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Abstract. We show that if (B, π) is an open book decomposition of
a contact 3–manifold (Y, ξ), then the complement of the binding B has
no Giroux torsion. We also prove the sutured Heegaard-Floer c-bar
invariant of the binding of an open book is non-zero.

1. Introduction

Interpreting and understanding contact geometric notions in terms of
open book decompositions has been a central theme in the study of contact
structures on 3–manifold ever since Giroux’s fundamental breakthrough [11]
equating contact structures on a 3–manifold (up to isotopy) with open book
decompositions up to positive stabilizations (and isotopy). Two particularly
noteworthy examples of this theme can be seen in identifying the Stein fill-
ability of a contact structure with the existence of an associated open book
with monodromy a composition of positive Dehn twists [1, 11] and relating
tight contact structures to right veering monodromies, [16].

Another fundamental property of a contact structure is Giroux torsion.
Recall that a contact manifold (Y, ξ) is said to have Giroux torsion n if there
exists a contact embedding φ : (T 2 × I, ξ2nπ) → (Y, ξ), where the contact
structure ξ2nπ on T 2 × I (thought of as R2/Z × I) is given by ξ2nπ(s, t) =
ker(cos(2nπt)dx+ sin(2nπt)dy).

Currently Giroux torsion is the only known mechanism for a manifold to
admit more than a finite number of tight contact structures. Thus it plays a
central role in the course classification of contact structures on a 3–manifold.
One would like to understand the relation between the Giroux torsion of a
contact structure and properties of an open books supporting the contact
structure. Currently we have the following reasonable conjecture concerning
this relationship.

Conjecture 1.1. The binding number bn(ξ) of a tight contact structure is
bounded below by the Giroux torsion of ξ.

Recall, in [7] the binding number of a contact structure was defined to
be the minimal number of binding components for an open book support-
ing the contact structure among those open books supporting the contact

Date: September 16, 2009.
2000 Mathematics Subject Classification. 57M27; 57R58.
Key words and phrases. Legendrian Links, Transverse Links, Heegaard Floer homology.

1



2 JOHN B. ETNYRE AND DAVID SHEA VELA–VICK

structure having minimal genus pages. Since we currently have no way to
“see” torsion from the perspective of supporting open book decompositions,
and since we have no geometric understanding of what the binding number
might be telling us about a contact structure, this is a particularly intriguing
conjecture.

If Conjecture 1.1 is true, one expects there to be some interaction be-
tween the binding of an open book and the Giroux torsion of the associated
contact structure. The simplest such interaction would be for the binding to
somehow intersect the Giroux torsion, thus a very weak form of the above
conjecture states that the complement of the binding of an open book for
any contact structure has no Giroux torsion.

The first progress on this conjecture occurred in [26], where the second
author used invariants of Legendrian and transverse knots defined by Lisca,
Ozsváth, Stipsicz and Szabó in [20] to show that if (B, π) is an open book
decomposition supporting (Y, ξ) with connected binding B, then the com-
plement of B has no Giroux torsion. We extend this to any open book
decomposition, with no assumption on the number of binding components,
by proving the following result.

Theorem 1.2. Let (B, π) be an open book decomposition of a contact 3–
manifold (Y, ξ), then the complement of the binding B has no Giroux torsion.
In particular, B must intersect each Giroux torsion layer in (Y, ξ) nontriv-
ially.

The proof involves a non-vanishing result for an invariant of transverse
knots in a contact manifold. Following Stipsicz and Vértesi in [24] one can
assign to a Legendrian or transverse knot (or link) L ⊂ (Y, ξ) an invariant
c(L) which takes values in a certain sutured Floer homology group whose
isomorphism type only depends on the topological type of L. We show this
invariant never vanishes for the binding of an open book.

Theorem 1.3. Let (B, π) be an open book decomposition of a contact 3–
manifold (Y, ξ), then c(B) 6= 0.

Our proof of Theorem 1.2 now follows from a result of Ghiggini, Honda
and Van Horn–Morris [9] that in our language says any transverse link L
whose complement has Giroux torsion also has vanishing invariant, c(L) = 0.

Acknowledgements. The first author was partially supported by the NSF
Grant DMS-0804820. The second author was partially supported by an NSF
Postdoctoral Fellowship DMS-0902924.

2. Background definitions and results

We assume throughout familiarity with basic definitions and facts from 3–
dimensional contact geometry, including open book decompositions, convex
surface theory and Legendrian and transverse knot theory. We also assume
basic familiarity with Heegaard and sutured Heegaard-Floer homology and
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the contact invariants defined therein. This material can be found in [5], [4],
[18] and [17] respectively.

Recall that to a (balanced) sutured manifold (Y,Γ) one can associate the
sutured Heegaard-Floer homology groups SFH(Y,Γ), [18]. In particular if
Y is a manifold with boundary and ξ is a contact structure on Y such that
∂Y is convex, then the the dividing set Γξ on ∂Y makes Y into a balanced
sutured manifold. In [17], Honda, Kazez and Matić defined an invariant of
ξ,

c(Y, ξ) ∈ SFH(−Y,Γξ),
that generalizes Ozsváth and Szabó’s Heegaard-Floer contact invariant on
closed manifolds. We will make use of the following gluing theorem of Honda,
Kazez and Matić for this invariant.

Theorem 2.1 (Honda-Kazez-Matić [15]). Let (Y1, ξ1) and (Y2, ξ2) be a com-
pact contact 3–manifolds with convex boundary, and suppose that (Y1, ξ1) ⊂
(Y2, ξ2) so that m components of Y2−int(Y1) contain no boundary component
of Y2. Then there exists a map

φξ2−ξ1 : SFH(−Y1,Γξ1)→ SFH(−Y2,Γξ2)⊗ V ⊗m,
where V is the two dimensional vector space over Z/2: ĤF(S1×S2). More-
over,

φξ2−ξ1(c(Y1, ξ1)) = c(Y2, ξ2)⊗ (x⊗ · · · ⊗ x),
where x is the contact invariant for the tight contact structure on S1 × S2.

Remark 2.2. The map in this theorem is only well defined up to sign
when Z-coefficients are used, but in this paper we will only consider Z/2-
coefficients and we can thus ignore the sign ambiguity.

We also make repeated use of a vanishing theorem of Ghiggini, Honda
and Van Horn–Morris from [9]. Using Theorem 2.1, the proof of the main
theorem of [9] implies the following result.

Theorem 2.3 (Ghiggini-Honda-Van Horn–Morris [9]). If (Y, ξ) is a contact
manifold with positive Giroux torsion, then the contact invariant c(Y, ξ) van-
ishes.

In [17], Honda, Kazez and Matić defined an invariant of Legendrian knots
taking values in an appropriate sutured Floer homology group associated to
a given Legendrian knot. Simply put, if L ⊂ (Y, ξ) is a Legendrian knot,
then this invariant c(L) is the sutured contact invariant of the complement
of an open standard neighborhood of L.

A connection between the Legendrian invariants defined in [17] and [20]
was explored by Stipsicz and Vértesi in [24]. There, Stipsicz and Vértesi
apply Theorem 2.1 to map c(L) to an intermediate invariant which we dub
the c-bar invariant and denote c(L). Stipsicz and Vértesi show that the
c-bar invariant maps to the Legendrian (hat) invariant from [20] under a
natural identification of their ambient groups. In this paper we ignore the
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connection with the Legendrian hat-invariant and focus our attention on the
c-bar invariant.

An elementary argument shows that c(L) is a strictly weaker invariant
than c(L). For instance, if (Y, ξ) is a contact manifold with c(Y, ξ) 6= 0, then
c(L) 6= 0 for any Legendrian L ⊂ (Y, ξ). On the other hand, c(L) vanishes
for any positively stabilized Legendrian knot L, regardless of the ambient
contact manifold it lives in. Forthcoming work of the authors [8] explores
the gap between c(L) and c(L) in detail. There, we define a new “sutured”
invariant that behaves much like the HFK− Legendrian invariant of [20].

We now detail Stipsicz and Vértesi’s construction of c(L). If L ⊂ (Y, ξ) is a
Legendrian knot, let ν(L) ⊂ (Y, ξ) denote an open standard neighborhood of
L. Focusing our attention on the complement of this standard neighborhood,
we consider the contact manifold obtained by attaching a basic slice to the
torus boundary of (Y − ν(L), ξ|Y−ν(L)) so that the resulting dividing set
on the new boundary consists of precisely two meridional (measured with
respect to the original knot L) dividing curves.

Denote this new contact manifold by (Y (L), ξL). A local picture of this
construction is supplied in Figure 1(a). The contact invariant of the manifold
Y (L) is the c-bar invariant of the Legendrian knot L. We label this invariant
by c(L), and the sutured Floer homology of the ambient sutured manifold
by SFH(−Y,L).

Since the boundary sutures on (Y (L), ξL) consist soley of meridians to
L, the ambient sutured manifold, and therefore the group SFH(−Y, L) de-
pends only on the topological knot type of L ⊂ Y . As a Z/2-vector
space, SFH(−Y,L) is naturally isomorphic to the knot Floer homology group
ĤFK(−Y, L).
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consists of precisely two meridional (measured with respect to the original
knot L) dividing curves.

We denote this new contact manifold by Y (L). A local picture of this
construction is supplied in Figure 1(a). The contact invariant of the manifold
Y (L) is an invariant of the Legendrian knot L. We denote this invariant
by EH(L), and the sutured Floer homology of the ambient manifold by
SFH(L).

(a) (b)

Figure 1.

As was observed in [SV08], it is immediate form its definition that if L
is a Legendrian knot, then EH(L) is invariant under negative stabilizations
of L. Recall that if L and L′ differ by a negative stabilization, then the
complements of open standard neighborhoods of L and L′ differ by a basic
slice attachment. As depicted in Figure 1(b), the basic slice attachment that
yields Y (L) factors into two basic slice attachments. The first attachment
corresponds to the stabilization L ! L′, and the second corresponds to the
attachment yielding Y (L′) = Y (L).

2.3. Link Floer Homology Invariants.

Remark 2.2. I’m completely unsure how beefy this section should be.

In accordance with the conventions set forth in [OS05b], we assume that
all the 3-manifolds considered in this subsection are rational homology spheres.

Let Y be a rational homology sphere, and let L ⊂ Y be an oriented (null-
homologous?) link. In [OS05b], Ozsváth and Szabó define an invariant of
such links they call Link Floer Homology. There are two variants of this
theory, denoted HFL−(Y,L) and ĤFL(Y,L).
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Figure 1. Obtaining Y (L) and factor tori

The invariant c(L) is unchanged by negative stabilizations of the Legen-
drian knot L. Recall that if L and L′ differ by a negative stabilization, then
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the complements of open standard neighborhoods of L and L′ differ by a ba-
sic slice attachment. As depicted in Figure 1(b), the basic slice attachment
yielding Y (L) factors into two basic slice attachments. The first attachment
corresponds to the stabilization L L′, and the second corresponds to the
attachment producing Y (L′) = Y (L). Combined with an associativity prop-
erty for the maps given by Theorem 2.1, see [15], this proves invariance of
c(L) under negative stabilization.

Invariance of c(L) under negative stabilizations, in turn, implies that c
induces an invariant of transverse knots: if K ⊂ (Y, ξ) is a transverse knot,
define c(K) = c(L) for any Legendrian approximation L of K.

This same construction extends to the case of Legendrian and transverse
links, yielding invariants in this more general context. Moreover, as observed
by Stipsicz and Vértesi, the c-bar invariant is sensitive to Giroux torsion and
satisfies the following vanishing theorem.

Theorem 2.4 (Stipsicz-Vértesi [24]). If L ⊂ (Y, ξ) be a Legendrian or trans-
verse knot (or link) whose complement has positive Giroux torsion, then
c(L) = 0.

Proof. If L is a Legendrian link then the space (Y (L), ξL) contains a copy
of the complement (Y − L, ξ|Y−L) as a proper subset. Therefore, if the
complement of L has positive Giroux torsion, (Y (L), ξL) must as well. It
follows immediately form the vanishing theorem in [9], Theorem 2.3, and
gluing theorem in [15], Theorem 2.1, that c(L) = 0.

If L is a transverse link with Giroux torsion in its complement, then
there is a Legendrian approximation of L that also has Giroux torsion in its
complement. Thus, it follows from the above argument that c(L) = 0. �

3. The c-bar invariant of bindings

We prove Theorem 1.2 by showing that if (B, π) is an open book decom-
position of a given contact manifold (Y, ξ), then c(B) does not vanish. It
then follows from Theorem 2.4 that the complement of B is torsion free.

Throughout this section let (B, π) be an open book decomposition for the
contact manifold (Y, ξ). Choose a Legendrian approximation LB of B, and
S = π−1(θ0) a fiber surface of π.

We now prove an auxiliary result that generalizes the universal tightness
of the complement of the binding of an open book to the contact manifold
(Y (LB), ξLB

).

Lemma 3.1. The contact manifold (Y (LB), ξLB
) is universally tight.

Proof of Lemma 3.1. To show that (Y (LB), ξLB
) is universally tight, we ap-

ply the Colin gluing theorem (see [2]). Colin’s gluing theorem states that if
(Y1, ξ1) and (Y2, ξ2) are two universally tight contact manifolds, and Ti ⊂ Yi
are pre-Lagrangian, incompressible tori, then the contact manifold obtained
by gluing Y1 to Y2 along T1 and T2 is universally tight.
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Suppose for the moment that the binding B has a single component, and
let T be the convex torus bounding (Y − ν(LB), ξ|Y−ν(LB)). The contact
manifold (Y (LB), ξLB

) is obtained from (Y −ν(LB), ξ|Y−ν(LB)) by attaching
a basic slices to the boundary torus T .

As observed in Section 2, this basic slice attachment can be factored as
a composition of two basic slice attachments. The first such attachment
corresponds to a negative stabilization of LB

(Y − ν(LB), ξ|Y−ν(LB))  (Y − ν(L′B), ξ|Y−ν(L′
B)),

while the second corresponds to the attachment,

(Y − ν(L′B), ξ|Y−ν(L′
B))  (Y (L′B), ξL′

B
) = (Y (LB), ξLB

).

Inside this first basic slice, we can find a pre-Lagrangian torus T ′ parallel to
the original boundary component T . The complement of this pre-Lagrangian
torus has two components; the first diffeomorphic to T 2 × I, and the other
to Y −B.

The contact structure restricted to either of these subspaces is universally
tight. More specifically, in the case of T 2× I, this is true because it sits as a
(π1-injective) subspace of a basic slice, a universally tight contact manifold.
Similarly, the second component is contained in complement of the binding,
(Y −B, ξ|Y−B), which is also universally tight. This fact is well-known but
as we could not find a direct proof of it in the literature we give a proof here.
By the definition of compatibility there is a Reeb vector field v for ξ that is
transverse to the pages of the open book and tangent to the binding. One
can also arrange that v is tangent to concentric tori around each binding
component. Let J be the standard almost complex structure associated to
v on the symplectization of Y − B. That v is tangent to concentric tori
about B implies that the end of the symplectization if foliated by Levi-flat
hypersurfaces. This fact persists in finite covers of Y −B. Thus Hofer’s proof
that overtwisted contact structure on closed 3-manifold have contractible
periodic Reeb orbits, [12], extends to prove the same thing for Y − B (and
its finite covers). Since v clearly does not have such orbits (as they are
all transverse to the pages of the open book) we can conclude that ξ is
tight, and it is tight when pulled back to finite covers. One can either use
the fact that the fundamental group of Y − B is residually finite or that
the universal cover of the symplectization of Y − B has finite geometry at
infinity to conclude that ξ is universally tight.

In general, the binding B consists of many components. In this case,
we apply the above argument to each component of B yielding the contact
manifold (Y (LB), ξLB

). All that remains to be checked before we can apply
the Colin gluing theorem is that each of the boundary tori Ti ⊂ ∂ (Y −B)
are incompressible.

To see that each Ti is incompressible, consider its preimage inside the
universal cover of Y − ν(B). We claim that each preimage is homeomorphic
to a copy of R2, implying incompressibility.
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Recall that Y − ν(B) is a surface bundle over S1, fibered by oriented
surfaces Sθ, whose oriented boundary is B. Consider first the intermediate
cover that unwraps the S1-factor. This cover is homeomorphic to S×R. In
this intermediate cover, the preimage of each Ti is a cylinder.

The universal cover of Y − ν(B) is homeomorphic to the universal cover
of S crossed with the real line R. Thus if S is not a disk (our result in this
case being obvious) the passing to the full universal cover, we see that the
preimage of each of the above cylinders is homeomorphic to R2.

Hence, each Ti is incompressible, completing the proof of Lemma 3.1. �

Lemma 3.2. The sutured contact invariant of (Y (LB), ξLB
) does not van-

ish.

Proof. As observed in [26], the Legendrian approximation LB can be chosen
so that the twisting of the contact planes with respect to the framing induced
on each component of LB by the fiber surface S is −1. In this case, the
local picture around each boundary component of (Y (LB), ξLB

) is shown
in Figure 2(a). In addition, as indicated in the figure, the dividing set
on S consists of one boundary parallel dividing curve for each boundary
component of S. This can be seen as follows.

Let B1, . . . , Bm be the components of B. Stabilize the open book along B1

(when stabilizing one chooses an arc in S, take this arc to be a small bound-
ary parallel arc). We get a new page S′ containing S with m+ 1 boundary
components B′1, B

′′
1 , B2, . . . , Bm, where B′1 is an unknot with self-lining −1

and B′′1 is transversely isotopic to B1. Moreover S′ − S is a twice punctured
disk with boundary B1, B

′
1, B

′′
1 , see [26]. Let L1, . . . , Lm, be curves on S′

such that Li is isotopic to Bi, i > 1 and L1 isotopic to B′′1 .
As S′ is a page of an open book supporting ξ we can make it convex (part

of the definition of a contact structure being supported by an open book is
that the Reeb vector field, which is a contact vector field, is transverse to
the pages). Moreover, we can simultaneously Legendrian realize all of the
Li on S′. Note Bi is the transverse push off of Li for all i and the twisting
of Li with respect to S′ is zero, for i > 1.

Let S′′ be the subsurface of S′ with boundary B1, L2, . . . , Lm. We add
an annulus to S′′ along B1 so that we get a surface, still denoted S′′, with
boundary L1, L2, . . . , Lm. Moreover this surface is convex except on a disk
touching the boundary component L1, (as it can be chosen to be a subsur-
face of S′ except along a disk touching the L1 boundary component). The
twisting of the contact planes along L1 relative to S′′ is −1 so we can isotop,
relative to where it was already convex, S′′ so that it is convex. Thus the
isotopy is supported near a disk D touching L1.

The dividing set on S′′ is empty except possibly in the disk D since the
Reeb field associated to S′ is transverse to ξ. In the disk D there must be
a boundary parallel arc to account for the −1 twisting and nothing else (as
the contact structure in the complement of the binding is tight).
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Now negatively (Legendrian) stabilizing each Li, i > 1, yields a new con-
vex surface which we again denote S with the desired dividing curves and
the boundary Legendrian approximating B.
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Knowing that the contact manifold (Y (LB), ξLB
) is tight, we can proceed

with showing that its contact invariant is nonvanishing.
It was shown in [Vel08] that the Legendrian approximation LB can be

chosen so that the twisting of the contact planes with respect to the framing
induced on each component of LB by the fiber surface S is −1 (see the
proof of Lemma 3.1 in [Vel08]). In this case, the local picture around each
boundary component of (Y (LB), ξLB

) is shown in Figure 3(a).

(a) (b)

Figure 3.

In this case, observe that the dividing set on a convex annulus extending
the page S to the meridian-sloped boundary component consists, up to
isotopy, of two horizontal dividing curves (see Figure 3(b)). Denote by S′

the extension of the convex surface S by this convex annulus.
The dividing set on S1 consists of a collection of boundary-parallel divid-

ing curves; one for each boundary component of Y (LB). Such a surface is
called well-groomed.

It was shown in [HKM07] that if (Y2, ξ2) is obtained from (Y1, ξ1) by
cutting along a well-groomed convex surface, then the contact invariant of
(Y2, ξ2) is nonvanishing if and only if the contact invariant of (Y1, ξ1) is
nonvanishing. Therefore, to prove Theorem 1.5, it suffices to show that the
contact manifold obtained by cutting along S′ is nonzero.

Cutting along S′, we obtain the tight contact manifold (Y ′, ξ′), whose
dividing set is shown in Figure 4.

Figure 4.
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Figure 2. Constructing Y (LB) and viewing factor tori

The dividing set on a convex annulus extending the page S to the meridian-
sloped boundary component consists, up to isotopy, of two horizontal divid-
ing curves (see Figure 2(b)). Denote by S′ the extension of the convex fiber
surface S by this convex annulus.

The dividing set on S′ consists of a collection of boundary-parallel dividing
curves; one for each boundary component of Y (LB). Such a surface is called
well-groomed. It was shown in [17] that if (Y2, ξ2) is obtained from (Y1, ξ1)
by cutting along a well-groomed convex surface, then the contact invariant
of (Y2, ξ2) is nonvanishing if and only if the contact invariant of (Y1, ξ1) is
nonvanishing. Thus, it suffices to show that the contact invariant of the
manifold obtained by cutting along S′ is nonzero.

Cutting along S′, we obtain the tight contact manifold (Y ′, ξ′), whose
dividing set near each of the original boundary tori is depicted in Figure 3.
This contact manifold with convex boundary is tight, by Lemma 3.1, and
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diffeomorphic to the surface S′ × [0, 1]. The dividing set is isotopic to the
collection of curves ∂S′ × 1/2.
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Tight contact structures on such manifolds are unique, [25]. These con-
tact structures are deformations of foliations, and embed into closed, Stein
fillable contact manifolds. More specifically, notice that the dividing curves
on the boundary of S′ × [0, 1] are the same as those on S × [0, 1] (thought
of as the complement of a standard neighborhood of LB in (Y, ξ) cut open
along the convex fiber surface S). Thus the contact structures are contac-
tomorphic. Moreover notice that if we take any take any open book with
page S and monodromy a composition of positive Dehn twists then the re-
sulting contact manifold (Y ′, ξ′) is Stein fillable. Arguing as we just did for
S× [0, 1] and S′× [0, 1], we see that if we remove a neighborhood of a Legen-
drian approximation of the binding from Y ′ and cut the resulting manifold
open along a page, the result will be a contact manifold contactomorphic to
S′ × [0, 1]. Thus S′ × [0, 1] contact embeds in a closed Stein fillable contact
manifold.

As shown in [23], the contact invariant of a Stein fillable contact manifold
is nonvanishing. Therefore by the Honda-Kazez-Matić gluing theorem [15],
Thoerem 2.1, it must also be the case that the sutured contact invariant of
(Y ′, ξ′) is nonvanishing. �
Proof of Theorem 1.2. Recall that, by definition, c(B) is the contact invari-
ant of (Y (LB), ξLB

). Therefore, by Lemma 3.2, c(B) 6= 0 for any B which
can be realized as the binding of an open book decomposition. We now
apply Theorem 2.4 to conclude that the complement of such a B has no
Giroux torsion. �
Proof. Using the notation from the proof of Lemma 3.2 let (V, ξ′) be a finite
cover of (Y (LB), ξLB

) and let Σ be a connected component of the preimage
of the page S in V. Notice that Σ is still a convex well-groomed surface
V. So we can prove the contact invariant c(ξ′) is non-zero by showing that
c(ξ′|V \Σ) is non-zero.

The dividing curves on ∂V are still meridional (thought each boundary
component may have more that two now). So as in the proof of Lemma 3.2
we see that the dividing curves on V \Σ (with corners rounded) are parallel
to ∂Σ.

We now claim that V \ Σ is a handlebody with compressing disks that
compress V \Σ into a ball and each has boundary that intersect the dividing
set on V \Σ twice. Thus, again, as in the proof of Lemma 3.2 we know that
V \ Σ contact embeds in a closed Stein fillable contact structure, implying
that its contact invariant is non-zero.

To see that V \Σ is a handlebody, let c1, . . . , c(2g+n−1) be arcs on S that
cut it into a disk, here we are assuming S is genus g and has n boundary
components. The covering map V → Y (LB) restricted to Σ give a covering
map Σ → S of some degree, say d. Notice that χ(Σ) = dχ(S) and that the
preimage of the ci give us d(2g+n−1) disjoint curves c′i in Σ. We claim that
Σ cut along these preimage curves is a single disk. First observe that it is
simply connected as any curve in Σ that misses these arcs projects to a curve
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that missed the ci and hence is trivial in the fundamental group of S. Thus
since the fundamental group of a cover injects into the fundamental group
of the base space we see that the fundamental group of (each compoent of)
Σ cut along the c′i is trivial. Since χ(Σ) = dχ(S) we know it will take at
least 2(2g + n− 1) curves to cut Σ into a disk. Thus Σ− ∪c′i is a disk.

Notice that each ci gives a circle di on ∂(Y (LB) \S) that bound disks Di

in Y (LB)\S. These disks lift to disks in V with their interior embedded. In
∂(V \ Σ) each c′i will give a circle d′i that when thought of as in V projects
down to di. Thus the preimage of the disks Di in Y (LB) give disks D′i in
V \ Σ. If we compress ∂V \ Σ along the D′i we get a 3–manifold V ′ with
boundary S2 (since the c′i cut Σ into a disk). As it is well known that V
is irreducible we see that V ′ is a 3–ball. Thus V \ Σ is a handlebody as
claimed. �
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Floer homology. Preprint, arXiv:math/0609734v2 [math.GT], 2006.

[15] Ko Honda, William Kazez, and Gordana Matić. Contact structures, sutured Floer
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