that S’ is
a standard neighborhood of a Legendrian unknot L’ with tb = —k and S” is a standard
neighborhood of a Legendrian knot L” that is a stabilization of L’ (by Lemma 6.1.3).

We claim that L is determined by L’ and L”. (By this we mean that if L is another
Legendrian (p, q)-torus knot with tb = pq having unknots L’ and L” associated to it as
above and L’ is Legendrian isotopic to L’ and L” is Legendrian isotopic to L” then L
and L are Legendrian isotopic.) Assuming this for a moment we note that there are k
possibilities for L’, that is there are k Legendrian unknots with tb = —k. This follows
easily from the classification of Legendrian unknots in Theorem 6.4.1. Moreover, there
are 2 possibilities for L” since there are exactly two ways to stabilize L’. Thus there are at
most 2k possible elements in £(7; 4) with tb = pq, but in Exercise 6.5.9 it was shown that
there are at least 2k such knots. Thus there are exactly 2k such knots and, in addition, it
was verified in that exercise that the the possible rotation numbers are as claimed. This
completes the proof of Item (3). We will give a different computation of the rotation
numbers below.

We now verify the claim that L is determined by L’ and L”. Let L be another Legen-
drian (p, q) -torus knot with tb = pg having unknots L’ and L” associated to it as above,
let S’ and S” be their associated solid tori, and let T be the convex torus on which L sits.
We assume that L’ is Legendrian isotopic to [’ and L” is Legendrian isotopic to L”. Thus
by Lemma 6.1.2 we know there is an ambient contact isotopy taking 5" to 5’ Since L” and
L” are the same stabilization of L = L they are isotopic in " = §” and hence Lemma 6.1.2
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says there is an abient contact isotopy of S’ taking 5" to S”. Thus we can assume that L
and L (and T and T) are contained in the basic slice T?> x [0,1] = S" \ S”.

We will show that there is a torus T in T2 x [0, 1] that has a linear characteristic fo-
liation of slope q/p and the Legendrian dividing curves on T and T agree with TN'T
and T NT, respectively. Given this, we can Legendrian isotop L to L through leaves of
the characteristic foliation of T and thus completing the proof of our claim. This follows
from the following lemma that will be useful later.

Lemma 6.5.20. Suppse (T? x [0, 1], &) is a basic slice with dividing slopes so and s1. Let r be
any slope in (so, $1). Given any convex torus T in T? x [0, 1] with dividing slope r (and any even
number of dividing curves), there is a torus T in T2 x [0, 1] that has linear characteristic foliation
of slope r and T N T are the Legendrian dividing curves on T.

Proof. We note that we can find convex tori T’ and T” (these are not related to the simi-
larly denoted tori in the proof above) in T? X [0, 1] with each having two dividing curves
of slope r and that cobound a thickened torus containing T. If T has two dividing curves
then we can take T” and T” to be copies of T in an invariant neighborhood of T. If T
has more than two dividing curves then we proceed as follows. Suppose T” is closer to
T? x {0} than T”, then we can find T’ by taking an annulus A with one boundary com-
ponent a Legendrian divide on T? X {0} and the other a ruling curve on T. We can make
A convex and find a bypass for T along A. From Theorem 5.4.11 we know attaching this
bypass will reduce the number of dividing curves on T by two. Continuing to attach
bypasses we arrive at T’. We may similarly find T”.

We can break T? X [0, 1] into four pieces using the above tori
T?2x[0,1] = R1URy UR3 URy,

where IR = (T?> X {0})) UT’,dR, =T’ UT,dR3 =T UT”,and IRy = T” U (T! x {1}). The
contact structure on R is given by a path in the Farey graph from sg to r with all edges
decorated by the sign of the basic slice and similarly for R4 except the path goes from r
to s1. Notice that Ry U R3 is an invariant neighborhood from T’ to T”. Choose a slope 7’
that had an edge to r in the Farey graph and consider the annulus A; in R; and A in R3
with boundary ruling curves of slope r’ on the tori T’ and T for A1 and T and T” for A”.

Exercise 6.5.21. Prove we can make these annuli convex and the contact structure on R,
and Rz is completely determined by the dividing curves on A; and A, respectively.

Let & be the contact structure on T2 x [0, 1] constructed in the proof of the existence
of a basic slice with slopes sg and s; (if we choose the correct model this is of course
contactomorphic to &, but we will build a particular contactomorphism between & and
&"). Note from Corollary 5.3.2 we know that in (T? X [0, 1], &’) there is a torus T that has
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linear characteristic foliation of slope 7. We will now see how to decompose (T?x[0, 1], &’)
into pieces that are contactomorphic to the R; above.

Exercise 6.5.22. Show that one can perturb T into three tori f, f’, and T” in (T2 x[0,1], &)
that are all convex with dividing slope r and such that

(1) T and T” have two dividing curves and cobound a thickened torus containing
T,
) T has the same number of dividing curves as T,

(3) the Legendrian dividing curves on f, f’, and T” are exactly their intersection
with T,

(4) the tori split T? x [0, 1] into four regions El, 132, Eg, ﬁ4 in the same way the R;
were constructed above, and there are annuli A\l and A\z in the Ez and E3 respec-
tively that have slope r” have boundary ruling curves and the dividing set on A;
is the same as on A;.

Hint: Show R; U R3 can be thought of as A x S! where A is an annulus of slope r" and
the contact structure is S!'-invariant. The dividing curves on A consist of two arcs going
from one boundary component of A to the other. Find an arc y in A that splits A into A,
and A,.

Note that there is a contactomorphism taking R; to R; for each i and they together
give a contactomorphism from (T?x [0, 1], &) to (T? x [0, 1], £) and the image of T will be
the torus claimed in the lemma. O

We now turn to the proof of Item (4).

Exercise 6.5.23. Show thatif r and r’ are adjacent rotation numbers for a maximal Thurston-
Bennequin invariant (p, q)-torus knot then |r — 7’| is either 2¢ or 2(p — e) where we recall
that —g = np + e and n and e are positive integers.

Suppose L and L’ are the maximal Thurston-Bennequin invariant Legendrian knots
with rotation numbers r and 1/, respectively. We know that we can write —g = (11 + 12 +
1)p + e and —g = (n] + n; + 1) + e and L is given by the front project in Figure 6.5.25 for
some choice of A and L’ is also give by this front projections but where the n; are replaced
by 1} and some choice for A is made.

Show that if |r — 7’| = 2e then n; = n and the choice for A in the two front diagrams
is opposite for L and L. If |[r — 7’| = 2(p — e) then, assuming r > 7" show that n] = ny +1
while 1} = n; — 1 and the choice of A for L on the left of the figure while the choice of A
for L’ is on the right.

Using Legendrian Reidemeister moves, see Theorem 1.4.22, show that if r = 1" + 2e
then S¢ (L) is Legendrian isotopic to S$(L’) and similarly if r = ¥’ + 2(p —e).
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This exercise completes the proof of Item (4) and hence the theorem, but we will give
another proof below that is more in the spirit of convex surfaces and will be useful when
studying cabled knots. ]

We now give an alternate computation of the rotation numbers of maximal Thurston-
Bennequin invariant (p, )-torus knots as well as showing they become Legendrian iso-
topic as soon as they have been stabilized enough for their rotation numbers to be the
same. Given a null-homologous convex torus T in a contact manifold (M, &) let N be an
invariant neighborhood of T

Exercise 6.5.24. Since T is null-homologous, show that &|x can be trivialized.

Let 7 be a trivialization of £ on N. If T is in standard form then define a section s
of £ along T as follows: s will be tangent to the Legendrian divides and agreeing COME
BACK TO THIS!

6.6. Classification of non-loose Legendrian unknots

Since Eliashberg’s seminal result classifying overtwisted contact structures on 3-manifolds
[Eli89], there has been very little study of Legendrian and transverse knots in an over-
twisted contact structure [CEMM23, EF09, Etn13, EMM22]. But some recent advances
[EMT24] suggest that the study of Legendrian and transverse knots in overtwisted con-
tact structures is essential for our understanding of the geometry of tight contact struc-
tures and that their classification can be subtle and surprising [EMM22]. In this section
we will introduce the basic facts about Legendrian and transverse knots in overtwisted
contact structures.

6.6.1. Executive Summary. There are two kinds of Legendrian knots in an overtwisted
contact structure: loose Legendrian knots, whose standard neighborhood has an over-
twisted complement, and non-loose Legendrian knots, whose standard neighborhoods
have a tight complement. Similarly we say a transverse knot is loose if its complement is
overtwisted and non-loose otherwise. We note that in the literature some authors use the
term exceptional instead of non-loose.

In most contact structures, and in particular most overtwisted contact structures, it is
not true that two Legendrian knots are Legendrian isotopic if and only if they are con-
tactomorphic (by a contactomorphism smoothly isotopic to the identity) as is the case in
(S3, Estd) by Lemma 1.4.1. We will see a specific case where this fails below. Thus in this
section we will classify Legendirian knots up to co-orientation preserving contactomor-
phism, smoothly isotopic to the identity. We call this a coarse classification of Legendrian
knots and make a similar definition for transverse knots.



6.6. Classification of non-loose Legendrian unknots 291

Theorem 6.6.1. Null-homologous loose Legendrian knots are coarsely classified by their classical
invariants (that is knot type, Thurston-Bennequin invariant, and rotation number) and any pair
of integers whose sum is odd can be realized as the Thurston-Bennequin invariant and rotation
number of a loose Legendrian knot in any knot type. Loose transverse knots are coarsely classified
by their classical invariants (that is, knot type and self-linking number) and any odd integer can
be realized as the self-linking number of a loose transverse knot.

Remark 6.6.2. A similar theorem should hold for non-null-homologous knots too, but
there is no rotation number in that case and the contact framing does not correspond to
the integers (in fact, the framings on the knot might be finite if there are S1x 5% summands
in the manifolds)

So we have a complete, course, classification of loose Legendrian and transverse
knots. It turns out that non-loose Legendrian knots are much interesting and have appli-
cations to the construction of tight contact structures, see for example [EMT24, Mat22].
We discuss the little that is known about their classification below. For now we make a
few general observations. The first is that non-loose Legendrian knots obey a version of
Bennequin bound.

Theorem 6.6.3 ([Swiatkowski 1992, [$92]). Let (M, &) be an overtwisted contact manifold and
L a non-loose Legendrian knot in (M, &) with a Seifert surface X.. Then

—|tb(L)[ + |rot(L)] < —x(Z).

See Figure 6.6.31.

Unlike for Legendrian knots in general, a given knot in a contact manifold might not
be approximable by a non-loose Legendrian knot. In particular, we have the following
result.

Theorem 6.6.4 (Chatterjee, Etnyre, Min, Mukherjee 2023, [CEMM23]). If M is an irre-
ducible 3-manifold then a knot K in M has a non-loose Legendrian representative in some over-
twisted contact structure on M if and only if M admits a tight contact structure. If K admits a
non-loose Legendrian representative and K is not the unknot, then K admits such representatives
in at least two overtwisted contact structures.

The knot K admits non-loose transverse representatives in some overtwisted contact structure
on M if and only if K is not the core of a Heegaard torus for a lens space and M admits a tight con-
tact structure. If K admits non-lose transverse representatives then it admits such representatives
in at least two overtwisted contact structures.

In general, it is not well-understood how many contact structures support non-loose
representatives of a given knot K, but from the examples we understand (see below) it
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tb

rot

Figure 6.6.31. Possible (rot, tb) numbers for non-loose Legendrian knots in a fix knot type
K. The solid lines corresponds to —| tb(K)| + | rot(K)| = —x(X)

seems that there are very few contact structures in which K will admit non-loose repre-
sentatives. We note that in [CEMMZ23] a version of the above theorem was proven that
did not require M to be irreducible. We will not give the proof of this result here, but refer
the interested reader to [CEMM23]. In the above theorem we see that the criteria for a
knot to have a non-loose Legendrian representative and a non-loose transverse represen-
tative is different. The distinction between non-loose Legendrian and transverse knots is
further highlighted by the next result.

Lemma 6.6.5. Any Legendrian approximation of a non-loose transverse knot is non-loose, but
the transverse push-off of non-loose Legendrian knots need not be non-loose.

We now turn to the first classification of non-loose Legendrian and transversal knots.

Theorem 6.6.6 (Eliashberg and Fraser 1998, [EF98]). The contact manifold (S, &) admits a
non-loose Legendrian representative of the unknot if and only if n = 1. In (S3, &1) the complete
list of non-loose Legendrian unknots is Ly for i > 1 and Ly where

tb(LY) = k,rot(L;) = +(k — 1), tb(L1) = 1, and rot(L;) = 0.
In addition S<(Ly) = Ly, for k > 2, S£(L5) = L1 and S.(L1) is loose. See Figure 6.6.32.

There are no non-loose transverse unknots.
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Figure 6.6.32. The mountain range for non-loose unknots in (S3,&1).

We can exhibit the non-loose unknots in (S, &1) by a contact surgery diagram. See
Figure 6.6.33. To see this one may easily see that the surgery in the figure gives S and

> (+1)
(+1)

Figure 6.6.33. The non-loose Legendrian unknot with tb = 1 is shown in red.

compute that the ds-invariant of the surgery manifold is 1. To see that the red curve is a
non-loose unknot with tb = 1 we note that Legendrian surgery on the red curve cancels
one of the contact (+1)-surgeries, see Lemma 6.2.4, leaving the tight contact structure on
Stx §2.

Exercise 6.6.7. Prove that contact (+1)-surgery on the maximal Thurston-Bennequin in-
variant Legendrian unknot gives the tight contact structure on S! x S2.

Exercise 6.6.8. Show that if L is a Legendrian knot in an overtwisted manifold on which
Legendrian surgery produces a tight contact manifold, then L is non-loose.

A simple corollary of the above result is that there are no non-loose transverse un-
knots.

Corollary 6.6.9. Any transverse unknot in any overtwisted contact structure is loose.

We now recall work of Vogel that classifies Legendrian unknots up to Legendrian iso-
topy. We point out that this is only such result that pushes classification beyond “coarse
classification”.
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Theorem 6.6.10 (Vogel 2018, [Vog18]). In (S, &1) for each (k, +(k — 1)) with k > 1 there are
exactly two non-loose Legendrian knots up to Legendrian isotopy with tb = k and rot = +(k —1).

Loose Legendrian unknots in (S%,&,) are uniquely determined by their tb and rot unless
n = 1and tb > 0, in which case there are exactly two representatives that are not Legendrian
isotopic for each realizable tb and rot.

We will not prove this theorem, but not the proof involves studying the contacto-
morphism group of overtwisted contact structures. See [Vog18] for details. We will also
not further discuss Legendrian and transverse knots in overtwisted contact structures
but refer the reader to [Dym01, Etn13] for general results about non-loose Legendrian
knots and [EMM22] for the classification of non-loose Legendrian torus knots, see also
[GO20, Mat22] for previous work on non-loose torus knots.

6.6.2. Proof of the main results. We begin with a sketch of the proof that loose Legen-
drian (and transverse) knots are “simple”.

Sketch of the proof of Theorem 6.6.1. Eliashberg’s classification of overtwisted contact
structures, Theorem 1.6.2, also holds for contact manifolds with boundary and we can
analyze homotopy classes of plane field on a manifold with boundary (and plane field
fixed near the boundary) just as we did on a closed manifold in Section 1.5.2. Recall,
that they are determined by the Euler class (or a slight refinement if the homology has 2-
torsion) and a d3 invariant. Given two null-homologous loose Legendrian knots L and L’
in the same knot type we can consider complements C and C’, respectively, of their stan-
dard neighborhoods. If tb(L) = tb(L’) then the characteristic foliation on their boundaries
can be assumed to be the same. One can show that the Euler class of the contact struc-
ture on C and C’ is determined by that of the ambient contact manifold and the rotation
numbers of L and L’. Lastly, the dz-invariant of the contact structure on C and C’ is de-
termined by that of the ambient contact manifold. Thus if all the classical invariants of
L and L’ are the same, then Eliashberg’s classification of overtwisting contact structures
says C is contactomorphic to C’ (and we can assume that this contactomorphism takes
the meridian of L to the meridian of L’). Thus we can extend this contactomorphism over
the neighborhoods of the knots to get an ambient contactomorphism taking L to L'.

For details of the study of plane fields on a 3-manifold with boundary and the above
proof, see [Etn13]. O

We now turn to a version of the Bennequin bound for non-loose Legendrian knots.
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Proof of Theorem 6.6.3. The inequality in the theorem will hold if the following two in-
equalities hold

tb(L) £ rot(L) < —x(X) if tb(L) <0
—tb(L) £ rot(L) < —x(X) it tb(L) > 0,

for any surface £ with JX = L.

To verify these inequalities, let N(L) be a standard neighborhood of L with ruling
curves of slope 0. Note each ruling curve is null-homologous in the complement of N (L)
which is tight. In the case that tb(L) < 0 then from Theorem 6.1.9 we know that a ruling
curve is isotopic to L and we get the desired inequality from the standard Bennequin
inequality, Theorem 3.7.5. We obtain the same conclusion if tb(L) = 0 except this time we
use a Legendrian divide. Finally, if tb > 0 then Theorem 6.1.9 says the 0 sloped ruling
curve is S?(L) o St_b(L)(L) and thus has tb = —tb(L) and rot = rot(L). Thus again, the
standard Bennequin inequality yields the desired result. m|

Recall Lemma 6.6.5 says that any Legendrian approximation of a non-loose trans-
verse knot is non-loose, but it need not be true that a transverse push-off of a non-loose
Legendrian knot is non-loose.

Proof of Lemma 6.6.5. Let T be a non-loose transverse knot and L some Legendrian ap-
proximation. If L can an overtwisted disk in its complement, then there is such a disk in
the complement of a small standard neighborhood of L. But the transverse push-off L.
of L is contained in the standard neighborhood. Thus L; is loose, but L. is transversely
isotopic to T, and thus T is loose. This contradicts our hypothesis and thus L is non-loose.

From the classification of non-loose Legendrian unknots in Theorem 6.6.6 and the fact
that there are no non-loose transverse unknots, we see that the transverse push-off of a
non-loose Legendrian knot can be loose. m]

We end this section with the (coarse) classification of non-loose Legendrian unknots.

Proof of Theorem 6.6.5. We will study Legendrian unknots via their complements. Given
a Legendrian unknot L with tb = n its complement C of the standard neighborhood N(L)
is a solid torus with upper meridian 0 and convex boundary with two dividing curves
of slope n (all slopes are described by longitude-meridian coordinates on the standard
neighborhood of L).

Recall from Theorem 5.6.3 we know that Tight(S%; 1) has |n| elements if n < 0, 0
elements if n = 0, 1 element if # = 1, and 2 elements if # > 1. We note that in (53, &)
there are |1n| Legendrian unknots with tb = n < 0. Thus all the tight contact structures on
C in this case come from the complement of Legendrian knots in the tight S* and hence
do not correspond to non-loose Legendrian unknots. However, all the contact structures
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with n > 0 do not occur in the tight S® and we see that when we glue the standard
neighborhood of L to any one of these we obtain an overtwisted contact structure because
C will contain a convex torus with dividing slope co and a Legendrian divide on this torus
will bound a disk, and hence an overtwisted disk, in N(L).

The paths in the Farey graph for the two contact structures in Tight(S°; n) when n > 1
are shown in Figure 6.6.34 as is the one in Tight(SO ;1). Let L;; be the Legendrian unknot

0 0

H+

o

Figure 6.6.34. Farey graphs for the contact structures on the complement of non-loose
Legendrian unknots with tb > 1 on the left and tb = 1 on the right.

with complement the contact structure in Tight(S%; 1) corresponding to the path in the
Farey graph with a + sign and let L be the one with complement having the unique
contact structure on Tight(S% 1). We now set Ci to be the complement of the standard
neighborhood of N(L;;) and similarly C; is the complement of N(Ly).

We note that the meridional disk for C; is a Seifert surface for L and thus we can
compute the rotation number of L;; using this disk by Theorem 3.5.1. More specifically,
if dC;; has ruling slope 0, then Theorem 6.1.9 says that a ruling curve will have the same
rotation number as Ly; and if D is the disk in C that this ruling curves bounds then we
can make it convex and rot(L}) = x(D4) — x(D-).

Exercise 6.6.11. The contact structure on C;; from the complement of N(L}) is the union
of the unique tight contact structure in Tight(S°, c) and a basic slice in Tightmm(T2 X
[0,1]; 00, 1). Use the formula for the Euler class of basic slices in Theorem 5.3.1 to show
that rot(L;;) = +(n — 1). Similarly, rot(L;) = 0.

We now see that Sz(L%) = L:j_l for n > 3 and S;(Lg—') = L. Given this, we see that
all the non-loose unknots are in one overtwisted contact structure on S3. Recall that if
N(Sz(Lj) is a standard neighborhood of Sz (L) then its complement in N(L;,) is a ¥ basic
slice. If we add this basic slice to C}; then we get C_,.
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Exercise 6.6.12. Check this last statement. Note that as you move the basic slice from the
neighborhood of the knot to the complement the sign changes (since the orientation on
the manifold changes!).

We have a similar result for L3 and this completes the claim.

We are left to see that the overtwisted contact structure containing these non-loose
knots in &y, that is has d3 = 1. To this end consider Figure 6.6.33.

Exercise 6.6.13. Show that the red curve in the figure has tb = 1 and compute the ds-
invariant.

This completes the classification of non-loose Legendrian knots. The fact that there
are no non-loose transverse unknots follows since as one negatively stabilizes a Leg-
endrian knot its transverse push-off is unchanged and after some number of negative
stabilizations any non-loose Legendrian unknot becomes loose and hence its transverse
push-off is also loose. m]






Chapter 7

Symplectic fillings

This chapter focuses on various types of symplectic fillings of contact manifolds, sym-
plectic cobordisms between contact manifolds, and various constructions. In Section 7.1
we review and expand on our discussion in Section 1.6.2 about various types of sym-
plectic fillings of contact manifolds. The next section discusses toric 4-manifolds as a
convenient way to build symplectic fillings and symplectic caps for lens spaces (we will
also use toric geometry in Section 13.3 to build symplectic 4-manifolds and show that
contact manifolds with positive Giroux torsion do not admit strong symplectic fillings).
In Section 7.3 we will show how to glue a symplectic filling of a contact manifold to
a symplectic cap to build closed symplectic manifolds. We will then use this construc-
tion to show that there are contact structures that are weakly but not strongly fillable.
We will also show that Fintushel and Stern’s important smooth construction of rational
blow-down can be done in the symplectic category. In Section 7.4, we turn to another
important construction of symplectic manifolds. Specifically, we will discuss attaching
Weinstein handles to symplectic manifolds with convex boundary. The last section of this
chapter will show that there are tight contact structures that are not fillable.

7.1. Types of symplectic convexity (and concavity)

Here we consider several types of fillability and discuss how they are related. We first
recall from Section 1.6.2 that a compact symplectic manifold (X, w) is a weak symplectic
filling of a contact manifold (M, &), also simply called a weak filling, if

e 0X = M as oriented manifolds, and

® w|: is an area form

Remark 7.1.1. We note that the compactness assumption in the definition above is es-
sential. Indeed, for any (M, <& = kera), the (non-compact) symplectic manifold (Y x

299
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[0, 0), d(e'a)) satisfies the listed properties above forms a weak symplectic filling of

(M, &) .

If £ is an oriented contact structure (so we have chosen a preferred orientation on
&), then in the second bullet above, we would require that w|s be an area form defin-
ing the given orientation. If (M, &) admits such an (X, @), then we say that it is weakly
symplectically fillable or just weakly fillable.

We now move on to a stronger form of symplectic fillability. We say that a compact
symplectic manifold (X, w) is a strong symplectic filling of a contact manifold (M, &), also
called a strong filling, if

e 0X = M as oriented manifolds,

there is a vector field v defined near dX and transverse to dX such that

Lyw=w,

e v points out of X along dX, and

a = (1p,w)|p is a contact form for &

A vector field v satisfying the second bullet point above is called a symplectic dilation.
See Figure 7.1.1 Recall that £, is the Lie derivative in the direction of v and ¢, is the
contraction of v into a differential form. If (M, &) admits such an (X, w), then we say that
it is strongly symplectically fillable or just strongly fillable. It is common to refer to a strong
symplectic filling as simply a symplectic filling and only add the word “strong” when
trying to contrast with a weak symplectic filling. We also say that (M, &) is the convex
boundary of (X, w) and that (X, w) is a convex symplectic filling of (M,&). So a convex
symplectic filling is the same thing as a strong symplectic filling of a contact manifold.

0

X, )

Figure 7.1.1. A symplectic manifold (X, w) with convex boundary.

We now remind two examples of strong symplectic fillings from Section 1.6.2 for the
convenience of the reader.
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Example 7.1.2. Consider C2 with the symplectic form w = dxj Ady;+dxy Ady,. The radial
vector field v = % (x1% + y1% + xzaixz + y2z9iy2) satisfies L,w = w and is transverse to

the unit sphere S3. Moreover, our discussion in Example 1.1.18 shows that &gy on S3is
the kernel of t,w. Thus, the unit ball B* is a strong symplectic filling of (53, &s¢a).

Example 7.1.3. Consider the symplectic manifold (C — {0}) x C with symplectic form
dr AdO + dx A dy where (v, 0) are polar coordinates on C — {0} and (x, y) are Cartesian

coordinates on C. Letv = (r — 1)% + % (x% + y%) and S' x S? be the boundary of a
small tubular neighborhood S!' x D? of S! = {(r, 0, x, y)|r* + x> + y? < €2}. Notice that v

is transverse to S! x S? and dilates w. Thus (S! X D3, w) is a strong symplectic filling of
(S x §2, &) where Egiq = ker(1pw).

It is easy to see how weak and strong convexity are related.

Lemma 7.1.4. If (X, w) is a strong symplectic filling of (M, &), then it is also a weak filling of
(M, &).

Proof. This is clear as da is positive on ker « and w = da on M. m]

We will show in Section 7.3 that there are weakly fillable contact structures that are not
strongly fillable, but in some cases they are the same.

Theorem 7.1.5. If (X, w) is a weak symplectic filling of a contact structure & on M and w is
exact near M, then w may be deformed near M to a new symplectic form '’ such that (X, ’) is
a strong symplectic filling of (M, &) and agrees with w away from M.

This was originally proven by Ohta and Ono in [0099], but the main part of the ar-
gument, on which our argument below is based, appeared first in the work of Eliashberg
in [E1i91].

Proof. Using the collar neighborhood theorem from differential topology, we can con-
sider the neighborhood (0, 1]xM of M in X. We denote by 8 a primitive for w on (0, 1]xM.
We also take a to be a contact form for & such that da = w on &.

Exercise 7.1.6. Show such an « exists.
Hint: what happens to da restricted to £ when a is rescaled.

Given any C > 0 we can find a K > 0 such that there is a function f: (0,1] — R such
that
e f=00n(0,1/8]
e f=Kton|[7/8,1],

e f is non-decreasing and strictly increasing on (1/8, 1], and
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e f'(t)> Cfort e[1/4,3/4].
We also choose g: (0,1] — R such that
(1) g=10on(0,1/4],
(2) g =0on([3/4,1],
(3) g is strictly decreasing on (1/4,3/4), and
(4) ¢'(t) > =3 forall t.

We will determine the constants C and K later, but for now consider the form

o = d(fa) +d(gp).

It is clear that on (0,1/8) X M, @’ = w so @’ can be extended to all of X by w. On
(7/8,1] x M the vector field v = t% is a dilation of w, is transverse to {t} X M, and (@’ is
a contact form for &. Thus, if @’ is a symplectic form on X, then it is the form claimed in
the theorem.

We note that o’ = f'dt Aa+ fda+ g'dt Ap+ gdp and so

W A = QPdBANAB+2f ' dt AaANda+2Ff ¢dt AaAdB +2feda Ad
g dp Ndp g p g p
2fg'da ndt AB+2gg" dt AB AdB.

We have dropped any term with dt A dt or da A da (since we are thinking of a as pulled
back to (0, 1] x M from M and hence essentially a 1-form on a 3-manifold).

Exercise 7.1.7. Show that the first four terms are all non-negative multiples of ¥ A w and
at any point of (0, 1] X M at least one of them is positive.

Hint: Notice that df = w and da agree on £. At any point, try evaluating the form on the
vectors %, X, 01, and vy where R, is the Reeb vector field of « and v1, v, is an oriented
basis for €.

We do not know anything about the last two terms, but notice that each has g’ in
it. Whenever g’ is non-zero, observe that if K and C are chosen large enough, then f f’
is larger than fg’ or g¢’ by any desired amount. Thus, the second term in the whole
expression will always dominate the last two terms so that the whole expression will be
a positive multiple of w A @ and hence w’ is a symplectic form. m]

The above theorem is most commonly used in the following form, which is an immediate
corollary of the theorem.

Corollary 7.1.8. Let M be a rational homology sphere, that is it has the rational homology of S°.
If (X, w) is a weak symplectic filling of a contact structure & on M, then we may alter w near M
to obtain a strong symplectic filling of (M, &).
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Strengthening strong symplectic fillability, consider Liouville domains. A Liouville
manifold is a symplectic manifold (X, w) with a chosen primitive A for w, thatis dA = w.
Notice that @ induces an isomorphism

Go: T(TX) = QY(X): v - Lo

where I'(T X) is the space sections of TX, that is vector fields on X, and (X)) is the space
of 1-forms on X.

Exercise 7.1.9. Prove that ¢, is an isomorphism.
Hint: This is very similar to the proof of Lemma 1.2.13 in the contact setting.

We can now define the Liouville vector field associated to A to be vy = ¢ l(A).
Exercise 7.1.10. Show that the flow of v, expands w, that is

Ly w=w.

That this last exercise makes it clear that we can alternatively define a Liouville
manifold X to be a symplectic manifold (X, ) together with a vector field v such that
Ly = w. The primitive for w will be 1, @, and v will be its Liouville vector field.

Exercise 7.1.11. Show that a Liouville manifold cannot be closed.

If the Liouville manifold (X, A) is compact, then we say it is a Liouville domain if the
Liouville vector field v, is transverse to the boundary of X and pointing out of X.

Exercise 7.1.12. Show that if (X, A) is a Liouville domain, then A|)x is a contact form on
dX and (X, dA) is a strong symplectic filling of (dX, ker(A|yx).

If the contact manifold (M, &) is contactomorphic to the contact manifold on the
boundary of a Liouville domain (X, w), then we say that (M, &) is exactly symplectically
fillable.

Example 7.1.13. Recall in Section 1.8.4 we defined a 1-form A on the cotangent bundle
T*M of any manifold M such that dA is a symplectic form. The form A is frequently called
the Liouville form for T*M and it clearly gives T*M the structure of a Liouville manifold.
If we take a Riemannian metric M and let U"M = {8 € Ty M : ||B]| < 1} be the unit disk
bundle in T*M, then one may check that the Liouville vector field associated to A points
out of JU*M. Thus, U*M is a Liouville domain and ker A|y;+p is a contact structure on
JdU*M that admits an exact symplectic filling.

There is a particularly nice type of Liouville domain called a Weinstein manifold. A
Weinstein manifold is a Liouville domain (X, A) together with a function ¢: X — R
satisfying:



304 7. Symplectic fillings

e ¢ is a Morse function,
e ¢ is bounded below,
e 0X is a regular level set of ¢, and

e the Liouville vector field v, is gradient-like for ¢.

Here we say v, is gradient-like for ¢ if the zeros of v, are non-degenerate and agree with
the critical points of d¢, and d¢p(vy) > 0 away from the critical points of ¢p. While we
will not consider this situation here, one can consider non-compact Liouville manifolds;
in this case, one also requires that ¢ be proper (that is, the preimage of compact sets are
compact).

Example 7.1.14. Let f: M — R be a Morse function on a compact manifold. As dis-
cussed in the example above, we have the symplectic structure w = dA on T*M. We now
let p: T*M — R be ¢(x) = f o 7t(x) + ||x||*> where : T*M — M is the projection map
and |[x|| the the norm of an element in T*M with respect to some Riemannian metric g
on M. We note that ¢ is a Morse function on T*M. Now let V f be the gradient of f with
respect to ¢. We can consider the flow of Vf in M. This induces a flow on T*M. Let vy
be the corresponding vector field on T*M. Finally, let v = v¢ + v, where v, is the radial
vector field in T*M. It is easy to check that v is gradient-like for ¢ and v is dilating for
dA. Thus (T*M, dA, ¢, v) is a Weinstein manifold.

Recall in Section 1.6.2 we defined Stein manifolds and Stein fillings of contact struc-
tures. For convenience, we recall those definitions here. A Stein manifold is a complex
manifold X with a J-convex function ¢: X — R that is bounded below and proper. Re-
call that if | is the almost complex structure on X associated to the complex structure,
then ¢ is J-convex if dA(v, Jv) > 0 for non-zero vectors v where A(v) = —d¢(Jv).

A Stein domain is a sub-level set of ¢ for a Stein manifold (X, ¢) and a contact man-
ifold (M, &) is called Stein fillable if (M, &) is contactomorphic to a regular level set of ¢.
As noted in Section 1.6.2 a Stein filling of (M, &) is also a strong filling, but we can say
more.

Lemma 7.1.15. If (X, ¢) is a Stein filling of a contact manifold (M, &), then there is a Morse
function ¢’ arbitrarily close to ¢ so that (X, —d¢p o |, ¢’) is a Weinstein filling of (M, ).

Proof. Given the Stein domain (X, ¢) with associated almost complex structure |, we
can find a Morse function ¢’ that is C*-close to ¢ for any k. For k > 1 it is easy to check
that ¢’ is also J-convex (since J-convexity is an open condition on functions with the C?
topology, but for this we recall that what we are calling J-convex, some would call strictly
J-convex). The form w = d(—d¢’ o ]) is a symplectic structure on X (this follows directly
from the fact that ¢’ is J-convex). We can now let g(v, w) = w(v, Jw).

Exercise 7.1.16. Show that g is a Riemannian metric on X and thatis g(Jv, Jw) = g(v, w).
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We can now let V¢’ be the gradient of ¢ with respect to g. That is V¢’ is a vector
field on X such that tyyyg = d¢’. Clearly V¢’ is gradient-like for ¢’, since it is actually
the gradient. We now claim

Lyyw =w

which shows that (X, w, ¢’) is a Weinstein filling of (M, &). To see this, we note that for
any tangent vector v we have

(1ver @)(©) = (V§',0) = ~g(V¢, o)
- ('ver 9)©) = =(J"d¢")(v),
That tyyw = —d¢’ o | and therefore we have
Lyyw =d(yyw) = -d(d¢’ o ]) = w,
as claimed. =

Exercise 7.1.17. Show that a Stein domain must have connected boundary.

It is subtle to determine if a given smooth manifold admits a complex structure (here
we mean an honest complex structure, not an almost complex structure), so the following
result of Eliashberg is quite spectacular.

Theorem 7.1.18 (Eliashberg [Eli90b], 1990). If (X, A, ¢) is a Weinstein filling of a contact
manifold (M, &), then after composing ¢ with a diffeomorphism of R it is J-convex for some
complex structure on X, thus giving a Stein filling of (M, &).

The proof of this result is well beyond what we will cover in this book and is only
stated here for completeness. In addition, there are many more precise statements one
can make about the connection between Weinstein and Stein manifolds. For a compre-
hensive look at this connection, the reader should consult the standard book [CE12] on
the topic. Given the last two theorems, constructing Weinstein fillings of contact man-
ifolds is essentially equivalent to constructing Stein fillings. While we will not prove
how one can construct Stein fillings in this book, we will see how to construct Weinstein
fillings in Section 7 4.

We now collect the results relating to various fillings of contact manifolds. For a
contact manifold (M, &) being

(7.1.13) Stein fillable = Weinstein fillable
(7.1.14) = exactly fillable
(7.1.15) = strongly fillable
(7.1.16) = weakly fillable

(7.1.17) = tight
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The equality follows from Lemma 7.1.15 and Theorem 7.1.18. None of the implications
can, in general, be inverted, though Implication 7.1.16 can be inverted for rational ho-
mology spheres by Theorem 7.1.5. Implication 7.1.16 cannot always be inverted. This
was shown by Eliashberg in [E1i96] and we will give his argument for this in Section 7.3
Implication 7.1.17 cannot be inverted. This was originally shown by Honda and the first
author in [EH02b]. We will prove this in Section 7.5 using an argument of Lisca and
Stipsicz [LS04].

In [Ghi05a], Ghiggini showed that there are strongly fillable contact structures that
are not Stein fillable and so Implication 7.1.15 cannot be reversed. Bowden showed
that there are exact but not Stein fillable contact structures in [Bow12]. Thus, Implica-
tion 7.1.13 cannot be reversed. We will discuss Ghiggini’s and Bowden’s examples in
Section 13.2.

When discussing symplectic fillings, one sometimes hears about semi-fillings. For ex-
ample, one might say (X, w) is a strong symplectic semi-filling of a contact manifold (M, &)
to indicate that (X, @) has convex boundary, but M is, possibly, only one component of
the boundary. So the word “semi" allows for the symplectic filling to have more than
one boundary component. This will be further discussed in Section 12.4 where we will
see that for contact structures supported by planar open books (the terminology will be
defined in that section) any symplectic semi-filling is actually a symplectic filling (that
is, the boundary must be connected). A famous early example of this is McDuff’s proof,
following Gromov, that any symplectic filling of the standard tight contact structure on
S3 has connected boundary.

Theorem 7.1.19 (Gromov 1984, [Gro85] and McDuff 1991, [McD91]). If (X, w) is a sym-
plectic semi-filling of (S3, Est4), then X has connected boundary.

We end this section by discussing the opposite of a symplectic filling. A symplectic
manifold (X, w) is said to have concave boundary if there is a vector field v defined near
dX such that

Lo =w
and v points into X along dX. We say that a compact (X, w) is a symplectic cap for the
contact manifold (M, &) if

¢ (X, w) has concave boundary where v is the vector field showing the boundary
is concave,

e JX = —M (where —M is M with its opposite orientation), and

e [,w is a contact from for &.

See Figure 7.1.2. The condition that X = —M might seem strange at first, but we no-
tice that since v is pointing into X along dX, the contact 1-form 1, is a negative contact
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X, )

0

Figure 7.1.2. A symplectic manifold (X, w) with cocave boundary.

form on JdX (recall dX is oriented using the standard “outward normal first" rule from
differential topology, [Leel3, Chapter 15]) and since we always are interested in posi-
tive contact structures, ker 1, is a positive contact structure on M = —dX. (Recall our
discussion about positive and negative contact structures on Page 10.)

Example 7.1.20. We will see in Chapter 13 that all contact 3-manifolds have many sym-
plectic caps, but we give many simple examples of symplectic caps for (S%, &4) here.
Just as there is a Darboux theorem for contact manifolds, see Theorem 1.2.2, there is a
Darboux theorem for symplectic manifolds [MS95, Theorem 3.2.2]. Specifically, if (X, @)
is any symplectic 2n-manifold, then any point x € X has a neighborhood U that is sym-
plectomorphic to an open ball about the origin in R?" with its standard symplectic form
w = Y7, dx;Ady;. Now let X° be the result of removing a small open ball about the origin
in U from X. Since the radial vector field on R?" is a symplectic dilation and transverse
to round spheres about the origin, we see that if X is compact and without boundary,
then (X°, w|x-) is a symplectic cap for (S3, Ess4).

Remark 7.1.21. One can also talk about a weak symplectic cap, but they do not currently
have practical applications, so they have not been studied. We will reserve the term
“symplectic cap” as we defined above, but sometimes say “strong symplectic cap” to
emphasize that the cap has a concave boundary.

7.2. Toric manifolds and building symplectic fillings
and caps

We will now discuss a convenient way to describe some symplectic manifolds and, in
particular, for our purposes, construct some symplectic fillings and symplectic caps that
will be useful later in the book. Specifically, we will discuss toric manifolds. We will just
discuss the basics here, but refer the interested reader to Symington’s excellent discussion
of toric geometry in dimension 4, [Sym03].
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We begin with a simple example of a symplectic manifold. Consider X = T? x R?
equipped with the symplectic form

w = dpl A dql + dpz A dqQ,

where (41, q2) are angular coordinates on T, and (p1, p2) are coordinates on R2. (Notice
that this is just the standard symplectic structure on T*T2.) We have the projection map

m: X — R2.

Each fiber of this trivial bundle is a Lagrangian torus. In general, a Lagrangian submani-
fold L of a symplectic manifold is a submanifold of half the dimension of the symplectic
manifold on which the symplectic form restricts to be the zero form.

We will now build more interesting manifolds by considering quotients of subspaces
of X. Let [ be a line in R? with rational slope r/s. Consider C; = n~1(I). Clearly, this is
just T? x R, but we now examine @ on C;. One may easily check that the vector

Ker2 _s 2

I g

at any point x € C; is in the kernel of w|c,. Moreover,
S1 :si+riand52:si+ri
dp1 Ip2 g1 9q2

span a symplectic subspace of T, C;.

Exercise 7.2.1. The flow of the vector field K generates a circle action on C;. Show that
the quotient of C; by this action is S! x R.
Hint: It is easy to check that the quotient of any torus fiber in C; by this action is a circle.

Exercise 7.2.2. Show that w induces a symplectic form on the quotient space S! x R.
Hint: The quotient map sends the span of S; and S; to a basis for the tangent space of
StxR.

Now consider hj, which is the half-space in R2 that is on one side or the other of |
(and includes /), and let H; = t"!(h;) be its preimage in X.

Exercise 7.2.3. Show that the quotient of H; by the action of S! on C; is a symplectic
manifold diffeomorphic to S x R>.

Hint: Let f: : X — R be the composition of 7 with a linear map on R? that has I as
its zero set and H; = f~!([0,0)). Notice that C; is the preimage of the regular value
0. We also have an S! action on H; that is given by extending the one above from C;
to all of H;. Now let j?: X X C — R be the funtion j?(x,z) = f(x) + |z|*>. Show that
f‘l([O, 0)) = (f71(0) x S') U £71(0). Extend the S! action above to this manifold by the
diagonal action on the first part. Show that the qotient of f‘l([O, o)) by the S! action is

F71(0, 00)) U (f~1(0)/S') which in turn is the quotient of H; by the S! action on C;.
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The construction in this exercise is a simple case of a (positive) symplectic cut. For the
more general symplectic cut, see [Ler95].

We now investigate the region R between two rays, as shown in Figure 7.2.3 (ignore
the blue arc for now). Let Xg be 771(R) after one quotients C;, by the action on Cj, by the

I
Figure 7.2.3. A region R in R? between two rays /1 and I.

action discussed above.

Lemma 7.2.4. Translate R so that the intersection of Iy and I is at the origin. If I and I are
spanned by integral vectors, then X is a manifold if and only if the vectors form an integral basis
for Z2.

Remark 7.2.5. The proof of this lemma will show that when Xy is a manifold, it will be
diffeomorphic to R*.

Proof. One should try to prove this directly in terms of the quotient space involved, but
we give a simple workaround. We first notice that from our discussion above, Xy is a
manifold at any point except possibly the point above the vertex where the rays I; and I»
meet. Thus we only need to prove that that point has a neighborhood that is Euclidean.

We claim that X is a manifold for the region in Figure 7.2.3, where [; is spanned by
the vector [1 1]t and [, is spanned by [1 0] t. Once this is done, we will see that Xy is
a manifold for any /; and I, spanned by integral vectors that form a basis for Z2, since
there will be a diffeomorphism of X that takes /1 and I, to the lines in Figure 7.2.3. To
establish our claim, consider the blue arc in Figure 7.2.3. Let M be the manifold in Xr
above the blue arc. We claim that this is S3. If we see this is true, then it is clear that the
compact region cut off from Xg by the blue arc is a cone on S® and hence the 4-ball. Thus,
the point in Xr above the vertex has a B* neighborhood, showing that Xz is indeed a
manifold.
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If we consider the points in X above the blue arc, before we take any quotients, then
we have [0, 1] x T2. If {0} X T? is above the line /1, then we need to collapse the circles of
slope —1 and in {1} X T>, we will need to collapse the curves of slope 0. In our notation
from Section 5.6, this means M is the union of a solid torus with lower meridian -1,
which we denoted S_; and a solid torus with upper meridian 0, which we denoted S°.
We will denote this union by S 91.

Exercise 7.2.6. Show 591 is S5.

We are left to see that if the integral vectors that span /1 and > do not form a basis
for 72, then Xy is not a manifold. As discussed above, the only way that X is not a
manifold is that the point in X above the vertex of /1 U I, does not have a neighborhood
that is Euclidean. As above, we can assume that [, is spanned by [1 O]t and then /1 will

be spanned by [q p]t for some relatively prime p and g where p # 1. The manifold M
above the analog of the blue arc in R will be sﬂp /o

Exercise 7.2.7. Show sﬁp /a is the lens space L(p, ).

Thus, the neighborhood of the point above the vertex in Xr is a cone on L(p, q) and
so that point does not have Euclidean neighborhood. m]

We would now like to see when X has a symplectic structure. To this end, take any
point q = (a, b) € R? consider the radial vector field based at q

d d
= —a)— + (g2 —-b)—.
Exercise 7.2.8. Show that this vector field on X dilates the symplectic form w.

Now consider a curve c in R? that is transverse to the radial vector field vq. The
manifold X. = n1(c) is a thickend torus ¢ x T? and g = —(q1—a)dp1—(q2—b)dqzisa
contact form on X.. We notice that, if q" is a point in ¢, then the characteristic foliation on
n~1(q’) is a linear foliation of slope given by minus the reciprocal of the angle of vq with
the positive g1-axis.

Exercise 7.2.9. If [; is a line in R? and 0vq is tangent to /1, the v4 induces a vector field on
Hj that expands the symplectic form on H; induced by w.

We are now ready to see when the manifold X above admits a symplectic form.

Lemma 7.2.10. Let R be the region bounded by two rays Iy and I, that are defined by vectors that
form an integral basis for Z*. The manifold Xg is a symplectic manifold if and only if the angle
in R formed by Iy and I, is convex.
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Proof. If the angle is convex, we will use the model given in Figure 7.2.3 for R since there
is a symplectomorphism of X taking any other such region to this one.

From our discussion at the beginning of this section, we know that Xz admits a sym-
plectic structure at every point except possibly the point above the vertex of I U I>.

Exercise 7.2.11. Consider the radial vector field vq where q is the vertex of I U I,. If
M is the manifold above the blue arc in Figure 7.2.3, then 1,, @ induces the tight contact
structure on M.

Exercise 7.2.12. Show that Xg — {x}, where x is the point above the vertex of I; U I, is
symplectomoprhic to R* — {(0,0, 0, 0)} with its standard symplectic structure.

From the exercises above, we see that the symplectic structure on Xg — {x} clearly
extends to Xg. So X is a symplectic manifold.

Now consider the case when the angle is not convex.

Exercise 7.2.13. Show that the contact structure induced on M (defined analogously to
M in the convex case) is overtwisted.

Given this, the manifold X cannot be symplectic since it would give a filling of the
contact structure on M, but overtwisted contact structures cannot be fillable by Theo-
rem 1.6.13. O

From our above discussion, we can now form many symplectic manifolds with con-
vex and concave boundaries. We begin by discussing regions bounded by 3 line segments
and an arc as shown in Figure 7.2.4. For these to be manifolds, we need the vectors span-

Figure 7.2.4. Two regions in R2.

ning adjacent arcs to be spanned by vectors that form an integral basis for Z?, and for
them to be symplectic, we need that each angle between two edges is convex. After ap-
plying a diffeomorphism to X we can assume that the first edge is spanned by [0 1] t,
the second edge is spanned by [1 0] t, and the third is spanned by [n 1] . Then the arc
¢, shown in blue in the figure, connects the endpoints of the union of the arcs. Denote the

region just described by R;,.

Exercise 7.2.14. Show that the symplectic manifold Xz, is diffeomorphic to a disk bundle
over S? with Euler number —n. (See Appendix A for the Euler number of disk bundles
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over surfaces.)

Hint: The middle arc is clearly an S2. If one chooses a point in the middle arc and a line
segment connecting it to the blue arc, show that the part of Xz, above the line segment
is S! X D? and that the interior of the region is “foliated” by such arcs. From this, one
can conclude that X, is a disk bundle over the sphere. To determine the Euler number,
consider the Euler number of the boundary (which is an S!-bundle over S? and has the
same Euler number). From above we know dXg, is L(n, 1).

Exercise 7.2.15. Given R, for n # 0, show that if there is a radial vector field vq that is
transverse to the blue arc and tangent to the first and third edges of R,. If n > 0, show
that Xg, has convex boundary and if n < 0 then it has concave boundary.

Now consider a region R bounded by line segments /1, ..., [, and an arc c, such that
each line segment intersects only the line segments with adjacent indices and only in
their endpoints. See Figure 7.2.5 for the case when n = 3. For Xy to be a manifold, two
adjacent edges must be spanned by integral vectors that form a basis for Z?, and for X to
have a symplectic structure induced from X, all the corners must be convex. To identify

/

Figure 7.2.5. Plumbing two disk bundles.

Xr we need to define the plumbing of disk bundles. Given two disk bundles E; and E;
over surfaces S; and S, we can choose disks D; in S;, then the bundle restricted to D; is
trivial. Thatis E;|p, = D; X D?2. The result of identifying E;|p, with E;|p, by interchanging
the disk factors, is called plumbing E1 and E,. Figure 7.2.6 shows a handle presentation
for the result of plumbing disk bundles over spheres.

ao ai an

Figure 7.2.6. Plumbing disk bundles over spheres.

Exercise 7.2.16. Show that X as described above is the result of plumbing n — 2 disk
bundles over spheres together.

Hint: See Figure 7.2.5 where the two disk bundles that are plumbed to obtain Xy are
shown in the middle and on the right.
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Exercise 7.2.17. Show that if Xy is the result of plumbing disk bundles with negative
Euler number, then Xz has a convex boundary. If one of the disk bundles has a positive
Euler number, then show Xz can be taken to have concave boundary.

Lemma 7.2.18. Any lens space admits a contact structure with a symplectic filling and a sym-
plectic cap coming from the construction above.

Exercise 7.2.19. Prove this lemma.
Hint: Recall our discussion of Rolfsen twists from Section 1.5.1.

We note that by changing the lengths of the line segments in R one can construct
many different symplectic structures on Xy, but this will not affect the contact geometry
of 8XR.

7.3. Symplectic cut-and-paste

In this section, we will see that one may use strong symplectic fillings and symplectic
caps to perform symplectic cut-and-paste operations. We will then use this construction
to prove that weakly symplectically fillable contact structures need not be strongly sym-
plectically fillable, and also prove that the important smooth 4-dimensional construction
of rational blowdowns can be done in the symplectic category.

7.3.1. A symplectic cut-and-paste construction. The main construction in this section is
the following gluing result.

Theorem 7.3.1. Suppose that (X1, w1) has a strongly convex boundary component My and
(X2, w2) has a strongly concave boundary component My. If there is a diffeomorphism f: M; —
M, that is isotopic to a contactomorphism of the contact structure induced on My by w; to the
contact structure induced on My by wy, then there is a symplectic structure w on the result of
gluing Xy to X5 using f:

(X1 [1X2)
{(x € My) ~ (f(x) € Mp)}

The manifold X will consist of 3 pieces, X1, X2, and a product U = My X [0, 1]. One can arrange
that w agrees with wy on X1 and a constant rescaling of w; on Xj.

X=X1UfX2=

Remark 7.3.2. Clearly, after a constant rescaling w from the theorem, we can assume that
w agrees with w, on X, and a constant rescaling of w; on Xj.

A weaker version of the theorem can be paraphrased by saying that a strong symplec-
tic filling and and strong symplectic cap can be glued together by a contactomorphism of
their boundaries.
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For the proof of this theorem, we will need to use the symplectization of a contact
manifold. Given a contact manifold (M, &) consider the subset of the cotangent bundle
consisting of forms that vanish on &:

{B € T;M: B(&,) = 0).

One may easily check that there are two components to this set. Recall £ is oriented, and
we call a vector v € T,M positive with respect to & if it is positively transverse to &. We
denote by Symp(&) the component of the above set consisting of elements that evaluate
positively on vectors that are positive with respect to . Recall that in Section 1.8.4 we

defined the Liouville form A on T*M that was the primitive for the canonical symplectic
form dA on T*M.

Exercise 7.3.3. Show that dA is a symplectic form on Symp(&).

We call (Symp(&), dA) the symplectization of (M, ). This is a nice description because
it does not involve making any choices, but we have another description of the symplec-
tization if we choose a contact form for &. Specifically, let a be a contact form for & and
consider the map

F: (0,00)xM — T*M: (t,p) — ta(p).

Exercise 7.3.4. Show that the image of F is Symp(&) and F induces a symplectomorphism
from ((0, 00) X M, d(ta)) to (Symp(&), dA).
Hint: Recall properties of A discussed in Section 1.8.4.

Given this exercise, one frequently see the symplectization of (M, &) defined to be
((0,00) X M, d(tar)).

Exercise 7.3.5. If « and o’ are two contact forms for & show directly that ((0, co)xM, d(tar))
is symplectomorphic to ((0, c0) X M, d(ta’)).
Hint: Recall there is some positive function #: M — R such that a’ = ha.

An important property of the symplectization is that there is a dilating vector field.

Exercise 7.3.6. Show that the vector field v = t% is a symplectic dilation of ((0, c0) X

M, d(ta)).

For the sake of completeness, we mention one last way that people think about the
symplectization.

Exercise 7.3.7. Show that (R X M, d(e'@)) is symplectomorphic to ((0, o) x M, d(ta)).

Moreover, show that the vector field v = % is a symplectic dilation of (R x M, d(e’a)).

We note in Figure 7.3.7, the symplectization is usually drawn so that it is expanding
as you move up and contracting as you move down. This is because of the symplectic
dilation v expands volume as you move in the positive ¢ direction.
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{0} x M\—2

Figure 7.3.7. The symplectization (R x M, d(efa)) and the symplectic dilation v.

Proof of Theorem 7.3.1. Since M is a convex boundary component of (X1, w1), there is
a symplectic dilation v of w1 defined near M; and pointing out of X;. Similarly, there
is a symplectic dilation v, of w, defined near the boundary component M, of X,. Let
a; = Ly, ;.

Consider the symplectization ((0, c0) X My, d(tay)).

Exercise 7.3.8. Find an open set U containing M in X; that is symplectomorphic to U’ =
[1,1—-€)x M in (0, 00) X M; for € > 0 sufficiently small.

Hint: Extend the identity map from M; C dX; to {1} X M; C R X M; by the negative flow
of v1 on X; and the negative flow of t% on (0, 00) X M;. See Figure 7.3.8.

Now, since f: My — My is isotopic to a contactomorphism, we assume that we
have performed the isotopy so that it is a contactomorphism. (Note that this does not
change X as gluing manifolds via isotopic diffeomorphisms of the boundary results in
diffeomorphic manifolds.) Thus, f*a; is also a contact form for £; = ker @1 and we must
have some positive function h: M; — R such that f*a> = hay. Notice that we can scale
wy by a large constant (which rescales a; by the same constant) so that & is always bigger
than 1. Consider the map

F: My » RxM;j: x s (hofl(x), f1(x)).
We can compute the pull-back
F'(tar) = (ho fH(x)(f a1 = a,
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(X2, w2)

(W, d(e'ar))

T “’

(X1, w1)

Figure 7.3.8. The pieces used to construct a symplectic form on X.

where the last equality follows by applying the pull-back by f~! to f*as = ha.

Since we chose & to be larger than 1 everywhere we see that g(x) = h o f~!(x) > 1 for
all x. Thus, the image of F is disjoint from the set {1} x M.

Exercise 7.3.9. Find an open set V containing M, in X that is symplectomorphic to V' =
{(t,x) € (0,00) x M1: g(x) <t < g(x)+ €} for € > 0 small enough.
Hint: Extend the map F using the flow of v, on X, and of t% on R x Mj.

Finally, let W = {(t,x) € (0,00) x M1: 1 —€ <t < g(x) + €}. We can glue X; to
W using the symplectomorphism from the first exercise and W to X using the symplec-
tomorphism in the second exercise, to obtain a symplectic manifold diffeomorphic to X
whose properties are as claimed in the theorem. m]

7.3.2. Weakly but not strongly fillable contact structures. As a first application of our
gluing theorem, we prove that there are weakly fillable contact structures that are not
strongly fillable. To this end, consider the unit disc bundle in the cotangent bundle of T?

UT? = {geT'T* |l < 1}

where the length is measured with respect to some Riemannian metric on T?. As we
noted in Example 7.1.13 U*T? together with the Liouville form A on T*T? is a Liouville
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domain and, in particular, a strong symplectic filling of its boundary (T3, &), where & =
ker /\ | oUu*T?-

In Section 5.8, we classified all tight contact structures on T3. According to Theo-
rem 5.8.1 the contact structures

&n = ker(cos(2mnz) dx + sin(2nnz) dy).
for n € Z5 constitute all tight contact structures on T%, up to contactomorphism.

Exercise 7.3.10. Show that the contact structure & on T° = JU*T? is &;. Moreover, show
that the fiber direction in dU*T? corresponds to the z coordinate in the definition of &;
from Section 5.8.

Exercise 7.3.11. Let 7t,: T3 — T° be the n-fold covering map that restricts to the n-fold
cover of each fiber in T® = JU*T?. Show that &,, = (71,,)*&1.

We now consider another description of &,,. Consider the forms
alt = s dz + t(cos(2mnz) dx + sin2mnz) dy).

For any s > 0 and any ¢ > 0, this is a positive contact form on T3. Of course, aw' = a,,
and it defines the contact structures &,. Thus &, is contact isotopic to ker a}l’l and we
find a further contact isotopy to &;, = ker ay© for any small € > 0. Notice thatase > 0
approaches 0, the contact planes & approach the tangent planes to the tori T? x {z} for
any fixed z € S1.

If we let X = T? x D? with the symplectic from w = dx Ady +r dr Ad6, where x and y
are angular coordinates on T? and (r, 6) are polar coodinates on D?, then for small € it is
clear that (X, w) is a weak symplectic filling of &5;. We have proven the following lemma.

Lemma 7.3.12. The contact structure &1 on T° is strongly symplectically filled by (U*T?,dA)
and &, , for n > 1, is weakly filled by (T? x D?, w), for w above.

We are now ready for the main result about the fillings of &,,.

Theorem 7.3.13 (Eliashberg 1996, [Eli96]). For n > 2, the contact manifold (T3, &,) is not
strongly fillable by any symplectic manifold.

Proof. Consider the symplectic structure w = dx A dy on R?. It is easy to see that the unit
circle S! in R? is Lagrangian.

Exercise 7.3.14. Show that T? = S! x S! in R* = R? x R? (where each S! is the unit circle
in the corresponding R?) is Lagrangian with respect to the product symplectic form Q on
R? x R2. Or more generally, show that the product of any two Lagrangian submanifolds
is a Lagrangian submanifold of the product symplectic manifold.
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We now consider the symplectic manifold (B%, Q) in (R*,Q), where B* is a ball of
radius larger than 1 centered at the origin. Notice that the Lagrangian torus T? from the
exercise is contained in B*. Notice that dB* is convex. In fact, Q is exact, so (B4, Q) is an
exact symplectic filling of the standard contact structure on S°.

Just as we proved that Legendrian knots have standard neighborhoods in Theo-
rem 1.2.6, itis also true that any two diffeomorphic Lagrangian submanifolds of symplec-
tic manifolds have symplectomorphic neighborhoods. The reader is encouraged to try to
adapt our proof of Theorem 1.2.6 to establish this, or consult [MS98, Theorem 3.4.13].
Thus, there is a neighborhood U of T? in (B*, Q) that it symplectomorphic to the rescal-
ing eU*T? of U*T>.

Let X = B* — U. Clearly dX = S® U T3, with S® being a convex boundary component
of X and T? being a concave boundary component (since T° is a convex boundary of U).
Moreover, the induced contact structure on T2 is &1 and the induced contact structure on
S3 is the unique tight contact structure.

Exercise 7.3.15. Show that 711(X) = Z and S! fiber in T® = d(eU*T?) generates the funda-
mental group.

We can now consider the n-fold cover of X: p,,: X, — X.

Exercise 7.3.16. Show that dX,, consists of T> and n disjoint S3.
Hint: Since S is simply connected, p,,(dB*) must be the trivial n-fold cover of S°.

Since we can lift the dilating vector fields near the boundary of X to X, we see that
the T3 component of dX,, is concave while the S?> components are convex.

Exercise 7.3.17. Show the contact structure on the concave boundary T3 of X, is &, and
the contact structure on the convex boundary components of X, is the standard tight
contact structure on S°.

Now if there was a strong symplectic filling (W, @’) of (T?,&,) for n > 1, then we
could use Theorem 7.3.1 to glue X, and W together to obtain a symplectic 4-manifold X;,
with 7 convex S® boundary components. We now recall an amazing theorem of Gromov
and McDuff, see Appendix B.

Theorem 7.3.18 (Gromov 1985, [Gro85] and McDuff 1991, [McD91]). If (X, w) is a semi-
symplectic filling of (S3.&st4), then X is diffeomorphic to a blowup of B*.

Notice that the above theorem says that any filling of the standard tight contact struc-
ture on S° must have connected boundary. Thus, X, cannot exist and there is no strong
symplectic filling of (T3, &,) for n > 1. O
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We note that the above theorem can be greatly generalized. In Section 13.3, we will
discuss a result of Gay [Gay06] that shows any contact structure with positive Giroux
torsion (see Section 9.3 for the definition of Giroux torsion) cannot be strongly symplecti-
cally fillable. As observed when we classified tight contact structures on T3 in Section 5.8,
&, has Giroux torsion n — 1.

7.3.3. Rational blow-downs. In the late 1990s, Fintushel and Stern defined an operation
on 4-manifolds called a rational blow-down, [FS97]. We will define this operation below,
but discuss its significance first. We recall that in dimension 4 there are infinite families
of homeomorphic but not diffeomorphic manifolds. We call these “exotic" 4-manifolds
(technically, one of them is just a smooth manifold and the others are “exotic" copies of
it). One of the first standard ways to construct exotic smooth 4-manifolds was to perform
“log transforms" [GS99] in embedded tori in the 4-manifold. Fintushel and Stern proved
that, in many situations, a log transform can be performed by a sequence of standard
operations called blow-ups followed by a single rational blow-down. So the rational
blow-down generalized log transforms, and it could be used to construct other exotic 4-
manifolds too. One could see the exotic nature of the manifolds constructed through this
process by seeing the effect of a rational blow-down on the Donaldson invariants of the
manifold (nowadays, one more often uses Seiberg-Witten invariants or Heegaard Floer
invariants). A natural question arose as to whether or not the rational blow-down could
be done in the symplectic category; that is, if one started with a symplectic manifold,
could one guarantee the result was also symplectic? It was shown in one case that the ra-
tional blow-down could be done in the symplectic category by the first author in [Etn96],
and then the general case was settled by Symington in [Sym98]. Below, we present a
combination of these two arguments to prove that the rational blow-down can be done
symplectically.

We define two 4-manifolds with boundary. The first, denoted C(p) for any p > 2, is
the plumbing of disk bundles over S?> shown in Figure 7.3.9. It is a simple exercise to see

~
~(p+2) -2 -2

Figure 7.3.9. The manifold C(p). There are p — 2, -2 spheres in the plumbing.

that dC(p) is the lens space L(p%, p — 1).
The second manifold, denoted B(p), is shown in Figure 7.3.10.

Exercise 7.3.19. Show that dB(p) is diffeomorphic to L(p?, p — 1).
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Figure 7.3.10. A smooth description of the manifold B(p) is shown on the top (the curve a
will be used later, but is not part of the surgery diagram). There are p strands going over
the 1-handle. On the bottom, we see a Stein description of B(p). The framing shown is a
contact (—1)-framing, so it is a smooth —(p + 1) framing.

Given a 4-manifold X that contains C(p), a rational blowdown of X is the result of
removing C(p) from X and gluing in B(p).

Exercise 7.3.20. Show that this is well-defined. Specifically, show that the choice of iden-
tification of dB(p) with JC(p) does not affect the diffeomorphism type of the rational
blowdown.

Hint: Diffeomorphisms of lens spaces are well-understood, see [Bon83]. Show any dif-
feomorphism of L(p?, p — 1) extends over B(p).

The main result we would like to establish is the following.

Theorem 7.3.21 (Symington 1998, [Sym98]). If (X, w) is a symplectic 4-manifold and there are
symplectic spheres Sy, ..., Sp—2 in X such that So has self intersection —(p +2), the other spheres
have self-intersection —2 and each sphere only intersects the spheres with adjacent indicies (that
is the spheres intersect according to the plumbing diagram in Figure 7.3.9), then a neighborhood
of the spheres can be chosen to be C(p) and one may perform the rational blowdown so that the
result is a symplectic manifold.

Here we only present the proof of Symington’s theorem, but note that similar argu-
ments also work for generalization of rational blow-downs. See [PS14].

Proof. We note that we can use the constructions of toric manifolds in Section 7.2 to find
aregion R in R? so that X is diffeomorphic to C(p).
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Exercise 7.3.22. By adjusting the lengths of the line segments that define R, show that we
may arrange that the areas of the spheres in X agree with the symplectic areas of the
sphere S; in X.

We can now take a diffeomorphism from the union of spheres in X to those in Xg
that restricts to a symplectomorphism on each sphere. We can further extend this to a
diffeomorphism of a neighborhood of the spheres in X to a neighborhood of the spheres
in Xg. There is a symplectic version of Theorem 1.2.1 that uses the Moser trick, similar
to the one we used in the proof Gray’s theorem (Theorem 1.2.10), to prove that the above
diffeomorphism can be isotoped to be a symplectomorphism in a neighborhood of the
spheres. See [MS95, Chapter 3]. Now observe that in any neighborhood of the spheres in
XR, one can find a smaller neighborhood N of the spheres that has a convex boundary.

If we remove the interior of N from X, we will have a manifold X’ with concave
boundary. Notice that the bottom diagram in Figure 7.3.10 shows that B(p) is a symplectic
manifold with convex boundary. So, according to our gluing theorem, Theorem 7.3.1, we
can glue X’ to B(p) to obtain a closed symplectic manifold if the contact structures on dN
and JdB(p) are contactomorphic.

We are left to show that N and dB(p), with the obvious contact structures are contac-
tomorphic. But since we have a classification of tight contact structures on the lens space
L(p?,p — 1), this should be straightforward. Let the contact structure on the boundary
of N be denoted by &; and the one on the boundary of dB(p) be denoted by &;. Accord-
ing to the classification of tight contact structures in Theorem 5.7.2, we know that they
will be isotopic if their I'-invariants are the same. We recall from Section 1.5.4, where
we defined the I'-invariant, that the I'-invariant of the contact structure is determined by
the Euler class of the contact structure if p is odd. So we begin with the slightly simpler
computation of the Euler class.

To this end, we begin with dN = JC(p). Since there are no 1-handles in C(p) we
know that the CW-homology chain groups are generated by the cores of the 2-handles
co, "+, cp—2 (Where cg is the 2-handle with framing —(p +2) and the rest have framing -2).
Or more precisely, the homology classes are represented by the core of the handle union
a disk, each attaching sphere bounds (that is, the spheres S; in each of the disk bundles).
If the reader is unfamiliar with the algebraic topology of handlebodies, we refer them to
[GS99, Page 111]. We write

Ca(N; Z) = Z{co,*++ , cp-2)-
Thus, the co-chain group is generated by the duals ¢ of the c;. Finally, we note that the

relative homology chain group is generated by the co-cores ko, - - - , k-2 of the 2-handles
and the Poincaré dual of cj is k;. We can now use the adjunction formula in Symplectic



322 7. Symplectic fillings

geometry [MS98] to compute the first Chern class c¢1(N). The adjunction formula gives
(c1(N), Si) = x(Si) + Si - Si,

where S; - S; is the self-intersection of S; with itself and x(S;) is the Euler characteristic of
S;. Thus we see

—-p fori=0

0 fori#0

That is the Poincaré dual of ¢;(N) is given by —pko. Now the Euler class of &; is simply the
restriction of ¢1(N) to the boundary, and the Poincaré dual wil be the image of —pko under
the connecting map in the long exact sequence of the pair (N, dN). Thus the Poincaré
dual of e(&) is PD(e(&1)) = —pla], where a is the meridian to the attaching sphere of the
handle ho and is a generator of Hy(L(p?, p — 1)). (Here we use brackets to indicate the

(c1(N), Si) = {

homology class of the curve.)

We now turn to &,. Theorem 6.2.9 gives a formula for e(&>). If we let m be the merid-
ian to the attaching sphere of the 2-handle in Figure 7.3.10, then the Poincaré dual of
e(&2) = —[m]. Here we have chosen the orientation on the Legendrian attaching sphere
so that its rotation number is —1.

Exercise 7.3.23. Show that under a diffeomorphism from JdC(p) to JdB(p), the curve a
maps to the curve shown in Figure 7.3.10.

Exercise 7.3.24. In H1(L(p?, p — 1)) show that —[m] is the same as —p[a].

Thus, we see that the Euler classes of £; and &, are the same, and if p is odd, the
contact structures are isotopic.

Now, when p is even, we need to compute the I'-invariant. We will use the formula in
Theorem 6.2.10 for this. We will need to represent spin structures on M using character-
istic sub-links as discussed in Appendix 1.4. For C(P), we note that there is a unique way
we can Legendrian realize the link if Figure 7.3.9 so that Legendrian surgery on it will
give a symplectic manifold with c1(C(p)) computed above. Specifically, the first unknot
in the figure will have tb = —p — 1 and rotation number —p, while all the others will have
tb = —1 and rotation number 0. Denote the components of the link by Ly, - -, Ly-1 so that
the indices are increasing from left to right. There are two spin structures on L(p?,p — 1)
given by the characteristic sub-links @ and {L,---,L,-1}. Evaluating I' on one of these
is enough to determine I'. We choose the spin structure s corresponding to the empty
characteristic sub-link. This spin structure is characterized by the fact that it will extend
over a 2-handle attached to 2 with even framing. We have

M, 9) = 5 [ D rotLofuil + Y (Mm);,

i=1 ie]
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where | is the indices on the components in the characteristic sub-link. Thus, in our case,
we have

1
(&1, s) = —5plal,
recall that a is the meridian to the —(p + 1)-framed unknot in Figure 7.3.9

We now turn to &, on the boundary of B(p). To use the formula above for I', we need
to turn the Weinstein 1-handle into a contact (+1)-surgery on the maximal Thurston-
Bennequin invariant unknot as discussed in Lemma 6.2.8.

Exercise 7.3.25. In an exercise above, it was shown that the diffeomorphism from JC(p)
to dB(p) sends a to the curve a in Figure 7.3.10. Show that this diffeomorphism preserves
the parity of a framing on a.

From this exercise, we see that the spin structure s on JdB(p) will extend over a handle
attached to 4 with odd framing. Thus, this spin structure corresponds to the characteristic
sub-link {K,} where K; is the unknot with tb = —1 coming from the 1-handle and Kj is
the other component of the link. If we let y; be the meridian to K; then we see that

1
(&2, 8) = 5([p2] = (p + Dlp2] = plpD).
Recall from above that [p2] = p[a] (above u, was called m).

Exercise 7.3.26. Show that [p1] = (p + 1)[a]

From the above, we see that I'(&;, 5) = %(—p2[a] —p(p +Da]) = —%p[a] — p?[a]. But
since Hl(L(pz, p-1) =27/ p2z we see that the I invariant of &, agrees with that of ; and
hence they are isotopic. m]

Remark 7.3.27. Symington’s proof of the above theorem in [Sym98] did not use the clas-
sification of tight contact structures on lens spaces or the I'-invariant, but instead gave a
direct argument using toric geometry — as discussed above — and almost toric geome-
try — a generalization of toric geometry that we do not cover here. Another proof of this
theorem could be done by directly proving that £; and &; are universally tight contact
structures and then recalling that (up to orientation on the plane fields) there is only one
of these on any lens space (there are actually two up to isotopy, but they differ by revers-
ing the orientation on one of the plane field). With this observation, we can now employ
the gluing theorem to build the symplectic structure on the rational blowdown.

7.4. Symplectic cobordisms

We will now study Weinstein handle attachments. To this end, we will begin with a sim-
ple observation. For this observation, we recall that a linear subspace L of a symplectic
vector space (V, ) is called isotropic if w|y, is the zero 2-form.
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Exercise 7.4.1. Show that an isotropic subspace of a symplectic vector space of dimension
2n has dimension at most 7.

Hint: Consider the symplectic orthogonal L** = {w € V : w(w,u) = Oforallu € L}.
Show that dim(L) + dim(L*) = dim V' and then note that if L is isotopic then L C L*v.

Lemma 7.4.2. Let v be a dilating vector field for the symplectic form w on X. Let p € X be a
non-degenerate 0 of v. The negative eigenspace of v at p is isotropic.

We recall that if p is a non-degenerate zero of v, then the flow of v has a fixed point at
p and the derivative of the flow at p will be a symplectic automorphism of T, X. The de-
rivative will split the tangent space into a positive eigenspace and a negative eigenspace.

Proof. Let ¢;: X — X be the time t flow of v. Since L, = w we see that ¢*w = e’ w.
Thus

elw(w, u) = (pjw)w, u) = w(dpi(w), dpi(u)).

If w, u are in the negative eigenvectors of v at p then d¢;: T,X — T,X and w and u are
being scalled by a number smaller than 1, so w(d¢¢(w), dp:(u)) is bounded for ¢t > 0 and
we see that w(w, #) must be 0. That is the negative eigenspace must be isotopic. m]

Corollary 7.4.3. If (X, w, ¢, v) is a Weinstein manifold, and p is a critical point of ¢, then the
index of p is at most 3 dim X. So in our case, the index is at most 2.

Exercise 7.4.4. Prove this corollary.
Hint: Relate the index of the critical point p of ¢ with the dimension of the negative
eigenspace for a vector field v that is gradient-like for ¢.

We will now discuss attaching Weinstein handles of index i for i < 2 to a symplec-
tic manifold. All of these arguments are essentially special cases of Weinstein’s original
discussion of symplectic handle addition [Wei91], though we need to slightly alter the
arguments when discussing adding handles to weak symplectic fillings, and our discus-
sion of extending the Morse function on a Weinstein manifold over an attached handle is
different as well. See also [CE12]. The main theorem is the following.

Theorem 7.4.5. If (X, w) is a weak, strong, exact, or Weinstein symplectic filling of a contact
manifold, then attaching a Weinstein k-handle, for k = 0,1,2, will result in a new symplectic
manifold that is also a symplectic filling of its boundary of the same type.

Later, we will see that by definition, a Weinstein 2-handle, has an attaching sphere
that is a Legendrian knot in 0X.

This is an immediate corollary of Lemmas 7.4.7, 7.4.16, and 7.4.27. The theorem is
also true for Stein manifolds, but is beyond the scope of this book.
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7.4.1. Index 0 Weinstein handles. We begin with a model for the handle. Consider R*
with coordinates p1, 41, p2, 92 and the standard symplectic from wsig = dp1 Adg1 +dpa A
dq,. We define the function

(pT + 45 +p3 +43)

fo=

I

and the vector field
Vo :1 pli+qli+pzi+q2i .
2 I aq1 Ip2 a9
Exercise 7.4.6. Show that vy is a dilating vector field for w4:

'Lvo Wstd = Wstd,

and that vy is gradient like for fy:
dfo(vo) > 0

away from the origin and vy and dfy vanish at the origin.

The above exercises have established the following result.

Lemma 7.4.7. If (X, w) is a weak, strong, exact, or Weinstein symplectic filling of a contact
manifold, then attaching a Weinstein 0-handle will result in a new symplectic manifold that is
also a symplectic filling of its boundary of the same type.

Proof. If we let B* be the unit ball in R* then the symplectic manifold (B*, wsq) with
the vector field vy and function fj is a Weinstein manifold. We say (B*, wstd, fo,v0) is a
Weinstein 0-handle. Attaching a 0-handle to (X, w) is just taking the disjoint union with
(B*, wstq). The result clearly follows. O

7.4.2. Index 1 Weinstein handles. We consider the same symplectic form w;:q on R* as
in the previous section, but now consider the function

1 1
fi=g(pt+al)+ (P% - Eﬂé)

and the vector field

v_l( 9, i)+(2 9 i)
1=5 1918p1 fhaql P2ap2 qz&qz'

Exercise 7.4.8. Show that that v; is a dilating vector field for ws4:

-Evl Wstd = Wstd,

and that vy is gradient like for f;:
dfl(vl) >0

away from the origin and v and df; vanish at the origin.
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LetH_ = fl‘l(—l) and S_ = H-N({(0,0,0)} xR). Notice that S_ consists of two points
and that vy is transverse to H_. See the left-hand side of Figure 7.4.11. We now consider

p1,491,p2
N1
g

H_

H,
‘ ;

HRN

Figure 7.4.11. On the left we see some level sets of f| and H- = fl_l(l) in a thicker line.
The vector field vy is also indicated as is the O-sphere S_. On the right, we see H, and the
1-handle £ is highlighted.

a function
2 2 2 2
81 =a1py + axqy + asp; — aaq;,

with a; > 0 for all i.
Exercise 7.4.9. Show that for any positive c, the vector field v; is transverse to g Yc).

Exercise 7.4.10. Show that for any € > 0 we can choose a4 very large and the other g;
small positive numbers so that the intersection of H- and H, = g7 1(1) is contained in an
e-neighborhood of S_.

Let A_ be the compact region in H_ bounded by H_ N H, and B, be the compact
region in Hy; bounded by H_ N H,. Notice that by construction, A_ is contained in an
e-neighborhood of S_. Let /1 be the region bounded by A_ U B,. A Weinstein 1-handle
is (h1, wstd, f1,v1). See the right-hand side of Figure 7.4.11. (Technically, this is not quite
right. We will see below that we can attach this handle to weak, strong, and exact fillings
of a contact manifold, but in order to attach this to a Weinstein manifold and extend the
Weinstein structure, we will need to modify the handle. As this is a little technical, we
ignore this until we need to address the matter.) We notice that v; points into /1 along
A_ and out of h; on B,.

Lemma 7.4.11. If (X, w) is any symplectic manifold with convex boundary and S is an embed-
ding of S in dX, then there is a neighborhood Nx of S in X and a neighborhood Ny of S_ in
fl_l((—oo, —1)) that are symplectomorphic. Moreover, since w is exact near S, we can assume
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there is a dilating vector field v for w near S. For any such v, we can assume that the symplecto-
morphism takes v to vy.

Remark 7.4.12. Notice that we did not specify if X had a weakly or strongly convex
boundary. The theorem holds in either case, and in the latter case, we can take v to be the
dilating vector field defined near JX.

Proof. We begin by considering the case of a strong symplectic filling (the exact case will
also follow) and then consider the weakly fillable case later. Let v be the dilating vector
field for w defined near ¢X and a = (,w on JdX be the induced contact from and €& its
kernel. Similarly let @y = 1y, wstq restricted to H- be the contact form induced from v4
and w, and & its kernel.

We begin by showing that there is a neighborhood Ux of S in dX, a neighborhood
Ug in H_, and a contactomorphism ¢: Ux — Up such that ¢*a1 = a. Notice that this
is stronger than the Darboux theorem we discussed in the introduction, as the contacto-
morphism preserves not only the contact structure but also the two given contact forms.

To this end, we let Xx be two small disks with centers on two points of S.

Exercise 7.4.13. Show that Xx can be chosen so that

(1) Ix is tangent to £ at the points in S,
(2) Lx is transverse to £ away from S, and

(3) da is symplectic on L.

One can find a similar surface Ly in H_ centered on the two points of S_. After pos-
sibly shrinking YXx and Ly we can find a symplectomoprhism ¢1: (Zx,da) — (Zg, daq).
This is the symplectic version of Darboux’s theorem. The proof is quite similar to the
contact version of Darboux’s theorem given in the introduction and is a nice exercise for
the reader or consult [MS98, Chapter 3].

Extend ¢ to a diffeomorphism ¢, from a neighborhood Ux of S in dX to a neighbor-
hood Uy of S_ in H_ by using the Reeb flow of @ and a;.

Exercise 7.4.14. Prove that ¢ da; = da
Hint: The Reeb flow preserves da; and da, and these agree on the surfaces Lx because
their kernels (spanned by the Reeb vector field) agree, and they agree on TX.x.

We also note that ¢pja1 = « at the two points of S.

We will now construct a diffeomorphism ¢3: : Ux — Ux such that ¢3(¢p3a1) = a.
To do this, we consider

Br = a+t(fya1 —a).
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Exercise 7.4.15. Show that, after possibly shrinking Uy, ; is a contact form for Ux.
Hint: Notice that all the ker 3; agree on S and df; is symplectic on ker 8; near S.

Now since d(gb;al —a)=0and f;a; —a = 0on S, we know there is a function & such
that —(¢;a1 —a) = dhand h = 0 on S. Set w; = hRg,. (Recall Rg, is the Reeb field fo f;.)
Let ¢; be the flow of w; and note that

d d
Vi =t (Lwtﬁt + Eﬁt)
= Y (Lt + tw, Pt —dh) = P;(dh +0—-dh) =0,

Where the first equality follows from the formula for %gb:ﬁt developed in the proof of
Theorem 1.2.10, the second equality is Cartan’s formula for the Lie derivative, and the
last equality follows from the definition of the Reeb vector field and w;. Thus ¢;f; = Bo
and if we set {3 = 11 then we have our desired diffeomorphism. Now setting ¢ = ¢o0¢3
we see that ¢*a1 = « as claimed.

We can now extend ¢ to a diffeomorphism W of a neighborhood Nx of S in X and a
neighborhood Ny in f;!((—e0, —1)) by the backwards flow of v and v1. By construction
WV is a symplectomorphism from (Nx, w) to (NH, wst4) and takes v to v1. This completes
the proof of the lemma in the case that (X, w) is a strong or exact filling of its boundary.

We now turn to the case where (X, @) is a weak filling of its boundary. ADD THIS! O

We are now ready to attach a Weinstein 1-handle to symplectic fillings.

Lemma 7.4.16. If (X, w) is a weak, strong, exact, or Weinstein symplectic filling of a contact
manifold, then attaching a Weinstein 1-handle will result in a new symplectic manifold (X', w’)
that is also a symplectic filling of its boundary of the same type.

Moreover, if the attaching sphere lies on one component of dX, then X’ will be the connected
sum of dX with the standard tight contact structure on Sl x §2: otherwise, dX’ will be X with
the two components containing the attaching sphere connected summed. (See Section 9.2 for a
discussion of the connected sum of contact manifolds.)

Proof. We consider the case of weak, strong, and exact fillings first. Let S be the attaching
sphere for the 1-handle in dX. By Lemma 7.4.11 we know there are neighborhoods Nx
of Sin X and Ny of S_ in f{*((—co0, 1)) that are symplectomorphic by a symplectomor-
phism that takes the dilating vector field v for w to the dilating vector field v;.

Consider the subset R of R* the union of Ny and /1. We can use the symplectomor-
phism to identify Ny in R and Nx in X. This will give a new manifold X’ with a 1-handle
attached. Since the gluing map was a symplectomorphism, there is a symplectic structure
on X', and the vector field v on X can be extended over X’ by v1. One may easily check
that in the case that X was a strong or exact filling, this will make X’ a strong or exact
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filling of its boundary. If X were a weak filling of its boundary, then X’ will be a weak
filling away from the boundary coming from /1, and along that part of the boundary, it
will have a dilating vector field and hence be a weak filling there too.

Exercise 7.4.17. After reviewing the definition of the connected sum of contact manifolds
in Section 9.2 prove that X’ is related to dX as claimed in the lemma.

If (X, w) were a Weinstein manifold, then we must also see how to extend the function
defining the Weinstein structure over the attached handle. This requires a modification
of the handle /; so that we can extend a Morse function of the handle in the “standard
way". We briefly describe this process.

Consider H_ = f!(~1) as before, but now let H, = f;(c) for any fixed positive c.
Now given a Weinstein manifold (X, w, f,v) and an attaching sphere S in JdX, let Nx
and Ny be the neighborhoods of S and S;, respectively, in X and fl‘l((—oo, —1)) from
Lemma 7.4.11. Recall that means there is a symplectomorphism ¢ between these neigh-
borhoods that takes the dilating vector field v to the dilating vector field v1. We can now
choose a small disk bundle neighborhood D of S; in H; that is contained in Ng. Now
consider the image F of dD under the flow of v1. See Figure 7.4.12. Now consider the
compact region in R* bounded by H_, H,, and F. Call this iﬁ. This will be our model for
the refined handle attachment. We can assume that Ny N Hj is a larger disk bundle D’

pP1,4q1,pP1
H,
H_
S_

Figure 7.4.12. On the left, we see the handle hy in grey as well as the neighborhood Np in
orange. On the right, we see the same handle together with the image a larger disk bundle
in H1 under the flow of v1 shown in brown.

over S_. Let E be the image of the flow of D’ — D under v; that lies between H_ and H..

We note that E will be given by the time t € [0, k] flow of D’ — D for some fixed k > 0.
See the right-hand side of Figure 7.4.12. Let ] denote the union of i and E.
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We now consider (X, @). Let C be the complement of the ¢(D) in dX. We can consider
the symplectization of (X, &), defined by the contact 1-form a = 1,w. We use the model
for the symplectication (R x 9X, d(e’a)). Notice that we can add ([0, k] X M, d(e’a)) to
(X, ) to obtain a new Weinstein manifold (the extension of f should be obvious). We do
not do this. Instead, we add ([0, k] x C, d(e'a)) to X to obtain a symplectic manifold with
corners that we denote by X,. See Figure 7.4.13. We can now glue iz\i to X, by identifying

H(D) o P N

Figure 7.4.13. On the left, we see X and the neighborhood Nx in orange. On the right, we
see the region X,, which is the dark grey, brown, and purple parts. The light grey is the
handle 7.

Ny with Nx via ¢ and the region E in fzi with part of ([0, k] X C, d(ea)) using the flow if
the dilating vector fields.

Exercise 7.4.18. This gives a smooth manifold that we denote X’ with a symplectic form
@’. Moreover, the dilating vector field v on X can be extended over X’ by v; on & and
by the vector field in the symplectization on ([0, k] x C, d(e’ a)). Call this vector field v’

We are left to extend f on X to X’ so that we have a Weinstein structure on X’. We
can do this by using f;, after adding some constant, on ] and by projection onto [0, k]
on (again, after adding some constant). Denote this function f”.

Exercise 7.4.19. Show X’ is obtained from X by attaching a 1-handle to S and, in addition,
that (X', o', f/,v’) is a Weinstein manifold.

This completes the proof in the Weinstein case. m]

7.4.3. Index 2 Weinstein handles. We consider the same symplectic form ws;s on R* as
in the previous section, but now consider the function

1
fo= (a1 +a3) = 5 (P +p3)
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and the vector field

Uy =2 i + i — i + i
2= q18q1 q2 902 P1 o p2 apa)”
Exercise 7.4.20. Show that that v, is a dilating vector field for ws4:
vawstd = Wstd,

and that v; is gradient like for f>:
dfz(vz) >0

away from the origin and v, and df, vanish at the origin.

Let H_ = fz_l(—l) and S_ = H_ N ({p1p2-plane}). Notice that S_ is a circle and that v,
is transverse to H_. See the left-hand side of Figure 7.4.11 (but label the horizontal axis
by p1, p2 and the vertical axis by g1, 42). We now consider the function

$2 = 0107 + 4243 — asp; — asp;,
with a; > 0 for all i.
Exercise 7.4.21. Show that for any positive ¢, the vector field v, is transverse to g;(c).

Exercise 7.4.22. Show that for any € > 0 we can choose a3 and a4 very large and the other
a1, az small positive numbers so that the intersection of H- and H, = ¢ (1) is contained
in an e-neighborhood of 5_.

Let A_ be the compact region in H_ bounded by H_ N H, and B, be the compact
region in H,; bounded by H_ N H,. Notice that by construction, A_ is contained in an
e-neighborhood of S_. Let h; be the region bounded by A_ U B,. A Weinstein 2-handle
is (h2, wstd, f2,02). See the right-hand side of Figure 7.4.11. (Technically, this is not quite
right. We will see below that we can attach this handle to weak, strong, and exact fillings
of a contact manifold, but in order to attach this to a Weinstein manifold and extend the
Weinstein structure, we will need to modify the handle. As this is a little technical, we
ignore this until we need to address the matter.) We notice that v, points into /i, along
A_ and out of h, on B,. So we have a contact structure - on A_ and &, on B, induced
from the contact form t,, w4 restricted to A— and Bj.

Exercise 7.4.23. Show that S_ is a Legendrian circle in (A_, £_), the contact twisting along
S_ relative to the product framing is +1, and that A_ is a standard neighborhood of S_.

We are now ready for a neighborhood lemma that we will need to attach a Weinstein
2-handle.
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Lemma 7.4.24. If (X, w) is any symplectic manifold with convex boundary and S is an embed-
ding of S' in X, then there is a neighborhood Nx of S in X and a neighborhood Ny of S_ in
fz‘l((—oo, —1)) that are symplectomorphic. Moreover, since w is exact near S, we can assume
there is a dilating vector field v for w near S, and for any such v, we can assume that the symplec-
tomorphism takes v to v;.

Remark 7.4.25. Notice that we did not specify if X had a weakly or strongly convex
boundary. The theorem holds in either case, and in the latter case, we can take v to be the
dilating vector field defined near JX.

Exercise 7.4.26. Prove this lemma.

Hint: The proof is nearly identical to the proof of Lemma 7.4.24 for Weinstein 1-handles.
The only difference is that the surfaces Xx and Ly will be annuli containing S and S_,
respectively.

Lemma 7.4.27. If (X, w) is a weak, strong, exact, or Weinstein symplectic filling of a contact
manifold, then attaching a Weinstein 2-handle will result in a new symplectic manifold (X', @’
that is also a symplectic filling of its boundary of the same type.

Moreover, if the attaching sphere is a Legendrian knot L in dX, then dX’ will be the result of
Legendrian surgery (recall this is contact (=1)-surgery) on L in dX.

Proof. The first part of this proof is almost identical to the proof of Lemma 7.4.16.

Exercise 7.4.28. Prove the result in the first paragraph of the lemma.

We are left to see that attaching a Weinstein 2-handle affects the boundary by Leg-
endrian surgery on the attaching sphere L. Notice that when the handle is attached, we
remove the image of the solid torus A- from JdX and glue B, to the resulting manifold.
Recall from Exercise 7.4.23 that A_ is just a standard neighborhood of S_ and S_ is iden-
tified with L.

Exercise 7.4.29. Show that B, is also a standard neighborhood of a Legendrian knot.

So when we glue B. in the place of A_, we are gluing in a solid torus with a tight
contact structure. That is, we are performing some contact surgery on L; we just need to
determine which contact surgery we are performing. Clearly, the meridian for B, is the
same as the product longitude for A_. In Exercise 7.4.23 it was shown that the contact
framing of S_ is one larger than the product framing. Thus, the meridian of B, is glued
to a framing curve that is one less than the contact framing. In other words, we are
performing a contact (—1)-surgery. m]
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7.5. Tight but not fillable contact structures

In this section, we construct a tight but not symplectically fillable contact structure. The
tirst such example appeared in [EH02b] based on the work of Lisca in [Lis99]. There the
authors verified that the result of smooth two surgery on the (2, 3)-torus knot admits a
tight structure that is tight but has no symplectic filling. This result was generalized by
Lisca and Stipsicz. Specifically, we show the following.

Theorem 7.5.1 (Lisca and Stipsicz 2004, [LS04]). Let M,, be 2n surgery on the (2,2n + 1)-
torus knot. Then M admits a contact structure & that is tight but has no symplectic filling.

Remark 7.5.2. In [LS04], they actually show that smooth r-surgery on the torus knot
Toon+1, where r € [2n — 1, 4n), has a tight contact structure that is not fillable. Technically
for the existence of tight contact structures one needs [MT15] for when r € (2n —1,2n).
This result was later generalized by Owens and Strle [OS12] to all positive torus knots
T, where 0 < p < q are relatively prime.

Their argument in this generality in terms of both surgery coefficients and the torus
knots considered is quite similar to the one we present below, but requires slightly more
work. We leave it as an exercise to generalize the argument below to this general case.
Given this remark, it is clear there are many tight but not fillable contact structures.

Proof. Recall from Section 6.5 that there is a unique Legendrian L, in the knot type of
the T3 24+1 torus knot with tb(L) = 2n — 1. Let &, be the contact structure on M,, = Si(Zn)
obtained from contact (+1)-surgery on L,. We have the following two lemmas.

Lemma 7.5.3. The contact manifold (My,, &) is tight.

Lemma 7.5.4. The contact manifold (My,, &) is not symplectically fillable.
The theorem clearly follows from these two lemmas. m|
We now establish the tightness of (M, &).

Proof of Lemma 7.5.3. From Appendix C we know that the contact invariant in Hee-
gaard Floer homology is functorial under contact (+1)-surgery. That is if W, is the cobor-
dism from S3 to M,, = Sgn (2n) obtained from attaching a 2-framed 2-handle to S° X [0, 1]
then

Fy(c(&sta) = c(&n)

where &4 is the standard contact structure on S°. We claim the map FW,l is injective and
thus ¢(&,) # 0 and so &, is tight.

To see that Fw—n is injective, we first note that T »,+1 is an L-space knot. Recall from Ap-
pendix C that this means some positive surgery 15 2,+1 is an L-space. See Definition 1.6.38.



334 7. Symplectic fillings

Exercise 7.5.5. Show that 4n + 1 surgery on T>2,,+1 is a lens space, which, of course, is an
L-space.

Since T» 2,41 is a L-space knots we know that for any » > 2n —1 the manifold S%/ZM (r)
is an L-space [LS04]. (Here 2n — 1 is minus the Euler characteristic of the minimal genus
Seifert surface of 1 2,+1.) Thus M,, = S%n (2n) is an L-space as is Sin (2n + 1). We now
recall the exact triangle in Heegaard Floer theory

HF(-$°) HF(-My, (2n))

N

HE(-M,, (21 + 1))

N

ZZn+1

Which gives us

Thus, the lower left map must be the zero map, and the top map, which is Fy,, must be
injective, as claimed. O

Proof of Lemma 7.5.4. We will prove that (M,,, £,) is not symplectically fillable by show-
ing that if it were, we can construct a closed 4-manifolds with an intersection form that
violates Donaldson’s diagonalization theorem, which we will recall below.

We first note that —M,, bounds a 4-manifold X,, with intersection which is of the form

2 1 1 1 0
1 =2 0 0 0
1 0 -2 0 0
1 0 0 -2 1
0 0 0 1 —(n+1)

To see this, consider Figure 7.5.14 that gives a sequence of surgery diagrams describ-
ing M,. The bottom drawing describes M,, as a small Seifert fibered space. To obtain
—M,,, one reverses all the crossings in the surgery diagram and changes the sign on each
surgery coefficient. Then, after a few Rolfsen twists, one sees that —M,, is given by the
diagram in Figure 7.5.15. One may now perform inverse slam-dunk movers to obtain a
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Figure 7.5.14. The manifold M;,. The first diagram on the top left is the definition of M,,.
The second diagram on the top row is obtained by blowing up # times. The second row is
obtained from the upper right diagram by sliding the —1-framed unknots over the one to
its right and then isotoping the diagram. The bottom diagram is obtained from the middle
one by blowing up twice and doing a handle slide.

Figure 7.5.15. The diagram for M, whena =-1,b =-2,c=-2n—-2andd = —%. The

; — _ — _ _ _2n+2 _ _2n+1
diagram for —-M,, whena =-2,b=-2,c = 2n+1,andd— ]

surgery diagram with integer coefficients and hence a diagram for a 4-manifold X,, with

dX, = —M, and intersection form containing the one indicated above.

Exercise 7.5.6. Show that the intersection form of X, is negative definite.
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Now suppose that (M, &,) bounds a symplectic manifold (Y,, w,). As discussed in
the proof of Lemma 7.5.3, we know that M, is an L-space. In Appendix C we see that
any symplectic filling of an L-space must be negative definite. Thus, we may glue Y, and
X, together to obtain a closed 4-manifold Z, with a negative definite intersection form
(since X, and Y, are negative definite and M, is a rational homology sphere). We now
recall Donaldson’s famous diagonalization theorem.

Theorem 7.5.7 (Donaldson 1983, [Don83]). If X is a smooth, closed, oriented four-manifold
with definite intersection form, then the intersection form of X is diagonalizable over Z.

Remark 7.5.8. In [Don83], the above theorem was proven under the additional hypothe-
sis that X was simply connected. This extra hypothesis was removed a few years later in
[Don87].

From the above, we see that the intersection form for Z,, and in particular the part
of it given by the matrix above, will need to embed in some diagonal intersection form
D. Suppose ey, ..., ex span D. Let fi,..., fs be the elements in the intersection form of
Z, that give the matrix above. Notice that since fi2 = -1,fori =1,...,4, and the only
elements in D that have square -2 are €1¢; + €2¢ for some i # j and €; = +1. So, up to
composing our embedding of the intersection form of Z, into D we can assume that f;
map to e; — ey, Since f1 - f, = 1 we see that f, must map to something that contains either
—e1 Or ey, so again, up to composing with an automorphism of D we can assume that f,
maps to e, — e3 and similarly f3 maps to e4 — ey.

Exercise 7.5.9. Show that we can assume that f4 maps to e; + e3.

But now f5 must map to something, an element e that satisfies
e-(ep+e3)=1,ande-(ep —e3) =0.

However, this is not possible since (e2 + e3) + (e2 — €3) = 2e2 so we need 2¢ - e = 1 and
there is no such e. Thus Z,, cannot exist, and (M, &,) is not symplectically fillable. O
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Tight, 68
Torus knot, 109, 273

Negative, 273

Positive, 273
Transverse isotopic, 24, 30
Transverse knot, 18, 30, 34

Loose, 285

Negative, 34

Non-loose, 285

Positive, 34
Transverse push-off, 42, 267
Transversely orientable, 9
Transversely simple, 49
Trivial Bypass, 337
Twist on a fibered pair, 110

Universally tight, 70
Unstable manifold, 120
Upper meridian, 210

Vector field
Cross-product, 96
Curl, 96
Divergence, 116
Flow line, 119
Hyperbolic singular point, 120
Linearization, 119
Non-singular, 96
Periodic orbit, 122
Simple singularity, 119
Singular point, 119
Vertically invariant neighborhood, 133
Virtually overtwisted, 70

Weakly compatible, 100
Webster curvature, 100
Weinstein

0-handle, 319

1-handle, 320

2-handle, 325
Weinstein manifold, 297
Whitehead double, 107
Writhe, 37
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