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ABSTRACT. We give several criteria on a closed, oriented 3–manifold that will imply that it is the
boundary of a (simply connected) 4–manifold that admits infinitely many distinct smooth structures.
We also show that any weakly fillable contact 3–manifold, or contact 3–manifold with non-vanishing
Heegaard Floer invariant, is the boundary of a simply connected 4–manifold that admits infinitely
many distinct smooth structures each of which supports a symplectic structure with concave bound-
ary, that is there are infinitely many exotic caps for any such contact manifold.

1. INTRODUCTION

Quickly after the groundbreaking work of Freedman [22] and Donaldson [12] in the early 1980s
it was realized that closed 4–manifolds could support more than one smooth structure. The first
such example appeared in Donaldson’s paper [13] after which it was shown by Okonek and Van de
Ven [41] and Friedman and Morgan [23] that some topological 4–manifolds admit infinitely many
smooth structures. Since then there has been a great deal of work showing that many simply
connected 4–manifolds admit infinitely many smooth structures and it is possible that any 4–
manifold admitting a smooth structure admits infinitely many.

A relative version of this phenomena has not been as well studied. Natural questions along
these lines are the following.

Question 1. Given a smooth 4–manifold with boundary, does it admit infinitely many distinct smooth
structures?

We also have the following easier question.

Question 2. Given a 3–manifold, is it the boundary of a 4–manifold that admits infinitely many smooth
structures?

1.1. Exotic fillings. In this paper we give several partial answers to the second question. The first
is the following.

Theorem 1.1. Let Y be a closed, connected, oriented 3–manifold. Suppose either Y (or −Y ) admits a
contact structure ξ such that its Heegaard Floer contact invariant c+(ξ) does not vanish. Then there exists
a compact, simply connected 4–manifoldX such that ∂X = −Y (or Y ) andX admits infinitely many non-
diffeomorphic smooth structures, each of which admits a symplectic structure that is a strong symplectic
cap for (Y, ξ) (or (−Y, ξ)).

We have the similar theorem.

Theorem 1.2. Let Y be a closed oriented 3–manifold. Suppose either Y (or −Y ) has a weak symplectic
filling (W,ω). Then there exists a compact, simply connected 4–manifold X such that ∂X = −Y (or Y )
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and X admits infinitely many non-diffeomorphic smooth structures relative to the boundary, each of which
admits a symplectic structure such that W ∪X is a closed symplectic manifold. In addition, X also admits
infinitely many smooth structures such that W ∪X has no symplectic structure.

Remark 1.3. Recall if the contact manifold (Y, ξ) admits a strong symplectic filling, then Ozsváth
and Szabó [44] showed that c+(ξ) 6= 0 (see also [27, Theorem 2.13]), but if it just admits a weak
filling it can happen that c+(ξ) = 0. So the two theorems above cover different situations. Ozsváth
and Szabó also showed in [44] c+(ξ; [ω]) 6= 0 for a weakly fillable contact structure if one uses
twisted coefficients, but unfortunately it is not clear how to extend Theorem 1.1 to this case.

Remark 1.4. Theorem 1.2 was proven by Yasui [55] for strongly fillable 3–manifolds and also for
weak symplectic fillable manifolds if one does not require that X be simply connected. Though in
these cases he proved the stronger theorem that there were infinitely many smooth structures that
were not related by any diffeomorphism.

Remark 1.5. In Theorem 1.2 the smooth structures are only shown to be exotic by a diffeomor-
phism that is the identity on the boundary. It would also be interesting to know the answer when
Y bounds an X with infinitely many smooth structures that are not diffeomorphic by any diffeo-
morphism, we call these absolutely exotic structures. In Theorem 1.1 the smooth structures are
absolutely exotic, while in Theorem 1.2 they are not. However, in many cases this is easy to see
that they are also absolutely exotic. In particular, notice that if Y has a finite number of diffeo-
morphisms up to isotopy, then an infinite subset of the smooth structures in Theorem 1.2 must
be absolutely exotic. It is well-known that lens spaces [9], hyperbolic manifolds [25], and many
other 3–manifolds have finite mapping class groups. So for these manifolds one may remove “rel
boundary” from Theorem 1.2.

We can also say something for 3–manifolds that embed in definite 4–manifolds.

Theorem 1.6. Let Y be an oriented rational homology 3–sphere. Suppose Y embeds as a separating hy-
persurface in a closed definite manifold. Then there exists a compact 4–manifold X with trivial first Betti
number such that ∂X = Y and X admits infinitely many non-diffeomorphic smooth structures.

We will call a 4–manifold X with boundary Y a filling of Y and we will call a different smooth
structure onX an exotic filling, or an exotic smooth structure on the filling. So the above theorems
can be stated as any closed oriented 3–manifold satisfying the various hypothesis admits a filling
with infinitely many exotic smooth structures (and in the case of the first two theorems the fillings
can be taken to be simply connected).

Example 1.7. We note that P# − P , where P is the Poincare homology sphere, does not admit a
tight structure and hence Theorems 1.1 and 1.2 do not apply. But P#−P bounds (P −B3)× [0, 1]
which is a homology 4–ball. Thus P# − P embeds in the double of the homology 4–ball which
is a homology 4–sphere, and so it has a filling with infinitely many smooth structures by Theo-
rem 1.6. Similarly, any rational homology sphere that bounds a rational homology ball satisfies
the hypothesis of Theorem 1.6. In particular, for any rational homology sphere Y , Theorem 1.6
applies to Y#− Y . These examples were also constructed by Yasui [55].

Remark 1.8. An obvious way to try to construct an infinite number of smooth structures on X
would be to start with one and form the connected sum with exotic smooth structures on a closed
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manifold. This may not produce distinct smooth structures. For example, if one choose X to
have many S2 × S2 summands, then connect summing X with many families of exotic smooth
manifolds will produce diffeomorphic manifolds by a result of Wall [53]. For a well-chosen X
it is likely that this construction will produce exotic fillings of Y , but proving they are different
could be difficult as the Ozsváth–Szabó and Seiberg–Witten invariants frequently vanish under
connected sum.

Remark 1.9. We note that the above theorems guarantee that the following manifolds have a filling
with infinitely many exotic smooth structures (though maybe not absolutely exotic):

(1) Any Seifert fibered space by [30] and Theorem 1.1.
(2) Any 3–manifold admitting a taut foliation by [15, 24, 38] and Theorem 1.2.
(3) Any irreducible 3–manifold with positive first Betti number (this is a special case of the

previous item).
(4) Any rational homology 3–sphere embedding in a closed definite manifold by Theorem 1.6.

So the only irreducible 3–manifolds not to known to admit exotic fillings are hyperbolic homology
spheres and toroidal homology spheres that do not embed in a definite 4–manifold; and many of
them are also know to have exotic fillings from the above theorems. In particular, we do not
know any example of an irreducible 3–manifold that does not satisfy the hypothesis of one of the
theorems above.

Moreover, if the L-space conjecture is true (at least the implication that an irreducible manifold
that is not an L-space admits a taut foliation), then the only irreducible 3–manifolds not known to
admit an exotic filling will be L-space homology spheres.

Prior to this work there were several works addressing Question 1 (and hence Question 2) in
specific cases. We first note that since any diffeomorphism of S3 extends over B4, one can use all
the past work on closed manifolds to show that S3 has many fillings with infinitely many exotic
smooth structures. Similarly, one can show that diffeomorphisms of circle bundles over surfaces
can be extended over the disk bundles that they bound. Thus by finding embedded surfaces in
the above mentioned closed manifolds with infinitely many smooth structures, one can remove
neighborhoods of these surfaces to show that some circle bundles over surfaces have fillings with
infinitely many exotic smooth structures.

Moving beyond these obvious examples, the first result concerning Question 1 is due to Gompf,
[29]. He showed that “nuclei” Nn of elliptic surfaces have infinitely many smooth structures. The
manifold Nn is a simply connected 4–manifold with second homology of rank 2 and boundary
the Brieskorn homology sphere Σ(2, 3, 6n − 1). Thus Question 2 is answered for this family of 3–
manifolds. Later Yasui used these nuclei to give a general procedure to create exotic fillings of 3–
manifolds, [55] see also [56]. For example, he has shown that any symplectically fillable connected
3–manifold bounds a compact connected oriented smooth 4–manifold admitting infinitely many
absolutely exotic smooth structures, as does the disjoint union of manifolds admitting Stein fillable
contact structures. In fact proof of Theorem 1.2 can be seen as a corollary of the main theorem in
[55].

In [5], Akhmedov, Mark, Smith and the first author gave explicit examples of circle bundles
over surfaces with infinitely many exotic smooth fillings and also showed that all of these also
have Stein structures. In particular, it was shown that there are contact 3–manifolds that admit a
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filling by a 4–manifold that has infinitely many smooth structures and each smooth structure has a
Stein structure that fills the contact structure; that is, these contact manifolds admit infinitely many
exotic Stein fillings. This work was extended by Akhmedov and Ozbagci in [6] to give families of
Seifert fibered spaces with infinitely many exotic fillings (and exotic Stein fillings). More recently,
Akbulut and Yasui [4] gave an infinite family of 4–manifolds each of which is simply connected
has second Betti number b2 = 2, and admits infinitely many distinct smooth structures (each of
which is also Stein). The fillings constructed in Theorems 1.1, 1.2, and 1.6 are large in the sense
that in general they have large b2. In the closed case it is quite interesting to try to find the simply
connected 4–manifolds with the smallest b2 that have infinitely many smooth structures. This
leads us to naturally ask the following question.

Question 3. Given a closed oriented 3–manifold Y , what is the minimal second Betti number of a filling of
Y that admits infinitely many exotic smooth structures?

We also note that in [3], Akbulut and Yasui show that many 3–manifolds (in particular ones
realizing all possible homologies for a 3–manifold) admit fillings with any arbitrarily large, but
finite, number of smooth structures (that also admit Stein structures).

1.2. Concordance surgery and Ozsváth–Szabó invariants. The proof of the theorems in the pre-
vious section will rely on a construction called concordance surgery and the effect of this surgery
on the Heegaard Floer mixed map.

Concordance surgery is a generalization of Fintushel-Stern’s knot surgery [21]; see [1, 37, 51].
Let X be a 4–manifold and T a torus embedded in X with trivial normal bundle. Thus, T has
a neighborhood NT = T × D2. Let K be a knot in an integer homology 3–sphere M and C =
(I ×M,A) a self-concordance from K to itself. After gluing the ends of A together, we obtain an
embedded torus TC in S1 ×M . Let WC be the complement of a neighborhood of TC . Choose an
orientation reversing diffeomorphism φ : ∂(X \NT ) → ∂WC sending ∂D2 in NT to the longitude
for K in Y \NK . Now we may glue X \NT and WC together and obtain

XC := (X \NT ) ∪φWC .

Knot surgery is simply the case of concordance surgery when M = S3 and A = K × [0, 1].
Fintushel and Stern [21] showed how knot surgery affects the Seiberg–Witten invariants of a

4–manifold (under suitable hypothesis), but it was a long-standing question how concordance
surgery affects the Seiberg–Witten invariants. In [37], Juhász and Zemke computed the effects of
concordance surgery on the Ozsváth–Szabó invariants of a closed 4–manifold, which are conjec-
turally same as the Seiberg–Witten invariants.

In this paper, we will show a similar result for 4–manifolds with connected boundary. To state
the result, we need to define the Ozsváth–Szabó polynomial for 4–manifolds with boundary; see
also [33, 37] for closed 4–manifolds. Suppose X is a smooth, compact, oriented 4–manifold with
connected boundary Y and b+2 (X) > 1. Generalizing the Ozsváth–Szabó invariant from closed
manifolds to manifolds with non-empty boundary we say the Ozsváth–Szabó invariant is a map

ΦX : Spinc(X)→ HF+(Y ).

This is an invariant of X up to automorphisms of Spinc(X) and HF+(Y ). Write ΦX,s for ΦX(s),
which is the image of the bottom-graded generator of HF−(S3) under the mixed map associated
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to the cobordismX −B4 thought of as a cobordism from S3 to Y . For more details, see Section 3.3.
Suppose b = (b1, . . . , bn) is a basis of H2(X, ∂X;R) and s0 is a fixed Spinc structure on X . We
define the Ozsváth–Szabó polynomial for X as follows.

ΦX;b :=
∑

s∈Spinc(X)

z
〈i∗(s−s0)∪b1,[X,∂X]〉
1 · · · z〈i∗(s−s0)∪bn,[X,∂X]〉

n · ΦX,s,

which is an element in F2[Zn]⊗F2 HF
+(Y ), where i∗ : H2(X;Z)→ H2(X;R) is a map induced by

i : Z→ R. If H2(X) is torsion-free, ΦX;b completely encodes ΦX as in the closed case.
Let K be a knot in a homology sphere M and C be a self-concordance of K. In [37], Juhász and

Zemke defined the graded Lefschetz number of C as follows.

Lefz(C) :=
∑
i∈Z

Lef
(
F̂C |ĤFK(M,K,i)

: ĤFK(M,K, i)→ ĤFK(M,K, i)
)
· zi,

where F̂C : ĤFK(M,K) → ĤFK(M,K) is a concordance map defined by Juhász in [34], which
preserves the Alexander and Maslov gradings. Notice that if C is a product concordance, then
F̂C is the identity, so Lefz(C) is the Alexander polynomial ∆K(z). Our main result about knot
concordance is the following result that generalizes Juhász and Zemke result above from closed
manifolds to manifolds with boundary.

Theorem 1.10. Let X be a smooth, compact, oriented 4–manifold with connected boundary Y = ∂X such
that b+2 (X) ≥ 2. Suppose T is an embedded torus in X with trivial normal bundle such that [T ] 6= 0 ∈
H2(X;R) and b = (b1, . . . , bn) is a basis of H2(X, ∂X;R) such that 〈[T ], b1〉 = 1 and 〈[T ], bi〉 = 0 for
i > 1. Then

ΦXC ;b = Lefz1(C) · ΦX;b.

A corollary of this theorem is the following useful result that will be the key to proving Theo-
rems 1.1 and 1.6

Corollary 1.11. Suppose C and C′ are concordances such that Lefz(C) 6= Lefz(C′). If ΦX;b 6= 0, then XC
is not diffeomorphic to XC′ .

The proof of this corollary follows an argument of Sunukjian [50], and the authors are grateful
to Gompf for pointing out that we might be able to use such an argument. We note that this
strengthens Corollary 1.2 in [37].

Remark 1.12. To prove our main result about exotic fillings of 3–manifolds we will only need to
use knot surgery and not concordance surgery, but thought it was useful to develop the effects of
these surgeries on the Ozsváth–Szabó polynomial in as great a generality as possible.

Given the above results our main theorem, Theorem 1.1, will follow from the following result.

Theorem 1.13. Given any closed contact 3–manifold (Y, ξ), there is a (strong) symplectic cap (X,ω) for
(Y, ξ) that is simply connected and contains a Gompf nucleus N2 whose regular fiber is symplectic and
has simply connected complement. Moreover, ΦX,s0 = c+(ξ) ∈ HF+(−Y, s0|Y ) for the canonical Spinc

structure s0 on (X,ω).
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The first part of the theorem is almost proven in [2, 19, 26] and, in different language, proven in
[55], and the last part was proven by Plamenevskaya [49] and Ghiggini [27], but as the argument
is simple and we need caps with all the listed properties we sketch the proof in Section 6.

This theorem brings up several interesting questions about how much of the Heegaard Floer
homology of a 3–manifold can be seen from the 4–manifolds it bounds. More specifically we ask
the following questions.

Question 4. Given a 3–manifold Y and a homogeneous element η ∈ HF+(Y ) is there a 4–manifold X
with ∂X = Y and ΦX,s = η for some Spinc structure s?

Or more simply we can ask:

Question 5. Given a 3–manifold Y is there any 4–manifold X such that ∂X = Y and ΦX,s is a non-zero
element of HF+(Y ) for some Spinc structure s?

If the answer to either question is yes, then one might ask if one can also control the topology
of X . For example can it be chosen to be simply connected? Can it be chosen to contain a cusp
neighborhood?

One way to approach Question 5 is related to a pervious attempt by the authors to show that
all closed oriented 3–manifolds bound a simply connected manifold with infinitely many smooth
structures by trying to embed such a manifold in a closed symplectic manifold. While our con-
struction did not work, as pointed out by Gompf, it does lead to an interesting question which we
state as a conjecture.

Conjecture. Any closed, oriented 3–manifold admits a smooth embedding into a symplectic 4–manifold.

Remark 1.14. In the paper [39], the third author showed that any such 3–manifold admits a topo-
logical embedding in a symplectic manifold that can be made to be smooth after a single connect
sum with S2 × S2.

Organization. In Section 2 we review results concerning contact structures and Weinstein cobor-
disms. Perturbed Heegaard Floer theory is reviewed in Section 3.2 with a focus on the work of
Juhász and Zemke [37]. In Sections 4 and 5, we review Juhász and Zemke [37] work on how
concordance surgery affects the Ozsváth–Szabó invariants of a closed 4–manifold and prove our
Theorem 1.10 on its affect on the invariants of manifolds with boundary. Theorems 1.1 and 1.2 are
proven in Section 6, while Theorem 1.6 is proven in Section 7.

Acknowledgements. The authors thank Robert Gompf and Kouichi Yasui for pointing out an er-
ror in the first version of the paper. We also thank Tom Mark and Ian Zemke for helpful discussions
about the Ozsváth–Szabó invariants, Chris Gerig and Olga Plamenevskaya for helpful discussions
about symplectic caps, Jen Hom and Jaewoo Jung for helpful conversations about Heegaard Floer
homology, and Michael Klug for asking the question that prompted this research. We also thank
Marco Golla for helpful comments on the draft of the paper. The authors were partially supported
by NSF grant DMS-1608684 and and DMS-1906414.
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2. CONTACT STRUCTURES, WEINSTEIN COBORDISMS, AND OPEN BOOKS

We assume the reader is familiar with basic results concerning contact and symplectic geome-
try and open book decompositions as can be found in [18], but we briefly recall some of this to
establish notation and for the convenience of the reader.

We begin by recalling that a Legendrian knot L in a contact manifold (Y, ξ) has a standard
neighborhood N and a framing frξ given by the contact planes. If L is null-homologous then frξ
relative to the Seifert framing is the Thurston-Bennequin invariant of L. If one does frξ−1 surgery
on L by removing N and gluing back a solid torus so as to affect the desired surgery, then there is
a unique way to extend ξ|Y−N over the surgery torus so that it is tight on the surgery torus. The
resulting contact manifold is said to be obtained from (Y, ξ) by Legendrian surgery on L.

Recall a symplectic cobordism from the contact manifold (Y−, ξ−) to (Y+, ξ+) is a symplectic
manifold (W,ω) with boundary −Y− ∪ Y+ where Y− is a concave boundary component and Y+

is convex. Here, unless specifically stated otherwise, we mean convex and concave in the strong
sense defined above. The first result we will need concerns when symplectic cobordisms can be
glued together.

Lemma 2.1. If (Xi, ωi) is a symplectic cobordism from (Y −i , ξ
−
i ) to (Y +

i , ξ
+
i ), for i = 1, 2, and (Y +

1 , ξ+
1 )

is contactomorphic to (Y −2 , ξ−2 ), then we may use the contactomorphism to glue X1 and X2 together to get
a symplectic cobordism from (Y −1 , ξ−1 ) to (Y +

2 , ξ+
2 ).

The proof is a simple exercise, cf. [16].
Another way to build cobordisms is by Weinstein handle attachment, [31, 54]. One may attache

a 0, 1, or 2–handle to the convex end of a symplectic cobordism to get a new symplectic cobordism
with the new convex end described as follows. For a 0–handle attachment, one merely forms the
disjoint union with a standard 4–ball and so the new convex boundary will be the old boundary
disjoint union with the standard contact structure on S3. For a 1–handle attachment, the convex
boundary undergoes a, possibly internal, connected sum. A 2–handle is attached along a Legen-
drian knot L with framing one less that the contact framing, and the convex boundary undergoes
a Legendrian surgery.

Given a surface Σ with boundary and a diffeomorphism φ : Σ→ Σ that is the identity near ∂Σ
we can form a close 3–manifold M(Σ,φ) by gluing solid tori to the boundary of the mapping torus

Tφ = Σ× [0, 1]/ ∼,

where (1, x) ∼ (0, φ(x)), so that the meridians to the solid tori map to {p} × [0, 1]/ ∼ for some
p ∈ ∂Σ. If M is diffeomorphic to M(Σ,φ) then we say that (Σ, φ) is an open book decomposition
for M . Following work of Thurston and Winkelnkemper [52], Giroux [28] showed that there is
a unique contact structure associated to an open book decomposition, we say that the contact
structure is supported by the open book. Moreover, he also showed that every contact structure
is supported by some open book decomposition and if an open book is positively stabilized, then
the supported contact structure is same. A positive stabilization of (Σ, φ) is (Σ′, φ′) where Σ′ is
obtained form Σ by attaching a 2–dimensional 1–handle and φ′ = φ ◦ τγ , where γ is a curve on Σ′

that intersects the co-core of the 1-handle exactly once (and transversely) and τγ is a right handed
Dehn twist about γ.

The following theorem is proven in [18].
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Theorem 2.2. Let (Y, ξ) be a strongly, respectively weakly, convex boundary component of a symplectic
manifold (X,ω) and (Σ, φ) and open book decomposition supporting ξ. If γ is a non-separating curve on
Σ, then

(1) a page of the open book may be isotoped, so that the open book still supports ξ, and γ becomes a
Legendrian curve,

(2) a Weinstein 2–handle may be attached to γ resulting in a new symplectic manifold (X ′, ω′) whose
new boundary component (Y ′, ξ′) is strongly, respectively weakly, convex and obtained from (Y, ξ)
by Legendrian surgery on γ, and

(3) (Y ′, ξ′) is supported by the open book (Σ, φ ◦ τγ).

3. PERTURBED HEEGAARD FLOER HOMOLOGY

In order to prove Theorem 1.10 we will need to use perturbed Heegaard Floer homology that
was originally defined by Ozsváth and Szabó in [45], cf [33]. The dependence of this homology
on the data used to define it is rather subtle and was worked out in Juhász–Zemke paper [37,
Theorem 3.1] using the formalism of projective transitive systems that was introduced by Baldwin
and Sivek in [7] when studying the naturality of sutured monopole and instanton homology.

3.1. Novikov rings and projective transitive systems. Recall that the Novikov ring over F2 is a set
of formal series

Λ =

{∑
x∈R

nxz
x : nx ∈ F2

}
where the set

{x ∈ (−∞, c] : nx 6= 0}
is finite for every c ∈ R. One may easily check that this is a field under the obvious operations.

Let Y be a closed 3–manifold equipped with a closed 2-form ω ∈ Ω2(Y ). Then there exists an
action of a group ring F2[H1(Y )] ∼= F2[H2(Y )] on Λ, induced by ω, which is defined as follows.
For a ∈ H2(Y ),

ea · zx = zx+
∫
a ω.

The naturality of perturbed Heegaard Floer homology is conveniently described by projective
transitive systems, which were first introduced by Baldwin and Sivek in [7].

Definition 3.1. Let C be a category and I a set. A transitive system in C indexed by I consists of

• a collection of objects (Xi)i∈I in C and
• distinguished morphisms Φi

j : Xi → Xj for (i, j) ∈ I × I such that
(1) Φj

k ◦ Φi
j = Φi

k and
(2) Φi

i = idXi .

Let C be the projectivized category of Λ[U ]–modules, where Λ is the Novikov ring above and U
is a formal variable. The objects of C are Λ–modules and the morphism set HomC(X1, X2) is the
projectivization of HomΛ(X1, X2) under the action by left multiplication of elements of Λ that are
of the form zx.
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In [7, 8], Baldwin and Sivek called a transitive system over the projectivized category a projective
transitive system. For morphisms f, g ∈ HomΛ(X1, X2), we write f .

= g if f = zx · g for some x ∈ R.
Also, if X is a Λ–module and a, b ∈ X , we write a .

= b if a = zx · b. Note that the composition of
morphisms in a projective transitive system is well-defined, while the addition of morphisms is
not well-defined.

There is also a notion of a morphism between transitive systems.

Definition 3.2. Let (Xi)i∈I and (Yj)j∈J be transitive systems in the category C. A morphism of
transitive systems is a collection of morphisms

F ij : Xi → Yj

in C such that
Φj
j′ ◦ F

i
j ◦ Φi′

i = F i
′
j′

for all i, i′ ∈ I and j, j′ ∈ J .

3.2. Perturbed Heegaard Floer homology. Let Y be a closed 3–manifold and s a Spinc structure
on Y . Recall that Heegaard Floer homology is a package of F2[U ]-modules HF ◦(Y, s) for ◦ ∈
{∞,+,−,∧}, which fit into a long exact sequence

· · · τ−→ HF−(Y, s)→ HF∞(Y, s)→ HF+(Y, s)
τ−→ HF−(Y, s)→ · · ·

In [45], Ozsváth–Szabó introduced Heegaard Floer homology perturbed by a second real coho-
mology class, which is more thoroughly discussed in [33]. Let ω ∈ Ω2(Y ) be a closed 2-from on Y
andH = (Σ,α,β, w) an s-admissible pointed Heegaard diagram of Y . Denote the two handlebod-
ies determined by H by Hα and Hβ respectively and let Dα and Dβ be sets of compressing disks
of Hα and Hβ, respectively, such that Dα intersects Σ along α and Dβ intersects Σ along β. To
define perturbed Heegaard Floer homology, we need to keep track of homotopy data associated
to φ ∈ π2(x,y). Note that φ determines a 2–chain D(φ) on Σ with boundary a union the loops in
α∪β. One may add copies of the compressing disksDα andDβ toD(φ) to obtain a closed 2-chain
D̃(φ). Now we define

Aω(φ) :=

∫
D̃(φ)

ω.

Consider a chain complex CF∞(H, s;ω) which is a free Λ-module generated by U ix for x ∈
Tα ∩ Tβ , such that the Spinc structure associated to x is s, i.e. s(x) = s. The differential is defined
as follows.

∂∞(U ix) =
∑

y∈Tα∩Tβ

∑
φ∈π2(x,y)
µ(φ)=1

(M(φ)/R) · zAω(φ) · U i−nw(φ)y (mod 2),

where nw(φ) is the algebraic intersection number between φ ∈ π2(x,y) and {w}×Symg−1(Σ) and
M(φ) is the space of J-holomorphic disks in the homotopy class φ where J is a generic almost
complex structure on Symg(Σ). For ◦ ∈ {+,−,∧}, ∂◦ is induced from ∂∞ in the usual way and
∂2 = 0 as in the original Heegaard Floer homology. Now we define

HF ◦(Y, s;ω) := H∗(CF
◦(H, s;ω), ∂◦).
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The homology HF ◦(Y, s;ω) depends on the choice of H and J , but it forms a projective transitive
system.

Theorem 3.3 (Juhász–Zemke [37, Theorem 3.1]). Let Y be a 3–manifold equipped with a closed 2-form
ω ∈ Ω2(Y ) and s ∈ Spinc(Y ) a Spinc structure on Y . For ◦ ∈ {∞,+,−,∧}, HF ◦(Y, s;ω) forms a
projective transitive system of Λ[U ]-modules, indexed by the set of pairs (H, J), whereH = (Σ,α,β, w) is
an s-admissible pointed Heegaard diagram of Y , and J is a generic almost complex structure on Symg(Σ).

We also have functoriality as in unperturbed Heegaard Floer homology.

Theorem 3.4 (Ozsváth–Szabó [44, Section 3.1]). Let W be a cobordism from Y1 to Y2. Suppose ω is a
closed 2-form on W and s ∈ Spinc(W ) is a Spinc structure on W . Then the cobordism map

F ◦W,s;ω : HF ◦(Y1, s|Y1 ;ω|Y1)→ HF ◦(Y2, s|Y2 ;ω|Y2)

is well-defined up to overall multiplication by zx for x ∈ R.

Consider ω ∈ Ω2(W,∂W ) which is a closed 2-form on W compactly supported in the interior of
W . We will say such an ω is a 2-form on (W,∂W ). Let W be a cobordism from Y0 to Y1 equipped
with a closed 2-form ω and S ⊆ Spinc(W ) a subset of Spinc structures on W . From now on, we
always assume that (W,ω,S) has one of the following properties.

• each s ∈ S has the same restriction to ∂W , or
• ω is a closed 2-form on (W,∂W ).

If ◦ ∈ {∞,−}, we further assume that there exists only finitely many s ∈ S such that F ◦W,s;ω is
non-vanishing. Then, there exists a cobordism map

F ◦W,S;ω : HF ◦(Y1;ω|Y1)→ HF ◦(Y2;ω|Y2),

which is also well-defined up to overall multiplication by zx for x ∈ R. Although addition is not
well-defined in projective systems, we may find representatives of F ◦W,S;ω for s ∈ S so that

F ◦W,S;ω
.
=
∑
s∈S

F ◦W,s;ω.

There is also a Spinc composition law for cobordism maps.

Lemma 3.5 (Ozsváth–Szabó [48, Theorem 3.4]). Let W be a cobordism which is decomposed into W =
W1 ∪W2. Suppose that ω is a closed 2-form on (W,∂W ), and S1 ⊂ Spinc(W1) and S2 ⊂ Spinc(W2) are
subsets of Spinc structures satisfying the properties above. Let

S(W,S1,S2) = { s ∈ Spinc(W ) : s|W1 ∈ S1 and s|W2 ∈ S2 }.
Then

F ◦W,S(W,S1,S2);ω
.
= F ◦W2,S2;ω|W2

◦ F ◦W1,S1;ω|W1
.

The cobordism map is unchanged when we replace ω by ω + dη for any η.

Lemma 3.6 (Juhász–Zemke [37, Lemma 3.3]). Let W be a cobordism from Y1 to Y2, S ⊂ Spinc(W ) a
subset of Spinc structures on W , ω a closed 2-form on (W,∂W ), and η a 1-form on (W,∂W ). Then

F ◦W,S;ω=̇FW,S;ω+dη.

If ω does not vanish on Y1 and Y2, then the above equation holds when restricted to fixed Spinc structures
on Y1 and Y2.
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If ω = {ω1, . . . , ωn} is an n-tuple of closed 2-forms on a 3–manifold Y , we can define Λn[U ]-
module HF ◦(Y, s;ω) as above, where Λn is the n-variable Novikov ring over F2. All the theorems
and lemmas in this section hold for this version.

Let a = (a1, . . . , an) be an n-tuple of integers. We will use the notation

za := za11 · · · z
an
n .

Lemma 3.7 (Juhász–Zemke [37, Lemma 3.4]). LetW be a cobordism from Y1 to Y2 andω = {ω1, . . . , ωn}
be an n-tuple of closed 2-forms on (W,∂W ). Suppose S ⊆ Spinc(W ) is a subset of Spinc structures on
W . If ◦ ∈ {−,∞}, we further assume that there are only finitely many s ∈ S where F ◦W,s 6= 0. Fix an
arbitrary Spinc structure s0 ∈ Spinc(W ). Then,

F ◦W,S;ω
.
=
∑
s∈S

z〈i∗(s−s0)∪[ω],[W,∂W ]〉 · F ◦W,s,

where i∗ : H2(W ;Z)→ H2(W ;R) is induced by the inclusion i : Z→ R.

In [48], Ozsváth–Szabó defined a pairing for Heegaard Floer homology

〈·, ·〉 : HF+(Y, s)⊗HF−(−Y, s)→ Z,
which is non-degenerate for torsion Spinc structures and satisfies a certain duality property.

In [33, Sections 4 and 8.1], Jabuka and Mark extended this pairing to Heegaard Floer homology
with twisted coefficients and to perturbed Heegaard Floer homology. Let M be a Λ-module. We
denote the additive group M equipped with conjugate module structure by M , where multiplica-
tion is given by

z ⊗ a 7→ z−1 · a,
for z 6= 0 ∈ Λ and a ∈M .

Theorem 3.8 (Jabuka–Mark [33]). There is a non-degenerate pairing

〈·, ·〉 : HF+(Y, s;ω)⊗Λ HF−(−Y, s;ω)→ Λ.

The pairing satisfies 〈ga, b〉 = g〈a, b〉 = 〈a, gb〉 for g ∈ Λ.

The pairing also satisfies the following duality property.

Theorem 3.9 (Jabuka–Mark [33]). Let W be a cobordism from Y1 to Y2, ω a closed 2-form on W and s a
Spinc structure on W . For a ∈ HF+(Y1, s|Y1 ;ω|W1) and b ∈ HF−(−Y2, s|Y2 ;ω|W2), we have

〈F+
W,s;ω(a), b〉 = 〈a, F−W ′,s;ω(b)〉,

where we consider W ′ is W viewed as a cobordism from −Y2 to −Y1.

3.3. Ozsváth–Szabó mixed invariants. Let W be a cobordism from Y1 to Y2 with b+2 (W ) > 1. In
[48], Ozsváth and Szabó defined the mixed map

FmixW,s : HF−(Y1, s|Y1)→ HF+(Y2, s|Y2).

To define the mixed map, we choose a codimension one submanifoldN which separatesW into
two cobordisms W1 and W2 and satisfies

• b+2 (Wi) > 0 for i = 1, 2 and
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• δ : H1(N)→ H2(W,∂W ) vanishes
Such an N is called an admissible cut. In [48], Ozsváth and Szabó proved that F∞W1,s|W1

= 0 and
F∞W2,s|W2

= 0 (this is also true for perturbed cobordism maps). Thus, we may restrict the codomain

of F−W1,s|W1
to

HF−red(N, s|N ) := ker
(
HF−(N, s|N )→ HF∞(N, s|N )

)
,

and thus get a map
F−W1,s|W1

: HF−(Y1, s|W1)→ HF−red(N, s|N ).

Moreover, we may factor F+
W2,s|W2

through the projection of HF+(N, s|N ) to its cokernel. That is if

HF+
red(N, s|N ) := coker

(
HF∞(N, s|N )→ HF+(N, s|N )

)
,

then we have
F+
W2,s|W2

: HF+
red(N, s|N )→ HF+(Y2, s|W2).

The boundary map τ in the long exact sequence of Heegaard Floer homology (see Section 3.2)
induces an isomorphism between H+

red(N, s|N ) and H−red(N, s|N ).
Now the mixed map is defined as follows.

FmixW,s := F+
W2,s|W2

◦ τ−1 ◦ F−W1,s|W1

In [48], Ozsváth and Szabó proved that the mixed map is independent of the admissible cut N .
Let X be a compact 4–manifold with connected boundary Y and b+2 (X) > 1. We consider X as

a cobordism from S3 to Y . We define the Ozsváth–Szabó invariant of X to be the map

ΦX : Spinc(X)→ HF+(Y )

that sends s to
ΦX,s := FmixX,s (θ−)

where θ− is the top-graded generator of HF−(S3).

Remark 3.10. In [48] Ozsváth and Szabó defined ΦX,s as a numerical invariant for a closed 4–
manifold X by pairing FmixX,s (θ−) with θ+, which is the bottom-graded generator for HF+(S3).
However, since there is no canonical element for general HF+(Y ), we define ΦX,s as an element
in HF+(Y ).

When X is a closed 4–manifold, Jabuka and Mark in [33], and Juhász and Zemke in [37] com-
puted the Ozsváth–Szabó invariant of X using perturbed cobordism maps. Under some con-
straints, we can perform the same computation for 4–manifolds with boundary. The following
lemmas and properties are proved by Juhász and Zemke in [37] when X is a closed 4–manifold.
The proofs are identical for the relative case.

Lemma 3.11 (Juhász–Zemke [37, Lemma 4.1]). Let X be a 4–manifold with connected boundary Y
and b+2 (X) > 1, and N an admissible cut of X separating X into W1 ∪W2. Suppose b is an element in
H2(X, ∂X;R). Then there is a closed 2-from ω on (X, ∂X) such that

• ω vanishes on N , and
• [ω] = b.
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Since HF+(Y ) is non-vanishing for only finitely many Spinc structures on Y , we can easily
extend [37, Lemma 4.2] to the relative case.

Lemma 3.12 (Juhász–Zemke [37, Lemma 4.2]). Let X be a 4–manifold with connected boundary Y and
b+2 (X) > 1, and N an admissible cut of X separating X into W1 ∪W2. If ω is a closed 2-form on X that is
exact on Y andN , then F−W1,t;ω|W1

and F+
W2,u;ω|W2

are non-vanishing for only finitely many t ∈ Spinc(W1)

and u ∈ Spinc(W2).

Recall in the introduction we defined

ΦX;b =
∑

s∈Spinc(X)

ΦX,s · z〈i∗(s−s0)∪b1,[W,∂W ]〉
1 · · · z〈i∗(s−s0)∪bn,[W,∂W ]〉

n ,

which encodes much of the information in the Ozsváth–Szabó invariant ΦX . With this notation we
can see how to compute the Ozsváth–Szabó invariant using perturbed Heegaard Floer homology.

Proposition 3.13 (Juhasz–Zemke [37, Proposition 4.3]). Let X be a 4–manifold with connected bound-
ary Y and b+2 (X) > 1, and N an admissible cut of X separating X into W1 ∪ W2. Suppose b =
{b1, . . . , bn} is a basis of H2(X, ∂X;R) and ω = {ω1, . . . , ωn} is a set of 2-forms on (X, ∂X) such that
[ωi] = bi and each ωi vanishes on N . Then

ΦX;b
.
= F+

W2;ω|W2
◦ τ−1 ◦ F−W1;ω|W1

(θ−).

4. KNOT AND CONCORDANCE SURGERY

Concordance surgery is a generalization of Fintushel-Stern’s knot surgery [21]; see [1, 51]. Here
we discuss the generalized version of concordance surgery using self-concordance in a homology
sphere, introduced by Juhász and Zemke in [37].

LetX be a 4–manifold with the same conditions containing a torus T with trivial normal bundle
and let NT = T ×D2 be a neighborhood of T in X . Suppose M is an integer homology 3–sphere
and K is a knot in M . Consider a self-concordance C = (I × M,A) from (M,K) to itself. We
may glue the ends of I ×M and obtain S1 ×M ∼= I ×M/ ∼. We also glue the ends of A and
obtain an embedded torus TC ⊂ S1 ×M . Remove a neighborhood of TC from S1 ×M to obtain
a 4–manifold WC with boundary T 3. Now we may glue X \ NT and WC so that ∂D2 in NT is
glued to the longitude for K in M \NK . We write the resulting manifold as XC and call it a result
of concordance surgery on X . Note that if we use a product concordance in S3, then concordance
surgery and knot surgery are same.

Since WC is a homology T 2 ×D2 and the fact that we are gluing the null-homologous curve in
WC to the meridian of T we see that the homology and intersection pairing of X and XC are the
same. Moreover, if C is a self-concordance of (S3,K) and X \ NT is simply connected, then so is
XC and hence by Friedman [22]X andXC will be homeomorphic (this is because the fundamental
group of the complement of TC in S1 × S3 is generated by meridians and S1 × {pt} and so will be
killed when glued to X \NT ).

In [37], Juhász and Zemke showed that how the Ozsváth–Szabó invariants change under the
concordance surgery. To state this, we recall the graded Lefschetz number of the concordance
map on knot Floer homology. Let C = (I ×M,A) be a self-concordance of a knot K in a homology
3–sphere M and let a be a pair of properly embedded parallel arcs on A connecting the boundary
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components of A. In [34], Juhász showed that there is a map induced by (C, a) on knot Floer
homology.

F̂C,a : ĤFK(M,K)→ ĤFK(M,K).

In [35], Juhász and Marengon showed that the map F̂C,a preserves the Alexander and Maslov
gradings. Thus, we can define the graded Lefschetz number of F̂C,a.

Lefz(C) :=
∑
i∈Z

Lef
(
F̂C,a|ĤFK(M,K,i)

: ĤFK(M,K, i)→ ĤFK(M,K, i)
)
· zi.

In [37], Juhász and Zemke proved that the graded Lefschetz number of F̂C,a is independent of
the parallel arcs a.

Lemma 4.1 (Juhász–Zemke [37]). The graded Lefschetz number Lefz(C) does not depend on the choice
of arcs a. Moreover, Lefz(C) is symmetric under the conjugation z 7→ z−1.

They also proved a concordance surgery formula for closed 4–manifolds.

Theorem 4.2 (Juhász–Zemke [37]). Let X be a smooth, oriented and closed 4–manifold with b+2 (X) > 1.
Suppose T is an embedded torus in X with trivial normal bundle such that [T ] 6= 0 ∈ H2(X;R) and
b = (b1, . . . , bn) is a basis of H2(X;R) such that 〈[T ], b1〉 = 1 and 〈[T ], bi〉 = 0 for i > 1. Then

ΦXC ;b = Lefz(C) · ΦX;b

A simple, but insightful, observation of Fintushel and Stern about knot surgery, which is natu-
rally extended to concordance surgery, is the following.

Lemma 4.3 (Fintushel and Stern 1998, [21]). Let (X,ω) be a symplectic 4–manifold and T a symplec-
tically embedded torus with trivial normal bundle. If K is a fibered knot in a homology sphere M and C
a the trivial self-concordance of (M,K), then XC may be constructed so that it has a symplectic structure
ωC . Moreover, in the complement of the surgery region of XC and the neighborhood of the torus in X the
symplectic structures ωC and ω agree.

While concordance surgery construction is very general, we will consider it in the case that T
sits nicely in a cusp neighborhood. A cusp neighborhood C is the neighborhood of a cusp singular
fiber in an elliptic fibration, see [31] for more details. A handle picture for C is given in Figure 1.
The complement of the singular fiber in the cusp neighborhood is a T 2 fibration over a punctured
disk. We will consider concordance surgery along tori that are fibers in this fibration.

In our applications below we will actually want the tori along which we do concordance surgery
to be in a slightly more constrained. Specifically we would like them to lie in Gompf nuclei Nn

[29]. This is an enlargement of a cusp neighborhood and can be thought of as a neighborhood of a
cusp fiber and a section in an elliptic fibration. See Figure 1 for a picture of Nn.

5. CONCORDANCE SURGERY FORMULA

In this section, we will prove Theorem 1.10 and Corollary 1.11.
We begin with a model case. Let W0 = T 2 × D2 and C = (I × M,A) be a self-concordance

of a knot in a homology sphere. Set WC to be the result of concordance surgery on W0 along the
torus T 2 × {0}. We will use Proposition 3.13 to compute the Ozsváth–Szabó invariant of WC , and
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0

−n

FIGURE 1. The surgery diagram on the left without the unknot is a cusp neighbor-
hood. A regular torus fiber can be seen in the neighborhood by taking the punc-
tured torus Seifert surface for the trefoil and capping it off with the core of the
2-handle. The diagram on the left is a Gompf nucleus Nn which clearly contains a
cusp neighborhood. On the right is a Weinstein diagram for N2.

thus we begin by computing the cobordism map F−WC ;ωC
. Let W0 be a 4–manifold diffeomorphic

to T 2 × D2 and ω0 ∈ Ω2(W0) a closed 2-form on W0 which is homologous to Poincaré dual to
{p} × D2. Let ωC ∈ Ω2(WC) be a closed 2-form on WC which is homologous to Poincaré dual to
{p} ×ΣK where ΣK is a Seifert surface of K in Y \NK . Since Spinc(W0) ∼= Spinc(WC) ∼= Z we can
list the Spinc structures of W0 and WC as follows. Let tk ∈ Spinc(W0) be the Spinc structure on W0

such that c1(tk) = 2k · PD[{p} × D2]. Similarly, let t′k ∈ Spinc(WC) be the Spinc structure on WC
such that c1(t′k) = 2k · PD[{p} × ΣK ].

In [37], Juhász and Zemke computed F+
WC ;ωC

.

Proposition 5.1 (Juhász–Zemke [37, Corollary 5.5]). Consider WC as a cobordism from −T 3 to S3.
Then

F+
WC ,t

′
0;ωC

.
= Lefz(C) · F+

W0,t0;ω0
.

For k 6= 0, the cobordism map F+
WC ,t

′
k;ωC

vanishes.

By duality, we can prove the minus version of the above proposition.

Proposition 5.2. Consider WC as a cobordism from S3 to T 3. Then

F−
WC ,t

′
0;ωC

(θ−)
.
= Lefz(C) · F−W0,t0;ω0

(θ−).

For k 6= 0, the cobordism map F−
WC ,t

′
k;ωC

vanishes.

Proof. Let τ = ωC |T 3 and a an element in HF+(T 3; τ). Then

〈a, F−
WC ,t

′
0;ωC

(θ−)〉 = 〈F+
WC ,t

′
0;ωC

(a), θ−〉

= Lefz(C)〈F+
W0,t0;ω0

(a), θ−〉

= Lefz(C)〈a, F−W0,t0;ω0
(θ−)〉

= 〈a,Lefz−1(C) · F−W0,t0;ω0
(θ−)〉

= 〈a,Lefz(C) · F−W0,t0;ω0
(θ−)〉
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The first and third equality follows from the duality, Theorem 3.9. The second equality follows
from Proposition 5.1. The fourth equality follows from the anti-linearity of the pairing. The last
equation follows from the fact that Lefz(C) is symmetric under the conjuation z 7→ z−1 as noted
in Lemma 4.1. Now the desired formula follows from the nondegeneracy of the pairing given in
Theorem 3.8. The same proof works for k 6= 0. �

Now we can obtain the minus version of [37, Corollary 5.6]. The proof is identical.

Corollary 5.3. Suppose ω = (ω1, . . . , ωn) is a collection of closed 2-forms on (X, ∂X) satisfying∫
T
ω1 = 1 and

∫
T
ωi = 0 for i > 1,

and ω′ = (ω′1, . . . , ω
′
n) is the collection of induced 2-forms on (XC , ∂XC) under the canonical isomorphism

H2(XC , ∂XC ;R) ∼= H2(X, ∂X;R). Then

F−
XC ,t

′
0;ω′|XC

.
= Lefz(C) · F−X0,t0;ω|X0

.

For other Spinc structures, the both cobordism maps vainish.

Now we are ready to prove Theorem 1.10 that says if XC is the result of C concordance surgery
on X then the Ozsváth-Szabó polynomial of XC is that of X multiplied by the graded Lefschetz
number of C.

Proof of Theorem 1.10. Given our 4–manifold with boundary X that contains a torus T with trivial
normal bundle that is non-trivial in homology, choose an admissible cut N the breaks X into two
pieces W1 and W2 where W1 contains T and W2 contains the boundary ∂X .

Let ω = (ω1, . . . , ωn) be a collection of closed 2-forms on (X, ∂X) such that
∫
T ω1 = 1 and∫

T ωi = 0 for i > 1. Moreover, suppose that b = (b1, . . . , bn), where bi = [ωi] ∈ H2(X, ∂X;R), is a
basis of H2(X, ∂X). From Proposition 3.13, we have

ΦX;b
.
= F+

W2;ω|W2
◦ τ−1 ◦ F−W1;ω|W1

(θ−).

We can decompose W1 as W ∪W0 where W0 is a neighborhood of T and W = W1 \ int(W0), The
composition law (Proposition 3.5) gives

F−W1;ω|W1

.
= F−W ;ω|W ◦ F

−
W0;ω|W0

.

Let W ′1 be W ∪WC . Then XC = W2 ∪W ′1 and

ΦXC ;ω′
.
= F+

W2;ω′|W2
◦ τ−1 ◦ F−

W ′1;ω′|W ′1
(θ−).

We may apply the composition law again and obtain

F−
W ′1;ω′|W ′1

.
= F−W ;ω′|W ◦ F

−
WC ;ω′|WC

Since the surgery procedure does not modify W and W2, ω′|W = ω|W and ω′|W2 = ω|W2 . Now
the theorem follows from Corollary 5.3. �

Now we prove Corollary 1.11, following the proof of Corollary 1.2 in [37]. Recall this corollary
says that the result of two different concordance surgeries on a 4–manifold X with non-trivial
Ozsváth-Szabó polynomial are not diffeomorphic if the their graded Lefschetz numbers are dif-
ferent.
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Proof of Corollary 1.11. We will show that XC and XC′ are not diffeomorphic if Lefz(C) 6= Lefz(C′).
Suppose φ : XC → XC′ is a diffeomorphism from XC to XC′ . By the naturality of Heegaard Floer
homology, φ|Y induces an automorphism on HF+(Y ); see [36]. We denote this automorphism by
φ∗. Then we have

ΦXC′ ,s = φ∗(ΦXC ,φ∗(s))

Notice that φ∗ naturally extends to a F2[Zn]-module automorphism on F2[Zn] ⊗F2 HF
+(Y ) After

identifying H2(XC , ∂XC) and H2(XC′ , ∂XC′) with Zn via the basis b the action of φ∗ on cohomol-
ogy can be though of as an element M(φ∗) of GLn(Z). We write eM(φ∗)t for the endomorphism of
F2[Zn]⊗F2 HF

+(Y ) given by eM(φ∗)t · za ⊗ b = zM(φ∗)t·a ⊗ b, where we view a as a column vector
and b ∈ HF+(Y ). With this notation we have the following equalities.

ΦXC′ ;b =
∑

s∈Spinc(X)

z〈i∗(s−s0)∪b,[X,∂X]〉 · ΦXC′ ,s

=
∑

s∈Spinc(X)

z〈φ
∗i∗(s−s0)∪φ∗(b),[XC ,∂XC ]〉 · φ∗

(
ΦXC ,φ∗(s)

)
=

∑
s∈Spinc(X)

z〈i∗(s−φ
∗(s0))∪φ∗(b),[XC ,∂XC ]〉 · φ∗ (ΦXC ,s)

.
=

∑
s∈Spinc(X)

z〈i∗(s−s0)∪φ∗(b),[XC ,∂XC ]〉 · φ∗ (ΦXC ,s)

= eM(φ∗)t ·
∑

s∈Spinc(X)

z〈i∗(s−s0)∪b,[XC ,∂XC ]〉 · φ∗ (ΦXC ,s)

= φ∗(e
M(φ∗)t · ΦXC ;b),

The first equality follows from the definition. The second equality follows from the naturality of
the Heegaard Floer maps and of cohomology. The third equality follows from rearranging the sum
and noting that as the sum goes over all of Spinc(X) the φ∗(s) also ranges over all of Spinc(X). The
fourth equality follows since ΦX;b is invariant up to overall multiplication by a monomial and of
the choice of base Spinc structure s0. The fifth equality is essentially the definition of eM(φ∗)t . The
last equality follows from the definition of ΦXC ;b and the linearity of φ∗.

The invariant ΦXC ;b as an element of F2[Zn]⊗F2 HF
+(Y ) can be written

k∑
i=1

fi ⊗ xi

where fi ∈ F2[Zn] is a polynomial in n variables and xi ∈ HF+(Y ). So we see that ΦXC′ ;b has the
form

k∑
i=1

(eM(φ∗)t · fi)⊗ φ∗(xi).

Let fC be the greatest common divisor of {f1, . . . , fk}. Since φ∗ is an automorphism of F2[Zn] ⊗F2

HF+(Y ), clearly fC′ = eM(φ∗)t · fC is the greatest common divisor of the F2[Zn] terms in ΦXC′ ;b.



18 JOHN B. ETNYRE, HYUNKI MIN, AND ANUBHAV MUKHERJEE

Let α ∈ F2[Zn] be an irreducible element and let f ∈ F2[Zn] be any element and ψ an automor-
phism of F2[Zn]. In [50], Sunukjian defined the invariant Γα,ψ(f) to be the the number of elements
of the form ψn(α) and ψn(α) that can be factored out of f , where α just negates the Zn elements of
F2[Zn].

Sunukjian showed that Γα,ψ(f) is invariant under the automorphisms ψ and that Γα,ψ(fg) =
Γα,ψ(f) + Γα,ψ(g). He also showed that if ∆K(z) 6= ∆K′(z) and φ is some automorphism, then
there is some α such that Γα,φ∗(∆K(z)) > Γα,φ∗(∆K′(z)). The proof only used the fact that the
Alexander polynomial is symmetric under sending z to z−1. But as noted in Lemma 4.1 the graded
Lefschetz number Lefz(C) has this same symmetry. So there is some α such that Γα,φ∗(Lefz(C)) >
Γα,φ∗(Lefz(C′)).

As noted above fC′ = eM(φ∗)t ·fC so we have that Γα,φ∗(fC) = Γα,φ∗(fC′). However, Theorem 1.10
says that ΦXC ;b = Lefz1(C) · ΦX;b and ΦXC′ ;b = Lefz1(C) · ΦX;b. Thus if f is the greatest common
divisor of the F2[Zn] terms in ΦX;b, then fC = Lefz1(C)f and fC′ = Lefz1(C′)f and we see that

Γα,φ∗(f) + Γα,φ∗(Lefz1(C)) = Γα,φ∗(fC) = Γα,φ∗(fC′) = Γα,φ∗(f) + Γα,φ∗(Lefz1(C′)).

So we see that Γα,φ∗(Lefz1(C)) = Γα,φ∗(Lefz1(C′)), contradicting the choice of α above. The the
diffeomorphism φ cannot exist. �

6. SYMPLECTIC CAPS

We begin by proving Theorem 1.13 that says any closed contact 3–manifold (Y, ξ) has a (strong)
symplectic cap (X,ω) that is simply connected and contains a Gompf nucleus N2 whose reg-
ular fiber is symplectic and has simply connected complement. Moreover, ΦX,s0 = c+(ξ) ∈
H+(−Y, s0|Y ) for the canonical Spinc structure s0 for (X,ω).

Proof of Theorem 1.13. We will build the strong symplectic cap (X,ω) in four steps.
Step 1. Construct a simply connected cobordism (X1, ω1) from (Y, ξ) to another contact manifold (Y ′, ξ′),
that contains N2.

The cobordism (X1, ω1) is built by adding Weinstein 2–handles to the convex end of the trivial
symplectic cobordism ([0, 1] × Y, d(etα)), where α is a contact form for ξ and t is the coordinate
on [0, 1]. We begin by noting that one may attach a sequence of 2–handles to [0, 1] × Y to kill the
fundamental group as each 2–handle adds a relation to the fundamental group. The attaching
circles of the 2–handles may be made Legendrian and the framings can be taken to be one less
that the contact framings, thus we can take the handle attachments to be Weinstein 2–handles
attachments. We finally attach two more Weinstein 2–handles as shown on the right hand side of
Figure 1. The resulting cobordism is (X1, ω1).
Step 2. Construct a cobordism (X2, ω2) consisting of Weinstein 2–handle attachments from (Y ′, ξ′) to the
contact manifold (Y ′′, ξ′′) where Y ′′ is a homology sphere.

A more detailed version of this argument may be found in [18], but we sketch it here for the
readers convenience. Let (Σ, φ) be an open book supporting the contact structure (Y ′, ξ′). By
stabilizing the open book we can assume that Σ has a single boundary component. Let g be the
genus of Σ. It is well-known that the mapping class group of Σ is generated by Dehn twists about
α1, . . . , α2g+1 show in Figure 2. All facts we use about diffeomorphisms of surfaces are well-known
and can be found, for example, in [20]. Fix some factorization of φ in terms of these Dehn twists.
We will begin Step 2 by attaching 2–handles so that the upper boundary has monodromy that is a
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FIGURE 2. The surface Σ.

composition of Dehn twist about only the curves α1, . . . , α2g. We may do this as follows. If there
are any negative Dehn twists about α2g+1 in the factorization then after conjugating φ (which does
not change the contact manifold supported by the open book) we can assume it is at the end of
the factorization, then we can attach a Weinstein 2–handle to α2g+1 as in Theorem 2.2. This gives
a cobordism where the upper boundary had the right handed Dehn twist about α2g+1 added, and
this cancels the left handed Dehn twist. So we can now assume there are only right handed Dehn
twists about α2g+1. If there is one, conjugate it to the end of the factorization and add a Weinstein
2–handle to β. Now apply the chain relation

τα2g+1τβ = (τα1τα2τα3)4

to remove the right handed Dehn twist about α2g+1 (and about β). We now have a symplectic
cobordism with upper boundary a composition of Dehn twists about only the curves α1, . . . , α2g.
By attaching Weinstein 2–handles as in Theorem 2.2 to the curves α1, . . . , α2g as necessary we can
arrange that the upper boundary is supported by an open book with factorization a power of
(τα1 · · · τα2g)

4g+2. Then applying the chain relation

(τα1 · · · τα2g)
4g+2 = τγ

we have a symplectic cobordism with upper boundary having monodromy τnγ for some n. Now
attach a Weinstein 2–handle to α1, . . . , αn. The upper boundary of this cobordism now has mon-
odromy τα1 · · · τα2gτ

n
γ . It is easy to check that the open book with monodromy τα1 · · · τα2g defines

a knot in S3 and adding τnγ to the monodromy corresponds to doing −1/n surgery on this knot.
Thus the upper boundary of the cobordism is a homology sphere.
Step 3. Construct a strong symplectic cap (X3, ω3) for (Y ′′, ξ′′) such that b+2 (X3) ≥ 2.

The construction of the cap is due to Eliashberg [14]. Here we just briefly review the construc-
tion. Consider an open book (Σ′, φ′) for (Y ′′, ξ′′) from Step 2. Eliashberg [14] showed that by
capping off the binding of the open book, we obtain a symplectic cobordism (V1, ω

′) from Y ′′

to Y ′′′ where Y ′′′ is a Σ′-bundle over S1. Since the monodromy of the Y ′′′ is an identity, and
(τα1 · · · τα2g)

4g+2 is isotopic to the identity, there is a Lefschetz fibration V2 over D2 with genus g
fibers and vanishing cycles defining the monodromy (τα1 · · · τα2g)

4g+2 that has Y ′′′ as its boundary.
One may easily verify that V is simply connected and using Theorem 2 in [42] one can compute
that b+2 (V2) = 2g2 ≥ 2. Clearly V2 admits a symplectic structure ω′′. Now Eliashberg [14] showed
how to glue (V1, ω

′) and (V2, ω
′′) to get a symplectic cap X ′′3 for (Y ′′, ξ′′).

Step 4. Construct the cap (X,ω) for (Y, ξ) with all the desired properties.
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Using Lemma 2.1 we may glue the three cobordisms constructed above together to get a cap
(X,ω) for (Y, ξ) since the first cobordism is simply connected and the second two cobordisms are
constructed with 2, 3, and 4–handles we see that X is simply connected. It clearly contains N2 and
a regular fiber T in N2 transversely intersects an S2 (the −2–framed unknot in Figure 1) we see
that the meridian to T is null-homotopic in the complement of T . Since the fundamental group
of X − T is generated by meridians, we see that C − T is simply connected. Moreover, it is well-
known that the regular fibers in the cusp neighborhood in Figure 1 can be taken to be symplectic.
This can be seen in several ways, one way is to take the Lagrangian punctured torus that the
trefoil in Figure 1 bounds and capping it with the Lagrangian core of the 2-handles. This gives a
Lagrangian torus isotopic to a fiber, since this fiber is not null-homologus (since it intersects the
S2 discussed above) the symplectic form may be perturbed to make the torus symplectic, cf. [16].

Finally, we show that ΦX,s0 = c+(ξ). Choose an admissible cut N for both X and X3. Then we
can decompose X into

X = X1 ∪X2 ∪X ′3 ∪N X ′′3

We will denote the restriction of s0, the canonical Spinc structure of (X,ω), to any of the cobor-
disms above by just s0. By Plamenevskaya [49, Lemma 1] and the fact that Y ′′ is a homology
sphere, the Ozsváth–Szabó invariant of (X3, ω3) on s0 is the contact invariant of (Y ′′, ξ′′). Now we
obtain

c+(ξ) = F+
X1∪X2,s0

(c+(ξ′′))

= F+
X1∪X2,s0

(ΦX3,s0)

= F+
X1∪X2,s0

◦ F+
X′3,s0

◦ τ−1 ◦ F−
X′′3 ,s0

(θ−)

= F+
X1∪X2∪X′3,s0

◦ τ−1 ◦ F−
X′′3 ,s0

(θ−)

= ΦX,s0

The first equality follows from the naturality of contact invariant under Stein cobordisms [47].
The second equality follows from [49] as we discussed above. Since Y ′′ is a homology sphere,
s0 restricted on X1 ∪ X2 ∪ X ′3 is uniquely decomposed into Spinc structures on X1 ∪ X2 and X ′3
respectively. Thus the fourth equality follows from the composition law (Proposition 3.5). The
third and fifth equalities follow from the definition.

Thus (X,ω) has all the desired properties. �

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let Ki be any sequence of knots with distinct Alexander polynomials, for
example we could take the Ki to be the (2, 2i + 1)-torus knots. Let Xi be the result of Ki knot
surgery on X using the fiber torus in the cusp neighborhood guaranteed by Proposition 1.13.
Since any torus knot is fibered, Xi has a symplectic structure according to Lemma 4.3.

We are left to see that theXi are all non-diffeomorphic but are homeomorphic. For the later, it is
not hard to see an infinite family of the Xi are homeomorphic using the following result of Boyer.
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Theorem 6.1 (Boyer 1986, [10]). Let Y be a closed, oriented, connected 3–manifold and L be a symmetric
pairing on Zn. There are finitely many homeomorphisms types of compact, simply connected, oriented
4–manifolds with boundary Y and intersection pairing isomorphic to (Zn, L).

However, as pointed out to the authors by Gompf, one can show they are all homeomorphic.
To see this we first note that Boyer points out the corollary to his theorem that ifW is a 4–manifold
with even intersection form and homology sphere boundary, then any other 4–manifold with the
same intersection from and boundary is homeomorphic to W (by a homeomorphism that might
not be the identity on ∂W ). Now consider the nucleus N given in Figure 1 with n = 2 and used in
our construction of the Xi. Let Ni be the result of Ki knot surgery on the torus in N . From above
we see that all the Ni are homeomorphic to each other, but we don’t know the homeomorphisms
are the identity on the boundary. To remedy this, we observe that the diffeomorphisms of ∂N up
to isotopy form a group of order 2 and the non-trivial diffeomorphism extends over N , see [29,
Proof of Lemma 3.7]. Since any homeomorphism of a 3–manifold is isotopic to a diffeomorphism
(by work of Cerf [11] and Hatchers proof of the Smale conjecture [32]) if the homeomorphism from
N to Ni is not the identity on the boundary then we can compose with the non-trivial homeomor-
phism mentioned above to see that N and Ni are homeomorphic by a homeomorphism fixing the
boundary. But now since Xi is imply (X \N) ∪Ni, we see that Xi is homeomorphic to X by the
above constructed homeomorphism on N and the identity on X \N .

Since T is a symplectic torus we can choose ω so that∫
T
ω = 1.

Thus we can choose b = (b1, . . . , bn), a basis of H2(X, ∂X;R) such that 〈b1, [T ]〉 = 1 and 〈bi, [T ]〉 =
0 for i ≥ 1. We use Proposition 1.13 to see that ΦX;b 6= 0. Now we see all the Xi are not diffeomor-
phic by Corollary 1.11. �

We now turn to the proof of Theorem 1.2 concerning exotic fillings of manifolds that are the
boundary of weakly convex symplectic 4–manifolds.

Proof of Theorem 1.2. Since admitting a filling with exotic smooth structures is independent of the
orientation we will assume that Y = ∂X where X is a 4–manifold that admits a symplectic form
ω with weakly convex boundary.

An argument very close to that given in Step 2. of the proof of Proposition 1.13, allows us
to attach 2–handles to (X,ω) to obtain a new symplectic manifold (X ′′, ω′′) with weakly convex
homology sphere boundary into which (X,ω) embeds. For details see [17]. If M is a rational
homology sphere, a weak symplectic filling can be modified near the boundary into a strong sym-
plectic filling [40]. Thus we may assume that (X ′′, ω′′) has a strongly convex boundary and can
hence be capped off as above yielding the claimed symplectic manifold (X ′, ω′′) into which (X,ω)
embeds and for whichX ′ \X is simply connected and contains a cusp neighborhood that contains
a symplectic torus.

Let Ki be the (pi, q)-torus knot used in the proof of Theorem 1.1. Let X ′i be the result of Ki knot
surgery on X ′ using the fiber torus in the cusp neighborhood. According to Lemma 4.3, X ′i has a
symplectic structure ωi. Clearly (X,ω) embeds in all of these and so (Ci, ωCi) = (X ′i −X,ωi) are
all symplectic caps for (Y, ξ).
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We are left to see that the Ci are all non-diffeomorphic and, at least an infinite subset of them,
are homeomorphic. For the later, notice that the Ci are all obtained from C by Ki knot surgery. As
noted in Section 4 all the Ci will have the same homology and intersection form; moreover, since
the complement of the torus used for knot surgery is simply connected the Ci are also simply
connected. Since Theorem 6.1 of Boyer says there are only a finite number of homeomorphism
types with this intersection form and boundary, we see that an infinite subset of the Ci must be
homeomorphic.

To see all the Ci are not diffeomorphic, we can use a result of Ozsváth and Szabó [46] that says
the Ozsváth–Szabó invariant of a closed symplectic manifold is non-trivial. Thus ΦX;b 6= 0. Now
Theorem 4.2 says

ΦX′i;b
= ∆Ki(z) · ΦX;b.

Recall that for the trivial self-concordance C of a knot in S3, Lefz(C) is simply ∆K(z). As argued
in the proof of Corollary 1.11, ΦX′i;b

will be distinct and X ′i will be non-diffeomorphic. But if any
two of the Ci are diffeomorphic by a diffeomorphism that is the identity on the boundary, then we
could extend the diffeomorphism over the corresponding X ′i. Thus the Ci are not diffeomorphic.

By performing knot surgery on X ′ using knots with non-monic Alexander polynomials, we can
similarly construct an infinite number of smooth structures that do not admit symplectic struc-
tures. The corresponding C cannot admit symplectic structures giving a cap for (Y, ξ) or we could
glue them to (X,ω) to obtain a symplectic structure for the smooth structure on X ′. �

7. EMBEDDINGS IN DEFINITE MANIFOLDS

In this section we will prove Theorem 1.6 that says, if a rational homology sphere embeds as
a separating hypersurface in a closed definite manifold, then it is the boundary of a smooth 4–
manifold that admits infinitely many distinct smooth structures.

Proof of Theorem 1.6. Suppose Y is a closed, oriented, connected 3–manifold that embeds as a sep-
arating hypersurface in the closed definite 4–manifold W . By reversing the orientation on W if
necessary we can assume it is negative definite. Using a Morse function on W that has Y as a
regular level set, we can construct a handlebody structure on W where the 1-handles are disjoint
from Y and thus if the first Betti number of W was positive, we could surger circles disjoint from
Y corresponding to the appropriate 1-handles to kill the first Betti number and not change the
second homology.

We may remove two balls from W that are on opposite sides of Y to get a cobordism W ◦ from
S3 to itself. In the proof of Theorem 9.1 in [43] it is shown that for any Spinc structure s on W ◦ we
have

F∞W ◦,s : HF∞(S3, t)→ HF∞(S3, t)

is an isomorphism where t is the unique Spinc structure on S3 and thus

F+
W ◦,s : HF+(S3, t)→ HF+(S3, t)

is surjective.
Now as we know the intersection form of W is diagonalizable by Donaldson’s theorem [12], it

is not hard to see that there is a characteristic element v in H2(W ) such that v ·v+n = 0 where n is



BOUNDING EXOTIC 4–MANIFOLDS 23

the dimension of H2(W ). Since v is characteristic we know there is some Spinc structure s0 whose
first Chern class is v.

From our discussion above if Θ+ is a generator of HF+(S3, t) of minimal grading, then there is
some element η ∈ HF+(S3, t) that is mapped to it by F+

W ◦,s0
. The grading shift formula says

gr(F+
W ◦,s0

(η))− gr(η) =
c2

1(s0)− 2χ(W )− 3σ(W )

4
=
c2

1(s0) + n

4
= 0.

and thus η = Θ+.
Notice that since Y is a rational homology sphere, a Spinc structure on W ◦ is uniquely deter-

mined by its restrictions to W1 and W2, where W1 and W2 are the components of W ◦ \ Y . From
this we know that if s0 also denotes the restriction of s0 to W1, then we see that F+

W1,s0
(Θ+) 6= 0 in

HF+(Y, s0|Y ).
Now let X be the result of gluing the S3 boundary component of W1 to the K3-surface minus a

3–ball. Since the K3-surface is symplectic we know that its Ozsváth–Szabó invariant is non-zero.
In particular, the mixed map of theK3-surface sends the top generator Θ− inHF−(S3, t0) to Θ+ in
HF+(S3, s0). From this we know that X (minus a ball) thought of as cobordism from S3 to Y has
a Spinc structure s0 such that FmixX,s0

(Θ−) 6= 0 in HF+(Y, s0|Y ). Thus the Ozsváth–Szabó invariant
ΦX;b is non-trivial.

Recall the K3-surface contains a cusp neighborhood with symplectic regular fibers and thus X
does too and we can apply Corollary 1.11 to obtain infinitely many non-diffeomorphic structures
on X . We notice that all of these structures are homeomorphic since the knot surgeries are done
in the K3-surface and hence to not change the topological type of it and when glued to the fixed
manifold W1 we still have homeomorphic manifolds. �
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