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Abstract. The conormal lift of a linkK in R3 is a Legendrian submanifold
ΛK in the unit cotangent bundle U∗R3 of R3 with contact structure equal to
the kernel of the Liouville form. Knot contact homology, a topological link
invariant of K, is defined as the Legendrian homology of ΛK , the homology
of a differential graded algebra generated by Reeb chords whose differential
counts holomorphic disks in the symplectization R×U∗R3 with Lagrangian
boundary condition R× ΛK .

We perform an explicit and complete computation of the Legendrian ho-
mology of ΛK for arbitrary links K in terms of a braid presentation of K,
confirming a conjecture that this invariant agrees with a previously-defined
combinatorial version of knot contact homology. The computation uses a
double degeneration: the braid degenerates toward a multiple cover of the
unknot which in turn degenerates to a point. Under the first degeneration,
holomorphic disks converge to gradient flow trees with quantum correc-
tions. The combined degenerations give rise to a new generalization of flow
trees called multiscale flow trees. The theory of multiscale flow trees is the
key tool in our computation and is already proving to be useful for other
computations as well.

1. Introduction

1.1. Knot contact homology. Let K ⊂ R3 be a link. The conormal lift
ΛK ⊂ U∗R3 of K in the unit cotangent bundle U∗R3 of R3 is the sub-bundle
of U∗R3 over K consisting of covectors which vanish on TK. The submanifold
ΛK is topologically a union of 2-tori, one for each component of K. The
unit cotangent bundle carries a natural contact 1-form α: if p dq denotes the
Liouville form on T ∗R3 then α is the restriction of p dq to U∗R3. The conormal
lift ΛK is a Legendrian submanifold with respect to the contact structure
induced by α. Furthermore, if Kt, 0 ≤ t ≤ 1, is a smooth isotopy of links
then ΛKt is a Legendrian isotopy of tori. Consequently, Legendrian isotopy
invariants of ΛK give topological isotopy invariants of K itself.

Contact homology, and Legendrian (contact) homology, is a rich source of
deformation invariants in contact topology. Legendrian homology associates
a differential graded algebra (DGA) to a Legendrian submanifold Λ ⊂ Y of
a contact manifold Y , in which the algebra is generated by the Reeb chords
of Λ and the Reeb orbits in Y , and the differential is defined by a count of
holomorphic curves in the symplectization R× Y with Lagrangian boundary
condition R × Λ. The main result of this paper is a complete description of
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the DGA of the conormal lift ΛK of a link K in terms of a braid presentation
of K, see Theorem 1.1 below.

Before presenting Theorem 1.1, we discuss some consequences of it. Theo-
rem 1.1 confirms the conjecture that the combinatorial knot invariant defined
and studied by the third author in [22, 23, 25], called “knot contact homology”
in those works, indeed equals the Legendrian homology of the conormal lift.
(In fact, the Legendrian homology described here is a nontrivial extension of
the previously-defined version of knot contact homology; see Section 1.2.) We
note that Legendrian homology can be expressed combinatorially in other cir-
cumstances, for example by Chekanov [5] and Eliashberg [17] for 1-dimensional
Legendrian knots in R3 with the standard contact structure. Also, computa-
tions of Legendrian homology in higher dimensions have been carried out in
some circumstances; see e.g. [6, 12, 16].

The results of the present paper constitute one of the first complete and rea-
sonably involved computations of Legendrian homology in higher dimensions
(in the language of Lagrangian Floer theory, the computation roughly corre-
sponds to the calculation of the differential and all higher product operations).
Extensions of our techniques have already found applications, see e.g. [4], and
we expect that further extensions may be used in other higher-dimensional
situations in the future.

A more concrete consequence of Theorem 1.1 is its application to an inter-
esting general question in symplectic topology: to what extent do symplectic-
and contact-geometric objects naturally associated to objects in smooth topol-
ogy remember the underlying smooth topology? More specifically, how much
of the smooth topology is encoded by holomorphic-curve techniques on the
symplectic/contact side? The construction that associates the (symplectic)
cotangent bundle to any (smooth) manifold has been much studied recently
in this regard, see e.g. [1, 2, 19, 21]. In our setting, the general question
specializes to the following.

Question. How much does the Legendrian-isotopy class of the conormal ΛK
remember about the smooth-isotopy class of K? In particular, if ΛK1 and ΛK2

are Legendrian isotopic, are K1 and K2 necessarily smoothly isotopic?

At this writing, it is possible that the answer to the second question is “yes”
in general. One consequence of Theorem 1.1 that the answer is “yes” if K1 is
the unknot: the conormal lift detects the unknot. See Corollary 1.4 below.

Another geometric application of our techniques is the development of a
filtered version of the Legendrian DGA associated to ΛK when K is a link
transverse to the standard contact structure ker(dz − y dx) in R3. This is
carried out in [10], which relies heavily on the computations from the present
paper. There is a related combinatorial treatment in [26], where it is shown
that this filtered version (“transverse homology”) constitutes a very effective
invariant of transverse knots. We remark that although [26] can be read as a
standalone paper without reference to Legendrian homology or holomorphic
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disks, the combinatorial structure of transverse homology presented in [10, 26]
was crucially motivated by the holomorphic-disk enumerations we present here.

1.2. Main result. We now turn to a more precise description of our main
result. To this end we first need to introduce some notation. Let K be an
arbitrary r-component link in R3, given by the closure of a braid B with
n strands. Then ΛK is a disjoint union of r 2-tori, which (after identifying
the tangent bundle with the cotangent bundle and the normal bundle to K
with its tubular neighborhood) we may view as the boundaries of tubular
neighborhoods of each component ofK. We can then choose a set of generators
λ1, µ1, . . . , λr, µr of H1(ΛK), with λi and µi corresponding to the longitude
(running along the component of K) and meridian (running along a fiber of
ΛK over a point in K) of the i-th torus.

We proceed to an algebraic definition of the DGA that computes the Leg-
endrian homology of ΛK . The DGA is (An, ∂), where the algebra An is
the unital graded algebra over Z generated by the group ring Z[H1(ΛK)] =
Z[λ±1

1 , µ±1
1 , . . . , λ±1

r , µ±1
r ] in degree 0, along with the following generators:

{aij}1≤i,j≤n; i 6=j in degree 0,

{bij}1≤i,j≤n; i 6=j in degree 1,

{cij}1≤i,j≤n in degree 1,

{eij}1≤i,j≤n in degree 2.

Note that in An, the generators aij , bij, cij , eij do not commute with each other
or with nontrivial elements of Z[H1(ΛK)].

We next define a differential ∂ on An. Introduce variables µ̃1, . . . , µ̃n of

degree 0, and write Ã0
n for the free unital algebra over Z generated by the ring

Z[µ̃±1
1 , . . . , µ̃±1

n ] and the aij . Now if σk is a standard generator of the braid

group Bn on n strands, then define the automorphism φσk : Ã0
n → Ã0

n by

φσk(aij) = aij i, j 6= k, k + 1

φσk(ak k+1) = −ak+1 k

φσk(ak+1k) = −µ̃kak k+1µ̃
−1
k+1

φσk(ai k+1) = aik i 6= k, k + 1

φσk(ak+1 i) = aki i 6= k, k + 1

φσk(aik) = ai k+1 − aikak k+1 i < k

φσk(aik) = ai k+1 − aikµ̃kak k+1µ̃
−1
k+1 i > k + 1

φσk(aki) = ak+1 i − ak+1kaki i 6= k, k + 1

φσk(µ̃
±1
k ) = µ̃±1

k+1

φσk(µ̃
±1
k+1) = µ̃±1

k

φσk(µ̃
±1
i ) = µ̃±1

i i 6= k, k + 1.
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The map φ induces a homomorphism from Bn to the automorphism group

of Ã0
n: if B = σǫ1k1 · · ·σ

ǫm
km
∈ Bn, with ǫl = ±1 for l = 1, . . . , m, then φB =

φǫ1σk1
◦ · · · ◦ φǫmσkm . See Proposition 2.9.

Now let A0
n denote the subalgebra of An of elements of degree 0, generated

by the µj, λj , and aij . For 1 ≤ j ≤ n, let α(j) ∈ {1, . . . , r} be the number
of the link component of K corresponding to the j-th strand of B. Then φB
descends to an automorphism of A0

n, which we also denote by φB, by setting
µ̃j = µα(j) for all j, and having φB act as the identity on λj for all j.

For convenient notation we assemble the generators of An into (n × n)-
matrices. Writing Mij for the element in position ij in the (n×n)-matrix M,
we define the (n× n)-matrices

A :





Aij = aij if i < j,

Aij = aijµα(j) if i > j,

Aii = 1 + µα(i),

B :





Bij = bij if i < j,

Bij = bijµα(j) if i > j,

Bii = 0,

C :
{
Cij = cij , E :

{
Eij = eij.

To the braid B, we now associate two (n×n)-matrices ΦLB,Φ
R
B with coefficients

in A0
n as follows. Set B̂ to be the (n + 1)-strand braid obtained by adding

to B an extra strand labeled 0 that does not interact with the other strands.
Then φ gives a map φB̂ acting on the algebra generated by homology classes
and {aij}0≤i,j≤n;i 6=j, and we can define ΦLB,Φ

R
B by

φB̂(ai0) =

n∑

j=1

(
ΦLB
)
ij
aj0 and φB̂(a0j) =

n∑

i=1

a0i
(
ΦRB
)
ij
.

(Note that by the above formula for φσk , any monomial contributing to φB(ai0),
respectively φB(a0j), must begin with a generator of the form al0, respectively
end with a generator a0l. Also, since the 0-th strand does not interact with the
others, µ̃0 does not appear anywhere in the expressions for φB̂(ai0), φB̂(a0j),
and so ΦLB ,Φ

R
B have coefficients in A0

n.)
Finally, define a diagonal (n× n) matrix λ as follows. Consider the strands

1, . . . , n of the braid. Call a strand leading if it is the first strand in this
ordering belonging to its component. Define

λ :





λij = 0 if i 6= j,

λii = λα(i) if the ith strand is leading,

λii = 1 otherwise.

We can now state our main result.

Theorem 1.1. Let K ⊂ R3 be an oriented link given by the closure of a braid
B with n strands. After Legendrian isotopy, the conormal lift ΛK ⊂ U∗R3 has
Reeb chords in graded one-to-one correspondence with the generators of An.
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Consequently, the Legendrian algebra of

ΛK ⊂ J1(S2) ≈ U∗
R

3

is identified with An. Under this identification, the differential of the Leg-
endrian DGA is the map ∂ : An → An determined by the following matrix
equations:

∂A = 0,

∂B = −λ−1 ·A · λ + ΦLB ·A · ΦRB,
∂C = A · λ + A · ΦRB,
∂E = B · (ΦRB)−1 + B · λ−1 − ΦLB ·C · λ−1 + λ

−1 ·C · (ΦRB)−1,

where if M is a matrix, the matrix ∂M is defined by (∂M)ij = ∂(Mij).

Theorem 1.1 has the following corollary, which establishes a conjecture of
the third author [24, 25].

Corollary 1.2. For a knot K, the combinatorial framed knot DGA of K, as
defined in [25], is isomorphic to the Legendrian DGA of ΛK.

In [25], the framed knot DGA is shown to be a knot invariant via a purely
algebraic but somewhat involved argument that shows its invariance under
Markov moves. We note that Theorem 1.1 provides another proof of invari-
ance.

Corollary 1.3. The DGA given in Theorem 1.1, and consequently the framed
knot DGA of [25], is a link invariant: two braids whose closures are isotopic
links produce the same DGA up to equivalence (stable tame isomorphism).

Proof. Direct consequence of the fact that the Legendrian DGA is invariant
under Legendrian isotopy, see Theorem 2.6. �

Quite a bit is known about the behavior of combinatorial knot contact ho-
mology, and Corollary 1.2 allows us to use this knowledge to deduce results
about the geometry of conormal lifts. For instance, we have the following
results.

Corollary 1.4. A knot K is isotopic to the unknot U if and only if the conor-
mal lift ΛK of K is Legendrian isotopic to the conormal lift ΛU of U .

Proof. The degree 0 homology of the framed knot DGA detects the unknot
[25, Proposition 5.10]. �

Corollary 1.5. If K1, K2 are knots such that ΛK1 and ΛK2 are Legendrian
isotopic, then K1 and K2 have the same Alexander polynomial.

Proof. The degree 1 linearized homology of the framed knot DGA with respect
to a certain canonical augmentation encodes the Alexander polynomial [25,
Corollary 4.5]. �
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We close this subsection by discussing a subtlety hidden in the statement
of Corollary 1.2. The DGA (An, ∂) defined in Theorem 1.1 is actually an
extension of the combinatorial knot DGA introduced by the third author in
[22, 23, 25], in two significant ways.1 First, the original combinatorial knot
DGA assumed that K is a one-component knot, whereas our (An, ∂) works for
general links, associating separate homology variables λj, µj to each compo-
nent. Second, in the original combinatorial knot DGA as presented in [25], and
in the filtered version for transverse knots presented in [10], homology vari-
ables commute with the generators aij, etc., while they do not commute here.
We may thus think of the original knot DGA as a “homology-commutative”
quotient of our “full” DGA; see Section 2.3.2 for further discussion.

Although we do not pursue this point here, it seems quite possible that the
full DGA introduced here constitutes a stronger link invariant, or otherwise
encodes more information, than the homology-commutative knot DGA from
[25]. For example, the proof in [25] that the framed knot DGA detects the
unknot uses work of Dunfield and Garoufalidis [7], building on some deep
gauge-theoretic results of Kronheimer and Mrowka [20]. However, if we use
the full DGA rather than the homology-commutative quotient, then there is an
alternate proof that knot contact homology detects the unknot, in unpublished
work of the first and third authors along with Cieliebak and Latschev, which
uses nothing more than the Loop Theorem.

1.3. Strategy and outline of paper. We conclude this introduction with a
description of the strategy of our proof of Theorem 1.1. A loose sketch of this
approach has previously been summarized in [9].

The unit cotangent bundle U∗
R

3 with contact form the restriction of the
Liouville form p dq is contactomorphic to the 1-jet space J1(S2) ≈ T ∗S2×R of
S2, with contact form dz − p dq where z is the coordinate along the R-factor.
To find the rigid holomorphic disks that contribute to Legendrian homology
for a Legendrian submanifold of any 1-jet space, one can use gradient flow
trees [8]. In our case, rather than directly examining the gradient flow trees
for the conormal lift ΛK ⊂ J1(S2) of a link K, we break the computation
down into three steps. First, we compute the differential for the conormal lift
Λ = ΛU of the unknot U which we represent as a planar circle. This is done
by calculating gradient flow trees for a particular small perturbation of Λ.

Second, given an arbitrary link K, let B be a braid whose closure is K.
We can view the closure of B as lying in the solid torus given as a small
tubular neighborhood of U , and we can thus realize K as a braid that is C1-
close to U . Then ΛK lies in a small neighborhood of Λ, and by the Legendrian
neighborhood theorem we can choose this neighborhood to be contactomorphic

1There are also some inconsequential sign differences between our formulation and the
knot DGA of [22, 23, 25]; see [26] for a proof that the different sign conventions yield
isomorphic DGAs.
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to the 1-jet space J1(Λ) = J1(T 2):

ΛK ⊂ J1(Λ) = J1(T 2) ⊂ J1(S2).

We can use gradient flow trees to find the rigid holomorphic disks in J1(T 2)
with boundary on ΛK . This turns out to be easier than directly calculating the
analogous disks in J1(S2) because ΛK is everywhere transverse to the fibers
of J1(T 2) (i.e. its caustic is empty). We can assemble the result, which is
computed in terms of the braid B, as the Legendrian DGA of ΛK ⊂ J1(T 2),
which is a subalgebra of the Legendrian DGA of ΛK ⊂ J1(S2).

Finally, we prove that there is a one-to-one correspondence between rigid
holomorphic disks in J1(S2) with boundary on ΛK , and certain objects that
we call rigid multiscale flow trees determined by Λ and ΛK , which arise as
follows. As we let K approach U , ΛK approaches Λ and each holomorphic
disk with boundary on ΛK approaches a holomorphic disk with boundary on
Λ with partial flow trees of ΛK ⊂ J1(Λ) attached along its boundary. Here
the flow trees correspond to the thin parts of the holomorphic disks before
the limit; in these parts, the energy approaches zero. In a multiscale flow
tree we substitute the holomorphic disk with boundary on Λ in this limit by
the corresponding flow tree computed in the first step, and obtain a flow tree
of Λ ⊂ J1(S2) with portions of flow trees of ΛK ⊂ J1(Λ) attached along its
boundary.

Here is the plan for the rest of the paper. In Section 2, we present back-
ground material, including the definitions of the conormal construction, Leg-
endrian homology, and gradient flow trees. In Section 3, we use gradient flow
trees to accomplish the first two steps in the three-step process outlined above:
calculating holomorphic disks for Λ ⊂ J1(S2) and ΛK ⊂ J1(T 2). We extend
these calculations to multiscale flow trees in Section 4 to count holomorphic
disks for ΛK ⊂ J1(S2), completing the proof of Theorem 1.1.

The computations in Section 4 rely on some technical results about mul-
tiscale flow trees whose proofs are deferred to the final two sections of the
paper. In Section 5, we establish Theorem 4.3, which gives a one-to-one corre-
spondence between holomorphic disks and multiscale flow trees. In Section 6,
we prove Theorems 4.5 and 4.6, which deal with combinatorial signs arising
from choices of orientations of the relevant moduli spaces of flow trees and
multiscale flow trees.
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supported by NSF grant DMS-0804820. LLN was partially supported by NSF
grant DMS-0706777 and NSF CAREER grant DMS-0846346. MGS was par-
tially supported by NSF grants DMS-0707091 and DMS-1007260. The authors
would also like to thank MSRI for hosting them in spring 2010 during part of
this collaboration.
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2. Conormal Lifts, Legendrian Homology, and Flow Trees

In this section we review background material. We begin by discussing the
conormal lift construction for links in R3 in Section 2.1, and place it in the
context of 1-jet spaces of surfaces in Section 2.2. In Section 2.3, we review the
definition of Legendrian homology. For our purposes, the holomorphic disks
counted in Legendrian homology are replaced by flow trees, which we discuss
in Section 2.4. Vector splitting along flow trees, which is needed later when
assigning signs to rigid flow trees, is discussed in Section 2.5. We end with
a compilation in Section 2.6 of algebraic results about the map φB and the
matrices ΦLB and ΦLR that are used in the proof of our main result, Theorem 1.1.

2.1. The conormal construction. Fixing the standard flat metric on R3 we
consider the unit cotangent bundle U∗R3 ≈ R3×S2 of R3. The Liouville form
on the cotangent bundle T ∗R3 is

θ =
3∑

i=1

pi dqi,

where q = (q1, q2, q3) are coordinates on R3 and p = (p1, p2, p3) are coordinates
in the fibers of T ∗R3. The restriction θ|U∗R3 is a contact 1-form. We denote
its associated contact structure ξ = ker θ.

The standard contact 1-form on the 1-jet space J1(S2) = T ∗S2×R of S2 is
given by

α = dz − θ,
where z is a coordinate in the R-factor and where θ is the Liouville form on
T ∗S2. Using the standard inner product 〈· , ·〉 on R3 to identify vectors and
covectors we may write T ∗S2 as follows:

T ∗S2 =
{
(x, y) ∈ R

3 × R
3 : |x| = 1 , 〈x, y〉 = 0

}
.

We define the map φ : U∗R3 → J1(S2) = T ∗S2 × R by

(2.1) φ(q, p) = (p , q − 〈q, p〉p , 〈q, p〉)

and notice that φ is a diffeomorphism such that φ∗α = θ. Thus U∗
R

3 and
J1(S2) are contactomorphic.

Let K be a knot or link in R3. We associate to K its conormal lift

ΛK =
{
u ∈ U∗

R
3|K : u(v) = 0 for all v ∈ TK

}
,

which topologically is a union of tori, one for each component of K. By
definition θ|ΛK

= 0, i.e., ΛK is Legendrian. Furthermore, smooth isotopies of
K induce Legendrian isotopies of ΛK . In particular the Legendrian isotopy
class of ΛK (and consequently any invariant thereof) is an invariant of the
isotopy class of K. For more on this construction see [9].
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2.2. Legendrian submanifolds in the 1-jet space of a surface. Let S be
a surface and consider a Legendrian submanifold Λ ⊂ J1(S) = T ∗S×R. After
a small perturbation of Λ we can assume that Λ is in general position with
respect to the Lagrangian projection Π: J1(S) → T ∗S, the front projection
ΠF : J

1(S)→ S × R, and the base projection π : J1(S)→ S.
General position for Π means that the self intersections of the Lagrangian

immersion Π(L) consists of transverse double points. General position for ΠF

means that singularities of ΠF |Λ are of two types: cusp edges and swallow
tails. For a more precise description we first introduce some notation: the
caustic Σ ⊂ Λ is the critical set of ΠF |Λ. General position for ΠF first implies
that Σ is a closed 1-submanifold along which the rank of ΠF |Λ equals 1. The
kernel field ker(dΠF |Λ) is then a line field l along Σ and general position for
ΠF implies that l has only transverse tangencies with TΣ (i.e. all tangencies
have order one). This gives a stratification of the caustic: the 1-dimensional
top stratum, called the cusp edge, consisting of points where l is transverse
to Σ, and the 0-dimensional complement, called the set of swallow tail points,
where l is tangent to TΣ of order 1. Finally, general position for π means that
the image of the caustic under π is stratified: π(Σ) = Σ1 ⊃ (Σ2 ∪Σsw

2 ), where
Σ2 are transverse self-intersections of π(Σ) and Σsw

2 is the image under π of
the swallow tail points around which π(Σ) has the form of a semi-cubical cusp.

For Λ in general position we obtain the following local descriptions:

• If p ∈ π(Λ)−Σ1 then p has a neighborhood U ⊂ S such that π−1(U)∩
Λ ⊂ J1(S) is the union of a finite number of 1-jet graphs of functions
f1, . . . , fn on U . We call such functions local defining functions of Λ.

Figure 1. A local model for the cusp edge is shown on the left
and a local model for the swallow tail singularity is shown on
the right.

• If p ∈ Σ1 − (Σ2 ∪ Σsw
2 ) then there is a neighborhood U ⊂ S of p

which is diffeomorphic to the open unit disk, U = U+ ∪ U−, where U+

(respectively U−) corresponds to the upper (respectively lower) half
disk and where π(Σ) ∩ U corresponds to U+ ∩ U−, with the following
properties. The intersection π−1(U) ∩ Λ ⊂ J1(S) consists of n ≥ 0
smooth sheets given by the 1-jet graphs of local defining functions and
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one cusped sheet given by the 1-jet graph of two functions h0, h1 : U+ →
R. We can choose coordinates (x1, x2) near ∂U+ so that h0 and h1 have
the normal form

h0(x1, x2) =
1

3
(2x1)

3
2 + βx1 + αx2

h1(x1, x2) = −
1

3
(2x1)

3
2 + βx1 + αx2

for some constants α and β, see [8, Equation (2–1)]. In particular dh0
and dh1 agree near the boundary, see the left diagram in Figure 1. We
also call h0 and h1 local defining functions (for a cusped sheet).
• If p ∈ Σsw

2 then there is a neighborhood U in which n ≥ 0 sheets are
smooth and one sheet is a standard swallow tail sheet, see [8, Remark
2.5] and the right diagram in Figure 1.
• If p ∈ π(Σ2) there is a neighborhood U diffeomorphic to the unit disk
over which the Legendrian consists of n ≥ 0 smooth sheets and two
cusped sheets, one defined over the upper half-plane and one over the
right half-plane.

The following simple observation concerning double points of Π will be impor-
tant in the definition of the Legendrian homology algebra.

Lemma 2.1. A point s ∈ Π(Λ) is a double point if and only if p = π(Π−1(s))
is a critical point of the difference of two local defining functions for Λ at p.

2.3. Legendrian homology in the 1-jet space of a surface. In this sub-
section we briefly review Legendrian (contact) homology in J1(S), where S is
an orientable surface. In fact, for our applications it is sufficient to consider
S ≈ S2 and S ≈ T 2. We refer the reader to [13] for details on the material
presented here.

2.3.1. Geometric preliminaries. As in Section 2.1, we consider J1(S) = T ∗S×
R, with contact form α = dz−θ, where z is a coordinate in the R-factor and θ
is the Liouville form on T ∗S. The Reeb vector field Rα of α is given by Rα = ∂z
and thus Reeb flow lines are simply {p} × R for any p ∈ T ∗S. In particular,
if Λ ⊂ J1(S) is a Legendrian submanifold then Reeb chords of Λ (Reeb flow
segments which begin and end on Λ) correspond to pairs of distinct points
y1, y2 ∈ Λ such that Π(y1) = Π(y2), where Π: J1(S)→ T ∗S is the Lagrangian
projection. As noted in Lemma 2.1, for such Legendrian submanifolds there
is thus a bijective correspondence between Reeb chords of Λ ⊂ T ∗S × R and
double points of Π(Λ) and in this case we will sometimes use the phrase “Reeb
chord” and “double point” interchangeably. As mentioned in Section 2.2, after
small perturbation of Λ, Π|Λ is a self-transverse Lagrangian immersion with a
finite number of double points.

Consider an almost complex structure on T ∗S which is compatible with dθ,
by which we can view T (T ∗S) as a complex vector bundle. Since T (T ∗S)|S
is the complexification of T ∗S we find that c1(T (T

∗S)) = 0 and hence there
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is a complex trivialization of T (T ∗S). The orientation of S induces a trivi-
alization of the real determinant line bundle (second exterior power) Λ2T ∗M
which in turn gives a trivialization, called the orientation trivialization, of the
complex determinant line bundle Λ2T (T ∗S) (second exterior power over C).
The complex trivialization of T (T ∗S) is determined uniquely up to homotopy
by the condition that it induces a complex trivialization of Λ2T (T ∗S) which
is homotopic to the orientation trivialization. We will work throughout with
complex trivializations of T (T ∗S) that satisfy this condition.

Let Λ ⊂ T ∗S × R be a Legendrian submanifold and let γ be a loop in Λ.
Then the tangent planes of Π(Λ) along Π(γ) constitute a loop of Lagrangian
subspaces. Using the trivialization of T (T ∗S) we get a loop of Lagrangian
subspaces in C2; associating to each loop γ the Maslov index of this loop
of Lagrangian subspaces gives a cohomology class µ ∈ H1(Λ;Z) called the
Maslov class of Λ. We assume throughout that the Maslov class of Λ vanishes
so that the Maslov index of any such loop equals 0. (Note that this implies
that Λ is orientable.) In order to orient the moduli spaces of holomorphic
disks with boundary on Λ we will further assume that Λ is spin and equipped
with a spin structure. See [14] for more details. For future use, we note that
the Maslov index of the loop of Lagrangian tangent spaces as described can
be computed by first making the loop generic with respect to fibers of T ∗S
and then counting (with signs) the number of instances where the tangent
space has a 1-dimensional intersection with the tangent space of some fiber.
In terms of the front projection, once γ is generic (in particular, transverse
to the cusp edges and disjoint from the swallow tail points), one counts the
number of times the curve transversely intersects cusp edges going down (that
is with the R coordinate of S × R decreasing) minus the number of times it
transversely intersects cusp edges going up.

2.3.2. The Legendrian algebra. In the remainder of the present subsection,
Section 2.3, we describe the differential graded algebra (LA(Λ), ∂), which we
call the Legendrian DGA, associated to a Legendrian submanifold Λ ⊂ J1(S),
whose homology is the Legendrian homology of Λ. This description is divided
into three parts: the algebra, the grading, and the differential.

The algebra LA(Λ) is simple to describe; in particular, the Legendrian al-
gebra is simpler in our setting than for general contact manifolds since J1(S)
has no closed Reeb orbits. Assume that Λ is in general position so that Π|Λ is
a Lagrangian immersion with transverse self-intersections. Let Q denote the
set of Reeb chords of Λ. Then LA(Λ) is the noncommutative unital algebra
over Z generated by:

• elements of Q (Reeb chords) and
• Z[H1(Λ)] (homology classes).

Thus a typical generator of LA(Λ) viewed as a Z-module is a monomial of the
form

γ0q1γ1q2 · · · qmγm
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where qj ∈ Q and γj ∈ H1(Λ), and multiplication of generators is the obvi-
ous multiplication (with H1(Λ) viewed as a multiplicative group). Note that
homology classes do not commute with Reeb chords; LA(Λ) is more precisely
defined as the tensor algebra over Z generated by elements of Q and elements
of H1(Λ), modulo the relations given by the relations in H1(Λ).

To simplify notation, for the remainder of the paper we will assume that Λ
is a disjoint union of oriented 2-tori Λ1, . . . ,Λr. We will further assume that
each component Λj is equipped with a fixed symplectic basis (λj , µj) of H1(Λj)
(for conormal lifts, these correspond to the longitude and meridian of the link
component in R

3). Then Z[H1(Λ)] = Z[λ±1
1 , µ±1

1 , . . . , λ±1
r , µ±1

r ].

Remark 2.2. In the subject of Legendrian homology, it is often customary to
quotient by commutators between Reeb chords and homology classes, to obtain
the homology-commutative algebra. This quotient can also be described as the
tensor algebra over Z[H1(Λ)] freely generated by elements ofQ. The homology-
commutative algebra is the version of the Legendrian algebra considered in
many sources, in particular the combinatorial formulation of knot contact
homology in [25] and the transverse version in [10, 26].

From the geometric viewpoint of the present paper, there is no reason to
pass to the homology-commutative quotient, and we will adhere to the rule
that homology classes do not commutate with Reeb chords in the Legendrian
algebra. There are indications that the fully noncommutative Legendrian DGA
may be a stronger invariant than the homology-commutative quotient; see the
last paragraph of Section 1.2.

Remark 2.3. When Λ has more than one component, there is an algebra re-
lated to the Legendrian algebra LA(Λ), called the composable algebra, which
is sometimes a more useful object to consider than LA(Λ). See for instance
[3, 4]. We do not need the composable algebra in this paper, but we briefly de-
scribe its definition here and note that one can certainly modify our definition
of knot contact homology to the composable setting; that is, the Legendrian
DGA for knot contact homology descends to a differential on the composable
algebra.

Suppose Λ has r components Λ1, . . . ,Λr. Let R denote the ring

R =
r⊕

j=1

Z[H1(Λj)]

with multiplication given as follows: if γ1 ∈ Z[H1(Λj1)] and γ2 ∈ Z[H1(Λj2)],
then γ1 · γ2 is 0 if j1 6= j2, or γ1γ2 ∈ Z[H1(Λj1)] ⊂ R if j1 = j2. (Note that
R is nearly but not quite a quotient of Z[H1(Λ)]: the identity in Z[H1(Λj)] is
an idempotent in R distinct from 1.) Let Qij denote the set of Reeb chords
beginning on Λi and ending on Λj. A composable monomial in LA(Λ) is a
monomial of the form

γ0q1γ1q2 · · · qlγl
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for some l ≥ 0, such that there exist i0, . . . , il ∈ {1, . . . , m} for which γij ∈
H1(Λij ), viewed as an element of R, and qj ∈ Qij−1ij for all j.

The composable algebra is the Z-module generated by composable mono-
mials, with multiplication given in the obvious way; note that the product
of two composable monomials is either 0 or another composable monomial.
This algebra, which is naturally the path algebra of a quiver with vertices
given by components of Λ and edges given by Reeb chords, is almost but not
quite a quotient of LA(Λ): if we replace Z[H1(Λ)] by R in the definition of
LA(Λ), then the composable algebra is the quotient setting non-composable
monomials to 0.

2.3.3. Grading in the Legendrian algebra. In order to define the grading on
LA(Λ) we fix a point pj ∈ Λj on each component Λj of Λ, and for each Reeb
chord endpoint in Λj we choose an endpoint path connecting the endpoint to pj .
Furthermore, for j = 1, . . . , r, we choose paths γ1j in T

∗S connecting Π(p1) to
Π(pj) and symplectic trivializations of γ∗1jT (T

∗S) in which the tangent space
Π(Tp1Λ) corresponds to the tangent space Π(TpjΛ); for j = 1, γ11 is the trivial
path. For any i, j ∈ {1, . . . , r}, we can then define γij to be the path −γ1i∪γ1j
joining Π(pi) to Π(pj), and γ

∗
ijT (T

∗S) inherits a symplectic trivialization from
the trivializations for γ1i and γ1j.

The grading | · | in LA(Λ) is now the following. First, homology variables
have degree 0:

|λj| = |µj| = 0 for j = 1, . . . , r.

(Recall that the Maslov class µ of Λ is assumed to vanish; in general a homology
variable τ ∈ H1(Λ) would be graded by −µ(τ).) Second, if q is a Reeb chord
we define the grading by associating a path of Lagrangian subspaces to q. We
need to consider two cases according to whether the endpoints of the chord lie
on the same component of Λ or not. In the case of equal components, both
equal to Λj , consider the path of tangent planes along the endpoint path from
the final point of q to pj followed by the reverse endpoint path from pj to the
initial point of q. The endpoint of this path is the tangent space of Π(Λ) at
initial point of q. We close this path of Lagrangian subspaces to a loop γ̂q by
a “positive rotation” along the complex angle between the endpoints of the
path (see [12] for details). In the case of different components, we associate a
loop of Lagrangian subspaces γ̂q to q in the same way except that we insert the
path of Lagrangian subspaces induced by the trivialization along the chosen
path, γij, connecting the components of the endpoints in order to connect the
two paths from Reeb chord endpoints to chosen points. The grading of q is
then

|q| = µ(γ̂q)− 1,

where µ denotes the Maslov index.

Remark 2.4. Note that the grading of a pure Reeb chord (a chord whose start
and endpoint lie on the same component of Λ) is well-defined (i.e. independent
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of choice of paths to the base point and symplectic trivializations) because
the Maslov class vanishes. The grading of mixed chords however depends
on the choice of trivializations along the paths γ1j connecting base points.
Changing the trivializations changes the gradings as follows: for some fixed
(n1, . . . , nr) ∈ Zr, for all i, j, |q| is replaced by |q| + ni − nj for all Reeb
chords q beginning on component i and ending on component j. If we choose
orientations on each component of Λ, and stipulate that the base points pj are
chosen such that π : Λ → S is an orientation-preserving local diffeomorphism
at each pj (and that the symplectic trivializations on γ1j preserve orientation),
then the mod 2 grading of the mixed chords is well-defined, independent of
the choice of base points.

For computational purposes we mention that the grading can be computed
in terms of the front projection ΠF : J

1(S) → S × R, compare [13]. By
Lemma 2.1, a Reeb chord q corresponds to a critical point x of the differ-
ence of two local defining functions f1 and f2 for Λ ⊂ J1(S). We make the
following assumptions, which hold generically: Λ is in general position with
respect to the front projection; the critical point is non-degenerate with index
denoted by indexx(f1 − f2), where f1 defines the upper local sheet (the sheet
with the larger z-coordinate) of Λ; and the base points pj do not lie on cusp
edges.

Lemma 2.5. There is a choice of trivializations for which the following grading
formula holds for all Reeb chords. Let q be a Reeb chord with final point
(respectively initial point) in component Λj (respectively Λi). Let γ be the union
of the endpoint path from the chord’s final point to the base point pj, and the
reverse endpoint path from base point pi to the chord’s initial point. Assume
γ is in general position with respect to the stratified caustic Σ ⊂ Λ. Then

(2.2) |q| = D(γ)− U(γ) + indexx(f1 − f2)− 1,

where D(γ) (respectively U(γ)) is the number of cusps that γ traverses in the
downward (respectively upward) z-direction.

2.3.4. Differential in the Legendrian algebra. In general, the Legendrian al-
gebra differential of a Legendrian submanifold Λ in a contact manifold Y is
defined using moduli spaces of holomorphic curves in the symplectization R×Y
of Y with Lagrangian boundary condition R×Λ. In our case, Y = J1(S), one
can instead use holomorphic disks in T ∗S with boundary on Π(Λ). We give a
brief description. See [15] for details and [13] for the relation to curves in the
symplectization.

The differential ∂ : LA(Λ) → LA(Λ) is defined on generators and then ex-
tended by linearity over Z and the signed Leibniz rule,

∂(vw) = (∂v)w + (−1)|v|v(∂w).
We set ∂λj = ∂µj = 0 for j = 1, . . . , m. It thus remains to define the differen-
tial on Reeb chords.
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To do this, we begin by fixing an almost complex structure J on T (T ∗S) that
is compatible with dθ. Let q0, q1, . . . , qk be Reeb chord generators of LA(Λ).
Let Dk+1 be the unit disk in C with k+1 boundary punctures z0, . . . , zk listed
in counterclockwise order. We consider maps

u : (Dk+1, ∂Dk+1 − {z0, . . . , zk})→ (T ∗S,Π(Λ))

such that u|∂Dk+1−{z0,...,zm} lifts to a continuous map ũ into Λ ⊂ T ∗S. Call
a puncture z mapping to the double point q positive (respectively negative)
if the lift of the arc just clockwise of z in ∂Dk+1 is a path in Λ approaching
the upper Reeb chord endpoint q+ (respectively the lower endpoint q−) and
the arc just counterclockwise of z lifts to a path approaching q− (respectively
q+). For a (k+1)-tuple of homology classes Ā = (A0, . . . , Ak), Aj ∈ H1(Λ;Z),
j = 0, . . . , k, we let

MĀ(q0; q1, . . . , qk)

denote the moduli space of J-holomorphic maps

u : (Dk+1, ∂Dk+1 − {z0, . . . , zk})→ (T ∗S,Π(Λ))

with the following properties: u|∂Dk+1−{z0,...,zk} lifts to a continuous map ũ into
Λ, z0 is a positive puncture mapping to q0, zj is a negative puncture mapping to
qj , j = 1, . . . , k, and when ũ|(zj ,zj+1) is completed to a loop using the endpoint
paths then it represents the homology class Aj. Here (zj, zj+1) denotes the
boundary interval in ∂Dk+1 between zj and zj+1 and we use the convention
zk+1 = z0.

For a generic Λ and J the following holds, see [11, 12] for details:

• MĀ(q0; q1, . . . , qk) is a manifold of dimension (recall that the Maslov
class of Λ is assumed to vanish)

dim (MĀ(q0; q1, . . . , qk)) = |q0| −
k∑

i=1

|qi| − 1

which is transversely cut out by the ∂J-operator. Furthermore it admits
a compactification as a manifold with boundary with corners in which
the boundary consists of broken disks. Consequently, if the dimension
equals 0 then the manifold is compact.
• The moduli spaces MĀ(q0; q1, . . . , qk) determined by Λ and J can be
“coherently” oriented, see Section 6. (Note that the assumption that
the components of Λ are tori and thus admit spin structures is used
here. The moduli space orientations depend on the choice of spin
structure on Λ.)

The differential of a Reeb chord generator q0 is then defined as follows:

∂q0 =
∑

Ā = (A0, . . . , Ak),∑k
j=1 |qj| = |q0| − 1

|MĀ(q0; q1 . . . qk)| A0q1A1q2A2 . . . Ak−1qkAk,
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where |M| denotes the algebraic number of points in the oriented compact
0-manifoldM.

2.3.5. Invariance of Legendrian homology. The main properties of LA(Λ) are
summarized in the following theorem.

Theorem 2.6 (Ekholm, Etnyre and Sullivan 2007, [15]). The map ∂ : LA(Λ)→
LA(Λ) is a differential, that is ∂2 = 0. The stable tame isomorphism class of
LA(Λ) is an invariant of Λ up to Legendrian isotopy; in particular, its homol-
ogy LH(Λ) is a Legendrian isotopy invariant. (For the notion of stable tame
isomorphism in this setting, see [13].)

This result is stated and proven in [15] for the homology-commutative quo-
tient, but the proof there extends verbatim to the full noncommutative algebra.

2.4. Flow trees. Consider a Legendrian submanifold Λ ⊂ J1(S) = T ∗S × R

as in Section 2.2. There is a Morse-theoretic description of the differential in
the Legendrian DGA of Λ via flow trees, as developed in [8], which we will
describe in this subsection (in less generality than [8]). The motivation is as
follows. For σ > 0, the map

φσ : T
∗S × R→ T ∗S × R : (q, p, z) 7→ (q, σp, σz),

satisfies φ∗
σ(dz − θ) = σ(dz − θ). Hence Λσ = φσ(Λ) is a Legendrian sub-

manifold that is Legendrian isotopic to Λ. For σ > 0 small enough there are
regular almost complex structures for which there is a one-to-one correspon-
dence between rigid holomorphic disks with boundary on Λσ with one positive
puncture and rigid flow trees determined by Λ, see [8].

We now define flow trees. Fix a metric g on S. Then two local defining
functions f0 and f1 for Λ defined on the same open set in S define a local
vector field on S:

−∇(f1 − f0),
where ∇ denotes the g-gradient. The 1-jet lift of a path γ : (−ǫ, ǫ) → S is a
pair of continuous paths γi : (−ǫ, ǫ)→ Λ, i = 0, 1 with the following properties:
π ◦ γi = γ and either γ0(t) 6= γ1(t) or γ0(t) = γ1(t) is a point in Σ. A path
γ : (a, b) → S is called a flow line of Λ if it has a 1-jet lift γi, i = 0, 1, such
that for each t ∈ (a, b) there are local defining functions f0, f1 defined near
γ(t) such that γi lies in the sheet determined by fi, i = 0, 1, and

γ̇(t) = −∇(f1 − f0)(γ(t)).
See Figure 2. If γ is a flow line with 1-jet lift γ0, γ1 we define its cotangent lift
as Π ◦ γ0,Π ◦ γ1.

Let γ be a flow line of Λ with 1-jet lift γ0, γ1 in sheets with local defining
functions f0, f1. Then the flow orientation of γ0 (respectively γ1) is given by
the lift of the vector

−∇(f0 − f1) (respectively −∇(f1 − f0)).
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S × R

Γf1

Γf0

γ

γ0

γ1

s

S

s0

s1

Figure 2. Graphs Γfi of the local defining functions fi for two
sheets of ΠF (Λ). A flow line γ and critical point s in S and their
lifts to ΠF (Λ). Notice s is a positive puncture.

If γ : (−∞, b) → S (respectively γ : (a,∞) → S) is a flow line as above such
that

lim
t→−∞

γ(t) = s ∈ S (respectively lim
t→∞

γ(t) = s)

is a critical point of f1− f0, then we say s is a puncture of the flow line γ. Let
si be the point in the sheet of fi with π(si) = s, i = 0, 1. Choose notation so
that f1(s1) > f0(s0); then s is a




positive puncture if the flow orientation of γ0 points toward s0
and that of γ1 points away from s1,

negative puncture if the flow orientation of γ1 points toward s1
and that of γ0 points away from s0.

If s is a puncture of a flow tree then the chord at s is the vertical line segment
oriented in the direction of increasing z that connects s0 and s1.

A flow tree of Λ ⊂ J1(S) is a map into S with domain a finite tree Γ with
extra structure consisting of a cyclic ordering of the edges at each vertex and
with the following three properties.

(1) The restriction of the map to each edge is a flow line of Λ.
(2) If v is a k-valent vertex with cyclically ordered edges e1, . . . , ek and

ē0j , ē
1
j is the cotangent lift of ej, 1 ≤ j ≤ k, then there exists a pairing

of lift components such that for every 1 ≤ j ≤ k (with k + 1 = 1)

ē1j (v) = ē0j+1(v) = p ∈ Π(Λ) ⊂ T ∗S,

and such that the flow orientation of ē1j at p is directed toward p if and

only if the flow orientation of ē0j+1 at p is directed away from p. Thus



18 T. EKHOLM, J. ETNYRE, L. NG, AND M. SULLIVAN

the cotangent lifts of the edges of Γ then fit together as an oriented
curve Γ̄ in Π(Λ).

(3) This curve Γ̄ is closed.

We first notice that vertices may contain punctures. We will be interested
in flow trees with only one positive puncture. Such flow trees can have only
one puncture above each vertex, see [8, Section 2]. Thus for such flow trees Γ
we divide the vertices into three sets: the set of positive punctures P (Γ), the
set of negative punctures N(Γ) and the set of other vertices R(Γ). Recall at
a (non-degenerate) puncture v the corresponding difference between the local
defining functions has a non-degenerate critical point. Denote its index by
I(v).

If Γ is a flow tree as above then its formal dimension (see [8, Definition
3.4]), which measures the dimension of the space of flow trees with 1-jet lift
near the 1-jet lift of Γ, is

(2.3) dim(Γ) =


 ∑

v∈P (Γ)

(I(v)− 1)−
∑

v∈N(Γ)

(I(v)− 1) +
∑

v∈R(Γ)
µ(v)


− 1

where µ(v) is the Maslov content of v and is defined as follows. For a vertex
v ∈ R(Γ) let x ∈ π−1(v) be a cusp point that lies in the 1-jet lift of Γ (if such
a point exists). If γ0 and γ1 are two 1-jet lifts of an edge of Γ adjacent to v
that contain x and for which the flow orientation of γ0 is pointed towards x
and that of γ1 is pointed away from x, then we set µ̃(x) = +1, respectively
−1, if γ0 is on the upper, respectively lower, local sheet of Λ near x and γ1 is
on the lower, respectively upper, local sheet. Otherwise define µ̃(x) = 0. We
can now define µ(v) =

∑
µ̃(x) where the sum is taken over all x ∈ π−1(v) that

are cusp points in the 1-jet lift of Γ.
There is also a notion of geometric dimension of Γ, gdim(Γ), see [8, Def-

inition 3.5], which measures the dimension of the space of flow trees near Γ
that have the exact same geometric properties as Γ. In [8, Lemma 3.7] it is
shown that gdim(Γ) ≤ dim(Γ) for any flow tree Γ, and a characterization of
the vertices of trees for which equality holds is given. In combination with
transversality arguments for Morse flows, this leads to the following result, see
[8, Lemma 3.7] and [8, Proposition 3.14].

Theorem 2.7 (Ekholm 2007, [8]). Given a number n > 0 then after a small
perturbation of Λ and the metric g on S we may assume that for any flow
tree Γ having one positive puncture and dim(Γ) ≤ n, the space of flow trees
with the same geometric properties in a neighborhood of Γ is a transversely cut
out manifold of dimension gdim(Γ). In particular, trees Γ with dim(Γ) = 0
form a transversely cut out 0-manifold. Furthermore, such rigid trees satisfy
gdim(Γ) = dim(Γ) = 0 and have vertices only of the following types, see
Figure 3.

(1) Valency one vertices that
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SS

S

S

S S

S × R

S × R

S × R

Figure 3. Lifts of neighborhoods, in Γ, of vertices into the
front space S × R. Dashed lines in S are cusp edges.

(a) are positive punctures with Morse index 6= 0,
(b) are negative punctures with Morse index 6= 2, or
(c) lift to a cusp edge and have Maslov content +1, called a cusp end.

(2) Valency two vertices that
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(a) are positive punctures with Morse index 0,
(b) are negative punctures with Morse index 2, or
(c) have order one tangencies with a cusp edge and Maslov content
−1, called a switch.

(3) Valency three vertices that
(a) are disjoint from the projection π(Σ) of the singular locus to S,

called a Y0 vertex, or
(b) lie on the image of the cusp locus and have Maslov content −1,

called a Y1 vertex.

Notice that we may endow a flow tree Γ that has exactly one positive punc-
ture with a flow orientation: any edge e is oriented by the negative gradient
of the positive difference of its defining functions.

When working with flow trees it will also be useful to consider the symplectic

area of a flow tree Γ. Given a flow tree Γ, let Γ̂ denote its 1-jet lift (which, in
previous notation, projects to Γ ⊂ Π(Λ)), and define the symplectic area of Γ
to be

A(Γ) = −
∫

Γ̂

p dq = −
∫

Γ̂

dz.

The name comes from the connection between flow trees and holomorphic
curves. The important features of the symplectic area are summarized in the
following lemma. Before stating it we introduce some notation. A puncture
a of a flow tree lifts to a double point in the Lagrangian projection Π(Λ) and
hence corresponds to a Reeb chord. Thus in the 1-jet lift of Γ there will be
two points that project to a. We denote them a+ and a− where a+ has the
larger z-coordinate.

Lemma 2.8 (Ekholm 2007, [8]). For any flow tree Γ the symplectic action is
positive: A(Γ) > 0. The symplectic action can be computed by the formula

A(Γ) =
∑

p

(
z(p+)− z(p−)

)
−
∑

q

(
z(q+)− z(q−)

)
,

where the first sum is over positive punctures of Γ, the second sum is over
negative punctures of Γ, and z(a) denotes the z-coordinate of the point a.

For our applications two further types of flow trees will be needed. First,
a partial flow tree is a flow tree Γ for which we drop the condition that the
cotangent lift Γ̄ is closed and allow Γ to have 1-valent vertices v such that Γ̄
intersects the fiber over v in two points. We call such vertices special punctures.
In the dimension formula, Equation (2.3), I(v) = 3 for a positive special
puncture. Theorem 2.7 holds as well for partial flow trees with at least one
special puncture, see [8]. Second, in Section 5.1 we consider constrained flow
trees: if p1, . . . , pr are points in Λ then a flow tree constrained by p1, . . . , pr is
a flow tree Γ with 1-jet lift which passes through the points p1, . . . , pr.
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2.5. Vector splitting along flow trees. In this subsection we describe a
combinatorial algorithm for transporting normal vectors in a flow tree to all
its vertices which will combinatorially determine the sign of a flow tree, see
Section 3.4. Specifically we will be concerned only with flow trees that do not
involve cusp edges and only have punctures at critical points of index 1 and 2.

Suppose Λ is a Legendrian submanifold in J1(S) that does not have cusp
edges and only has Reeb chords corresponding to critical points of index 1 and
2. Let Γ be a partial flow tree with positive special puncture determined by
Λ ⊂ J1(S).

Consider the local situation at a Y0-vertex of Γ at t ∈ S. In the flow
orientation of Γ one edge adjacent to t is pointing toward it (we call this edge
incoming) and the other two edges are pointing away from it (we call them
outgoing). Furthermore, the natural orientation of the 1-jet lift of the tree
induces a cyclic order on the three edges adjacent to t and thus an order of
the two outgoing edges. (Specifically, the edge e1 will have the same upper
sheet as the incoming edge while the edge e2 will have the same lower sheet.)
If v0 denotes the negative gradient of the incoming edge at t and v1, v2 the
negative gradients of the two outgoing edges, all pointing according to the flow
orientation of Γ, then v1 and v2 are linearly independent and the following
balance equation holds: v0 = v1 + v2. (This follows from the fact that the
difference between the local defining functions along the incoming edge is the
sum of the function differences along the outgoing edges.)

We next define vector splitting. Let p denote the special positive puncture
of Γ, let t1, . . . , tk−1 denote its trivalent vertices, and let q1, . . . , qk denote its
negative punctures. Vector splitting along Γ is a function

NpΓ → Πk−1
j=1FtjS × Πk

i=1NqjΓ,

where NxΓ denotes the normal bundle of the edge of Γ containing the point
x ∈ Γ (which is assumed not to be a trivalent vertex) and where FS denotes
the frame bundle of S. It is defined as follows.

Translating n ∈ NxΓ as a normal vector along the edge in the direction of the
flow orientation of the tree, it eventually arrives at a trivalent vertex t. At this
vertex, the translated vector vector n(t) is perpendicular to the incoming edge
at t and determines two unique vectors w1(t) and w2(t) in TtS perpendicular to
the first and second outgoing edges at t, respectively, by requiring that n(t) =
w1(t) + w2(t), see Figure 4. The frame at t is (w1(t), w2(t)). Regarding w1(t)
and w2(t) as normal vectors of their respective edges, the above construction
can be applied with n replaced by wj(t), j = 1, 2, and Γ replaced by the
partial tree Γj which is obtained by cutting Γ in the jth outgoing edge at t and
taking the component which does not contain t. When a subtree Γj contains
no trivalent vertex we translate wj(t) along its respective edge to the negative
puncture at the vertex. Continuing in this way until the cut-off partial trees
do not have any trivalent vertices, we get
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n

1

2

w1

w2

Figure 4. Vector splitting at a trivalent Y0-vertex.

• two vectors w1(t) and w2(t) perpendicular to the first and second out-
going edge at t, for each trivalent vertex t, and
• a vector w(q) perpendicular to the edge ending at q, for each negative
puncture q.

The vector splitting of n along Γ is

n 7→
(
(w1(t1), w2(t1)), . . . , (w1(tk−1), w2(tk−1));w(q1), . . . , w(qk)

)
.

2.6. Algebraic results. In this subsection, we collect for convenience some
algebraic results about the map φ and the matrices ΦL and ΦR, which were
defined in Section 1.2 and play an essential role in the combinatorial formula-
tion of the Legendrian algebra for knot contact homology, Theorem 1.1. These
results, which will occasionally be needed in the remainder of the paper, have
essentially been established in previous work of the third author [22, 23, 25, 26].
However, we repeat the caveat from Section 1.2 that in our present context,
homology classes (µ and λ) do not commute with Reeb chords (aij), while
the previous papers deal with the homology-commutative quotient (see Sec-
tion 2.3.2). Nevertheless, all existing proofs extend in an obvious way to the
present setting.

Proposition 2.9. The map φ : Ã0
n → Ã0

n, defined in Section 1.2 for braid
generators σk of the braid Bn, respects the relations in the Bn and thus extends
to a homomorphism from Bn to Aut Ã0

n.

Proof. Direct computation, cf. [22, Proposition 2.5]. �

Proposition 2.10. Let B ∈ Bn, and let φB(A) be the (n× n)-matrix defined
by (φB(A))ij = φB(Aij). Then we have the matrix identity

φB(A) = ΦLB ·A · ΦRB.
Proof. Induction on the length of the braid word representing B, cf. [22, Propo-
sition 4.7] and [26, Lemma 2.8]. The latter reference proves the result stated

here (Â and Ǎ there correspond to A here once we set U = V = 1), but in
the homology-commutative quotient, for the case of a single-component knot,
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and with slightly different sign conventions. Nevertheless, the inductive proof
given there works here as well; we omit the details. �

We remark that Proposition 2.10 can be given a more natural, geometric
proof via the language of “cords” [23]. This approach also provides an expla-
nation for the precise placement of the homology classes µ̃ in the definition of
φσk from the Introduction. We refer the interested reader to [25, Section 3.2],
which treats the homology-commutative single-component case, and leave the
straightforward extension to the general case to the reader.

One consequence of Proposition 2.10 is that the differential for knot con-
tact homology presented in Theorem 1.1 is well-defined. More precisely, the
differential for the bij generators is given in matrix form by

∂B = −λ−1 ·A · λ + ΦLB ·A · ΦRB.

However, since B has 0’s along the main diagonal, it is necessary that the
right hand side has 0’s along the diagonal as well. This is indeed the case: the
(i, i) entry of λ−1 · A · λ is 1 + µα(i), while the (i, i) entry of ΦLB · A · ΦRB is
φB(1 + µα(i)) = 1 + µα(i).

3. The Differential and Flow Trees

In Section 4, we will prove Theorem 1.1 by using multiscale flow trees to
compute the differential of ΛK in J1(S2) = U∗

R
3. These multiscale flow trees

combine two types of flow trees, which are the focus of this section. Specifically
we will see that if Λ is the conormal lift of the unknot U then by thinking of K
as a braid about U we can isotop ΛK into an arbitrarily small neighborhood
of Λ = ΛU , which can be identified with a neighborhood of the zero section in
J1(Λ). Thus we may think of ΛK as a subset of J1(Λ).

To use multiscale flow trees to compute the differential of ΛK in J1(S2)
we will combine flow trees of Λ ⊂ J1(S2) and ΛK ⊂ J1(Λ). The content
of this section is a computation of these flow trees; in Section 4, we then
combine the flow trees to complete the computation of the Legendrian DGA
for ΛK ⊂ J1(S2).

Here is a more detailed summary of this section. In Section 3.1, we discuss
the Legendrian torus Λ and describe a generic front projection for it. In
Section 3.2, we compute the rigid flow trees for Λ as well as the 1-parameter
families of flow trees. In Section 3.3, we give an explicit identification of a
neighborhood of the zero section in J1(Λ) with a neighborhood of Λ in J1(S2),
use this identification to explicitly describe ΛK in J1(Λ), and find all the Reeb
chords of ΛK ⊂ J1(Λ). Section 3.4 computes the rigid flow trees of ΛK in
J1(Λ) modulo some technical considerations concerning “twist regions” that
are handled in Section 3.5. We comment that Section 3.4 produces an invariant
of braids (cf. [22]) using only existing flow tree technology and not multiscale
flow trees.
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3.1. A generic front for Λ. Let U be the round unknot given by the unit
circle in the xy-plane in R3. We give a description of the conormal lift Λ = ΛU
in J1(S2) = U∗R3 by describing its front projection in S2 × R. In the figures
below, we draw S2×R as R3−{0} and identify the zero section S2×{0} with
the unit sphere. If C is the circle in the conormal bundle of U lying over a point
x ∈ U then its image in S2 × {0} ⊂ S2 × R is a great circle running through
the north and south poles of S2. See Figure 5. By the contactomorphism φ
between U∗R3 and J1(S2) from Section 2.1, the image of C in S2 × R is the
graph of 〈x, y〉 where y ∈ C. This is shown in the leftmost picture in Figure 6.
By symmetry we get the entire front projection by simply rotating this image

U

p

Figure 5. On the left is the unknot U in the xy-plane with
a point p on U labeled and its unit (co-)normal bundle shown.
On the right is the tangent space R3 = TpR

3 at p with the unit
sphere indicated along with the image of the unit (co-)normal
bundle to U at p.

c e

Figure 6. The front of the unknot. On the left is the image of
the circle shown in Figure 5 in the front projection in J0(S2) =
S2 × R = R3 − {0}. The center image shows the entire front
projection (with the unit sphere S2 × {0} shown in light grey)
and the image on the right shows the two Reeb chords after
perturbation.

of C about the axis through the north and south pole as shown in the middle
picture of Figure 6. Using Lemma 2.1 we see that this representative of Λ has
an S1’s worth of Reeb chords over the equator. We perturb Λ using a Morse
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function on the equator with one maximum and one minimum, so that only
two Reeb chords c and e, as indicated in the rightmost picture in Figure 6,
remain. Here e and c correspond to the maximum and minimum, respectively,
of the perturbing function, and both correspond to transverse double points
of Π(Λ).

This perturbation does not suffice to make the front of Λ generic with respect
to fibers of T ∗S2: over the poles of S2 we see that Λ consists of Lagrangian
cones. We first describe these in local coordinates and then show how to
perturb them to become front generic. Let x = (x1, x2) be local coordinates
near the pole in S2 and let (x, y) = (x1, y1, x2, y2) be corresponding Darboux
coordinates in T ∗S2, with symplectic form given by dx ∧ dy = dx1 ∧ dy1 +
dx2 ∧ dy2.

Consider S1 = {ξ ∈ R2 : |ξ| = 1}. The Lagrangian cone is the exact La-
grangian embedding C : S1 × R→ R4 given by

C(ξ, r) = (rξ, ξ).

As mentioned above, the Lagrangian cone is not front generic: the front pro-
jection ΠF ◦ C is regular for r 6= 0 but maps all of S1 × {0} to the origin. In
order to describe perturbations of C we first find a cotangent neighborhood of
it. See Figure 7.

Consider T ∗(S1 × R) = T ∗S1 × T ∗R. Let (ξ, η, r, ρ) be coordinates on this
space where ρ is dual to r and η is dual to ξ. Here we think of η as a (co)vector
perpendicular to ξ ∈ S1 ⊂ R2, that is η ∈ R2 and η · ξ = 0. Consider the map

Φ: T ∗S1 × T ∗
R→ T ∗

R
2 = R

4

given by

Φ(ξ, η, r, ρ) =

(
rξ − 1

1 + ρ
η, (1 + ρ)ξ

)
.

Then Φ∗(dx ∧ dy) = dξ ∧ dη + dr ∧ dρ. To see this we compute

dx = (dr)ξ + rdξ − 1

1 + ρ
dη +

dρ

(1 + ρ)2
η,

dy = (dρ)ξ + (1 + ρ)dξ

and hence

dx ∧ dy = (dr ∧ dρ)(ξ · ξ)
+ ((1 + ρ)dr − rdρ) ∧ (ξ · dξ) + r(1 + ρ)dξ ∧ dξ

+
dρ

1 + ρ
(ξ · dη + η · dξ)

= dr ∧ dρ+ dξ ∧ dη,
since ξ · ξ = 1 and ξ · η = 0.

Thus Φ is a symplectic neighborhood map extending the Lagrangian cone.
It follows that exact Lagrangian submanifolds C1-near C can be described by
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Figure 7. A perturbed Lagrangian cone. Along the top of the
figure is an annular neighborhood of the circle in Λ = ΛU that
maps to the fiber above the north pole. On the middle left, we
see the image of this annulus near the north pole in the front
projection, a cone whose boundary is two circles. On the bottom
left is the image of this annulus near the north pole in S2 (that
is, the top view of the cone where we have slightly offset the
circles so that they are both visible). On the middle right, we
see the top view of the cone after it has been perturbed to have
a generic front projection. More specifically, the lighter outer
curve is the image of the cusp curves, the dotted lines are the
image of double points in the front projection and the darkest
inner curve is the image of the circle that mapped to the cone
point before the perturbation. On the bottom right, we see the
image in S2 of the cusp curve and the two boundary circles on
ΛU .

Φ(Γdf ) where f is a smooth function on S1 × R and where Γdf denotes the
graph of its differential.

We will consider specific functions of the form

f(ξ, r) = α(r)g(ξ),

where α(r) is a cut off function equal to 0 for |r| > 2δ and equal to 1 for |r| < δ
for some small δ > 0. Write Cf = Φ(Γdf ).
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We first give a description of the caustic of Cf . Note that ΠF ◦ C is an
immersion for |r| > δ. The same therefore holds true for Cf provided f is
small enough. In order to describe the caustic we thus focus on the region
where |r| < δ and hence α(r) = 1. Here

Cf(ξ, r) = (rξ + dg, ξ) =
(
C1
f (ξ, r), C

2
f(ξ, r)

)
.

The caustic is the set where Cf has tangent lines in common with the fiber.
Consequently a point p ∈ S1×R belongs to the fiber provided the differential of
the first component C1

f of the map Cf has rank < 2. Write ξ = (cos θ, sin θ) ∈
S1 and take g(ξ) = g1(ξ) = ǫ cos 2θ. The caustic is then the image of the locus
r = 4ǫ cos 2θ under the first component of the map

Φ(θ, r) =
(
r(cos θ, sin θ)− 2ǫ sin θ(− sin θ, cos θ), (cos θ, sin θ)

)
,

see Figure 7.

Lemma 3.1. The Maslov class of Λ vanishes and consequently the grading of
any Reeb chord of Λ is independent of choice of capping path. Let e and c
denote the Reeb chords of Λ, as described above; then

|e| = 2 and |c| = 1.

Proof. To see that the Maslov class vanishes we need to check that the Maslov
index of any generator of H1(Λ) vanishes. We compute the Maslov index of a
curve as described at the end of Section 2.3.1. Take one generator as a curve
in Λ over the equator; since this curve does not intersect any cusp edge its
Maslov index vanishes. Take the other generator as a curve perpendicular to
the equator going to the poles and then back; since such a curve has two cusp
edge intersections, one up-cusp and one down-cusp, its Maslov index vanishes
as well.

Finally choose the capping path of e and c which goes up to the north pole
and then back. This capping path has one down-cusp and the Morse indices
of e and c are 2 and 1, respectively. The index assertions now follow from
Lemma 2.5. �

3.2. Flow trees of Λ. We next determine all flow trees of Λ.

Lemma 3.2. There are exactly six rigid flow trees of Λ: four with positive
puncture at c: IN , YN , IS, and YS, and two with positive puncture at e and
negative puncture at c: E1 and E2. Furthermore, if p is a point of Λ lying over
a point where the front of Λ has 2 sheets then there are exactly two constrained
rigid flow trees with positive puncture at e with 1-jet lift passing through p.

Before proving Lemma 3.2, we make a couple of remarks.

Remark 3.3. In fact one can show the following: There are exactly four 1-
parameter families of trees with positive puncture at e: ĨN , ỸN , ĨS, and ỸS.
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The boundaries of these 1-parameter families are as follows:

∂ĨN = (E1# IN) ∪ (E2 # IN), ∂ỸN = (E1 #YN) ∪ (E2#YN),

∂ĨS = (E1 # IS) ∪ (E2# IS), ∂ỸS = (E1#YS) ∪ (E2#YS).

Here E1# IN denotes the broken tree obtained by adjoining IN to E1, etc. See
Figures 8 and 9. Furthermore, the 1-jet lifts of the flow trees in each of these
families sweep the part of the torus lying over the corresponding hemisphere
(N or S) once.

The formal proof of this result about 1-parameter families would require a
more thorough study of flow trees in particular including a description of all
vertices of flow trees that appear in generic 1-parameter family. This is fairly
straightforward, see [8, Section 7]. For the purposes of this paper it suffices to
work with constrained rigid trees rather than 1-parameter families so details
about 1-parameter families of flow trees will be omitted.

IN

c c

YN

c

e

E0

E1

Figure 8. Rigid flow trees for Λ on the northern hemisphere of S2.

Remark 3.4. We will not need a precise expression of the one-dimensional

families ĨN , ỸN , ĨS, and ỸS in our computations, but we do need a rough
understanding of them. To see the family of disks, start with the symmetric
picture of Λ coming from the conormal lift of U . Now make a small perturba-
tion of the north and south poles as shown in Figure 7. Then we see an I and
Y flow tree from each point on the equator into the northern hemisphere and
another into the southern hemisphere. Now perturbing slightly so the equator
is no longer a circle of critical points but contains only the critical points c
and e and two flow lines between them, we will see that each of the I and Y

disks will become part of one of the one-dimensional families of disks ĨN , ỸN ,

ĨS, and ỸS. See Figure 9.
It is also useful to see these trees as arising from the Bott-degenerate conor-

mal lift of the round unknot. Here there are four holomorphic disks emanating
from each Reeb chord. The corresponding trees are just flow lines from the
equator to the pole. The 1-jet lift of such a flow line can then be completed
by one of the two half circles of the circle in Λ which is the preimage of the
pole. The Bott-degenerate 1-parameter family then consists of a flow segment
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starting at the maximum in the Bott-family and ending at some point where
a disk emanating at that point (corresponding to a flow line from that point
to a pole) is attached.

e e e

e e

Figure 9. One of the 1-dimensional flow tree families for Λ
lying over the northern hemisphere of S2.

Proof of Lemma 3.2. We are only considering flow trees with exactly one pos-
itive puncture. First consider a rigid flow tree Γ with a positive puncture at
c. Using Lemma 2.8 we see that there can be no negative punctures since the
symplectic area must be positive. Thus all vertices of Γ are Y0 or Y1 vertices,
switches, or cusp ends.

We can rule out switches as follows. Since the front is a small perturbation
of a Lagrangian cone, it is possible to arrange the following: along a cusp edge
in the image π(Σ) of the caustic, the gradient vector fields for the function
difference between a sheet meeting the cusp edge and a sheet not meeting
the cusp edge are transverse to the caustic except at the swallow tail points,
where they are tangent to the caustic (or zero). This is a non-generic situation,
generically tangencies occur only at smooth points of the caustic, and after
small perturbation tangency points lie close to the swallowtails. Switches of
flow trees lie at tangency points in the caustic and thus a switch could only
occur near a swallow tail point. Now, using again that the front is a small
perturbation of a Lagrangian cone, we can also arrange that near a swallow
tail, the function difference between any one of the three sheets involved in the
swallow tail and the fourth sheet is larger than any function difference in the
small region bounded by π(Σ) away from swallow tails. Then since the unique
flow line that leaves c hits π(Σ) away from the swallow tails, by positivity of
symplectic area (in this case, the fact that the function difference decreases
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along a flow line), there is a neighborhood of the swallow tail points which the
the flow tree cannot reach and in particular it cannot have any switches.

Thus the vertices of Γ are all Y0 or Y1 vertices or cusp ends. By the dimension
formula, Equation 2.3, we see that for the flow tree to be rigid there is some
n ≥ 0 such that there are n type Y1 vertices and n + 1 cusp ends (each with
µ = +1). To have a Y1 vertex a flow line must intersect a cusp edge so that
when traveling along the flow the number of sheets used describing Λ increases
(as one passes the cusp). Around the north and south pole of S2 the cusp edges
are arranged so that only flow lines traveling towards the poles could possibly
have a Y1 vertex. Thus for n > 1 one of the edges in the flow tree will be a
flow line that travels from near the north pole to near the south pole. Since
this clearly does not exist, as there are two flow lines connecting e to c along
the equator and Λ has only two sheets along the equator, we must have n = 0
or 1.

There are only two flow lines leaving c (that is two flow lines that could
have c as a positive puncture), one heading towards the north pole and one
heading towards the south pole. When n = 0 we clearly get IN and IS from
these flow lines when they do not split at a Y1 vertex and when n = 1 we get
YN and YS when they do split at a Y1 vertex.

Notice for future reference that the above analysis shows that there are no
1-parameter families of flow trees with c as a positive puncture.

Now consider a flow tree Γ with e as a positive puncture. Noting that the
Reeb chord above c is only slightly shorter than the chord above e we see, using
Lemma 2.8, that Γ can have either no negative punctures or just one negative
puncture at c. If dim(Γ) = 0, then by the dimension formula there must be a
negative puncture at c. Then, since Λ is defined by only two functions away
from neighborhoods of the poles, the only vertices of Γ are the punctures e
and c. Thus Γ is simply a flow line from e to c and there are precisely two: E1

and E2.
The argument for constrained rigid trees with positive puncture at e follows

from the argument used for rigid flow trees with positive puncture at c above.
�

3.3. Conormal lifts of general links. In order to describe the conormal lift
of a general link K ⊂ R3 we first represent it as the closure of a braid around
the unknot U . More precisely, K lies in a small neighborhood N = S1×D2 ⊂
R3 of U and is transverse to the fiber disks {θ}×D2 for all θ ∈ S1. Note that
B is a braid on n strands if and only if K intersects any fiber disk n times.
We write B for the closed braid corresponding to K considered as lying in
S1 ×D2.

We represent a closed braid B on n strands as the graph ΓfB of a multi-
section fB : S

1 → D2, where fB(s) consists of n distinct points in D2 varying
smoothly with s, so that ΓfB is a smooth submanifold. Representing S1 as
[0, 2π] with endpoints identified, we can express fB as a collection of n functions
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{f1(s), . . . , fn(s)} where fi : [0, 2π] → D2 are smooth functions, i = 1, . . . , n.
(The sets {f1(0), . . . , fn(0)} and {f1(2π), . . . , fn(2π)} are equal but it does not
necessarily hold that fi(0) = fi(2π).) Note that the distance between Λ and
ΛK is controlled by the C1-distance from fB to the trivial multi-section which
consists of n points at the origin. In particular if N is a fixed neighborhood of
Λ then ΛK ⊂ N provided that fB is sufficiently C1-small.

3.3.1. A 1-jet neighborhood of Λ. In order to describe the multiscale flow trees
on Λ determined by ΛK we need to identify some neighborhood of Λ with
J1(Λ) ≈ T ∗T 2×R. Thinking of T 2 as S1×S1 we use two different versions of
the cotangent bundle of S1 to describe T ∗T 2. First, we think of S1 as [0, 2π]
with endpoints identified, we let s be a coordinate on [0, 2π] and σ ∈ R be a
fiber coordinate in T ∗S1 = S1 × R. We write T ∗S1

λ for the cotangent bundle
with these coordinates:

T ∗S1
λ = {(s, σ) : s ∈ [0, 2π] , σ ∈ R} .

We denote the second version T ∗S1
µ and define it as

T ∗S1
µ =

{
(ξ, η) ∈ R

2 × R
2 : |ξ| = 1, ξ · η = 0

}
.

Let r(s) = (cos s, sin s, 0), 0 ≤ s ≤ 2π denote a unit vector in the x1x2-
plane at an angle s from the x1-axis and θ(s) = (− sin s, cos s, 0) the vector
r(s) rotated π/2 counter-clockwise in the x1x2-plane (we can think of it as the
standard angular vector at r(s) translated back to the origin). Let ζ be the
coordinate on R. Consider the map

Φ: T ∗S1
λ × T ∗S1

µ × R→ U∗
R

3 = R
3 × S2,

where Φ = (Φ1,Φ2) is defined by

Φ1(s, σ, ξ, η, ζ) = r(s) +
1√

1− σ2
(η1r(s) + η2(0, 0, 1))(3.1)

+ ζ
(
−σθ(s) +

√
1− σ2(ξ1r(s) + ξ2(0, 0, 1))

)
,

Φ2(s, σ, ξ, η, ζ) = −σθ(s) +
√
1− σ2(ξ1r(s) + ξ2(0, 0, 1)).

Then Φ|S1
λ×0×S1

µ×0×0 is a parametrization of Λ and its restriction to a small

neighborhood of the 0-section is an embedding. Furthermore, since ξ · η = 0,
we know that η · dξ = −ξ · dη. Using this and the fact that r(s) · θ(s) = 0 and
r′(s) = θ(s) we can compute

Φ∗(p dq) = dζ − σ ds− ξ · dη − 1√
1− σ2

ση1 ds.
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We introduce the following notation:

β0 = σ ds+ ξ · dη,(3.2)

α =
1√

1− σ2
ση1 ds,(3.3)

βt = β0 − tα, 0 ≤ t ≤ 1.(3.4)

Note that dβt is symplectic in a neighborhood of the 0-section, for all t. Using
Moser’s trick we define a time-dependent vector field Xt by

(3.5) − α = dβt(Xt, ·)
and find that if ψt denotes the time t flow of Xt then

ψ∗
t dβt = dβ0.

In particular,
d(ψ∗

t βt − β0) = 0.

Equation (3.5) and the definition of α imply that Xt = 0 along the 0-section
and thus ψ∗

t βt−β0 = 0 along the 0-section. By the homotopy invariance of de
Rham cohomology, the closed form ψ∗

t βt − β0 is exact. Let the function h be
such that β0 = ψ∗

1β1 + dh and such that h = 0 on the 0-section.
We can bound the growth of α,Xt, h in terms of distance r := (|η|2+ |σ|2)1/2

from the origin. From the explicit expression for α in Equation (3.2), we have
α = O(r2) and thus from Equation (3.5),

(3.6) |Xt| = O(|η|2 + |σ|2) and |dXt| = O((|η|2 + |σ|2)1/2).
Then from the definition of h, |dh| = O(r2) and so

(3.7) |d(k)(h)| = O((|η|2 + |σ|2)(3−k)/2), k = 0, 1, 2.

We will use these estimates in the proof of Lemma 3.6 below.
Finally, if Ψ is the diffeomorphism of T ∗S1

λ × T ∗S1
µ × R given by

Ψ((s, σ, ξ, η), ζ) = (ψ1(s, σ, ξ, η), ζ + h(s, σ, ξ, η)),

then
Ψ∗Φ∗(p dq) = dζ − σ ds− ξ · dη.

The map Θ = Φ ◦ Ψ is the 1-jet neighborhood map we will use. It is an
embedding from a neighborhood of the 0-section in J1(T 2) = T ∗T 2 × R to a
neighborhood of Λ ⊂ U∗R3 = J1(S2) such that Θ∗(p dq) = dζ − θ, where ζ is
a coordinate in the R-factor and where θ is the Liouville form on T ∗T 2.

Remark 3.5. Notice that the contactomorphism Θ sends the Reeb flow of
J1(T 2) to the Reeb flow of J1(S2). (Here, as throughout the rest of the
paper, we are identifying J1(S2) with U∗R3 using the contactomorphism in
Equation (2.1).) Thus any Reeb chord of ΛK in J1(T 2) corresponds to a Reeb
chord of ΛK in J1(S2) and any Reeb chord of ΛK in J1(S2) that lies entirely
in N corresponds to a Reeb chord of ΛK in J1(T 2).
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3.3.2. Conormal lifts of closed braids as multi-sections. Consider T 2 = S1
λ×S1

µ

as above. A multi-section of J0(T 2) is a smooth map F : T 2 → J0(T 2) such
that π◦F is an immersion (i.e., a covering map). In particular, a multi-section
can be thought of as the graph of a multi-function F : T 2 → R. (Context
will designate whether F refers to a (multi-)function or its graph, a (multi-
)section.) The 1-jet extension of a generic multi-section is a Legendrian sub-
manifold. We denote it Γj1(F ). Let K ⊂ R3 be a link and let B be a closed
braid representing K with corresponding multi-section fB = {f1, . . . , fn},
fj : [0, 2π]→ D2, as described at the beginning of Section 3.3.

Lemma 3.6. The conormal lift ΛK is Legendrian isotopic to the Legendrian
submanifold Θ(Γj1(FB)) where FB is the multi-section given by the functions
Fj : [0, 2π]× S1

µ → R, j = 1, . . . , n, where

Fj(s, ξ) = fj(s) · ξ.
Here we think of S1

λ as [0, 2π] with endpoints identified and we identify S1
µ with

the unit circle in the plane of the disk where fj : [0, 2π]→ D2 takes values.

Proof. Let N ⊂ U∗R3 denote a δ-neighborhood of Λ in which Θ and Φ give
local coordinates. Take the C2-norm of fB sufficiently small so that ΛK will
be in N . We first show that Φ−1(ΛK) is given by the 1-jet lift of FB. To see
this notice that the image of the braid B is given by the image of the maps

(fj(s))xr(s) + (fj(s))y(0, 0, 1)

where (fj)x and (fj)y are the x and y-coordinates of fj , and r(s) is as in
Equation (3.1). Thus the normal component in J1(S2) = T ∗S2 × R (i.e., the
R-component) of the braid at the point (fj(s))xr(s)+(fj(s))y(0, 0, 1)) is given
by

((fj(s))xr(s) + (fj(s))y(0, 0, 1)) · (ξ1r(s) + ξ2(0, 0, 1)) = fj(s) · ξ.
According the the definition of Φ we see that the R-factor of T ∗T 2×R = J1(T 2)
maps to the R-factor in T ∗S2×R by ζ 7→ ζ

√
1− σ2. Thus the multi-section of

J0(T 2) corresponding to Φ−1(ΛK) is given by 1√
1−σ2 fj(s) · ξ, but in J

0(T 2) the

σ-coordinate is always equal to zero. Thus the multi-function FB does indeed
describe Φ−1(ΛK) as claimed.

Now Θ−1(ΛK) is the 1-jet graph Γj1(GB) of some multi-section GB. In gen-
eral, Legendrian submanifolds of J1(T 2) will be given by cusped multi-sections,
but since each point in Θ−1(ΛK) has a neighborhood in Θ−1(ΛK) that can be
made C1 close to the zero section in J1(T 2), we see that Θ−1(ΛK) has empty
caustic and hence is the 1-jet extension of a multi-section.

From the above discussion we see that Γj1(GB) is the same as Ψ−1(Γj1(FB)).
The estimates (3.6) and (3.7) then imply that the C1-distance between FB
and GB is O(δ2). Consequently, for δ > 0 sufficiently small, Γj1(GB) = ΛK and
Γj1(FB) are Legendrian isotopic. �
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3.3.3. Reeb chords and grading. Let K ⊂ R3 be a link. We assume that K is
braided around the unknot as a braid on n strands and we represent ΛK as
Γj1(FB) ⊂ J1(T 2) as in Lemma 3.6. Then the Reeb chords of ΛK in J1(S2) are
of two types: short chords, which are entirely contained in the neighborhood
N of Λ, and long chords, which are not. According to Remark 3.5 we see that
the short chords of ΛK correspond to chords of ΛK in J1(T 2). As with Λ, one
can use the techniques of Section 2.3.1 to conclude that the Maslov class of ΛK
vanishes, and thus the grading of any Reeb chord of ΛK with both endpoints
on the same component is independent of capping path. For Reeb chords with
endpoints on distinct components the grading depends on the chosen transport
along the paths connecting the components, cf. Remark 2.4. Here we use
the following choice throughout. Fix a point x ∈ Λ and let the base points
of the components of ΛK all lie in the intersection J1

x(Λ) ∩ ΛK of ΛK and the
fiber of J1(Λ) at x. Take the connecting paths as straight lines in T ∗

ΠΛ(x)Λ

and use parallel translation in the flat metric followed by a rotation along the
complex angle or the complementary complex angle, whichever is less than
π
2
, as transport. Note that as K gets closer to U the angle of this rotation

approaches 0.

Lemma 3.7. Up to smooth isotopy, we can choose the link K ⊂ R3 so that
ΛK has exactly 2n(n− 1) short Reeb chords:

{aij}1≤i,j≤n, i 6=j, |aij | = 0,

{bij}1≤i,j≤n, i 6=j, |bij | = 1,

and exactly 2n2 long Reeb chords:

{cij}1≤i,j≤n, |cij| = 1,

{eij}1≤i,j≤n, |eij| = 2.

Here cij (respectively eij) lie in small neighborhoods of the Reeb chords c (re-
spectively e) of Λ for all i, j. Furthermore all Reeb chords can be taken to
correspond to transverse intersection points in T ∗S2.

Remark 3.8. We will use the following notation for the Reeb chords of ΛK .
We say that the short Reeb chords are of type S and the long of type L. We
sometimes specify further and say that a short (long) Reeb chord of grading j
is of type Sj (Lj).

Proof of Lemma 3.7. The statement in the Lemma for long chords is immedi-
ate from the fact that ΛK is the 1-jet graph of a multi-section with n sheets
over Λ which has two Reeb chords: e with |e| = 2 and c with |c| = 1. To prove
the statement on short chords we note that we may choose the multi-section
fB so that for any i 6= j, |fi−fj | has a maximum at 2π−δ ∈ [0, 2π], a minimum
at 2π−2δ, and no other critical points. Parameterizing S1

µ by ξ = (cos t, sin t),
t ∈ [0, 2π], we find that the difference between two local functions of ΛK is

Fij(s, t) = (fi(s)− fj(s)) · (cos t, sin t).
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Now dFij = 0 if and only if

(f ′
i(s)− f ′

j(s)) · (cos t, sin t) = 0 and(3.8)

(fi(s)− fj(s)) · (− sin t, cos t) = 0,(3.9)

which in turn happen if and only if s is critical for |fi(s)−fj(s)| and t takes one
of the two values, say t0 and t0 + π, for which Equation (3.9) holds. We take
aij to be the chord corresponding to the minimal distance between strands
and bij to the maximal distance.

In order to compute the gradings of aij and bij we note that the front of ΛK
in J0(Λ) = Λ × R has no singularities and that the chords aij (respectively
bij) correspond to saddle points (respectively maxima) of positive function
differences of local defining functions. The grading statement then follows
from Equation (2.2). �

3.4. Counting flow trees of ΛK in J1(Λ). In this subsection we determine
all the flow trees for ΛK ⊂ J1(Λ). Our enumeration relies on a particular
and fairly technical choice of position for ΛK over the regions where the braid
twists, whose details we defer to Section 3.5. For our current computational
purposes, we only need a few qualitative features of these twist regions, as
described in Sections 3.4.1 through 3.4.3 below, which will serve to motivate
the more technical parts of our discussion of twist regions in Section 3.5.

Given these qualitative features, we perform the actual combinatorial com-
putation of flow trees in Sections 3.4.5 through 3.4.8 (after first presenting
a scheme for calculating signs for flow trees in Section 3.4.4), culminating in
Lemma 3.21, which presents a purely algebraic formula for the Legendrian
DGA of ΛK ⊂ J1(Λ). This comprises an important subalgebra of the Legen-
drian DGA of ΛK ⊂ J1(S2), the rest of which is computed in Section 4.

3.4.1. Basic setup. Recall that K is the closure of a braid in S1 × D2 given
by a collection {f1, . . . , fn} of functions fj : [0, 2π] → D2, j = 1, . . . , n. We
use Lemma 3.6 to represent ΛK ⊂ J1(Λ) as the 1-jet graph of the functions
Fj : [0, 2π]

2 → R given by

Fj(s, t) = fj(s) · (cos t, sin t).
Here (s, t) ∈ [0, 2π]2 are coordinates on Λ, with s corresponding to the param-
eter along the unknot (represented by the unit circle in the x1x2-plane) and
t to the parameter along a unit circle in the normal fiber of the unknot with
0 corresponding to the positive outward normal of the unit circle in the x1x2-
plane. Furthermore, recall from Lemma 3.7 that Reeb chords of ΛK ⊂ J1(Λ)
correspond to points (s, t) ∈ Λ where s is a critical point of |fi(s)− fj(s)| and
where t is such that the vector (cos t, sin t) is parallel to the vector fi(s)−fj(s).

Let [s0, s1] ⊂ [0, 2π]. We refer to the part of ΛK lying over an interval [s0, s1],

ΛK ∩ J1([s0, s1]× S1) ⊂ J1(Λ),
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as the [s0, s1]-slice of ΛK . We will represent the braid as follows: the actual
twists will take place in an [sbr0 , s

br
1 ]-slice, where [sbr0 , s

br
1 ] ⊂ (0, π

2
). Inside the

[sbr0 , s
br
1 ]-slice the braid is given by sub-slices where it twists so that two strands

are interchanged, separated by slices where the braid is trivial. Outside the
[sbr0 , s

br
1 ]-slice the braid is trivial.

We will choose perturbations so that the following holds: Reeb chord end-
points of the Reeb chords e and c of Λ have the following coordinates:

e+ = (0, 0), e− = (π, π), c+ = (π, 0), and c− = (0, π),

see Lemma 3.1. Consequently, all Reeb chords eij and cij , 1 ≤ i, j ≤ n, of type
L are located near these points. The Reeb chords aij and bij of type S are
located near s = s and s = s where π

2
< s < s < 2π, see the proof of Lemma

3.7.

3.4.2. Reeb chords and trivial slices. Consider an interval [s0, s1] where the
braid is trivial. We will describe a model for the [s0, s1]-slice of the conormal
lift of a trivial braid which we will use in two ways: to control Reeb chords
and to define a normal form of a slice of the trivial braid in which there are
no Reeb chords. We first describe a somewhat degenerate [s0, s1]-slice of ΛK :
we represent the trivial braid by

fj(s) = (0, j ψ(s)), j = 1, . . . , n,

where ψ(s) is a positive function that has a non-degenerate local minimum at
s and a non-degenerate local maximum at s. Here s0 < s < s < s1 and ψ has
no other critical points.

We call the 1-jet graph of the function

Fj(s, t) = fj(s) · (cos t, sin t)
the jth sheet of ΛK and denote it by Sj, j = 1, . . . , n. Writing

Fij(s, t) = Fi(s, t)− Fj(s, t) = (fi(s)− fj(s)) · (cos t, sin t)
= (i− j)ψ(s) sin t,

Reeb chords correspond to critical points of Fij and are all located in the fibers
over the following points in Λ:

(
s,
π

2

)
,

(
s,

3π

2

)
,
(
s,
π

2

)
, and

(
s,
3π

2

)
.

The Reeb chords lying in the fibers over the first (respectively second) two
points correspond to saddle points (respectively extrema) of the functions Fij .
We denote them by aij (respectively bij). Here the labeling is such that aij
and bij begin on Sj and end on Si. Thus, if i > j then the t-coordinate of aij
and bij equals

π
2
whereas if i < j it equals 3π

2
.

The flow trees that we study all have their negative punctures at aij and thus
we must understand the unstable manifold W u(aij) of aij as a critical point
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of Fij . (Recall that we are using the positive gradient flow when discussing
stable and unstable manifolds.) It is straightforward to check that

W u(aij) =

{{
(s, t) : t = π

2

}
if i > j{

(s, t) : t = 3π
2

}
if i < j.

Note that the [s0, s1]-slice of ΛK as defined above is degenerate: Reeb chords
are not disjoint, the unstable manifolds W u(aij) are not mutually transverse,
and their stable counterparts are not mutually transverse either. The following
lemma describes the [s0, s1]-slice of ΛK after a small perturbation which makes
it generic. In particular, the perturbation is so small that there is a natural
one-to-one correspondence between Reeb chords before and after perturbation
and we will keep the notation aij and bij from above. There are of course many
perturbations which makes ΛK generic. The particular choice studied here is
designed to make counting flow trees as simple as possible.

Lemma 3.9. For ǫ0 > 0 arbitrarily small, there exist a Legendrian isotopy
of ΛK and a collection of functions ǫij , ǫ

′
ij, ǫ

′′
ij : [s0, s1] → (0, ǫ0) for each

n ≥ i > j ≥ 1, so that the following conditions hold:

• ǫij are lexicographically ordered in (i, j): for any s, s′, ǫij(s) > ǫi′j′(s
′)

if i > i′, or if i = i′ and j > j′;
• similarly, ǫ′ij and ǫ

′′
ij are lexicographically ordered in (i, j);

• the unstable manifolds W u(aij) are curves of the following form:
– if i > j then W u(aij) = {(s, t) : t = π

2
− ǫ0 + ǫij(s)} and

– if i < j then W u(aij) = {(s, t) : t = 3π
2
+ ǫ′ji(s)};

• the Reeb chords corresponding to critical points in these unstable man-
ifolds satisfy the following:

– if i > j then the s-coordinate of aij (respectively bij) equals s+ǫ
′′
ij(s)

(respectively s + ǫ′′ij(s)).
– if i < j then the s-coordinate of aij (respectively bij) equals s+ǫ

′′
ji(s)

(respectively s + ǫ′′ji(s)).

Remark 3.10. The functions ǫij , ǫ
′
ij , ǫ

′′
ij are chosen so that the unstable mani-

folds W u(aij), i > j, appear in the lexicographical order on {(i, j)}1≤j<i≤n if
read in the increasing t-direction, so that the W u(aij), i < j, appear in the
lexicographical order of {(j, i)}1≤i<j≤n if read in the positive t-direction, and
so that no W u(aij) lies in the region π

2
≤ t ≤ 3π

2
, see Figure 10.

Proof of Lemma 3.9. Throughout the proof we use the notational conventions
above for Reeb chords. We will consider two different perturbations of the
braid representative for the trivial braid given at the beginning of this subsec-
tion and then combine them to give the desired perturbation.

We first choose the scaling function ψ(s) from the beginning of this subsec-
tion to additionally satisfy ψ(s) = M

2
(s − s)2 + c in a 2ǫ0 neighborhood of s
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aij bij

aij bij

i < j

i > j

t = 3π
2

t = π
2

t

s

lex. order
(j, i)

lex. order
(i, j)

Figure 10. Ordered unstable manifolds after perturbation.

and ψ(s) = −M
2
(s − s)2 + c′ in a 2ǫ0 neighborhood of s, where c and c′ are

constants, M is some large constant and ǫ0 is some small positive constant.
Now choose constants δ1, . . . , δn so that

0 ≤ δ1 < δ2 < 2δ2 < δ3 < 3δ3 < . . . < δn < nδn < ǫ0.

For i > j, define ǫ′′ij =
iδi−jδj
i−j . The above inequalities imply that the ǫ′′ij are

positive, less than ǫ0, and lexicographically ordered in (i, j): indeed, we have

ǫ′′ij ∈
(

i

i− j + 1
δi,

i

i− j δi
)
⊂ (δi, iδi).

Set ψi(s) = ψ(s − δi). Defining the trivial braid by the multi-function
determined by fj(s) = (0, jψj(s)), we see that the Reeb chord aij has s-
coordinate determined by the solution near s to

iM(s− δi − s) = iψ′
i(s) = jψ′

j(s) = jM(s− δj − s),
which is precisely s = s+ǫ′′ij, and similarly for bij and s. Thus the Reeb chords
aij are at {(

s, π
2

)
+ (ǫ′′ij , 0) if i > j,(

s, 3π
2

)
+ (ǫ′′ji, 0) if i < j,

and the Reeb chords bij are at
{(
s, π

2

)
+ (ǫ′′ij , 0) if i > j,(

s, 3π
2

)
+ (ǫ′′ji, 0) if i < j.

Now consider a different representation of the trivial braid. In particular,
returning to the original representation of the trivial braid given at the begin-
ning of this subsection, we can replace the curve {x = 0} where the functions
fi(s) take values, with a curve family {x = ht(y)} where ht : R → R is a
smoothly varying family of functions such that:
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• ht is constant in t near t = π
2
and t = 3π

2
,

• hπ/2(j) = j(δn − δj) for j = 1, . . . , n,
• h3π/2(j) = −jδj for j = 1, . . . , n,

where the δj are as before. (We can assume that the t dependence of ht is
supported in an arbitrarily small neighborhood of π and 0. While this is not
necessary here, it will be important when describing the lift of a non-trivial
braid in Section 3.5.) Then let

Fj(s, t) = ψ(s)(ht(j), j) · (cos t, sin t)
be the function of the jth sheet. The critical points for Fij = Fi − Fj are at
s = s or s = s, with t given by

cot(t) =
ht(i)− ht(j)

i− j + (∂h/∂t)(i) − (∂h/∂t)(j)
.

Since ht is small (and can be made arbitrarily small by the appropriate choice
of δi), this equation can only hold for t near π/2 or 3π/2, whence cot(t) =
hπ/2(i)−hπ/2(j)

i−j or cot(t) =
h3π/2(i)−h3π/2(j)

i−j , respectively.
In the former case, the expression for hπ/2 implies that the Reeb chords

aij , bij for i > j have t-coordinate near π/2 and are given by the solution
to cot(t) = δn − ǫ′′ij > 0. If t = tij is the solution to this equation, then
tij < π/2 and tij is ordered in lexicographic order on (i, j), and so we can
write tij = π/2− ǫ0 + ǫij with ǫij ordered lexicographically in (i, j). Similarly,
the expression for h3π/2 implies that the Reeb chords aij , bij for i < j have t-
coordinate near 3π/2 and are given by the solution to cot(t) = −ǫ′′ji < 0, which
yields t = 3π/2 + ǫ′ji with ǫ

′
ji ordered lexicographically on (i, j). Furthermore,

the unstable manifolds W u(aij) and W u(aji) are horizontal (constant in t)
since the ∂t component of ∇Fij is zero at t = tij .

Combining the perturbations, we find that the location and ordering of the
critical points and unstable manifolds of

Fj(s, t) = ψj(s)(ht(j), j) · (cos t, sin t)
is as desired. �

Remark 3.11. Recall that our notation for (un)stable manifolds refers to the
positive gradient flow of positive function differences and note that the unstable
manifolds W u(aij) can be characterized as the only flow line determined by
sheets Si and Sj along which the local function difference stays positive for
all time under the negative gradient flow: along any other (non-constant) flow
lines of the negative gradient, the local function difference eventually becomes
negative.

Remark 3.12. Consider next an [s′, s′′]-slice where the braid is trivial, e.g.,
the slices mentioned above that separate the slices where twists of the braid
occur. In each such slice we will take the braid to look much like in the
[s0, s0+δ]-slice of the braid in Lemma 3.9, where δ > 0 is small enough so that
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the s-coordinate of any Reeb chord aij is larger than s0 + δ. More precisely,
we require that the functions fj(s), j = 1, . . . , n take values in a family of
graphical curves {x = ht(y)} (with y = j for fj), where ht is a small function
which is independent of t near π

2
and 3π

2
. In order to make sure that the [s′, s′′]-

slice does not have any Reeb chords we let the points fj(s) move away from
each other along the curves {x = ht(y)} as we go through [s′, s′′] from right to
left, so that |fi(s) − fj(s)| decreases with s for all i, j. We call a braid with
these properties a standard trivial braid and we number the functions f1, . . . , fn
according to the order in which they appear along the curve {x = ht(y)} with
orientation induced from the positively oriented y-axis.

3.4.3. A model for ΛK, endpoint paths, and homology indicators. Here we de-
scribe the qualitative features of the gradient flows associated to ΛK in J1(Λ)
that will be necessary for our computation of the rigid flow trees. Some of
these features have been discussed in Sections 3.4.1 through 3.4.3.

For the braid B = σǫ1k1 . . . σ
ǫm
km

, ǫl = ±1, we can build a braiding slice [sbr0 , s
br
1 ]

where B lives, by starting with a twist slice corresponding to σǫmim and then
attaching slices corresponding to the other twists σǫlil consecutively, working
backwards in l. We then extend B to the complement of the braiding slice by
closing it with a trivial braid as in Lemma 3.9. This is the model of ΛK that
we will use below. More precisely, we will construct the braid model to have
the following properties:

• A slice [s′, 2π] of a trivial braid contains all of the Reeb chords of
ΛB ⊂ J1(Λ), as in Lemma 3.9. The Reeb chords aij (respectively bij)
of ΛK lie near s = 2π − 4δ (respectively s = 2π − 2δ), which is in the
slice which is complementary to the braiding region. The manifolds
W u(aij) in this slice lie just below t = π

2
and are ordered in the t-

direction according to the lexicographically order on {(i, j)}1≤j<i≤n.
The manifolds W u(aji) lie just above t = 3π

2
and are ordered in the

t-direction according to the lexicographically order on {(i, j)}1≤j<i≤n.
• All twists of the braid occur in the braiding region 2δ < s < 4δ, where
ΛK looks like twist slices separated by standard trivial braid slices.
• There are points s1 = 2δ < s2 < · · · < s2m = 4δ so that the [s2l−1, s2l]-
slice contains the twist region for σǫlil . For a slice corresponding to the

braid crossing σǫlil = σ±1
k , the unstable manifolds for ak k+1 and ak+1k

are shown in Figure 11. The unstable manifolds for the other aij are
as for the trivial braid.
• For each i 6= j and l ∈ {1, . . . , m}, there is an interval neighborhood
J2l
ij ⊂ {s = s2l} ofW u(aij)∩{s = s2l} such that for fixed l the intervals

J2l
ij are disjoint, and if we consider the set of all negative gradient flow

lines of Fij in the [s2l−1, s2l] slice that start on J2l
ij for all i, j, then any

pair of distinct flow lines from this set are transverse. See Figure 12.
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σk σ−1kt = 2π

t = 3π
2

t = π
2

t = 0

W u(ak+1,k)

W u(ak,k+1)

W u(ak+1,k)

W u(ak,l+1)

s s

Figure 11. Flow lines in positive and negative twist slices.
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Figure 12. The intervals J2l
ij , J

2l−1
π/2 , and J2l−1

3π/2 , and some rep-

resentative gradient flow lines.

• On each {s = s2l−1} there are two intervals J2l−1
π/2 and J2l−1

3π/2 such that

J2l−1
π/2 ⊃ ∪i>j(W u(aij) ∩ {s = s2l−1}) and J2l−1

3π/2 ⊃ ∪i<j(W u(aij) ∩ {s = s2l−1}).
Moreover, any negative gradient flow line of Fij (i > j) that intersects
J2l−1
π/2 also intersects J2l−2

ij , and similarly for J2l−1
3π/2 for i < j.

Assume that ΛK has r components Λ = ΛK;1∪· · ·∪ΛK;r. We will keep track
of homology classes of cycles in H1(ΛK) by counting intersections with certain
fixed cycles. On each component ΛK;j, fix the curve µ′

j which is the preimage
under the base projection map π : ΛK;j → Λ of the curve t = π

2
− ǫ1 for ǫ1

positive and extremely small (for now, the line t = π
2
will suffice; in Section 4,

we will need µ′
j to lie below t = π

2
but above the unstable manifolds of the

aij for all i > j). Also, fix the curve λ′j which is the preimage of the curve
s = 2π − 3δ (a vertical curve between the aij ’s and the bij ’s) in the leading
sheet of ΛK;j, where we recall from the introduction that “leading” refers to
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the first of the n sheets of ΛK that belongs to component ΛK;j. Intersections
of a cycle in H1(ΛK) with µ′

j and λ′j then count the multiplicity of the j-th
meridian and longitude class in the cycle. See Figure 13.

2π

3π
2

π

π
2

0
0 2π

aij

aij

bij

bij

← braiding region

λ′

µ′

s

t

Figure 13. Schematic picture of ΛK , as projected to the torus
Λ ≈ T 2.

We choose a base point in each component over (s, t) =
(
π
2
, 9π

8

)
and endpoint

paths for each Reeb chord endpoint which are disjoint from λ′j and µ
′
j. (Since

the complement of λ′j ∪ µ′
j in ΛK;j is a disk such paths exist.)

3.4.4. Orientation choices and sign rules for ΛK ⊂ J1(Λ). Before we proceed
with the computation of flow trees for ΛK ⊂ J1(Λ), we discuss the general
method we use to assign signs to flow trees. These signs come from a fairly
elaborate orientation scheme which depend on certain initial choices, some of
which are of global nature which we call basic orientation choices, and others
which are local, more specifically, the choice of orientations of determinant
lines of a capping operator associated to each Reeb chord. Here we will simply
state a combinatorial rule that comes from one particular set of choices. The
derivation of the combinatorial rule and the effect of orientation choices is
discussed in detail in Section 6. (For later computations, we will also need
signs for multiscale flow trees; this is discussed in Section 4.3.)

We will discuss signs of rigid flow trees with one positive puncture or partial
flow trees of dimension 1 with a special positive puncture of ΛK ⊂ J1(Λ).
Cutting a rigid flow tree close to its positive puncture we obtain a partial flow
tree of dimension 1 with special positive puncture so it suffices to consider this
case.

We first discuss how orientation choices for the “capping operators” corre-
sponding to the Reeb chords aij and bij of ΛK ⊂ J1(Λ) are encoded geometri-
cally:

• Consider a Reeb chord aij , which is of type S0 (with notation from
Remark 3.8). Let W u(aij) denote the unstable manifold of the positive
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local function difference defining aij . Fix a vector vker(aij) perpendic-
ular to W u(aij), see Figure 14. (This choice corresponds to the choice
of an orientation of the capping operator of aij .)
• Consider a Reeb chord bij , which is of type S1 and note that bij ∈
W u(aij). Fix vectors vker(bij) parallel to W u(aij) and vcoker(bij) per-
pendicular to W u(aij), see Figure 14. (This choice corresponds to the
choice of an orientation of the capping operator of bij .)
• If t is a trivalent vertex of a partial flow tree Γ then we let vcon(t) be a
vector tangent to the incoming edge at t and pointing into this edge,
see Figure 15. (This is a reflection of a chosen orientation on the space
of conformal structures on the disk with boundary punctures.)

W u(aij)

aij bij

vker(aij) vcoker(bij)

vker(bij)

Figure 14. Orientation data at bij and aij . (The unstable man-
ifold W u(aij) is in grey.)

t

vcon(t)

Figure 15. Orientation data at a trivalent Y0-vertex. (Gradi-
ent flow tree is in grey.)

We next define two functions which are central to our definition of signs of
rigid multiscale flow trees. Let 〈 , 〉 denote a Riemannian metric on S (which
we will take to be the flat metric on the torus) and let

sign: R− {0} → R

be the function which maps negative numbers to −1 and positive numbers to
1. First consider a flow tree Γ of Λ ⊂ J1(S). Let bij be its positive puncture,
vflow(Γ) denote the vector field of the flow orientation of Γ and define

σpos(Γ) = sign
(
〈vflow(Γ), vker(bij)〉

)
.

Next consider a partial flow tree Γ of Λ ⊂ J1(S) with positive special punc-
ture p, trivalent vertices t1, . . . , tk−1, and negative punctures q1, . . . , qk and let
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n be a normal vector of Γ at p. Denote the result of vector splitting of n along
Γ by (

(w1(t1), w2(t1)), . . . , (w1(tk−1), w2(tk−1));w(q1), . . . , w(qk)
)

and define

σn,Γ(t) = sign
(〈
w2(t)− w1(t), v

con(t)
〉)
, t ∈ {t1, . . . , tk−1}(3.10)

σn,Γ(q) = sign
(〈
w(qj), v

ker(qj)
〉)
, q ∈ {q1, . . . , qk}.(3.11)

Finally we define

σ(n,Γ) = Πk
j=1σn,Γ(qj) Π

k−1
j=1σn,Γ(tj).

We can now assign orientations to trees according to the following theorem.

Theorem 3.13. There exists a choice of basic orientations and of orientations
of capping operators for all Reeb chords of type L such that for a rigid flow
tree Γ of Λ in J1(S) with positive puncture at bij of type S1, the sign of Γ is

σpos(Γ) σ(v
coker(bij),Γ).

Proof. Theorem 3.13 is a special case of Theorem 4.6, which is proved in
Section 6.6. �

3.4.5. Partial flow trees in twist slices. We now begin our enumeration of flow
trees for ΛK ⊂ J1(Λ). Consider a braid whose closure is K, and assume
that the braid is in the form given in Section 3.4.3. Then flow trees for ΛK
decompose nicely into pieces in each twist region [s2l−2, s2l] which we call
partial flow trees. Using the notation from Section 3.4.3, we focus on one of
these twist regions, an interval [s2l−2, s2l] × [0, 2π] (for fixed l ∈ {1, . . . , m})
containing the l-th twist σ±1

k from the braid. We first define a special type of
partial flow tree in such a slice which we call a slice tree.

Let n ≥ i > j ≥ 1. Fix symbols āij and āji for negative punctures and
b̄ij and b̄ji for positive punctures; at the moment, these are just symbols and
do not correspond to actual punctures or special punctures. Now for each
i > j choose one point ā′ij ∈ {s2l} × J2l

ij and think of it as a special puncture
connecting the sheet Sj to Si, where the sheets are numbered by the order
of the braid strands at s = s2l. Similarly choose ā′ji ∈ {s2l} × J2l

ji and think
of it as a special puncture connecting the sheet Si to Sj . Once this choice is
made we will frequently conflate the variables āij and ā′ij . We will only use
the primes when we need to refer to specific special punctures.

Given these choices any flow tree lying entirely in the [s2l−2, s2l]-slice that
has a positive special puncture connecting sheets Sj to Si at any point in J2l−2

ij

and negative punctures at the ā′pq will be called a slice tree with positive special

puncture at b̄ij (think of b̄ij as the intersection of the flow tree with J2l−2
ij ). We

let T ±(b̄ij) denote the set of slice trees in the [s0, s1]-slice with positive special
puncture at b̄ij .
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Remark 3.14. Note that the formal dimension of slice trees T ±(b̄ij) is 0 (recall
we have fixed the locations of all the āpq). Note also that the set T ±(b̄ij) is
independent of the specific choice of the ā′pq, i.e., a different choice of the ā′pq
induces a one-to-one correspondence of T ±(b̄ij). This follows from the choice
of the intervals J2l

ij , J
2l−1
π/2 , J2l−1

3π/2 in Section 3.4.3.

In order to keep track of orientation signs of flow trees, we will decorate the
special punctures with arrows which should be thought of as normal vectors to
flow lines through the special punctures. We write ā ↑

kl and b̄
↑
kl for the relevant

special puncture decorated with a vector ν normal to the slice tree at that
point with 〈ν, ∂t〉 > 0; similarly, we write ā ↓

kl and b̄ ↓kl for the same special
puncture decorated with a normal vector ν ′ such that 〈ν ′, ∂t〉 < 0.

Furthermore, as the twist is part of a larger braid, each strand belongs to
a link component and we need to keep track of the corresponding homology
coefficients. We write µA (respectively µB) for the homology variable of the
meridian of the component of ΛK associated to sheet A (respectively B), which
is the sheet numbered by k (respectively k + 1) at s = s2l and by k + 1
(respectively k) at s = s2l−2.

Let B̄ denote the set of decorated special chords at s = s2l−2:

B̄ =
{
b̄ ↑ij , b̄

↓
ij

}
1≤i,j≤n, i 6=j

,

and let Ā denote the Z-algebra generated by µ±1
A , µ±1

B , and decorated special
chords at s = s2l:

Ā = Z

〈
µ±1
A , µ±1

B , ā ↑
ij, ā

↓
ij

〉
1≤i,j≤n, i 6=j

.

Given a tree Γ ∈ T ±(b̄ij) and a normal ν for b̄ij , the 1-jet lift of Γ determines
a word in Ā, in a manner that we now describe. Orient the 1-jet lift of Γ by
the flow orientation (see Section 2.4). This orientation induces an ordering
ai1j1, . . . , aiqjq of the negative punctures of Γ so that the 1-jet lift of Γ consists
of a union of oriented paths γ0, . . . , γq ⊂ ΛK , with the beginning point of γ0
and the end point of γq equal to the ends of b̄ij (the points in ΛK lying over
b̄ij on sheets i and j), and with the beginning point of γr and the end point
of γr−1 equal to the ends of āirjr for r = 1, . . . , q.

For 0 ≤ r ≤ q, define nrA, n
r
B ∈ Z to be the intersection numbers of γr

with the preimage of t = π
2
in sheets A,B, respectively. (In the notation of

Section 3.4.3, these numbers count intersections with µ′
A and µ′

B.) Also, use
vector splitting (see Section 4.3) from the normal vector ν at b̄ij to obtain
normal vectors νr at each āirjr . Finally, define the word

w(Γ, ν) := (µ
n0
A
A µ

n0
B
B )āν1i1j1(µ

n1
A
A µ

n1
B
B )āν2i2j2 · · · ā

νq
iqjq

(µ
nq
A
A µ

nq
B
B ).
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We can now define maps ησ±1
k

: B̄ → Ā as follows, with ν ∈ {↑, ↓}:

ησ±1
k
(b̄ νij) =

∑

Γ∈T ±(b̄ij )

τ(Γ)q(Γ, ν),

where τ(Γ) = Πtσn,Γ(t) ∈ {1,−1} with the product running over all trivalent
punctures of Γ, see Equation (3.10).

If b ∈ B̄ then define b† as the same chord but with the decorating normal
reversed. Similarly, for a monomial q ∈ Ā define q† as the same monomial of
chords but with all decorating normals reversed. Write

ησ±1
k
(b) = ηodd

σ±1
k
(b) + ηeven

σ±1
k

(b),

where the two terms on the right hand side are summands containing all
monomials with odd and even number of variables respectively.

Lemma 3.15. For any b ∈ B̄, the map ησ±1
k

satisfies

ησ±1
k

(
b†
)
=
(
ηodd
σ±1
k
(b)
)†
−
(
ηeven
σ±1
k

(b)
)†
.

Proof. Let n be a normal at the positive puncture. Then the vector splittings
of −n and n along Γ differs by an over all sign. Since the number of trivalent
vertices in Γ is one less than the number of negative punctures of Γ, the lemma
follows. �

We next turn to the actual calculation of the maps ησk and ησ−1
k
. By Lemma

3.15, it is sufficient to compute for b̄ ↑ij , 1 ≤ i, j ≤ n, i 6= j.

Lemma 3.16. Let ησ±1
k

: B̄ → Ā denote the maps associated to a twist repre-

senting the braid group generator σ±1
k in an [s0, s1]-slice, as described above.

Then

ησk(b̄
↑
ij) = ā ↑

ij i, j 6= k, k + 1

ησk(b̄
↑
k k+1) = ā ↑

k+1 k

ησk(b̄
↑
k+1k) = µAā

↑
k k+1µ

−1
B

ησk(b̄
↑
i k+1) = ā ↑

ik i 6= k, k + 1

ησk(b̄
↑
k+1 i) = ā ↑

ki i 6= k, k + 1

ησk(b̄
↑
ik) = ā ↑

i k+1 + ā ↑
ikā

↑
k k+1 i < k

ησk(b̄
↑
ik) = ā ↑

i k+1 + ā ↑
ikµAā

↑
k k+1µ

−1
B i > k + 1

ησk(b̄
↑
ki) = ā↑k+1 i − ā

↑
k+1kā

↑
ki i 6= k, k + 1
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and

ησ−1
k
(b̄ ↑ij) = ā ↑

ij i, j 6= k, k + 1

ησ−1
k
(b̄ ↑k k+1) = µ−1

B ā ↑
k+1 kµA

ησ−1
k
(b̄ ↑k+1 k) = ā ↑

k k+1

ησ−1
k
(b̄ ↑ik) = ā ↑

i k+1 i 6= k, k + 1

ησ−1
k
(b̄ ↑ki) = ā ↑

k+1 i i 6= k, k + 1

ησ−1
k
(b̄ ↑i k+1) = ā ↑

ik − ā
↑
i k+1µ

−1
B ā ↑

k+1 kµA i < k

ησ−1
k
(b̄ ↑i k+1) = ā ↑

ik − ā
↑
i k+1ā

↑
k+1 k i > k + 1

ησ−1
k
(b̄ ↑k+1 i) = ā ↑

ki + ā ↑
k k+1ā

↑
k+1 i i 6= k, k + 1.

Proof. We label the sheets of ΛK in the slice under consideration by

S1, . . . , Sk−1, A, B, Sk+2, . . . , Sn.

Here the sheet Sj corresponds to the jth strand of the standard trivial braid,
and sheets A and B are defined as before.

Consider first the linear terms in the expressions for ησk and ησ−1
k
. The

trees that give these contributions are simply the (negative) gradient flow
lines of positive function differences which end at āij . They obviously exist,
are unique, and transport normal vectors as claimed. This proves that the
linear terms of the equations are correct except for homology coefficients. To
see these, note that only the flow lines between sheets A and B intersect t = π

2
.

Further, a flow line between sheets A and B intersects this curve only if the
twist is positive and it ends at āk k+1 or if the twist is negative and it ends
at āk+1 k. Finally, noting that the component in the upper sheet of the 1-jet
lift is oriented according to the flow orientation and that the component in
the lower sheet is oriented opposite to the flow orientation, it follows that the
coefficients are as stated.

We next study higher order terms arising from trees with trivalent vertices.
Such a vertex arises as follows: a flow line determined by sheets X and Y
splits into two flow lines determined by sheets X and Z, and by Z and Y .
Furthermore, since we consider only trees with one positive puncture it is
required that all flow lines correspond to positive function differences. In other
words, the z-coordinate of the sheet Z must lie between the z-coordinates of
the sheets X and Y at the splitting point.

Given a slice tree Γ suppose that āij is a negative special puncture of Γ
with i, j 6= k, k+1. Then the negative gradient flow γij of Fij ending at ā′ij in
[s2l−1, s2l] is disjoint from all the flow lines starting at all the other ā′i′j′, except
the flow line of Fk k+1 ending at ā′k k+1 or of Fk+1 k ending at ā′k+1 k. However
we cannot have a Y0 vertex here since i, j 6= k, k+ 1. Also, γij is disjoint from
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the other flow lines in the interval [s2l−2, s2l−1]. Thus if ā
′
ij is a negative special

puncture of Γ then Γ has just one edge.
If ā′i k+1 is a negative puncture of Γ and i < k then the negative gradient

flow line of Fi k+1 starting at ā′i k+1 intersects only the flow line of Fk k+1, but
since they have the same upper sheets these flow lines cannot merge at a Y0
vertex. Thus again Γ just has one edge. Similarly Γ will only have one edge if
i > k + 1. The same argument shows that a slice tree with negative puncture
at ā′k+1 i must have only one edge.

It remains to consider slice trees with negative punctures among ā′k k+1,
ā′k+1 k, and ā

′
ik, ā

′
ki for i 6= k, k + 1. Besides the flow lines ending at ā′k k+1 or

ā′k+1 k, all such slice trees must have some ā′ik or ā
′
ki, i 6= k, k+1, as a negative

puncture.

a′k k+1

s2l−2 s2l−1 s2l

J2l−2
ik

b
′

ik

J2l−1

3π/2

γk k+1

γik
a′ikcγ γ

(γk k+1)

Figure 16. A flow tree with one Y0 vertex and negative punc-
tures at ā′ik and ā′k k+1. The case i < k is shown here.

If ā′ik is a negative puncture of Γ then the negative gradient flow line γik of
Fik ending at ā′ik intersects the flow line γk k+1 of Fk k+1 ending at ā′k k+1. Thus
we can have a Y0 splitting of the flow line from Fi k+1 into these flow lines; see
Figure 16 for an illustration when i > k+1. Thus there is a point c in J2l−1

π/2 or

J2l−1
3π/2 and a flow line γ of Fi k+1 starting at c so that γ∪γk k+1∪γik form a flow

tree. Notice assuming the twist interval is small enough it is clear that γ does
not intersect any unstable manifolds of the aij in [s2l−1, s2l]. We can extend
γ through the interval [s2l−2, s2l−1] and see that there is a unique point b̄′i k in
J2l−2
i k that γ runs through. (Recall our labeling conventions from the beginning

of the subsection: the sheets on the left side of the interval [s2l−2, s2l] are labeled
just as on the right, but with the role of k and k+1 switched.) Moreover notice
that by the lexicographical ordering on the unstable manifolds, γ will not
intersect any of the unstable manifolds of the ā′i′j′ over the interval [s2l−2, s2l−1].

Thus we see that if ā′ik is a negative puncture of Γ then Γ either has one
edge (this is the trivial flow line mentioned above) or exactly one Y0 vertex. A
similar argument says the same for Γ having a negative puncture at ā′ki. See
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s2l−2 s2l−1 s2l

i < k:

µ′

γk k+1

γik ā′

k k+1

ā′

ik
b̄′
ik

3π/2

π/2

ā′

k k+1 ā′

k k+1

i > k + 1: µ′

ā′

ik
ā′

ik

γk k+1

γik

b̄′
ik

i > k + 1:

ā′

ki

ā′

k+1 k
ā′

k+1 k

γk+1k

γki

µ′

b̄′
ki

i < k:

ā′

ki

ā′

k+1 k
ā′

k+1 k

ā′

ki b̄′
ki

µ′

γk+1k

γk i

ā′

k k+1

ā′

ki

ā′

ik

Figure 17. The four slice trees that consist of more than one
edge (right), resulting from the four configurations of intersect-
ing flow lines (left). The cycle µ′ is also shown on the right, and
intersects only the second slice tree. Up to sign, we can read
off the words associated to these four slice trees, from top to
bottom: ā′ikā

′
k k+1; ā

′
ikµAā

′
k k+1µ

−1
B ; ā′k+1 kā

′
ki; ā

′
k+1 kā

′
ki.

Figure 17 for an illustration of all slice trees with a Y0 vertex and a negative
puncture at ā′ik or ā′ki for some i 6= k, k + 1.

We conclude that all slice trees in [s2l−2, s2l] either have one edge or, if the
positive puncture is b̄ik or b̄ki, are of the type described above (and shown in
Figure 17) with three edges and one Y0 vertex. This shows that the quadratic
terms of the equations are correct except for homology coefficients and vector
splittings. To see the homology coefficients simply notice that the only flow
trees that intersect t = π

2
are the ones containing a flow line of Fk k+1 and

having i > k + 1. Since such a flow tree crosses µ′
A positively between ā′ik
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and ā′k k+1, and crosses µ′
B negatively after ā′k k+1, it contributes the word

ā′ikµAā
′
k k+1µ

−1
B to ησk(b̄ik).

As for vector splittings for the Y0 trees, note that the upward normal at b̄′ik
or b̄′ki is split into upward normals at each of the negative punctures (ā′ik and
ā′k k+1 or ā

′
ki and a

′
k+1 k). For a Y0 tree Γ, an easy application of the definitions

from Section 3.4.4 shows that τ(Γ) is +1 for the top two trees in Figure 17
and −1 for the bottom two trees. (The difference between these pairs is the
relative placement at the trivalent vertex of the flows labeled 1 and 2 from
Figure 4.) Thus the arrow decorations and signs are as given in the statement
of the lemma.

The case for σ−1
k can be handled similarly. �

3.4.6. Decomposing flow trees. Our expression for the differential derives from
the following geometric decomposition of flow trees. Consider a braid B =
σǫ1k1 · · ·σ

ǫm
km

, ǫl = ±1, on n strands. Let K denote the closure of B and consider
ΛK . We represent ΛK as described above as a sequence of twists slices sepa-
rated by trivial braid slices in the braiding region, one small slice containing
all Reeb chords, and the remaining trivial braid slice which is the complement
of these two slices. Consider an [s′, s′′]-slice as just described in which there
are no Reeb chords.

Lemma 3.17. Any rigid flow tree or 1-dimensional partial flow tree of ΛK
with one positive puncture intersects the [s′, s′′]-slice in a union of slice trees
(for appropriately chosen ā′ij).

Proof. Suppose Γ is a flow tree for ΛK . We see that Γ will intersect the slice
immediately preceding the aij-chords of ΛK in a union of slice trees, where the
ā′ij = aij , by definition. Notice that the slice trees in this slice define ā′ij for the
next slice. Using the new ā′ij we see again that Γ will intersect this next slice
in a union of slice trees. Continuing by induction we see that Γ will intersect
each slice in a union of slice trees determined by appropriately chosen ā′ij . �

Remark 3.18. We note that any partial flow tree Γ′ of ΛK , with only the
positive puncture p special, can be completed in a unique way to a flow tree
Γ by appending a flow line connecting p to a Reeb chord bij .

3.4.7. Twist morphisms. The following algebraic construction makes it possi-
ble to apply the result in Lemma 3.16 inductively. Let K be a link with r
components and let ΛK = ΛK;1 ∪ · · · ∪ ΛK;r be the subdivision of its conor-
mal lift into components. Let µj, λj ∈ H1(ΛK;j;Z) be as described above. As
in the Introduction, consider the algebra A0

n over Z generated by Z[H1(ΛK)]
along with the Reeb chords aij , 1 ≤ i, j ≤ n, i 6= j. We will define morphisms
φσ±1

k
: A0

n → A0
n associated to braid group generators.

Consider a twist corresponding to σ±1
k . We use the notation µA and µB for

homology variables exactly like in Lemma 3.16 and in order to connect to that
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result we make the following identifications:

(3.12)

b̄ ↑ij = +aij if i > j,

b̄ ↓ij = −aij if i > j,

b̄ ↑ij = −aij if i < j,

b̄ ↓ij = +aij if i < j

in the source A0
n, and

(3.13)

ā ↑
ij = +aij if i > j,

ā ↓
ij = −aij if i > j,

ā ↑
ij = −aij if i < j,

ā ↓
ij = +aij if i < j

in the target A0
n. We define a homomorphism φσk : A0

n → A0
n using this

identification in combination with Lemmas 3.16 and 3.15. That is, we define
it as follows on generators:

φσk(aij) = aij i, j 6= k, k + 1;

φσk(ak k+1) = −ak+1 k

φσk(ak+1 k) = −µAak k+1µ
−1
B

φσk(ai k+1) = aik i 6= k, k + 1;

φσk(ak+1 i) = aki i 6= k, k + 1;

φσk(aik) = ai k+1 − aikak k+1 i < k;

φσk(aik) = ai k+1 − aikµAak k+1µ
−1
B i > k + 1;

φσk(aki) = ak+1 i − ak+1 kaki i 6= k, k + 1.

Similarly, we define φσ−1
k

: A0 → A0 as follows on generators:

φσ−1
k
(aij) = aij i, j 6= k, k + 1;

φσ−1
k
(ak k+1) = −µ−1

B ak+1kµA

φσ−1
k
(ak+1k) = −ak k+1

φσ−1
k
(aik) = ai k+1 i 6= k, k + 1;

φσ−1
k
(aki) = ak+1 i i 6= k, k + 1;

φσ−1
k
(ai k+1) = aik − ai k+1µ

−1
B ak+1kµA i < k;

φσ−1
k
(ai k+1) = aik − ai k+1ak+1k i > k + 1;

φσ−1
k
(ak+1 i) = aki − ak k+1ak+1 i i 6= k, k + 1.

Note that φσ−1
k
◦ φσk = φσk ◦ φσ−1

k
= id, since A,B switch places between the

σk and σ−1
k twists.
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Remark 3.19. In any equation above where the sign differs from that of the
corresponding equation of the formulas in Lemma 3.16 the following holds. If
we use Equations (3.12) and (3.13) to substitute decorated variables b̄ ↑ij etc.,
exactly one arrow of a decorated chord in the target monomial is oriented
differently than all other arrows in the equation.

For the braid B = σ±1
k1
· · ·σ±1

km
, define

φB = φσ±1
k1

◦ · · · ◦ φσ±1
km
.

Note that φ then gives a representation of the braid group into the group of
automorphisms of A0

n.

Remark 3.20. In order for φB to respect the order of composition we think
of the braid as written in the “operator order,” so that B above should be
interpreted as: apply σ±1

km
first and σ±1

k1
last. Thinking of the braid in the

opposite order, B 7→ φB would be an anti-homomorphism. See Figure 18.

3.4.8. Flow trees for ΛK in J1(Λ). Since there are no cusps of ΛK in J1(Λ),
we know for grading reasons that any rigid flow tree must have its positive
puncture at some Reeb chord bij and its negative punctures at Reeb chords
aij . Consequently, Theorem 2.7 implies that the differential of the Legendrian
algebra can be computed as

∂(bij) =
∑

Γ∈T (bij)

ǫ(Γ)q(Γ),

where T (bij) denotes the set of all flow trees with positive puncture at bij and
where, if Γ is such a tree, q(Γ) denotes the monomial of its negative punctures
and ǫ(Γ) its sign. To compute this differential we fix orientation choices as
follows, see Figure 18:

(3.14) vker(bij) = ∂s, for all 1 ≤ i, j ≤ n, i 6= j

and

(3.15) vcoker(bij) = vker(aij) =

{
∂t if i > j,

−∂t if i < j.

The following lemma, where we use the matrix notation from Theorem 1.1,
determines the differential discussed above.

Lemma 3.21. With orientation data as in Equations (3.14) and (3.15), the
following equation holds:

∂B = −λ−1 ·A · λ+ φB(A) = −λ−1 ·A · λ+ ΦLB ·A · ΦRB.
Proof. We will prove the left equality, as the right equality follows from Propo-
sition 2.10. The first term in the right hand side of the left equality comes
from the short flow lines connecting bij to aij , with flow orientation given by
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s

σi2σi1

φσi2 ◦ φσi1

vker(aij) bcoker(bij)

bker(bij)aij bij

λ′

Figure 18. Flow trees contributing to ∂B.

−∂s. These flow lines clearly exist and are unique. The sign ǫ of one of these
flow lines Γ is given, according to Theorem 3.13, by

ǫ(Γ) = sign
(
〈vcoker(bij), vflow(Γ)〉

)
sign

(
〈vcoker(bij), vker(aij)〉

)

= (−1) · 1 = −1.
Consider their homology coefficients. Since no endpoint path intersects µ′

j or
λ′j it is sufficient to consider the intersection between µ′

j and λ
′
j and the 1-jet

lift of the trees. Clearly, all flow lines under consideration are disjoint from µ′
j,

j = 1, . . . , r. Furthermore, the 1-jet lift in the upper (respectively lower) sheet
of flow line passes λ′ in the negative (respectively positive) direction. Conse-
quently aij comes with a homology coefficients if and only if either the sheet Si
or the sheet Sj is the leading sheet for that link component. If Si (respectively
Sj) is the leading sheet, then the intersection with λ′γ(i) (respectively λγ(j)) in

that sheet contributes the coefficient λ−1
γ(i) on the left of aij (respectively λγ(j)

on the right). This corresponds to multiplication by the matrix λ
−1 from the

right and λ from the left as claimed. See the leftmost picture in Figure 18.
The second term in the right hand side comes from the flow trees which end

as flow lines in W u(aij) flowing in the +∂s direction. By Lemma 3.17 we find
that the intersection of such a flow tree with any twist slice is a twist tree and
thus any flow tree starting at bij and ending at the aij along unstable manifolds
oriented in the ∂s direction will contribute a term from φB(aij). Moreover any
term in φB(aij) gives a flow tree starting at bij . See the rightmost picture in
Figure 18. Note also that no such tree passes λ′. Lemma 3.16 in combination
with the composition formula for φB and the sign rule in Theorem 3.13 then
shows that the second term is φB(A) (since all the nontrivial terms in the sign
rule appear at the Y0 vertices, which were accounted for in the formula for
φ). �
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3.5. Negative gradient flows in twist slices. Our goal in this subsection
is to construct a braid B = σǫ1k1 · · ·σ

ǫm
km

, ǫl = ±1, in a braiding slice [sbr0 , s
br
1 ], in

such a way that the properties of unstable manifolds detailed in Section 3.4.3
are satisfied. We perform this construction twist by twist going from right
(larger s) to left (smaller s). To facilitate the formulas we will change coor-
dinates from (s, t) to (u, t) where u = sbr1 − s. So the braid region happens
over u ∈ [0, U ] where U = sbr1 − sbr0 . Throughout the computation we will also
change u by translations, but the key is that u is always −s up to translations.
In (u, t) coordinates we will build up the braid region, twist by twist, going
from left (smaller u) to right (larger u); moreover in the u coordinates we
consider the reversed word σǫmkm · · ·σ

ǫ1
k1

so that when we switch back to the s
coordinates it is K that is represented.

More specifically we will break [0, U ] into 3m subintervals I1, . . . , I3m, or-
dered from left to right. For l = 1, . . . , m, the union of the three intervals
I3l−2∪ I3l−1∪ I3l is associated to the braid generator σ

ǫm−l+1

km−l+1
and will be called

the braid interval associated to σ
ǫm−l+1

km−l+1
.

The intervals I3l−2, l = 1, . . . , n, will contain trivial braids as discussed in
Remark 3.12 and are used to adjust the braid to prepare for a twist between
two strands of the braid. These will be called preparatory intervals. The
intervals I3l−1, l = 1, . . . , n, will be the intervals over which two strands of the
braid will actually twist. These will be called twist intervals. The intervals
I3l, l = 1, . . . , n, will contain the trivial braid and will be used to adjust the
braid so that we can more easily count the flow trees. These will be called
concentration intervals.

For comparison with Section 3.4.3, we set s2l−2 and s2l−1 to be the endpoints
(in reverse order) of the concentration intervals I3(m−l+1) for l = 1, . . . , m, and
s2m to be the leftmost (in u) endpoint of I1. Then s0, . . . , s2m are arranged
in increasing order and B is trivial in each s ∈ [s2l−2, s2l−1] slice (which corre-
sponds to a concentration interval) and comprises the braid generator σǫlkl in
each s ∈ [s2l−1, s2l] slice (the union of a preparatory and a twist interval).

In the rest of this subsection we will describe the braid interval corresponding
to the twist σǫlkl , but before focusing on this we make an observation and some
conventions. First, for convenience, we will think of the function fj describing
the braid as maps [0, C] → R2, for some arbitrarily large constant C, rather
than [0, U ]→ D2. Since scaling the variable u and multiplying all the functions
by a small constant will not affect the discussion below we will be able to return
to the appropriate braid set up once we have constructed our desired functions
[0, C] → R

2. (This step could be avoided by choosing appropriate scaling
constants throughout the argument, but as these constants would depend on
the entire braid it is considerably simpler to proceed as we do.) Moreover we
will start by considering the trivial braid over R≥0, that is, our functions fj
will be maps [0,∞)→ R

2. We will then alter the fj over some interval [0, c1]
which we call I1, then over [c1, c2] which we call I2, and so on. Once we finish
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with the interval I3m we let [0, C] be the union of these intervals and our braid
will be described by the functions fj restricted to this interval.

Just as in the proof of Lemma 3.9 we will describe our Legendrian ΛK in
two steps. We begin, using the notation from Lemma 3.9 and its proof, by
considering the standard trivial braid {f1, . . . , fn} given by

fi(u) = ψi(u)(ht(i), i),

where ψi(u) = u+ ki for some constant ki > 0. Throughout our construction,
as we alter the functions ψi, we will always assume that iψi has slope in
the interval [i− 1/2, i+ 1/2). We will also assume the fi are exactly equal to
(u+ki)(ht(i), i) near the endpoints of each of the braid intervals, though the ki’s
will depend on the particular braid interval. Before we perform any braiding
the unstable manifolds W u(aij) of any Reeb chord aij intersects {u}×S1 near
t = π

2
if i > j or t = 3π

2
if i < j and are lexicographically ordered as in

Lemma 3.9. As we inductively build up our braid we will assume that these
unstable manifolds have this same property at the boundary of all the Il. (We
will see in the construction that we can make them as near as we like.)

We will now focus on the braid interval associated to the braid generator σk;
the case of σ−1

k is completely similar and is treated at the end of this subsection.
We reset our coordinate u so that the braid interval for σk is [0, U ]. Recall the
braid interval consists of three subintervals: the preparatory interval Ip, the
twist interval It and the concentration interval Ic. In the interval Ip we will
alter the slopes of the curves iφi(u). In particular, we alter the slopes of the
strands over the interval so that near the upper endpoint of the interval we have
that the difference of the slopes of the kth and (k+1)st strands is constant and
very small (that is each slope is near k + 1/2) and the slope of the ith strand
is i. Thus the difference in the slopes of the functions fi and fk is greater
than 1 whereas the slope of the difference function fk+1 − fk is arbitrarily
small. Allowing u to increase sufficiently we can assume that |fj(u) − fk(u)|
and |fj(u) − fk+1(u)| are sufficiently large compared to |fk+1(u) − fk(u)| for
each j 6= k, k + 1 so that a certain approximation described below is valid.
This completes the description of the braid in Ip. Notice that none of these
alterations affect the unstable manifold of the aij .

(Here, as below, it might be useful to consider the situation when ht(y) is
zero or constant in y, and then notice that perturbing it slightly to another
function ht(y) does not affect the qualitative behavior of the flow. Here this
is clear since the unstable manifolds stay far away from the regions near t = 0
and π where ht(y) actually depends on t. Also keep in mind that ht(y) can be
taken to be arbitrarily small.)

Now consider the twist region It for a braid generator σk which interchanges
the kth and (k+1)st strands by a π rotation of the line segment between them
around its midpoint, in the positive direction as s increases. This means that
the strands are also interchanged by a rotation in the positive direction as u
increases. For the standard trivial braid under consideration we let fk(u) and
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fk+1(u) rotate at a fast rate around the midpoint between fk(u) and fk+1(u)
while still moving slowly away from each other.

For the functions fk and fk+1 we begin by replacing ht(k) and ht(k+1) by 0,
though we leave the other fi as they were. Specifically before we perform the
twist we can assume (after possible translations) that there are constants c < c′

such that fk(u) = f 0
k (u) := (0, (k + 1/2 − ǫ)u + c) and fk+1(u) = f 0

k+1(u) :=
(0, (k + 1/2 + ǫ)u + c′) for some very small ǫ. Now to perform the twist over
the interval [u′, u′′], choose an increasing surjective function β : [u′, u′′]→ [0, π]
that is constant near the endpoints, and let

fk(u) =
f 0
k (u) + f 0

k+1(u)

2
+

∣∣∣∣
f 0
k+1(u)− f 0

k (u)

2

∣∣∣∣ (sin β(u),− cosβ(u))

fk+1(u) =
f 0
k (u) + f 0

k+1(u)

2
−
∣∣∣∣
f 0
k+1(u)− f 0

k (u)

2

∣∣∣∣ (sin β(u),− cosβ(u)).

This describes the half twist between the two strands.
Note that if the distances |fj(u)− fk(u)| and |fj(u)− fk+1(u)|, j 6= k, k + 1

are sufficiently large compared to |fk(u)− fk+1(u)| then the gradient flows of
±Fjk and ±Fj k+1 can be made arbitrarily close to the corresponding flows for
the standard trivial braid, i.e., the same braid but with non-rotating fk(u) and
fk+1(u). We assume that in the interval Ip we arranged that the other points
are sufficiently far away from fk(u) and fk+1(u) so that these approximations
of the gradient flows of ±Fjk and ±Fj k+1 are valid.

Consider next the gradient flow of ±Fk+1 k which, in contrast to the flows
just discussed, changes drastically. We take the rotation to be supported in a
small subinterval [u′, u′′] of [0, U ]. We have

Fk+1 k(u, t) = (2ǫu+ c′ − c)
(
sin(β(u)), cos(β(u))

)
· (cos t, sin t)

= (2ǫu+ c′ − c) sin(t + β(u)).

The gradient is

∇Fk+1 k =(2ǫ sin(t + β(u)) + (2ǫu+ c′ − c)dβ
du

cos(t+ β(u))) ∂u

+ (2ǫu+ c′ − c) cos(t+ β(u)) ∂t.

In order to understand relevant negative gradient flow lines of this vector field
we first note that Fk+1 k is positive for −β(u) < t < π − β(u) and negative in
the complementary region. Moreover, in the limit where ǫ = 0, the gradient
flow of Fk+1k is perpendicular to the level sets {t + β(u) = a} and flowing
towards the curve of critical points {t+ β(u) = π/2}.

Now instead let ǫ > 0 be small, and choose am < π/2 < aM so that aM−am is
small. Notice∇Fk+1k is still transverse to {t+β(u) = am} and {t+β(u) = aM}
and pointing into the region R bounded by these level sets and containing
{t + β(u) = π/2}. Along the curve I = R ∩ {u = u′}, the u-component of
∇Fk+1 k is positive and the flow is into R, while along the curve I ′ = R∩{u =
u′′}, the u-component of ∇Fk+1 k is also positive but now flows out of R. Thus
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since there are no critical points of ∇Fk+1 k inside R, we see that any flow
line starting on I will exit R along I ′. It follows that the flow lines in R are
approximately equal to the level sets {t+ β(u) = a} inside R.

From this we see that the unstable manifoldW u(ak+1 k) exits the twist region
near 3π/2 and by choosing ǫ small in the region Ip (which can be done without
affecting any essential feature mentioned above) we can arrange that the t-
coordinate ofW u(ak+1 k)∩{u = u′′} is as close to 3π/2 as we like. Furthermore,
we can choose small intervals J ′′ and J ′ in the slices {u = u′′} and {u = u′},
containing the respective intersection points of W u(ak+1k) with these slices,
such that any flow line of −∇Fk+1 k that starts in J ′′ leaves through J ′ and
is transverse to the flow lines of the other Fij’s. We can also then choose
intervals J ′′

ij and J ′
ij in the slices {u = u′′} and {u = u′}, containing the

respective intersection points of W u(aij) with these slices, so that all of these
intervals are disjoint from each other and from J ′′ and J ′, and so that all flow
lines of −∇Fij that start in J ′′

ij are disjoint from each other and transversely
intersect the flow lines of −∇Fk+1 k that begin in J ′′.

t = 2π

t = 3π
2

t = π
2

t = 0

Figure 19. The twist interval. The shaded regions are where
Fk+1k is negative. The dark lines are level curves of t + β(u)
and the thinner lines are approximate flow lines of the negative
gradient flow of Fk+1 k. The left hand end is u = u′ and the right
hand end is u = u′′.

The above discussion assumes that ht(k) = ht(k + 1) = 0, whereas in fact
ht(y) is a small function that is constant in t outside of small neighborhoods
of 0 and π (see the proof of Lemma 3.9). In the argument above, the same
qualitative features of the flow hold if we change ht(k) and ht(k + 1) from 0
to constants in t, since the level sets of Fk+1 k only change slightly. If now we
choose ht(y) to be the function from the proof of Lemma 3.9, as is needed to
define the trivial braid, then the flow only changes near t = 0 and t = π. But
here by taking β to have very large derivative over most of its support we see
that the alteration to the gradient of Fk+1k in the t-support of ht(y) can be
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thought of as arbitrarily small. Thus again we see that the qualitative features
of the flow are unchanged.

Analogously, W u(ak k+1) lies close to the curve {t = 3π
2
− β(u)} and we can

argue for the same intervals J ′ and J ′′ here too. This completes the discussion
of the twist interval It for σk.

Now for the concentration interval Ic. The purpose of this interval is to
concentrate gradient flow lines near the unstable manifolds. Specifically, in
the first part of Ic we alter our ψi so they are the standard affine functions
again. Notice that in the region where Fij is positive all the flow lines of ∇Fij
converge towards a constant t line near t = π/2 if i > j or 3π/2 if i < j.
Thus choosing the interval Ic = [a, b] large enough we can find intervals Jπ/2
and J3π/2 on {u = a} and for each (i, j) intervals Jij on {u = b} that are an
arbitrarily small neighborhood of W u(aij) ∩ {u = b}, so that all the unstable
manifold intersect Jπ/2 or J3π/2 and any flow line of ∇Fij , i > j, that starts on
Jπ/2 intersects Jij and if i < j then a flow line that starts in J3π/2 intersects
Jij.

Similarly, we consider the inverse σ−1
k of the braid generator σk which in-

terchanges the kth and (k + 1)th strands by a rotation of magnitude π of the
line segment between them around its midpoint in the negative direction as s
increases. The analysis of this situation is exactly as above, except the unsta-
ble manifolds veer up instead of down. See Figure 11 above (where we have
returned to s coordinates).

4. Combinatorial Computation of the Differential

In this section we compute the differential in the Legendrian algebra of ΛK ,
where K ⊂ R3 is a link braided around the unknot. Our computation heavily
uses the results of Section 3, where we determined all flow trees of ΛK viewed
as a Legendrian submanifold of J1(Λ), where Λ ≈ T 2 is the conormal lift
of the unknot. These flow trees give the differential for a subalgebra of the
Legendrian DGA of ΛK ⊂ J1(S2).

In Section 4.1, we introduce the notion of a multiscale flow tree of ΛK ⊂
J1(S2), which is essentially a collection of partial flow trees for ΛK ⊂ J1(Λ),
glued to a flow tree of Λ ⊂ J1(S2). By a result (Theorem 4.3) whose proof
is deferred to Section 5, there is a one-to-one correspondence between rigid
multiscale flow trees and rigid holomorphic disks with boundary on ΛK and one
positive puncture. This allows us to reduce the computation of the Legendrian
DGA of ΛK ⊂ J1(S2) to a combinatorial enumeration of all rigid multiscale
flow trees. The enumeration is performed in Sections 4.2 through 4.4 (for
signs associated to multiscale flow trees, we use some results whose proofs are
postponed to Section 6) and completes the proof of the main theorem of this
paper, Theorem 1.1.

4.1. Multiscale flow trees. We begin by discussing multiscale trees. We
first recall the basic notation that will be used in this section. Let U ⊂ R3
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denote the unknot and write Λ = ΛU ⊂ J1(S2). Let K be a link given by
the closure of an n-strand braid around U such that each (local) strand is
C2-close to U . Then ΛK ⊂ J1(Λ) ⊂ J1(S2), and we have the front projection
ΠΛ
F : J

1(Λ) → Λ × R and the base projection πΛ : J1(Λ) → Λ. The latter
induces an n-fold cover ΛK → Λ; if γ is a path in Λ, then there are n distinct
lifts γ̃ of γ with πΛ ◦ γ̃ = γ, which we call neighborhood lifts of γ.

If Γ is a flow tree of Λ ⊂ J1(S2), let Γ̃ denote its 1-jet lift.

Definition 4.1. A multiscale flow tree Γ∆ on Λ determined by ΛK is a flow
tree Γ of Λ ⊂ J1(S2) and a finite set of partial flow trees ∆ = {∆j}mj=1 of

ΛK ⊂ J1(Λ) each with exactly one special puncture xj , j = 1, . . . , m, such
that the following holds.

• xj ∈ Γ̃, j = 1, . . . , m;

• for each component of Γ̃ − {x1, . . . , xm} a neighborhood lift to ΛK in
J1(T 2) is specified;
• the union of the 1-jet lifts of the flow trees ∆j , j = 1, . . . , m, and the
specified neighborhood lifts, together with their flow orientation, gives

a collection of consistently oriented curves Γ̂ ⊂ ΛK ;
• the curve Γ̂ is such that ΠΛ(Γ̂) is closed, where ΠΛ : J1(Λ) → T ∗Λ is
the Lagrangian projection.

Γ is called the big tree and ∆ the small tree part of Γ∆.

Remark 4.2. As we shall see, cf. Section 4.2, the partial trees ∆j of Γ∆ are of
two types: either ∆j is constant at one critical point b of Morse index 2, with
both its positive special puncture xj and its negative puncture lying at b, or
∆j is non-constant with positive special puncture at xj .

The punctures of a multiscale flow tree Γ∆ are the punctures of the flow
trees ∆j (not including the special punctures) and the punctures of the tree
Γ. We say that the chord at a positive (respectively negative) puncture of Γ
connects the sheets determined by the neighborhood lift of the arc oriented
toward (respectively away from) the puncture, to the sheet determined by the
neighborhood lift of the arc oriented away from (respectively toward) the punc-
ture. A puncture of a multiscale flow tree is positive (respectively negative) if
the corresponding puncture of the flow tree Γ or ∆j is positive (respectively
negative). A straightforward application of Stokes’ theorem shows that every
multiscale flow tree has at least one positive puncture.

Define the formal dimension of a multiscale flow tree Γ∆ as

dim(Γ∆) = dim(Γ) +
∑

∆j∈∆
(dim(∆j)− 1),

where the (formal) dimension of a (partial) flow tree is given in Equation (2.3),
see also [8, Definition 3.4].

We say that a multiscale flow tree Γ∆ is rigid if dim(Γ∆) = 0 and if it is
transversely cut out by its defining equation.
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As discussed above in Lemma 3.7, the set of Reeb chords Q(ΛK) of ΛK ⊂
J1(S2) can be written as follows:

Q(ΛK) = QΛ(ΛK) ∪
⋃

1≤i,j≤n
Q(Λ)ij,

where QΛ(ΛK) is the set of short Reeb chords (contained in J1(Λ) ⊂ J1(S2))
and Q(Λ)ij denotes the set of long Reeb chords of Λ ⊂ J1(S2) with endpoint
on the i-th sheet of ΛK and beginning point on the j-th sheet.

Theorem 4.3. For any ǫ > 0, there exists an almost complex structure J on
T ∗S2, regular with respect to holomorphic disks with one positive puncture of
dimension ≤ 1, such that: there is a one-to-one correspondence between rigid
holomorphic disks with one positive puncture and boundary on ΛK , and rigid
multiscale flow trees on Λ determined by ΛK with one positive puncture; and
the 1-jet lift of a multiscale flow tree lies in an ǫ-neighborhood of the boundary
lift of the corresponding holomorphic disk.

Theorem 4.3 is proved in Section 5, and constitutes the basic tool in our
calculation of the differential in LA(ΛK).

Above we described the front of Λ, the conormal lift of the unknot, and
its flow trees. With this established we will next classify possible multiscale
flow trees determined by a braid closure (Section 4.2) and give an algorithm
for the sign of such a tree (Section 4.3). In Section 4.4 we then turn to the
actual calculation of the Legendrian DGA of ΛK by explicitly computing all
multiscale flow trees for ΛK with signs.

4.2. Classification of rigid multiscale flow trees of ΛK . To apply Theo-
rem 4.3 to calculate the Legendrian DGA of ΛK , we need to classify all possible
rigid multiscale flow trees of ΛK ⊂ J1(S2). We give a rough characterization
of such trees in this subsection, examine the signs associated to the trees in
Section 4.3, and present the full classification in Section 4.4.

Let K be a link and assume that ΛK satisfies Lemma 3.7. Since the front
of ΛK in J0(Λ) does not have any singularities and since all critical points
of positive differences of local defining functions are either maxima or saddle
points it follows from Section 2.4 that for generic functions a rigid tree must
have a

(1) positive puncture at a Reeb chord bij of type S1,
(2) k − 1 Y0-vertices (trivalent vertices away from (non-existent) cusps of

Λ), and
(3) k negative punctures at Reeb chords aij of type S0.

Likewise, a partial flow tree of dimension 1 has the same vertices and punc-
tures, except its positive puncture is a special puncture instead of a maximum.
Also the constant partial flow tree with both special positive and negative
puncture at bij of type S1 will be of importance.
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Since the 1-jet lift of any flow tree of Λ ⊂ J1(S2) has codimension 1 in
Λ, it follows that any tree in the small tree part of any rigid multiscale flow
tree is either a 1-dimensional partial flow tree with positive puncture on the
1-jet lift of the big tree on Λ or it is a constant tree at some bij of type S1.
Furthermore, the flow tree on Λ corresponding to the big tree part must either
be rigid, or rigidified by a constant tree (a point condition at some π(bij)).
In the case where the big tree is rigidified by point conditions, its dimension
must be equal to the number of point conditions i.e., the number of constant
trees in the multiscale flow tree. Combining this discussion with Lemma 3.2
we find that (after small perturbation) there are the following types of rigid
multiscale flow trees for Λ determined by ΛK , with notation as in Lemma 3.2:

MT0 : A rigid flow tree Γ of Λ with constrained rigid partial flow trees of ΛK
attached. Here the constraint says that the special positive puncture
of each partial flow tree must lie on the 1-jet lift of Γ.

MT1 : A constrained rigid flow tree Γ∗ with constrained rigid partial flow trees
of ΛK attached. Here the constraint of Γ∗ is the requirement that the
1-jet lift passes a point in Λ in the fiber where a Reeb chord bij lies,
and the constraint of the partial flow trees is as above.

MT∅ : A rigid flow tree of ΛK .

Remark 4.4. In our setting, we can rule out one other ostensible possibility for
a rigid multiscale tree: those with big tree a constant rigid flow tree Γ of Λ and
with small tree a constrained rigid flow tree of ΛK . Here Γ would correspond to
a Reeb chord and the constraint would say that the special positive puncture
of the partial flow tree must lie on the Reeb chord on the 1-jet lift of Γ. If the
location of the Reeb chord is generic with respect to the flow determined by
ΛK then its endpoints does not lie on W u(aij) for any aij or on bij and such a
configuration is rigid only if the flow line ends at minimum. As there are no
positive local function differences of ΛK which are local minima no such trees
correspond to disks with one positive puncture. (The rigid configurations wit
flow line that ends at a negative local minimum correspond to disks with two
positive punctures.)

4.3. Signs of rigid multiscale flow trees. In this subsection we describe a
combinatorial algorithm for computing the sign of a rigid multiscale flow tree,
which determines its contribution to the Legendrian algebra differential. This
is the analogue for multiscale flow trees of the discussion in Section 3.4.4. We
will discuss the derivation of the combinatorial rule as well as the effect of
orientation choices in detail in Section 6.

We will use the notation established in Section 2.5 for vector splitting along
flow trees and signs associated to rigid flow trees of ΛK as well as partial flow
trees of ΛK of dimension 1 with special positive puncture.

Before we can state the combinatorial rule for orienting rigid multiscale flow
trees, we need to discuss signs of rigid trees determined by Λ; see Sections 3.1
and 3.2 for the notation for these rigid trees. Except for basic orientation
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choices the signs depend on orientations of determinants of capping operators.
We call such choices capping orientations. Recall that there are two Reeb
chords of Λ, e and c, and that if K ⊂ R3 is a link represented as a closed braid
on n strands, then the long Reeb chords of ΛK are eij and cij , 1 ≤ i, j ≤ n,
where cij lies very close to c and eij lies very close to e. In particular, capping
orientations for c and e induce capping orientations for cij and eij respectively.

Theorem 4.5. There is a basic orientation choice and choice of capping ori-
entation for c so that the sign ǫ(T ), for T a rigid flow tree of Λ, satisfies

ǫ(IN ) = ǫ(YN) = ǫ(IS) = ǫ(YS) = 1,

and

ǫ(E1) = −ǫ(E2).

Proof. This is a consequence of Theorem 6.3 below. �

Furthermore, the choice of capping orientation of e induces an orientation of
the 1-dimensional moduli spaces of flow trees such that the induced orientation
at the broken disk Ej #T is ǫ(Ej)ǫ(T ) for T ∈ {IN , YN , IS, YS}. If Γ is a flow
tree in such a 1-dimensional moduli space we consider the orientation as a
normal vector field ν along the 1-jet lift of Γ.

In order to state the sign rule for multiscale flow trees, we first make some
preliminary definitions.

MT1 : Consider a multiscale rigid flow tree Θ of type MT1 with 1-dimensional
big tree Γ and a negative puncture at bij . Let v

flow(Γ) denote the vector
field along the 1-jet lift oriented in the positive direction (i.e., the 1-
jet lift of each edge is equipped with the flow-orientation, defined in
Section 2.4). The sign ǫ(Θ) of the rigid tree constrained by bij of type
S1 is defined to be

ǫ(Θ) = sign
(
〈ν, vker(bij)〉〈vflow(Γ), vcoker(bij)〉

)
.

If non-constant flow trees Γ1, . . . ,Γk are attached to Θ then define nj
to be the normal vector at the special puncture of Γj with positive
inner product with vflow(Γ).

MT0 : Consider a multiscale rigid flow tree Θ of type MT0 with big tree Γ.
Let ǫ(Θ) equal the sign of Γ. If Γ has two punctures (positive at e,
negative at c), then we define vflow(Γ) as the vector field along the
boundary pointing toward the positive puncture. If Γ has only one
puncture (positive at c), let vflow(Γ) point in the positive direction
along the boundary. Then take nj exactly as in MT1.

MT∅ : Consider a flow tree Γ of ΛK in J1(Λ). Let n = vcoker(bij) be the normal
vector of Γ at its positive puncture.

Theorem 4.6. There exists a choice of basic orientations and of orientations
of capping operators for all long Reeb chords such that Theorem 4.5 holds and
such that the sign of a rigid multiscale flow tree is as follows.
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MT1 : Let Γ be a multiscale rigid flow tree of type MT1 with constrained rigid
flow tree Θ (i.e., Θ has only one negative puncture at some bij) and
attached flow trees Γ1, . . . ,Γk. Then the sign of Γ is

ǫ(Γ) = ǫ(Θ)Πk
j=1σ(nj,Γj).

MT0 : Let Γ be a multiscale rigid flow tree of type MT0 with rigid flow tree Θ
and attached flow trees Γ1, . . . ,Γk. Then the sign of Γ is

ǫ(Γ) = ǫ(Θ)Πk
j=1σ(nj,Γj).

MT∅ : Let Γ be a flow tree of type MT∅. Then the sign of Γ is

σpos(Γ) σ(n,Γ).

Proof. Theorem 4.6 is proved in Section 6.6. �

4.4. Counting multiscale flow trees. In this section we complete the com-
putation of the Legendrian algebra differential of ΛK ⊂ J1(S2), and thereby
obtain a proof of Theorem 1.1, by counting all multiscale flow trees deter-
mined by ΛK and Λ. In Section 3, we counted flow trees of ΛK ⊂ J1(Λ). This
leads to the expression for ∂B in Theorem 1.1. In this subsection we derive
the expression for ∂C and ∂E in Theorem 1.1 by counting multiscale flow
trees with non-empty big tree part. Our technique relates these multiscale
trees to ordinary flow trees of a stabilized braid obtained by adding a trivial
noninteracting strand to the given braid.

For notation used throughout this section see Section 3.4.

4.4.1. Multiscale flow trees of type MT∅. We first consider the part of the
differential in the Legendrian algebra of ΛK which accounts for multiscale flow
trees of type MT∅, i.e., the parts which count only trees of the braid localized
near Λ. Such a tree has its positive puncture at some Reeb chord bij and its
negative punctures at Reeb chords aij . Furthermore, a straightforward action
argument shows that any multiscale flow tree with its positive puncture at a
Reeb chord bij must lie inside the 1-jet neighborhood of Λ. Consequently, flow
trees of type MT∅ account for the boundary of the Reeb chords bij of type S1:

∂(bij) =
∑

Γ∈T (bij)

ǫ(Γ)q(Γ),

where T (bij) denotes the set of all flow trees with positive puncture at bij and
where, if Γ is such a tree, q(Γ) denotes the monomial of its negative punctures
and ǫ(Γ) its sign.

In Section 3.4.8 above, orientation conventions were picked for the Reeb
chords aij and bij and the differential was computed in Lemma 3.21.
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4.4.2. Multiscale flow trees with positive puncture at cij of type L1. In this
section, we compute the differentials of the cij Reeb chords. This involves
counting rigid multiscale flow trees of type MT0, with big-tree component
given by one of the four rigid big trees with positive puncture at c.

We introduce the following notation for 1-jet lifts of flow trees with one
positive puncture. Each point in the 1-jet lift which is neither a 1-valent
vertex nor a trivalent vertex belongs to either the upper or the lower sheet of
its flow line. We call points on the 1-jet lift head-points if they belong to the
upper sheet and tail-points if they belong to the lower. Because of positivity
of local function differences of trees with one positive puncture, points in a
component of the complement of preimages of 1-valent and trivalent vertices
in the 1-jet lifts are either all head-points or all tail-points.

There are four rigid flow trees with positive puncture at c, denoted in Sec-
tion 3.2 by IN , YN , IS, YS. When we project the 1-jet lifts of these trees to the
torus Λ, we obtain the four curves Γαβ(c), α, β ∈ {0, 1}, shown in Figure 20.
We decompose Γαβ(c) as follows:

Γαβ(c) = Γv+
αβ (c) ∪ Γh

αβ(c) ∪ Γv−
αβ (c);

see Figure 20 for Γ00(c). More precisely, Γv+
αβ (c) consists of head-points, Γ

v−
αβ (c)

consists of tail-points, and Γh
αβ(c) is the portion near the cusp edge. For our

purposes, we will assume that Γh
αβ(c) lies at t =

π
2
(for β = 0) or t = 3π

2
(for

β = 1), as is the case in the degenerate picture where U is the unperturbed
round unknot (see Section 3.1).

2π

3π
2

π

π
2

0

t

0 2π
s

braiding region aij and bij

e− c−c−

c+e+

c+

Γ01(c)

Γ00(c)

Γ11(c)

Γ10(c)

Γv+
00 (c)

Γh
00(c)

Γv−
00 (c)

Figure 20. The 1-jet lifts of flow trees with positive puncture
at c.

The following lemma determines the differential acting on Reeb chords cij .
We use the matrix notation of Theorem 1.1.
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Big tree Multiscale flow tree Term Big tree Multiscale flow tree Term

Γ10(c)
i

j

(i = j) µα(i)

Γ00(c)

j

i

(ΦR
B)ij

µα(i)(Φ
R
B)ij

aij
i

j

(i > j) aijµα(j)

j

i
k aik

(ΦR
B)kj ∑

k<i

aikµα(k)(Φ
R
B)kj

Γ11(c)

i

j

(i = j) 1

Γ01(c)
j

(ΦR
B)ij i

(ΦRB)ij

i

j

aij

(i < j) aij k
j

aik
(ΦR

B)kj
i ∑

k>i

aik(Φ
R
B)kj

Table 1. Contributions to ∂cij . For each of the four big disks,
schematic diagrams for corresponding multiscale flow trees are
shown, along with the algebraic contribution to ∂cij (with pow-
ers of the longitudinal homology classes λ suppressed for sim-
plicity). In the diagrams, along the boundary of the big disk,
the index of the sheet (one of i, j, k) is labeled.

Lemma 4.7. With capping operator of Reeb chord c of Λ as in Theorem 4.6
and with orientation choices as in (3.14) and (3.15), the following equation
holds:

∂C = A · λ+A · ΦRB.

Proof. We count multiscale flow trees contributing to ∂cij , divided into four
cases based on their big tree part, which must be one of the Γαβ(c)’s. For ease
of reference, all of these flow trees are pictorially represented in Table 1.

Before we proceed, note that the braiding region is disjoint from Γ10(c) and
from Γ11(c) and intersects Γ00(c) and Γ01(c) in tail-points, since the braiding
region has small s-coordinate values. Also, from Section 3.4, the unstable
manifolds W u(aij) are essentially horizontal and have t-coordinate as follows:
just less than π

2
for i > j, ordered lexicographically by (i, j); just over 3π

2
for

i < j, ordered lexicographically by (j, i). Finally, we recall from Section 3.4.3
and Figure 13 that we have cycles λ′ and µ′ in Λ for the purposes of counting
homology classes, where λ′ is a vertical line between the aij and the bij , and
µ′ is a horizontal line just below t = π

2
. We can in particular choose µ′ to lie

above all of the W u(aij) for i > j.

Case 1: big tree Γ10(c).
If i = j, there is a “trivial” multiscale flow tree with boundary on sheet Si

that projects to Γ10(c). To count other multiscale flow trees corresponding to
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Γ10(c), note that the curve Γv+
10 (c) intersects W u(aij) for all i > j, while the

curves Γh
10(c) and Γv−

10 (c) are disjoint from W u(aij) for all i, j. As we move
along Γv+

10 (c) in the sheet Si, at the intersection between Γv+
10 (c) and W

u(aij),
i > j, a flow line to aij can split off and the 1-jet lift of Γ10(c) continues to
move along sheet Sj. Note that no other flow line can split off after this event
since, according to the orientation requirement in the definition of multiscale
flow tree, such a flow line could split off only at an intersection with W u(ajk),
j > k; however, by our choice of ordering, such an intersection precedes the
intersection with W u(aij) and hence no further splitting is possible.

Thus for each cij with i ≥ j, there is a multiscale flow tree with big tree
Γ10(c) and a single negative puncture at aij (or no negative puncture if i = j).
We next consider homology coefficients and signs. Note that each tree which is
lifted to a leading sheet Sγ(i) intersects λ

′
γ(i) once positively and that each lifted

tree intersects µ′
α(i), where γ(i) and α(i) are the indices of the components of

the sheets considered. Furthermore, by Theorem 4.6, each tree has sign +1:
at the splitting point (for i > j), the tangent vector to the positively oriented
1-jet lift is ∂t which transports to ∂t = vker(aij) at aij , i > j, and the big tree
has sign +1. Finally, we conclude that the contribution to ∂cij of Case 1 is:





λγ(i)µα(i) if i = j and Si is leading,

µα(i) if i = j and Si is not leading,

aijλγ(j)µα(j) if i > j and Sj is leading,

aijµα(j) if i > j and Sj is not leading.

Case 2: big tree Γ11(c).
As with Γ10(c), if i = j then there is a trivial multiscale tree with boundary

on sheet Si that projects to Γ10(c). To count other multiscale trees, notice
that Γv+

11 (c) intersects W u(aji), for all i > j. As above we find that a 1-jet
lift in sheet Sj can split off a flow line to ajk for k > j, then continue along
Sk, and that no further splittings are possible. We thus find multiscale flow
trees with positive puncture at cji and negative puncture at aji for all i > j.
As above the (signed) coefficient equals +1 since the normal at the special
puncture of the partial tree attached is −∂t which agrees with vker(aij), i < j.
To see homology coefficients, we note that all 1-jet lifts are disjoint from µ′

and calculate as above. We conclude that the contribution to ∂cij from Case 2
is: 




λγ(j) if i = j and Sj is leading,

1 if i = j and Sj is not leading,

aijλγ(j) if i < j and Sj is leading,

aij if i < j and Sj is not leading.

When we combine the contributions of Cases 1 and 2 to ∂cij , we obtain
precisely the (i, j) entry of the matrix A · λ.
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Case 3: big tree Γ00(c).

Here we will make use of the stabilized braid B̂, which is B along with one
non-interacting strand labeled 0. Any multiscale flow tree begins on sheet Si
along Γv+

00 (c). As above it is possible to split off either no flows and arrive on
Si at the initial point of Γh

00(c), or one flow to aik (for any k < i) and arrive
on Sk at the initial point of Γh

00(c). Note further that Γh
00(c) intersects the

braiding region in tail-points since the braiding region is to the left of s = π/2;

thus, its flow orientation is the same as the oriented lift of the flow line of B̂ in
W u(a0k) for any k. Consequently, the flow trees that can split off from Γh

00(c)
on sheet Sk as it passes the braiding region, agree with the flow trees that can
split off from W u(a0k). It follows that the contribution to ∂cij from Case 3,
up to sign and homology coefficients, is

∑

k<i

aik(Φ
R
B)kj.

We next consider the homology coefficients and signs of these trees. For
homology, note that µ′ is a horizontal line that lies just below t = π

2
, where

Γh
00(c) sits, but just above W

u(aik), where a flow line to aik can split off. Thus
none of the trees passes λ′; a tree that splits off a flow to aik intersects µ′

α(k)

once positively; and a tree that does not split off such a flow intersects µ′
α(j)

once positively.
In order to compute the sign we first note that the sign contribution from

the flow line splitting off to aik is positive: ∂t is the vector of the boundary
orientation as well as vker(aik). Second, we consider sign contributions from
trees in the braiding region. At a positive twist the induced normal is −∂s
which corresponds to a vector splitting of the normal ∂t along the incoming
edge and the sign at the corresponding trivalent vertex of the tree of B̂ is +1.
At a negative twist the induced normal is still −∂s which now corresponds
to splitting of the normal −∂t along the incoming edge and the sign at the

trivalent vertex of the tree of B̂ equals −1. Thus also in the case of a negative
twist the total sign contribution is (−1)2 = 1, which shows that all multiscale
flow trees from Γ00(c) have sign +1.

In sum, we find that the total contribution to ∂cij from Case 3 is

µα(j)(Φ
R
B)ij +

∑

k<i

aikµα(k)(Φ
R
B)kj.

Case 4: big tree Γ01(c).
As in Case 3, we find that either one or zero flow lines split off along Γv+

01 (c).
Again Γh

01 intersects the braiding region in tail points and is oriented isotopic
to W u(a0i). An argument similar to Case 3 shows that the contribution to
∂cij from Case 4 is

(ΦRB)ij +
∑

k>i

aik(Φ
R
B)kj,
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where the difference from the previous case arises because the 1-jet lift of Γ01(c)
is disjoint from µ′

j.
When we combine the contributions of Cases 3 and 4 to ∂cij , we obtain

precisely the (i, j) entry of the matrix A · ΦRB. The lemma follows. �

4.4.3. Multiscale flow trees of type MT0 with positive puncture at eij of type
L2. To complete the computation of the Legendrian homology of ΛK , we need
to compute the differentials of the eij Reeb chords. These have contributions
from two types of multiscale rigid flow trees: trees of type MT0 and trees of
type MT1. In this subsection, we compute the first type; the second type is
computed in the following subsection, Section 4.4.4.

There are two rigid flow trees with positive puncture at e and negative
puncture at c, corresponding to E1 and E2 in the language of Section 3.2.
Denote their 1-jet lifts by Γα(e; c), α ∈ {0, 1}. We decompose Γα(c) as follows:

Γα(e; c) = Γhe
α (e; c) ∪ Γta

α (e; c),

where Γhe
α (e; c) consists of head-points and Γta

α (e; c) of tail-points; see Figure
21.

2π

π

0

t

0 2π
s

braiding region aij and bij

e− c−c−

c+e+ Γhe
0 (e; c)

Γta
1 (e; c) Γta

0 (e; c)

Γhe
1 (e; c)

Figure 21. The 1-jet lifts of flow trees with positive puncture
at e and negative puncture at c.

Writing the contribution to ∂eij from trees of type MT0 as ∂0eij and using
the matrix notation of Theorem 1.1, we have the following result.

Lemma 4.8. With capping operator of c so that Theorem 4.6 holds and with
orientation choices as in (3.14) and (3.15), there is a choice of capping oper-
ator for e so that the following equation holds:

∂0E = −ΦLB ·C · λ−1 + λ
−1 ·C · (ΦRB)−1.
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Proof. First consider the contributions from Γ0(e, c): Γ
ta
0 (e; c) is disjoint from

the braiding region and from all W u(aij). Consequently, no flow tree can split
off from Γta

0 (e; c). Also, if Γta
0 (e; c) is lifted to Si then it intersects λ′γ(i) once

negatively if Si is leading and not at all otherwise. The curve of head-points
Γhe
0 (e; c), oriented as in Figure 21, is isotopic without crossing the cycle µ′ to

the oriented lift of the flow line W u(ai0) of the stabilized braid B̂ which lies
in the sheet Si. As in the proof of Lemma 4.7 we conclude that the trees that
split off along Γ correspond to the trees which split off from W u(a0i). As with
Γ00(c) (Case 3) in the proof of Lemma 4.7, we find that the sign contribution
from the split-off trees agrees with the sign of φB. Thus the contribution from
Γ0(e, c) to ∂0E is

ǫ(Γ0(e; c))Φ
L
B ·C · λ−1.

Choose the capping operator of e so that ǫ(Γ0(e; c)) = −1, and note that by
Theorem 4.5 this implies ǫ(Γ1(e; c)) = +1.

Next consider the contributions from Γ1(e, c): Γhe
1 (e; c) is disjoint from the

braiding region and from all W u(aij). Consequently, no flow tree can split off
from Γhe

1 (e; c). Also, if Γhe
1 (e; c) is lifted to Si then it intersects λ′γ(i) once with

negative intersection number if Si is leading and not at all otherwise. The
tail-points curve Γta

1 (e; c) is isotopic to the lift of the flow line W u(ai0) of the

stabilized braid B̂ with orientation reversed. Switching the roles of e and c in
the Morse-Bott perturbation we would get the following contribution to ∂′0C
from this disk:

λ · E · ΦRB,

where ∂′0 denotes the analogue of ∂0 with the alternative Morse-Bott pertur-
bation, by a repetition of the argument above for Γ0(e; c).

Observing that the multiscale flow trees we are interested in are exactly
the same as those for the alternative Morse-Bott perturbation except for the
big disk having the opposite orientation, we can view the equation above as
a linear system of equations with coefficients in A0

n and invert it to get the
contribution to ∂0E. Thus we find that the contribution from Γ1(e, c) is

ǫ(Γ0(e; c))λ
−1 ·C · (ΦRB)−1 = λ

−1 ·C · (ΦRB)−1

and the lemma holds. �

4.4.4. Multiscale flow trees of type MT1 with positive puncture at eij. Finally,
we enumerate multiscale flow trees of type MT1. Recalling Lemma 3.2 and
Remark 3.4, we see there are four constrained rigid flow trees with positive
puncture at e and no negative punctures, that are constrained to pass through
some bij . We denote their 1-jet lifts Γαβ(e), α, β ∈ {0, 1}, see Figures 22 and
23. We note that each constrained tree is a deformation of a broken tree, with
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Γαβ(c) as defined in Section 4.4.2 and Γα(e; c) as defined in Section 4.4.3:

Γ00(e) ≃ Γ1(e; c)#Γ00(c),

Γ10(e) ≃ Γ1(e; c)#Γ10(c),

Γ01(e) ≃ Γ1(e; c)#Γ01(c),

Γ11(e) ≃ Γ1(e; c)#Γ11(c).

e+

braiding region

e−

bij

bij

Γ00(e)

Γ01(e)

e+

Figure 22. 1-jet lifts of constrained flow trees with positive
puncture at e which are disjoint from the braiding region.

Writing the contribution to ∂eij from trees of type MT1 as ∂1eij and using
the matrix notation of Theorem 1.1, we have the following result.

Lemma 4.9. With capping operators and orientation data as in Lemma 4.8,
the following equation holds:

∂1E = B · (ΦRB)−1 +B · λ−1.

Proof. Consider first the contributions of the big trees Γ00(e) and Γ01(c). Note
that these tree do not intersect the braiding region and that because of the
lexicographic order, exactly as in the proof of Lemma 4.7, a disk which is
constrained at bij cannot split off flow lines to any aik. Thus there is exactly
one multiscale flow tree contributing to ∂1eij that arises from Γ00(e) or Γ01(e)
if i 6= j (from Γ00(e) if i > j or Γ01(e) if i < j), and it begins at e+ on sheet
i, jumps at bij to sheet j, and remains there until e−. (If i = j, then there is
no such multiscale tree.) Up to sign and homology classes, we conclude that
Γ00(e) and Γ01(c) combined contribute the term bij (or 0 if i = j) to ∂eij .

As for homology classes, the 1-jet lift of this multiscale tree is disjoint from
all λ′ cycles, with the exception of λ′α(j) (one negative intersection) if j is

leading; furthermore, it is disjoint from all µ′ cycles, with the exception of
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e+

braiding region

e−

bij

bij

Γ10(e)

Γ11(e)

e+

Figure 23. 1-jet lifts of constrained flow trees with positive
puncture at e which intersect the braiding region. As with
Γαβ(c), the horizontal segments in the middle of Γ10(e) and
Γ11(e) are at t = π

2
and t = 3π

2
, respectively.

µ′
α(j) (one positive intersection) if i > j. Next we determine the signs. The

sign of the endpoints of the moduli spaces of Γ00(e) and Γ01(e) listed above
are both +1 by our choice of capping operators. Thus the orienting vector
field ν of the moduli space at bij satisfies ν = ∂s in both cases. Furthermore,
vker(Γ00(e)) equals ∂t at bij , i > j, and vker(Γ01(e)) equals −∂t at bij , i < j.
This shows that the signs are positive. Collecting homology classes and signs,
we conclude that the big trees Γ00(e) and Γ01(e) contribute B · λ−1 to ∂1E
(recall that the (i, j) entry of B is bijµj if i > j, 0 if i = j, and bij if i < j).

Next consider the contributions to ∂eij from big trees Γ10(e) and Γ11(e). The
1-jet lifts of the multiscale flow trees corresponding to these big trees begin
at e+ on sheet i, switch to sheet k for some k < i (for Γ10(e)) or k > i (for
Γ11(e)) at the constraint bik, and then pass through the braiding region and
end at e− on sheet j. The (horizontal) portion passing through the braiding
region is located at t = π

2
or t = 3π

2
and is thus isotopic to Γta

1 (e; c) (which
is at t = π) in the complement of all the unstable manifolds W u(aij) (which
are below t = π

2
or above t = 3π

2
) and the cycles µ′ (which is below t = π

2
).

Thus repeating the computation in Lemma 4.8, we find that Γ10(e) and Γ11(e)
combined give a contribution to ∂1E of

B · (ΦRB)−1.

Here we find that the sign of this term is +1 after observing that the sign of
the underlying restricted rigid disk is again +1 by repeating the calculation
above. The lemma follows. �
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4.4.5. Proof of Theorem 1.1. By Theorem 4.3, the differential for the Legen-
drian DGA LA(ΛK) can be computed in terms of multiscale flow trees de-
termined by ΛK and Λ. The contribution from multiscale flow trees of types
MT∅, MT0, and MT1 are calculated in Lemma 3.21, 4.7, 4.8, and 4.9. �

5. Multiscale Flow Trees and Holomorphic Disks

The main purpose of this section is to establish Theorem 4.3. The proof has
several steps. In Section 5.1 we establish the connection between holomorphic
disks and flow trees for ΛU following [8]. In Section 5.2 we discuss the slightly
stronger disk/flow tree correspondence needed here. Finally, in Sections 5.3
and 5.4 we establish the correspondence between holomorphic disks of ΛK in
J1(S2) and multiscale flow trees, i.e., holomorphic disks with boundary on ΛU
with flow trees of ΛK ⊂ J1(ΛU) attached along its boundary.

5.1. Basic results on constrained flow trees and disks. In this subsec-
tion we give a slight modification of results from [8] in the case of a Legendrian
surface Λ in the 1-jet space of a surface S, Λ ⊂ J1(S). We will apply these
results in two cases relevant to this paper; namely when Λ = ΛU and S = S2,
and Λ = ΛK and S = ΛU .

For the notion of a flow tree of Λ we refer to Section 2.4 and for a more
thorough account [8, Section 2.2]. As explained in [8, Section 3.1], associated
to each flow tree Γ is its formal dimension dim(Γ), see Equation (2.3), which
is the dimension of the manifold of nearby flow trees for sufficiently generic Λ.
The main result of [8] is concerned with the relation between rigid holomorphic
disks and rigid flow trees. Here we will need a slight generalization. To this
end we introduce constrained rigid holomorphic disks and constrained flow
trees. If p1, . . . , pr are distinct points in Λ then a holomorphic disk constrained
by p1, . . . , pr is a holomorphic disk with r extra boundary punctures at which
the evaluation map hits p1, . . . , pr. Similarly, a flow tree of Λ constrained
by p1, . . . , pr is a flow tree with 1-jet lift with r extra marked points where
the evaluation map hits p1, . . . , pr. If Γ′ is a flow tree (or holomorphic disk)
constrained by p1, . . . , pr ∈ Λ and if Γ is that flow tree (or holomorphic disk)
with the constraining conditions forgotten then the formal dimension of the
constrained flow tree (or holomorphic disk) Γ′ satisfies

dim(Γ′) = dim(Γ)− r,
where dim(Γ) is the formal dimension of Γ. We say that a flow tree (or
holomorphic disk) is constrained rigid if its formal dimension equals 0 and it
is transversely cut out by its defining equations.

For 0 < σ ≤ 1 consider the map

sσ : J
1(S)→ J1(S), sσ(q, p, z) = (q, σp, σz)

where q ∈ S, p ∈ T ∗
q S and z ∈ R and write

Λσ = sσ(Λ).
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Notice that since sσ preserves the contact structure, Λσ is still Legendrian and
clearly Legendrian isotopic to Λ. In order to state the correspondence theorem
relating constrained rigid disks and trees we recall the following notation:
Dm denotes the unit disk with m boundary punctures and Π: J1(S) → T ∗S
denotes the Lagrangian projection.

Theorem 5.1. Given Λ ⊂ J1(S) as above there is a small perturbation of Λ so
that for a generic metric g on S there exist σ0 > 0, almost complex structures

Jσ, 0 < σ < σ0, and perturbations Λ̃σ of Λσ with the following properties.

• The Legendrian submanifold Λ̃σ is obtained from Λσ by a C
0-deformation

supported near the cusp edges of Λσ.

• The constrained rigid flow trees defined by Λ̃σ have well-defined limits
as σ → 0.
• The (constrained) rigid Jσ-holomorphic disk with boundary on Λ̃σ with
one positive puncture are in one-to-one correspondence with the (con-

strained) rigid flow trees of Λ̃σ with one positive puncture. In partic-
ular, the following holds for all sufficiently small σ > 0: if uσ : Dm →
T ∗S is a (constrained) rigid Jσ-holomorphic disk then there exists a

(constrained) rigid flow tree Γ of Λ̃σ such that uσ(∂Dm) lies in an
O(σ log(σ−1)) neighborhood of the Lagrangian lift Γ̄ of Γ. Moreover,
outside O(σ log(σ−1))-neighborhoods of the Y0-, Y1-vertices and switches
of Γ, the curve uσ(∂Dm) lies at C1-distance O(σ log(σ−1)) from Γ̄.

Proof. The proof is an adaption of results from [8], where Theorems 1.2 and 1.3
gives a version of Theorem 5.1 for unconstrained rigid disks and trees. (See the
proof of Theorem 1.3 and Lemma 5.13 in [8] for the O(σ log(σ−1))-estimate).
We briefly recall the construction in order to adapt it to the constrained rigid
case.

The first step is to fix a Riemannian metric on S such that there are only a
finite number of (constrained) flow trees of formal dimension 0 determined by
Λ and such that all such flow trees are transversely cut out. A straightforward
modification of the unconstrained case, [8, Proposition 3.14], shows that the
set of such metrics is open and dense.

The second step is to change the metric to g, to introduce almost complex

structures Jσ, and to isotope the Legendrian Λσ to a new Legendrian Λ̃σ.
The main features of these objects are the following. The rigid flow trees

determined by g and Λ̃σ are in 1-1 correspondence with the rigid flow trees
of Λ and corresponding trees lie very close to each other, see [8, Lemma 4.4].

The submanifold Λ̃σ is rounded near its cusps and changed accordingly near
its swallowtails. The metric g is flat in a neighborhood of any rigid flow tree

and Π(Λ̃σ) is affine in this neighborhood outside a finite number of regions of
diameter O(σ) where it is curved in only one direction, see [8, Subsection 4.2]
and Remark 5.2 below for details. The almost complex structure Jσ agrees with
the almost complex structure Jg induced by the metric in a neighborhood of
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all rigid flow trees and swallowtails and outside a neighborhood of the caustic

(the locus of fiber tangencies) of Π(Λ̃σ). Near the points in caustic outside
a neighborhood of the swallowtails, Jσ is constructed so that both Jσ itself
and the Lagrangian boundary condition given by Π(Λ) splits as products with
one direction along the cusp edge and one perpendicular to it, see [8, Section
4.2.3].

In fact, Π(Λ̃σ) = Φ−1
σ (L̂σ) where L̂σ is a totally real immersed subman-

ifold and where Φσ is a diffeomorphism with dC0(Φσ, id) = O(σ) and with
dC1(Φσ, id) arbitrarily small (but finite), which is supported in a small neigh-

borhood of the caustic of Π(Λ̃σ) and which is equal to the identity in a neigh-

borhood of all rigid flow trees of Λ̃σ. We use the almost complex structure
Jσ = dΦσ ◦J ◦ dΦ−1

σ on T ∗S, where J is the almost complex structure induced

by a metric on S. Then Jσ-holomorphic disks with boundary on Λ̃σ correspond

to J-holomorphic disks with boundary on L̂σ.
We modify the deformations of the metric and of the Legendrian discussed

above, in order to deal also with constrained rigid trees. In the presence of
point conditions, repeat the construction in [8, Subsection 4.2], deforming the

metric to g and constructing L̂σ in the exact same way as along rigid flow trees.
Furthermore, this should be done in such a way that no constraining point is
an edge point, see [8, Subsection 4.2.H]. Then take Jσ = dΦσ ◦ J ◦ dΦ−1

σ , and

let Λ̃σ be such that Φσ(ΠΛ̃σ) = L̂σ, where J is the almost complex structure
on T ∗S induced by the special metric. We use the notation from [8, Remark
3.8] for vertices of (constrained) rigid flow trees.

After the modifications of the constructions in [8, Section 4] (first and sec-
ond steps) described above, the theorem follows from [8, Theorem 1.2, The-
orem 1.3] with the following additions. Theorem 1.2 shows that any rigid
holomorphic disk with one positive puncture converges to a flow tree. Since
the condition that the boundary of a disk passes through a constraining point
is closed, it follows that constrained disks converge to constrained trees. In

Theorem 1.3, rigid Jσ-holomorphic disks with boundary on L̂σ near any rigid
flow tree are constructed and proved to be unique. The corresponding con-
struction and uniqueness proof in the case of constrained rigid flow trees is
completely analogous after the following alteration. If Γ is a constrained rigid
flow tree with constraining point m then take the preimage of m (which is

not an edge point) to be a marked point in the domain ∆
(0,0)
p,m (Γ, σ) of the ap-

proximately holomorphic disks, see [8, Subsection 6.2.A], and let Vsol(m) = 0
instead of Vsol(m) ≈ R, see [8, Subsection 6.3.B, Definition 6.15], . �

Remark 5.2. Below we will use the following special features of the metric g

and the Legendrian submanifold Λ̃σ in Theorem 5.1. (For the construction of

the metric and Λ̃σ with these properties we refer to [8, Section 4].)
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(1) There exists a neighborhood X ⊂ S which contain all (constrained)
rigid flow trees in which the metric g on S is flat. We write XΛ̃σ

⊂
Π−1
F (X) ∩ Λ̃σ.

(2) The image of any flow segment in a (constrained) rigid flow tree is a
geodesic of the metric g.

(3) The two sheets of the Lagrangian projection Π(Λ̃σ) near each double
point consists of two transverse affine Lagrangian subspaces. The La-

grangian projection Π(Λ̃σ) is parallel to the 0-section (i.e. the graph of
a polynomial function in flat local coordinates of degree at most 1) in
a neighborhoods of the following points: trivalent vertices of any (con-
strained) rigid flow tree, and intersection points of any (constrained)
rigid flow tree.

(4) In Fermi coordinates along any edge the Lagrangian is parallel to the 0-
section in the coordinate perpendicular to the edge (i.e. the Lagrangian
is the differential of the graph of a function of the form f(x1) + cx2),
where x1 is the coordinate along the edge, x2 perpendicular to it, and
c a constant.

(5) Outside O(σ)-neighborhoods of a finite number of edge points in each

(constrained) rigid flow tree the Lagrangian projection Π(Λ̃σ) is affine
(i.e., the function f in (4) has the form f(x1) = a2x

2
1 + a1x1 + a0.) For

our study of multiscale flow trees below we will also assume that the
edge point regions are disjoint from the junction points.

(6) We will also assume that the following extra condition is met: at a
finite number of fixed extra points the Lagrangian projection has the
form mentioned in (3).

5.2. Refined results on constrained flow trees and disks. Recall that
Theorem 4.3 relates holomorphic disks to multiscale flow trees. This relation
is the result of a double degeneration: first the conormal lift of the unknot
is pushed to the 0-section in J1(S2) and then the conormal lift of a more
general closed braid is pushed toward the almost degenerate conormal lift of
the unknot. To deal with this we will stop the first degeneration close to
the limit where actual holomorphic disks on the almost degenerate conormal
lift of the unknot are close to flow trees. Then we degenerate the conormal
lift of a general braid toward the almost degenerate conormal lift of the un-
knot and show that holomorphic disks near the limit admit a description in
terms of quantum flow trees, i.e., holomorphic disks with flow trees attached
along their boundaries. Since both quantum flow trees and multiscale trees
are defined as intersection loci of evaluation maps of holomorphic disks and
flow trees, respectively, we need to show that the disks and the flow trees are
arbitrarily C1-close in order to get the desired relation between quantum flow
trees and multiscale flow trees. However the relation between quantum trees
and holomorphic disks holds only for almost complex structures with special
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properties near Π(ΛU). In this section we show that there exists almost com-
plex structures with these special properties for which the holomorphic disks
are still close to flow trees.

5.2.1. Definition of quantum flow trees. As already mentioned quantum flow
trees will be central to establishing the relation between multiscale flow trees
and holomorphic disks. We define them as follows. Consider ΛK ⊂ J1(ΛU) as
above. A quantum flow tree Ξ of ΛK is a holomorphic disk u : Dm → T ∗S2 with
boundary on Π(ΛU) and a collection Γ of partial flow trees Γ = {Γ1, . . . ,Γm}
with one special positive puncture on the lift ũ : ∂Dm → ΛU of the boundary
of u. Note that Γj could be a constant flow tree at a Reeb chord of ΛK . Then
the positive special punctures subdivide the boundary of Dm into arcs and we
require that there is a lift of these arcs to ΛK which together with the 1-jet lifts
of the trees in Γ from closed curve when projected to T ∗S2. As for multiscale
flow trees we call the points where flow trees are attached to u junction points.

5.2.2. Modifying the almost complex structure—metric around flow trees. Con-
sider the degeneration σ → 0 in Theorem 5.1. Fix a small σ = σ0 > 0 so that
the boundaries of all (constrained) rigid holomorphic disks are close to the
cotangent lifts of their corresponding (constrained) rigid flow trees. More
precisely, we take σ0 so that the boundaries of all (constrained) rigid Jσ0-
holomorphic disks lie well inside the finite neighborhood X of the tree where

the metric is flat and where Λ̃σ0 is as described in Remark 5.2. For simpler
notation we write

Λ = Λ̃σ0 = ΛU

where U is the unknot. We continue to use the subscript σ0 in Jσ0 from
Theorem 5.1 since we will modify the almost complex structure some more.

Consider an arbitrary closed braid K ⊂ R3 lying in a tubular neighborhood
of U. If K is sufficiently close to U then ΛK lies in a tubular neighborhood of
Λ = ΛU which is symplectomorphic to J1(Λ). Furthermore, the front projec-
tion ΠΛ

F : ΛK → Λ is an immersion. Since these properties are preserved under
the global scaling by σ we consider ΛK ⊂ N ⊂ J1(Λ), where the neighborhood
N of the 0-section in J1(Λ) is identified with a neighborhood of Λ in J1(S2).

When we compute the Legendrian homology of ΛK , we will use an almost
complex structure Jη (to be defined after Lemma 5.3 for small η > 0) on
T ∗S2 which differs from Jσ0 . In particular, to relate holomorphic disks with
boundary on ΛK with quantum flow trees of ΛK , it will be important that
Jη agrees with the almost complex structure induced by a metric on Λ in a
neighborhood Nη of Π(Λ) ⊂ T ∗S2. Here Nη is the image under a symplectic
immersion of a small neighborhood of the 0-section in T ∗Λ which extends Π|Λ.
Lemma 5.3 below, establishes the existence of such a metric on Λ. Specifically,
the metric induces an almost complex structure on Nη which (has a push-
forward under an immersion which) agrees up to first order with Jσ0 in the fixed
size neighborhood Π(XΛ) ⊂ Π(Λ) of the union of all boundaries of constrained
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rigid flow trees in Λ. Our desired almost complex structure Jη will interpolate
between this push-forward and Jσ0 .

Recall the special form of Π(Λ) near its double points, see Remark 5.2
(3). Choose a metric g on Λ flat near its Reeb chord endpoints. Let Jg
be the almost complex structure induced by g. Note that for such a metric
we can find an immersion φ defined on the cotangent bundle of the neigh-
borhood of the Reeb chord endpoint which is (Jg, Jσ0) holomorphic. In par-
ticular, if φ : T ∗Λ → T ∗S2 an immersion which extends Π|Λ and which has
these properties near Reeb chord endpoints then the push-forward of Jg, φ∗Jg,
is well-defined. Furthermore, we assume that (g, φ) satisfies this (Jg, Jσ0)-
holomorphicity condition also near other points mentioned in Remark 5.2 (3)
and (6), where we take the extra points to be the junction points of the mul-
tiscale trees. We call the points in (3) and the extra points the distinguished
points. We call a pair of a metric and a symplectic immersion (g, φ) with
properties as above adapted to Λ.

Lemma 5.3. There exists a neighborhood N of the 0-section in T ∗Λ and a
pair (g, φ) consisting of a metric g and an immersion φ : N → T ∗S2 which
extends Π|Λ, which is adapted to Λ and such that the following holds on φ(N).

(1) Jσ0 and φ∗Jg agree along Π(Λ),
(2) Jσ0 and φ∗Jg agree in neighborhoods of distinguished points.
(3) Jσ0 and φ∗Jg agree to first order in Π(XΛ).

Proof. It is straightforward to check that statement (1) can be achieved and
statement (2) follows by the definition of adapted pair (where the fact that
the metric is flat and the Lagrangian affine near distinguished points readily
implies existence).

We turn our attention to statement (3). Let p be a point on the 1-jet lift
of a rigid flow tree. Pick normal coordinates x = (x1, x2) on Λ around p with
the 1-jet lift corresponding to {x2 = 0}. Since the metric on S2 is flat we can
identify it locally with C2 with coordinates (u1, v1, u2, v2) and we can choose
these coordinates so that the flow tree under consideration lies along {u2 = 0}.

Since Π(Λ) is a product of a curve in the u1-direction and a line seg-
ment parallel to the 0-section in the u2-direction we have the following local
parametrization of Π(Λ):

f(x1, x2) = (x1, f(x1), x2, c2).

Let y = (y1, y2) denote the fiber coordinate. Defining the local immersion

ψ(x, y) = f(x1, x2) + y1(−f ′(x1)∂x1 + ∂y1) + y2∂y2

we find that condition (1) holds and that the Taylor expansion of ψ∗J (i.e., the
complex structure of the flat metric on S2 which corresponds to the standard
complex structure in u+ iv-coordinates pulled back by ψ) with respect to y is

(ψ∗J)(x, y) = J0 +B(x1)y1 +O(2),
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where J0 is the standard complex structure on C2 with x+iy-coordinates which
is the complex structure induced by the flat metric on Λ. Here B(x1)J0 +
J0B(x1) = 0, and B(x1)∂x2 = 0. A straightforward calculation shows that if
we change the immersion ψ by pre-composing with a diffeomorphism Φ with
the Taylor expansion

Φ(x, y) = (x, y) +
1

2

(
B1(x1)∂x1

)
y21,

then the almost complex structures agree to first order, i.e. if φ = ψ ◦ Φ then
φ∗Jσ0 and J0 agree to first order along {y1 = y2 = 0}. �

Remark 5.4. For a general ambient almost complex structure J it is not pos-
sible to make the push forward agree up to first order. The Taylor expansion
above with respect to (y1, y2) for a general J is

(ψ∗Jσ0)(x, y) = J0 +B1(x)y1 +B2(x)y2 +O(2),
where Bj anti-commutes with J0. One would then look for a map with Taylor
expansion of the form

Φ(x, y) = (x, y) +
1

2

(
B1∂x1

)
y21 +

1

2

(
B2∂x2

)
y22 + Cy1y2.

However, in order for the almost complex structures to agree up to first order
one needs both C = B1∂x2 and C = B2∂x1 . In general B1∂x2 6= B2∂x1 so no
solution Φ exists.

Let (g, φ) be as in Lemma 5.3. For small η > 0, write Nη for the image
under φ of an η-neighborhood of the 0-section in T ∗Λ and let Ξη denote the
image of an η-neighborhood of T ∗XΛ. Theorem 5.1 implies that (for σ0 small
enough) every (constrained) rigid Jσ0-holomorphic disk intersects a neighbor-
hood of Π(Λ) inside Ξη′ for some η′ > 0. Write Mη for a η-neighborhood of
all (constrained) rigid holomorphic disks. Let Jη denote an almost complex
structure on T ∗S2 which equals φ∗Jg on Nη, which equals Jσ0 outside N2η, and
which interpolate between the two in the remaining region in such a way that
that the following hold.

|Jσ0 − Jη|C0 → 0, as η → 0,(5.1)

|Jσ0 − Jη|C1 → 0 in Ξη0 ∪Mη0 as η → 0, for fixed η0 > 0(5.2)

|Jσ0 − Jη|C2 ≤ K1 in Ξη0 ∪Mη0 , for fixed η0, K1, and η < η0(5.3)

|Jσ0 − Jη|C1 ≤ K2, for fixed η0, K2, and for η < η0 .(5.4)

We make two remarks. As a consequence of the fact that in general Jσ0 and
φ∗Jg do not agree up to first order outsideX we typically have |Jσ0−Jη|C2 →∞
as η → 0. As shown in the C0-convergence portion of the proof of Lemma 5.5
below, we may assume that for sufficiently small η, any rigid Jη-holomorphic
disk lies in Mη0 .
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We next show that rigid Jη-holomorphic disks are C1-close to rigid Jσ0-
holomorphic disks. Note that it follows from Theorem 5.1 that (for σ0 suffi-
ciently small) the almost complex structure Jσ0 is regular in the sense that all
(constrained) Jσ0-holomorphic disks in T ∗S2 with boundary on Π(Λ) of formal
dimension ≤ 0 are transversely cut out.

Lemma 5.5. Let uη : Dm → T ∗S2, η → 0 be a sequence of (constrained) rigid
Jη-holomorphic disks with boundary on Λ. Then some subsequence of uη C

1-
converges on compact subsets of Dm to a (constrained) rigid Jσ0-holomorphic
disk. Moreover, for all η > 0 small enough there is a unique (constrained) rigid
Jη-holomorphic disk in a neighborhood of each rigid Jσ0-holomorphic disk.

Proof. For the first statement we use Gromov compactness (for |Jη−Jσ0 |C0 →
0) to conclude that either |Duη| is uniformly bounded or there is bubbling in
the limit, see e.g. [27], and the fact that point constraints are closed. The case
that uη is a sequence of rigid disks bubbling is not possible: all bubbles of the
limit have dimension at least 0, since Jσ0 is regular, this implies dim(uη) > 0 in
contradiction to uη being (constrained) rigid. We conclude thus that |Duη| is
uniformly bounded; thus uη converges uniformly to a (constrained) rigid Jσ0-
holomorphic disk u. We must show that it convergence with one derivative as
well.

Consider a point z ∈ D and its image u(z) under u. Since uη(z) → u(z)
and since |Duη| and |Du| are bounded we can find a coordinate neighborhood
W ⊂ Mη0 of u(z) and a small disk E around z in D so that uη(E) ⊂ W for
all η > 0 and u(E) ⊂ W .

We pick C
2-coordinates on W so that Π(Λ) corresponds to the totally real

R2 ⊂ C2. The neighborhood E is either a disk or a half disk, with complex
structure j. We find as in Section 2.3 of [27] that in local coordinates u and
uη satisfy the equations

∂̄u+ q ∂u = 0,(5.5)

∂̄uη + qη ∂uη = 0,(5.6)

where

q(z) = (i+ Jσ0(u))
−1(i− Jσ0(u)),(5.7)

qη(z) = (i+ Jη(uη))
−1(i− Jη(uη)).(5.8)

Letting u− uη = hη we conclude that

(5.9) ∂̄hη + qη ∂hη = (q − qη)∂u.
By scaling we may take |qη|C2 ≤ ǫ≪ 1, see [27]. Moreover, by C0-convergence
uη lies in Mη0 an therefore |q− qη|C1 → 0. A standard bootstrap argument for
hη now shows that |hη|C1 → 0 as η → 0. �

Remark 5.6. A general sequence of Jη-holomorphic disks which does not blow
up would C0-converge to a Jσ0-holomorphic disk but not necessarily C1-converge.
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5.2.3. Metric and perturbations—metric near flow trees of ΛK. Note that the
metric g in Lemma 5.3 has arbitrary form outside a small neighborhood of the
1-jet lifts of constrained rigid flow trees of Λ and that furthermore it is flat
near all distinguished points. In this section we will impose further conditions
on g outside this region in order to adapt it to the (partial) flow trees of
ΛK ⊂ J1(Λ) that are parts of rigid multiscale flow trees of ΛK . Furthermore,
we will also deform ΛK itself in a way analogous to how Λσ was deformed

into Λ̃σ. The construction is completely analogous to the construction in [8,
Section 4], although it is simpler in the present situation since ΛK has no front
singularities. The construction in Section 5.2.2 gives a metric in Λ which is flat
in a neighborhood of the 1-jet lifts of all (constrained) rigid flow trees whose
Π-projections contain the boundaries of all (constrained) rigid holomorphic
disks. Furthermore, we take the distinguished points to include all junction
points as well as points where multiscale flow trees intersect constrained rigid
disks. We next extend the region where the metric is flat to contain all rigid
flow trees of ΛK ⊂ J1(Λ) as well as all partial flow trees of ΛK which are
parts of rigid generalized disks. Note that these regions include the projection
of any Reeb chord of ΛK ⊂ J1(Λ). We next deform ΛK slightly so that it
has the form described in Remark 5.2 over all the flow trees just mentioned,
see [8, Section 4.2]. (Here we treat junction points corresponding to positive
punctures of special trees like the 3-valent vertices of flow trees in [8] and treat
the other junction points like the 2-valent punctures in [8].) In particular, ΛK
is affine at Reeb chord endpoints, lifts of flow trees are geodesics in the flat
metric, and the sheets of ΛK near a junction point which is a special Reeb
chord will be parallel to the 0-section in J1(Λ) (which in turn is parallel to
the 0-section in J1(S2) over a subset U ⊂ S2 where the metric on S2 is flat).
Similarly, the metric on S2 is flat near junction points which are Reeb chords,
where the sheet of Λ is parallel to the 0 section, and where the sheets of ΛK
are affine (and almost parallel to the 0-section).

Let 0 ≤ η ≤ 1 and define ΛK;η = sη(ΛK) to be the image under fiber scaling
by η in J1(Λ). Then as above, along 1-jet lifts of flow lines that are part of
rigid generalized disks, the Lagrangian Π(ΛK;η) is a product of a horizontal
line segment and a curve over the distinguished curve. Thus, as in [8, 11], the
regions where this curve is not affine have diameters O(η) as η → 0. With this
metric we construct the almost complex structure Jη of Lemma 5.5 for some
sufficiently small but fixed η > 0. Note that Jη then agrees with the complex
structure induced by the metric on Λ in a neighborhood of Π(Λ) which is the
image under an immersion of a small neighborhood of the 0-section in T ∗Λ.

5.3. From disks to quantum flow trees. Now that we have finished mod-
ifying our almost complex structures to achieve Jη with the desired properties
from the previous subsection, we simplify notation and let

J = Jη.
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The main result of this section is that any sequence of rigid J-holomorphic
disks with boundary on ΛK,η = sη(ΛK) has a subsequence that converges to a
rigid quantum flow tree of ΛK and Λ. In Section 5.3.2 we characterize certain
subsets of the domains of any sequence of J-holomorphic disks with boundary
on ΛK,η such that the restrictions of the maps to these subsets converge to
a (partial) flow tree of ΛK ⊂ J1(Λ). In particular, in case these subsets
constitute the whole domains of the members in the sequence we find that the
J-holomorphic disks converge to a flow tree. In Section 5.3.3 we show that
there can be at most one disk bubbling off in the limit of a sequence of rigid
J-holomorphic disks with boundary on ΛK,η as η → 0 and that by adding a
puncture in the domain near the point where the bubble forms we ensure that
the maps in the sequence satisfy a uniform derivative bound. In Section 5.3.4
we prove the main result of the section. After the previous subsections there
are two main points which must be demonstrated. First, we show that the
limit has only one holomorphic disk part which must be a (constrained) rigid
disk. Second, we show that our analysis of the two separate parts (the flow
tree- and the disk part) gives a complete description of the limit objects.

5.3.1. Notation. Consider ΛK ⊂ N ⊂ J1(Λ) where N is a neighborhood of the
0-section which is identified with a neighborhood of Λ ⊂ J1(S2). In particular,
if 0 < η < 1 and sη : J

1(Λ)→ J1(Λ) denotes the fiber scaling then sη(N) ⊂ N
and hence ΛK,η is a Legendrian submanifold in N which is Legendrian isotopic
to ΛK .

Consider the Reeb chords of ΛK;η. Recall that these are of two types: short
and long chords. We will use the notation for chords introduced in Remark 3.8.
The action a(c) of a Reeb chord c is the positive difference of the z-coordinates
of its two endpoints. Stokes’ Theorem implies the area of a holomorphic disk
is the signed sum of the actions of the Reeb chords at its punctures; see [12,
Lemma 2.1], for example. Recall the two Reeb chords e and c of Λ = ΛU
introduced in Section 3.1. Chords of ΛK;η satisfies the following: chords of
type L2 lie close to e and have action a(e) +O(η), chords of type L1 lie close
to c and have action a(c) +O(η), and chords of types S0 and S1 have action
O(η).

For the fixed almost complex structure J = Jη, Lemma 5.5 holds and J has
properties as in Section 5.2.3. Then, in particular, boundaries of (constrained)
rigid disks of Λ lie C1-close to 1-jet lifts of its corresponding (constrained) rigid
trees. It follows, in particular, that there is a natural one-to-one correspon-
dence between rigid quantum trees of ΛK and rigid generalized trees of ΛK .
Furthermore, in a neighborhood of Π(Λ) the almost complex structure J agrees
with the one induced by the metric on Λ by Lemma 5.3.

Below we will discuss J-holomorphic disks in T ∗S2 with boundary punctures.
Throughout we will think of these as maps u : ∆m → T ∗S2, where the source is
a standard domain. For details on standard domains we refer to [8, Subsection
2.2.1]; here we give a brief description. Consider Rm−2 with coordinates τ =
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(τ1, . . . , τm−2). Let t ∈ R act on Rm−2 by t · τ = (τ1 + t, . . . , τm−2 + t). The
orbit space of this action is the space of conformal structures of the disk with
m boundary punctures, one of which is distinguished, Cm ≈ Rm−3. Define
a standard domain ∆m(τ ) as the subset of R × [0, m] obtained by removing
m−2 horizontal slits of width ǫ, 0 < ǫ≪ 1, starting at (τj, j), j = 1, . . . , m−2
and going to +∞. All slits have the same shape, ending in a half-circle, see
Figure 24. The points (τj , j) are called the boundary minima.

τ1 τ2 τ3 x

y

Figure 24. The standard domain ∆5(τ1, τ2, τ3) with three
boundary minima.

In the case that u has less than two negative punctures we add marked points
at intersections with a small circle around the positive Reeb chord endpoint
and puncture the domain there, so that it admits a description as a standard
domain. We will often write ∆m dropping the precise information about the
conformal structure from the notation.

Consider a standard domain ∆m ⊂ C. Let Vβ = {x + iy : x = β}. A
connected component of the closure of Vβ ∩ (∆m − ∂∆m) in ∆m will be called
a vertical segment in ∆m.

5.3.2. Flow tree convergence. Consider a sequence uη : ∆m → T ∗S2 of rigid
J-holomorphic disks with boundary on ΛK;η, η → 0. As η → 0, the actions of
Reeb chords of ΛK;η of type S satisfy a O(η) bound. Hence, by Stokes’ The-
orem and the dimension formula for holomorphic disks, if η > 0 is sufficiently
small then a moduli spaces of J-holomorphic disks with one positive puncture,
with boundary on ΛK,η, and of formal dimension 0 can be non-empty only if
it contains disks with punctures of the following types:

(QT∅) The positive puncture is of type S1 and all negative punctures are type
S0.

(QT0) The positive puncture is of type L1 and all negative punctures are of
type S0.

(QT′
0) The positive puncture is of type L2, one negative puncture is of type

L1, and all other negative punctures are of type S0.
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(QT1) The positive puncture is of type L2, one negative puncture is of type
S1, and all other negative punctures are of type S0.

Lemma 5.7. If uη : ∆m → T ∗S2 is a sequence of J-holomorphic disks of type
(QT∅) then uη has a subsequence that converges to a flow tree of ΛK ⊂ N ⊂
J1(Λ) as η → 0.

Proof. The actions of Reeb chords in S1 are O(η). Thus the area of uη is O(η)
as well. Monotonicity then implies that uη(∆m) must stay inside an O(η 1

2 )-
neighborhood of Π(Λ). Since J agrees with the complex structure coming from
the metric on Λ in a finite neighborhood of Π(Λ) and since disks lift to the
symplectization of J1(S2) where Λ× R is embedded, the lemma follows from
[8, Theorem 1.2]. �

We next show that for any sequence of J-holomorphic disks uη : ∆m → T ∗S2

there are neighborhoods of each negative puncture of type S, where the disk
converges to a flow tree (which may be constant). The key to establishing this
convergence is an O(η) derivative bound on neighborhoods of the punctures.
Consider the inclusion ΛK;η ⊂ N ⊂ J1(Λ) and let z denote a coordinate in the
R-direction of J1(Λ) ≈ T ∗Λ × R. If γ is a curve in T ∗S2 then let ℓ(γ) denote
the length of γ in the metric induced by ω and J . Fix M > 0 larger than the
maximum of the function |z| on ΛK = ΛK;1. A vertical segment lη ≈ [0, 1] in
the domain ∆m of uη such that

ℓ(uη(lη)) ≤Mη,(5.10)

|z(uη|lη(1))− z(uη|lη(0))| ≤Mη,(5.11)

will be called an η-short vertical segment. It follows from the asymptotic prop-
erties of holomorphic disks near punctures that there exists η-short vertical
segments in a neighborhood of each puncture of uη of type S. Note that a ver-
tical segment lη subdivides ∆m into two components: ∆m = ∆+

m(lη)∪∆−
m(lη),

where ∆+(lη) contains the positive puncture of uη. For d > 0, let ∆±(lη, d)
denote the subset of points in ∆±(lη) which are at distance at least d from lη.

Lemma 5.8. For all sufficiently small η > 0 the following derivative bound
holds: if lη is an η-short vertical segment in the domain of uη : ∆m → T ∗S2

then

|duη(z)| = O(η), z ∈ ∆−(lη, 1).

Proof. Let b1, . . . , br denote the negative punctures of uη which lie in ∆−
m(lη).

Then the area A−
η of uη(∆

−(lη)) satisfies

0 ≤ A−
η =

∫

uη(∂∆−(lη))

p dq

=

∫

uη(lη)

p dq + (z(uη|lη(1))− z(uη|lη(0)))−
r∑

j=1

ℓ(bj) = O(η).
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We conclude by monotonicity that uη(∆
−(lη)) must lie in anO(η 1

2 )-neighborhood
of Λ (in particular all chords bj are of type S). Since J agrees with the almost
complex structure induced by the metric on Λ in such a neighborhood, [8,
Lemma 5.4], shows that the function |p|2, where p is the fiber coordinate in
T ∗Λ, composed with uη is subharmonic on ∆−(lη) and therefore attains its
maximum on the boundary. The lemma then follows from [8, Lemma 5.6]. �

The derivative bound of Lemma 5.8 leads to flow tree convergence on ∆−(lη).
Consider a sequence of η-short vertical segments lη such that each domain
∆−(lη) contains a puncture mapping to a Reeb chord η · b of ΛK;η for some
Reeb chord b of ΛK with Π(b) ∈ N .

Corollary 5.9. There exists a constant C > 0 such that the sequence of
restrictions uη|∆−(lη ,C log(η−1)) has a subsequence that converges to a flow tree
of ΛK ⊂ J1(Λ). (Note that the flow tree in the limit may be constant.)

Proof. By Lemma 5.8, the image under uη of any region in ∆−
m(lη, 1) of di-

ameter log(η−1) lies inside a disk of radius O(η log(η−1)). Furthermore, along
any strip region in ∆−(lη, log(η

−1)) outside an O(log(η−1))-neighborhood of
the boundary minima in ∆−(lη), the map converges to a flow tree by the proof
of [8, Theorem 1.2], see in particular Lemmas 5.12, 5.16, and 5.17 in [8]. �

Remark 5.10. If the limiting flow tree in Corollary 5.9 is constant then it lies
at Π(b) ∈ N , where b is the Reeb chord of ΛK above. To see this note that
∆−
m(lη, C log(η−1)) always contain a half infinite strip which is a neighborhood

of the puncture mapping to b. If the vertical segment bounding this strip
does not converge to Π(c) for some Reeb chord c, then the limiting tree is
non-constant. Since Π(b) is in the image we find that the tree must lie at
Π(b).

5.3.3. Blow-up analysis. We next show that the limit of any sequence of J-
holomorphic disks uη : ∆m → T ∗S2 with boundary on ΛK;η can contain at
most one bubble. We also show how to add one puncture consistently to each
domain so that this forming bubble corresponds to some coordinate of the
domains of uη, which give points in the space of conformal structures on the
disk with m boundary punctures, one distinguished, Cm ≈ Rm−3, approaching
∞ (rather than the derivative of uη blowing up).

Lemma 5.11. If uη : ∆m → T ∗S2 is a sequence of J-holomorphic disks with
boundary on ΛK;η and with one positive puncture such that sup∆m

|duη| is
unbounded as η → 0 then, after adding one puncture in the domains ∆m of
uη, we get an induced sequence uη : ∆m+1 → T ∗S2 for which |duη| is uniformly
bounded from above.

Proof. The proof uses standard blow-up arguments, see e.g. [27]. Assume
that Mη = sup∆m

|duη| is not bounded as η → 0. Using asymptotic proper-
ties of J-holomorphic disks near the punctures of uη, we find that for η > 0
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there exist points pη ∈ ∆m such that |duη(pη)| = Mη. View ∆m as a sub-

set of C and consider the sequence of maps gη(z) = uη

(
pη +

z
Mη

)
defined on

U =
{
z ∈ C : pη +

z
Mη
∈ ∆m

}
, where ∆m refers to the domain of uη. Note that

the derivative |dgη| of gη is uniformly bounded as η → 0. We can thus extract
a convergent subsequence, which in the limit η = 0 gives a non-constant holo-
morphic disk v : H → T ∗S2, where H is the upper half plane, with boundary
on Λ, with a positive puncture at infinity, and no other puncture. (There may
be other limiting bubble disks, but at least one of them has a single puncture.
In the limit, only the chords of type L exist.) Fix an arc A in Λ that intersects
v(∂H) transversely at a point far from all Reeb chord endpoints. It follows
from the convergence gη → v that there exist a point qη in the domain ∆m for
uη with |pη−qη| → 0 as η → 0 such that uη(qη) ∈ Π(Λ). Adding a puncture at
qη in the domain ∆m of uη gives a new sequence of maps u1η : ∆m+1 → T ∗S2.

Assume now that sup∆m+1
|du1η| is unbounded. Repeating the blow up argu-

ment sketched above, we would again find a bubble disk v1 : H → T ∗S2 in the
limit with one positive puncture and no other punctures.

Since the area contributions of u1η in a neighborhood of the added puncture
qη is uniformly bounded from below and since this neighborhood can be taken
to map to a region far from all Reeb chords, it follows that there are at least
two non-constant disks in the limit, both with one positive puncture and no
other punctures. The sum of the areas of these two disks is bounded from
below by 2a(c) + O(η), where c is the shorter of the two Reeb chords of Λ.
This however contradicts uη having one positive puncture since the lengths
of Reeb chords then implies Area(uη) ≤ a(e) + O(η) and 2a(c) > a(e). The
lemma follows. �

5.3.4. Quantum flow tree convergence. Consider a sequence uη : ∆m → T ∗S2

of rigid J-holomorphic disks with boundary on ΛK,η. Assume, without loss of
generality (see Lemma 5.11), that |duη| is uniformly bounded.

Lemma 5.12. If each of the disks uη has a positive puncture at a Reeb chord
of type L then sup∆m

|duη| is uniformly bounded from below.

Proof. Consider the neighborhood N of Π(Λ) where J is induced by the metric
on Λ. Since uη maps ∂∆m to an O(η) neighborhood of Π(Λ) there exists ǫ > 0
such that if |duη| ≤ ǫ then uη(∆m) ⊂ N for all sufficiently small η > 0.
Lemma 5.4 from [8] then shows that the function |p ◦uη|2 is subharmonic and,
consequently, that the sequence uη has a subsequence uη′ which converges to a
flow tree, see [8, Lemma 5.6]. In particular the area of uη′ is O(η′). But since
uη′ has a positive puncture of type L, there is a uniform bound from below on
the area of uη′ restricted to a neighborhood of this puncture. See the proof of
[13, Lemma 9.3], for example. �

Lemma 5.12 leads to a description of the J-holomorphic components in
the limit of the sequence uη with positive puncture at a chord of type L as
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follows. Consider a sequence of points pη in the domains ∆m of uη such that
|duη(pη)| ≥ ǫ > 0 for all η > 0. After passing to a subsequence, we may
assume that uη(pη) converges in T

∗S2. Consider coordinates τ + it on C and
represent the domain ∆m ⊂ C of uη by letting the τ -coordinate of pη equal
0. Then as η → 0 in the sequence of domains of uη, some boundary minima
of ∆m stay at finite distance from pη and other do not. After passing to a
subsequence we may assume that every sequence of boundary minima on a
fixed height has a limit which may be finite or infinite and we find a limiting
conformal structure on a domain ∆m0 that contains p0 = limη pη. It follows
in a straightforward way that uη converges (uniformly on compacts) to a non-
constant J-holomorphic disk v : ∆m0 → T ∗S2 with boundary on Λ. We say
that such a disk is a non-constant J-holomorphic component of the limit.

We next consider the role of the choice of pη. If the sequence of domains ∆m

converges and if they contain some point qη such that |duη(qη)| ≥ δ > 0 and if
|pη−qη| → ∞ as η → 0 then, repeating the above argument, we extract another
non-constant J-holomorphic component v′ containing q0 = limη→0 qη of the
limit, which is distinct from the component v that contains p0. Furthermore,
if the τ -coordinate of qη approaches ±∞ in coordinates where the τ -coordinate
of pη equals 0 and if a is the Reeb chord at the positive puncture of v′ then a is
also the negative puncture of some non-constant J-holomorphic component in
the limit. Arguing by action it is easy to see that the number of non-constant
components in the limiting configuration is finite. And since Λ has only two
Reeb chords of almost equal actions the number of such components is at most
two.

We next show that the flow trees in Lemma 5.8 fit together with the non-
constant components to form a quantum flow tree. Consider a puncture ζr
at +∞ in the domains ∆m of uη that map to a Reeb chord r of ΛK;η. By
asymptotic properties of holomorphic disks at punctures there are η-short
vertical segments which separate ζr from the positive puncture ζ+ at −∞ of
∆m. In particular, there is an η-short vertical segment lη(ζr) of minimal τ -
coordinate that separates ζr from ζ+, we call it the extremal η-small vertical
segment of ζr. If v : ∆m′ → T ∗S2 is a non-constant J-holomorphic component
in the limit configuration then we write ∂v = v(∂∆m′) for the image of v
restricted to the boundary.

Lemma 5.13. If ζr is any puncture at +∞ in the domains ∆m of uη which
maps to a Reeb chord r and if lη is the extremal η-small vertical segment of
ζ then there exists a non-constant component v of the limit such that uη(lη)
converges to a point in ∂v.

Proof. We prove this lemma by contradiction: if the statement of the lemma
does not hold, then the area difference between a limit disk and the disks
before the limit violates an O(η) bound derived from Stokes’ theorem.

Assume the lemma does not hold. Then there exists ǫ > 0 such that for any
sequence of lλ which satisfies the Inequalities (5.10) and (5.11), some point on
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lη maps a distance at least ǫ > 0 from ∂v. Consider a strip region between
two slits,[−d, d] × [0, 1] ⊂ ∆m, for which some point converges to a point at
distance δ from ∂v, where ǫ

4
< δ < ǫ

2
. Let sup[−d,d]×[0,1] |duη| = K. Then K

is not bounded by Mη for any M > 0. Since the difference between the sum
of areas of the non-constant components in the limit and that of uη is O(η),
it follows that |duη| = O(η

1
2 ) (by monotonicity and a standard bootstrap

estimate). Thus K = O(η 1
2 ). Consider next the scaling of the target by

K−1 at the image of (0, 0) ∈ [−d, d] × [0, 1]. We get a sequence of maps ûη
from [−d, d] × [0, 1] with bounded derivative. Note moreover that the scaled

boundary condition is O(η 1
2 ) from the 0-section. Changing coordinates to the

standard (Cn,Rn) respecting the complex structure at the limit point, we find
that there are maps fη : [−d, d]× [0, 1]→ Cn with the following properties

• sup[−d,d]×[0,1] |Dkfη| = O(η
1
2 ), k = 0, 1,

• ûη + fη satisfies Rn boundary conditions, and

• ∂̄(ûη + fη) = O(η
1
2 ).

It follows that ûη + fη converges to a holomorphic map with boundary on
Rn, which takes 0 to 0 and which has derivative of magnitude 1 at 0. Using
solvability of the ∂̄-equation in combination with L2-estimates in terms of
area we find that the area of ûλ must be uniformly bounded from below by
a constant C. The area contribution to the original disks near the limit is
thus at least K2C. Since the image of [−d, d]× [0, 1] in Π(Λ) has diameter at
most 2Kd, we may repeat the argument with many disjoint finite strips with
maximal derivatives Kj and with sum of diameters bounded below by ǫ

100
. We

find that the area contribution is bounded from below by C
∑
K2
j . Since the

length contribution is bounded below, we get:

2d
∑

Kj ≥
ǫ

100
.

Now,

C
∑

K2
j ≥ C inf

j
{Kj}

∑
Kj ≥ C ′ inf

j
{Kj}.

For any M > 0, infj{Kj} ≥ Mη. To see this assume that it does not hold
true. Then there is a sequence of vertical segments lη such that |duη| ≤
2Mη with the property that the distance between u(lη) and ∂v is at most 3

4
ǫ.

This however contradicts our hypothesis. Consequently, the area contribution
from the remaining part of the disk is not O(η), which contradicts Stokes’
theorem. �

As a consequence of the preceding lemmas, we get the following result.

Corollary 5.14. Any sequence of rigid holomorphic disks uη with boundary on
ΛK;η has a subsequence which converges to a quantum flow tree. The quantum
flow trees which arise as limits of rigid disks are of the following types.

(QT∅) No non-constant J-holomorphic components (i.e., flow trees), positive
puncture of type S1, and negative punctures of type S1.
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(QT0) Rigid non-constant J-holomorphic component, positive puncture of type
L1, and negative punctures of type S0.

(QT′
0) Rigid non-constant J-holomorphic component, positive puncture of type

L1, one negative puncture is of type L1, and all other negative punctures
are of type S0.

(QT1) Constrained rigid non-constant J-holomorphic component, positive punc-
ture of type L2, one negative puncture of type S1 and remaining negative
punctures of type S0.

Proof. Consider (QT∅), if the positive puncture of uη is of type S1 flow tree
convergence was established in Lemma 5.7. For (QT0) and (QT1), assume
that the positive puncture has type L. Convergence to a quantum flow tree
follows from the above: Lemma 5.12 implies that there is some non-constant
component in the limit and the discussion following that lemma shows that the
non-constant component is a broken disk with at most two levels, Lemma 5.13
then implies that the flow tree pieces of Corollary 5.9 are attached to the
non-constant components. If the positive puncture is of type L1 then by the
dimension formula there can be only one non-constant component in the limit
which must be rigid. Since no rigid disk passes through any chord of type S and
since flow trees with negative punctures at chords of type S1 are constant we
conclude that (QT0) holds in this case. A similar argument shows that (QT′

0)
holds also when the positive puncture is of type L2 and there is a negative
puncture of type L1. In the case that the positive puncture is of type L2 and
all negative punctures are of type S it follows from the dimension formula that
exactly one negative puncture maps to a chord b of type S1. Since all flow trees
with a negative puncture at b are constant it follows that some non-constant
component in the limit passes Π(b). Since no rigid disk passes through Π(b) it
follows that the non-constant component is un-broken and hence constrained
rigid. We conclude that (QT1) holds in this case. �

Remark 5.15. As in [8], the proof of Corollary 5.14 allows us to control the
conformal structures of the sources of a sequence of rigid disks uη : ∆m → T ∗S2

with boundary on ΛK;η in the following way. The distance from a boundary
minimum which maps near a trivalent puncture of the tree to its nearest
boundary minimum equals cη−1+O(log(η−1)) where c is a constant determined
by the quantum flow tree. The distance between other boundary minima
equals c′+o(1) where c′ depends only on the disk component (and its marked
points) of the quantum limit tree. Thus, the conformal structure of the big
disk part converges to that of the limiting disk and the conformal structures
(represented as truncated standard domains) of the flow tree parts converge
after rescaling by η−1.

5.4. From quantum flow trees to disks. In this section we construct rigid
J-holomorphic disks near any rigid quantum flow tree. Technical results
needed for this were already developed in [8] and [11]. Here we will thus
present the main steps together with detailed references to these two papers.
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The construction follows the standard gluing scheme often used in Floer the-
ory: we associate an approximately holomorphic disk to each rigid quantum
flow tree and use Floer’s Picard lemma to show that near each such disk there
is a unique actual holomorphic disk. We begin with the following observations.

5.4.1. Properties of rigid quantum flow trees. We start by recalling some of
the properties of rigid quantum flow trees of ΛK ⊂ N ⊂ T ∗(S2) that will be
used below. We will write (u,Γ) for a quantum flow tree where u : ∆m → T ∗S2

is the holomorphic disk with boundary on Λ part of the quantum flow tree and
where Γ denotes the flow tree part.

• Rigid quantum flow trees (u,Γ) of ΛK are of two main types: those
with u constant and those with u non-constant.
• If (u,Γ) is a rigid quantum flow tree with u non-constant then u is
either rigid or constrained rigid.
• If (u,Γ) is a rigid quantum flow tree then it consists of a (constrained)
rigid disk with a finite number of partial flow trees Γ attached along
its boundary at junction points. In the case that u is constrained rigid
then the constraint is at the image in Π(Λ) of a Reeb chord of type S1.
The partial flow trees attached to the holomorphic disk have trivalent
Y0-vertices, 1-valent vertices at critical points of index 1, and no other
vertices.

Rigid quantum flow trees (u,Γ) with u constant are rigid flow trees of ΛK;η ⊂
J1(Λ) in the sense of [8]. By Lemma 5.7, holomorphic disks with positive
puncture at a Reeb chord of type S lie in an O(η) neighborhood of Π(Λ).
Consequently existence and uniqueness of rigid holomorphic disks near each
local rigid quantum flow tree follows from [8, Theorem 1.2]. (In fact, the
convergence rate is O(η log(η−1)), see [8].) Because of this we will mainly
focus on quantum flow trees with non-constant u below.

Consider a rigid quantum flow tree (u,Γ) and let Γ′ denote one of the partial
flow trees attached to u at the junction point p, which is then also the special
puncture of Γ′. Recall that we choose a metric g on Λ and an almost complex
structure on T ∗S2 which agrees with that in a neighborhood of Π(Λ) and which
have the following additional properties:

• The metric is flat in a neighborhood of Γ′.
• Π(ΛK;η) ⊂ T ∗Λ is affine outside neighborhoods a finite number of edge
points, which are points on the edges of Γ′, at least one on each edge.
We call these neighborhoods edge point regions. Furthermore, along
any edge Π(ΛK;η) is a product of a curve in the direction of the edge
and horizontal line segments perpendicular to it.
• Near each trivalent vertex Π(ΛK;η) ⊂ T ∗Λ is parallel to the 0-section,
and near each critical point Π(ΛK;η) ⊂ T ∗Λ is affine.
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5.4.2. Local solutions. The approximately holomorphic disks near the rigid
quantum flow tree (u,Γ) will be constructed by patching local solutions. The
local solutions are as follows:

• The map u : ∆m → T ∗S2. Here the standard domain has punctures
mapping to double points of Π(Λ) as well as to each junction point and
constraining critical points. See [11, Equations (6.9) and (6.10)] for
explicit forms of u near junction points and double points. The normal
form at a constraining puncture is the same as that at a junction point,
see [11, Section 6.5.1 (gd.2)].
• Along each part of an edge between edge points where Π(ΛK) is affine
we have a local solution sη : [T1, T2] × [0, 1] → T ∗S2 which is a holo-
morphic strip with image in the strip region which consists of straight
line segments in the fibers connecting the two sheets of the tree. See
[8, Section 6.1.1] for details.
• At each 1-valent puncture we choose coordinates (x1, x2) along Π(Λ)
with the critical point at 0 and corresponding holomorphic coordinates
(z1, z2) = (x1 + iy1, x2 + iy2) so that the flow line of the tree lies along
the x1-direction. The local solution sη : [0,∞)× [0, 1] is then

sη(τ + it) = (ηic1 + cηe
−θη(τ+it), 0),

where π − θη is the largest complex (Kähler) angle of the intersection
point and where cη is chosen so that the distance from sη(0+ it) to the
nearest edge point is O(η). See [8, Section 6.1.2] for details.
• At each trivalent vertex we chose C2-coordinates as above with the
three sheets corresponding to constant sections with values ivj , j =
1, 2, 3, where a flow line of v1 − v2 breaks into flow lines of v1 − v3 and
v3 − v2. Let p1, p2, p3 denote the punctures of a standard domain ∆3.
Consider the biholomorphic maps

Uj : ∆3 → R× [0, 1], j = 2, 3

with U2(p1) = −∞, U2(p3) = i, and U2(p2) = ∞, and U3(p1) = −∞,
U3(p2) = 0, and U3(p3) = ∞. Let aj : R × [0, 1] → C2, j = 2, 3 be
the maps a2(z) = (v3 − v2)z + iv2, a3(z) = (v1 − v2)z. Then sη is a
restriction to a subdomain of ∆3 cut off by vertical segments of the
map

s̃η = η(a2 ◦ U2 + a3 ◦ U3)

such that the vertical segments lie at distance O(η log(η−1)) from an
ǫ-sphere around 0. See [8, Section 6.1.5] for details.
• at each junction point we choose C2-coordinates so that the two sheets
of Π(ΛK;η) corresponds to R

2, and to the section (iη, 0), respectively.
We take

wjun
η (z) = (ηz, 0) +

∑

n

cne
nπz, cn ∈ R

2,
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where the latter sum agrees with the Fourier expansion of u in the strip
neighborhood of the junction point.

5.4.3. The domain of a rigid quantum flow tree and approximately holomorphic
disks. Consider a rigid flow tree (u,Γ). The local solutions discussed above are
associated with domains that are determined by requiring that their vertical
boundary segments map close to edge points. There are in particular finite
strip regions of length bounded below by cη−1 and above by Cη−1 associated
to each segment of an edge between edge points, finite neighborhoods of the
boundary minimum in ∆3 of the same size around each trivalent vertex, as well
as half-infinite strips associated to critical points. These regions are patched
together over uniformly finite size rectangles corresponding to the edge points
where we also interpolate between local solutions. We thus get a domain
∆̄p,m(Γ

′, η) for each tree Γ′ in Γ. We construct the domains ∆p,m(u,Γ, η) by
gluing the tree domains to the disk domain in the strip regions corresponding
to the junction points. In this way we obtain the desired domain with a
map wη : ∆p,m(u,Γ, η) → T ∗S2 obtained by patching local solutions which is
approximately holomorphic in a sense that we will next make precise.

In order to prove existence and uniqueness of holomorphic disks near rigid
flow trees we need an appropriate functional analytic setting for Fredholm the-
ory. Here one cannot use standard Sobolev spaces because the domains are
degenerating near the limit and derivatives of maps go to 0 accordingly. For
this reason we use weighted Sobolev spaces. The norms of the natural vector
fields associated to shifting the local solutions are then unbounded as η → 0.
To correct this we use instead a subspace of the Sobolev space determined
by a vanishing condition at a marked point in the middle of each strip region
between edge point and add a finite dimensional space of shifts endowed with
the supremum norm. The total configuration space is then obtained by adding
conformal variations of the target which corresponds to moving boundary min-
ima and the marked points of the above mentioned vanishing conditions. More
precisely, the functional analytic spaces are constructed as follows:

• The domain ∆m,p of u is cut off as described in [11, Section 6.5.1], at
vertical segments corresponding to junction points and to punctures.
In the finite strip regions near the cut offs corresponding to junction
points of the form [0, dη−1]× [0, 1] we use an exponential weight peaked
in the middle of this strip, see [11, Equation (6.12)].
• For each flow tree Γ′ in Γ we take the domain ∆p′,m′(Γ′, η) associated to
a partial flow tree as in [8, Section 6.4.1], cut off at a vertical segment
corresponding to the edge point closest to its special puncture, with
the weight function constructed there. We attach these domains at the
vertical segments of the corresponding junction points. Note that the
weight functions match.

We denote the resulting standard domain ∆η
p,m and the weight function h : ∆η

p,m →
[1,∞). Associated to the junction points are spaces of cut off local solutions.
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We denote the direct sum of these spaces with the supremum norm

V jun
sol ,

see [11, Section 6.5.1, p. 66]. Associated to each partial flow tree there is a
space of cut off solutions we denote the sum of these spaces with the supremum
norm

V Γ
sol,

see [8, Section 5.4.1, p. 1209]. Furthermore, conformal variations correspond-
ing to moving boundary minima in the domain of u give conformal variations
of ∆p,m we denote the sum of these spaces with the supremum norm

V u
con,

see [8, Sections 6.2.3 and 6.3.5]. Finally there are also conformal variations
in the domains of the trees corresponding to moving boundary minima and
marked points. They form a space Vcon(Γ

′, η) and we denote the sum over all
trees in Γ

V Γ
con.

Finally, we denote the space of vector fields that vanishes at the marked points
in ∆η

p,m and that satisfies Lagrangian boundary conditions and are holomorphic
along the boundary, and which has two derivatives in L2 weighted by h

H2,δ,

where δ denotes the small positive exponential weight that controls the size of
h. Then, as in [11], we view the ∂̄-operator on function in a neighborhood of
a tree as a Fredholm map

∂̄J : H2,δ ⊕ Vsol ⊕ Vcon →H1,δ,

where H1,δ is the Sobolev space of vector fields with one derivative in L2

weighted by h. We denote the norm inH1,δ by ‖·‖1,δ and that inH2,δ⊕Vsol⊕Vcon
by ‖ · ‖2,δ.

The proof now follows the same steps as in [11]. First we estimate the
approximate solution:

Lemma 5.16. The function wη satisfies

‖∂̄Jwη‖1,δ = O(η3/4−δ log(η−1)).

Proof. The restriction of ∂̄Jwη to the part of the domain corresponding to flow
trees is controlled by [8, Remark 6.16]. The proof is then a repetition of the
proof of [11, Lemma 6.20]. �

Second we show that the differential of ∂̄J is invertible.

Lemma 5.17. The differential

L∂̄ : H2,δ ⊕ Vsol ⊕ Vcon →H1,δ

is uniformly invertible.
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Proof. After replacing the vector field vmo
η in the proof of [11, Lemma 6.20]

with a sum vmo = aΓ+bΓ where aΓ is a vector field inH2,δ supported in the part
of the domain corresponding to Γ and bΓ ∈ V Γ

con and using [8, Lemma 6.20]
to control vmo, the proof is a word by word repetition of the proof of [11,
Lemma 6.20]. �

Third we establish a quadratic estimate for the ∂̄J -map. We let wη corre-
spond to 0 ∈ H2,δ ⊕ Vsol ⊕ Vcon
Lemma 5.18. There exists a constant C so that

∂̄J (v) = ∂̄J(0) + L∂̄J (v) +N(v),

where
‖N(v1)−N(v2)‖2,δ = C(‖v1‖2,δ + ‖v2‖2,δ)‖v1 − v2‖2,δ.

Proof. See [11, Lemma 6.22]. �

With these results established we get the following result as a consequence
of Floer’s Picard lemma:

Corollary 5.19. For all sufficiently small η > 0 there exists a unique rigid
holomorphic disk in a finite ‖ · ‖2,δ-neighborhood of wη.

The last lemma needed to show the correspondence is the following.

Lemma 5.20. For sufficiently small η > 0, if a holomorphic disk lies in
a sufficiently small C0-neighborhood of wη, then it lies in a O(η 1

2 ) ‖ · ‖2,δ-
neighborhood of it.

Proof. See [11, Lemma 6.24]. �

6. Orientations

The main purpose of this section is to prove Theorems 4.5 and 4.6. To this
end we first give an overview of the general orientation scheme constructed in
[14] and then interpret this scheme in geometric terms for rigid holomorphic
disks near quantum flow trees of ΛK .

6.1. The general orientation scheme. We first give a rough outline of
the orientation scheme that we will employ below. For simplicity we restrict
attention to closed orientable Legendrian surfaces Λ inside the 1-jet space
J1(S) of some orientable surface S. Let ∂̄ be the operator on functions v : D →
Cn, where D is the unit disk in C, such that v(eiθ) ∈ L(θ), where L(θ) is a
trivialized Lagrangian boundary condition. The starting point for constructing
orientations of moduli spaces of holomorphic disks with boundary on Λ is the
fact that the index bundle of ∂̄ is orientable, and that a choice of orientation
on C and on Rn determines an orientation on this index bundle. We call this
induced orientation the canonical orientation, see [18, Proposition 8.1.4] (or
[14, Section 3.3]).
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Consider now a holomorphic disk u : ∆m → T ∗S with boundary on Λ. In
order to parameterize the moduli space of holomorphic disks near u, we look
at the ∂̄J -operator as a section of the bundle of complex anti-linear maps over
the configuration space with local chart at u given by H ⊕ Cm, where H is
a Sobolev space of vector fields along u and where Cm denotes the space of
conformal structures on the source ∆m of u. In this setting the tangent space
of the moduli space can be identified with the kernel of the linearized operator
L∂̄J acting on H⊕Cm. In order to orient the moduli space we choose capping
operators at all Reeb chords of u with oriented determinant bundles. Then
closing up the boundary condition of u by these capping operators gives a La-
grangian boundary condition on the closed disk and, provided the Lagrangian
boundary conditions are compatibly trivialized, we may use the canonical ori-
entation to orient the determinant of the resulting operator. The orientation
of the glued problem and orientations on all capping operators induce an ori-
entation of the determinant of the original linearized problem. For Legendrian
homology in general, the exact sequence which relates all the orientations of
the different operators was introduced in [14, Equation 3.17]. Together with an
orientation of the space of conformal structures this then gives an orientation
on the tangent space to the moduli spaces, as described in [14, Remark 3.18].

Appropriate trivializations on the boundary condition of u can be defined
provided Λ is spin. In order to have the above scheme compatible with disk
breaking at the boundary of the compactified moduli space one must choose
oriented capping operators at Reeb chords as positive and negative punctures
that add to the trivialized boundary condition with the canonical orientation.
We note also that when discussing orientations we can stabilize the operator
and add oriented finite dimensional spaces to the source or target of an operator
or take direct sums with other oriented Fredholm problems as long as we keep
track of the orientations that these extra directions carry.

6.2. Basic choices for the canonical orientation. As mentioned in Sec-
tion 6.1 the orientation scheme that we use derives from orientation properties
of the index bundle over trivialized Lagrangian boundary conditions on the
disk. In this section we study some of the details of this construction. Let L
be an n-dimensional Lagrangian boundary condition on the unit disk D ⊂ C

which is trivialized. Consider the ∂̄-operator acting on vector fields v : D → Cn

which satisfy the boundary condition given by L, v(eiθ) ∈ L(eiθ). Denote this
operator ∂̄L. Then ∂̄L is a Fredholm operator of index

index(∂̄L) = n + µ(L),

where µ is the Maslov index. Since the boundary condition is trivialized the
monodromy of L is orientation preserving and µ(L) is even.

As mentioned above, an orientation of Rn together with a choice of complex
orientation in C induces a canonical orientation on the determinant of the
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operator ∂̄L. This canonical orientation is obtained by trivializing the com-
plex bundle over almost all of D, splitting off a complex vector bundle over
CP 1 at the center of the disk in the limit. The split problem in the limit
consists of the operator ∂̄Rn on D, where Rn denotes the constant trivialized
Lagrangian boundary condition given by Rn ⊂ Cn with the standard basis,
and the ∂̄-operator on a complex vector bundle over CP 1. The determinant
of the latter operator is a wedge product of complex vector spaces and hence
has an orientation induced from the choice of complex orientation on C. The
former operator has trivial cokernel and kernel spanned by constant sections
with values in R

n; hence, the orientation of Rn gives an orientation on its
determinant. For operators near the split limit the kernel and cokernel are
isomorphic to the sum of kernel and cokernels of the split problem and we get
an induced canonical orientation of the determinant of the original problem
by transporting this orientation along the path of the deformation. We call
the choice of orientation of Rn and C basic orientation choices.

Remark 6.1. Changing the choice of basic orientation on Rn clearly changes
the canonical orientation of det(∂̄L) for every L. Changing the choice of basic
orientation of C preserves the canonical orientation of det(∂̄L) for all L with
index(∂̄L)− n = µ(L) divisible by 4 and reverses the canonical orientation of
det(∂̄L) for all L with index(∂̄L)− n = µ(L) not divisible by 4.

In our calculations below the orientation on Rn above will correspond to the
choice of an orientation on the conormal lift of the unknot which we take as
fixed once and for all. We will denote the chosen basic orientation on C by oC.

Furthermore, the trivialization of the boundary conditions of the linearized
operators at holomorphic disks with boundary on ΛK are induced from a
trivialization of the tangent bundle TΛK . Note that the orientation above
depends only on the trivialization modulo 2, i.e., on the corresponding spin
structure. In the calculations below we will fix a spin structure on the conormal
lift Λ of the unknot and pull it back to ΛK under the natural projection in the
1-jet neighborhood of Λ.

6.3. Capping operators and orientation data at Reeb chords. As men-
tioned in Section 6.1 orientations of moduli spaces are constructed using cap-
ping operators at Reeb chords. In this section we discuss capping operators
and their orientations for the conormal lift ΛK of a closed braid K by applying
[14, Section 3.3] to ΛK .

6.3.1. Auxiliary directions. Before we start this discussion we note that the
construction of coherent orientations in [14] uses auxiliary directions. More
precisely, the boundary condition of a punctured disk with boundary on Λ is
stabilized, i.e., multiplied by boundary conditions for vector fields in C2 with
boundary conditions close to constant R2 boundary conditions, see [14, Sec-
tion 3.4.2]. The resulting problem is split and the operator in the auxiliary
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direction is an isomorphism. The reason for introducing these auxiliary direc-
tions is that they enable a continuous choice of capping operators for varying
Legendrian submanifolds. When studying kernels and cokernels of linearized
operators below we need not consider the auxiliary directions. The auxiliary
directions are however important for the definitions of capping operators which
we discuss next.

We first describe capping operators of the Reeb chords of ΛK and then
connect the operators to geometry. In Tables 2–5 below we represent the
Legendrian submanifold near its Reeb chords. For detailed properties of the
capping operators, we refer to [14, Section 3.3.6]. The actual Legendrian
ΛK ⊂ J1(S2) is stabilized and appears as the restriction of an embedding
ΛK × (−ǫ, ǫ)2 → J1(S2× (−ǫ, ǫ)2) to (0, 0) ∈ (−ǫ, ǫ)2. Reeb chords are generic
and hence locally their fronts are determined by the Hessian for the function
difference of the local sheets of Reeb chord endpoints. The stabilization is con-
structed in such a way that the two eigenvalues of the Hessian of smallest norm
are positive and lie in the auxiliary direction. In Tables 2–5 the corresponding
eigendirections are denoted Auxj , j = 1, 2, the two remaining eigendirections
are denoted Realj , j = 1, 2, and we will use the following notation:

• δ, δ′, δ′′, δ0 are numbers such that 0 < δ < δ′ < δ′′ < δ0, and such that
δ, δ′, and δ′′ all approach 0 as the conormal lift of the link approaches
the 0-section.
• If λ = (λ1, . . . , λm) is a collection of paths of Lagrangian subspaces such
that the endpoint of λj is transverse to the start point of λj+1 then µ̂(λ)
denotes the Maslov index of the loop of Lagrangian subspaces obtained
by closing up the collection of paths by rotating the incoming subspace
to the outgoing one in the negative direction. Thus n + µ̂(λ) is the
index of the ∂̄-operator on the (m+ 1)-punctured disk with boundary
conditions given by λ, where n is the dimension of the Lagrangian
subspaces.
• The expressions “Coker, const” and “Ker, const” indicates that the
cokernel and the kernel of some operator can be represented by con-
stant functions, i.e., the actual kernel or cokernel functions are approx-
imately constant in the sense that they converge to constant functions
on any compact subset as the conormal of the link approaches the
0-section.

Remark 6.2. As mentioned above, after the capping operators has been de-
fined, we may disregard the auxiliary directions when studying orientations.
The reason for this is that the stabilized boundary conditions of the linearized
operator splits into real and auxiliary directions. Here the boundary conditions
in the auxiliary directions gives an operator which is an isomorphism over any
disk with one positive puncture and boundary on ΛK , the capping operators
in the auxiliary directions at all negative punctures are isomorphisms as well,
and the capping operators in the auxiliary directions at the positive puncture
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is independent of the particular puncture and has index −2 and trivial kernel.
Thus using the canonical orientation for the isomorphisms and fixing an ori-
ented basis in the cokernel in the auxiliary directions of the capping operators
at positive punctures we get induced orientations of moduli spaces of holo-
morphic disks with boundary on ΛK . If the orientation of the cokernel of the
positive capping operator is changed then the orientations of moduli spaces
changes by an overall sign. Thus, auxiliary directions affect the differential in
the Legendrian contact homology algebra of ΛK only by an overall sign. We
therefore suppress auxiliary directions in our calculations below.

6.3.2. Details for the orientation data at a chord of type S1. As indicated in
Corollary 5.14 a Reeb chord b of ΛK of type S1 can appear as a positive punc-
ture for a disk of type (QT∅) and a negative puncture for a disk of type (QT1).
Let ∂̄b+ (respectively, ∂̄b−) denote the capping operator associated to the Reeb
chord b of ΛK when it appears as a positive (respectively, negative) puncture
of the Jη-holomorphic (see Equation (5.1)) disk uη. Although as Lemma 3.7
indicates, there are many such chords of type S1, each is a parallel translate
of the other; thus, we can consider their capping operators simultaneously.

At a Reeb chord b of ΛK of type S1, ∂̄b− splits into two 1-dimensional prob-
lems. Recall that auxiliary directions are disregarded. Because the grading of
b is odd, the conventions set in [14, Subsection 3.3.6] imply one 1-dimensional
problem has index 1 with 1-dimensional kernel and the other has index −1
with 1-dimensional cokernel. This is indicated in the two left “Real” columns
at the bottom row of Table 2.

Consider first the index 1 component. This operator is an operator on a
Sobolev space of complex valued functions on the disk with one boundary
puncture. As the parameter δ′ → 0 in Table 2 we continue the operator family
continuously to the limit by introducing a small negative exponential weight
in a strip neighborhood of the puncture. In the limit, the kernel is spanned
by a constant real valued function. By continuity, it follows that solutions
near the limit are close to constant functions and in particular, the L2 pairing
with a kernel function is close to the L2-pairing of the corresponding constant
function in the limit. We thus fix an orientation of the kernel of the index
1-component of the capping operator at b by fixing a vector

vker(b) ∈ TbΛ

parallel to the direction of the knot. To see that vker(b) should be chosen
parallel to knot, note that the direction of the knot is the direction of the Bott
manifold of Reeb chords of ΛU and hence corresponds to the smaller of the
two eigenvalues of the Hessian.

Similarly, elements in the cokernel of the index −1 component are solutions
to a dual boundary value problem for the ∂-operator. The cokernel functions
converges to constant real valued functions as δ′′ → 0 and we fix an orientation
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Aux1 Aux2 Real1 Real2

Front

Lagrangian

Complex angle,
positive puncture δ δ π − δ′ π − δ′′

Complex angle,
negative puncture π − δ π − δ δ′ δ′′

Closing rotation,
positive puncture −(π − δ) −(π − δ) −δ′ −δ′′

Closing rotation,
negative puncture −δ −δ −(π − δ′) −(π − δ′′)

Capping operator,
positive puncture e−i(2π−δ)s e−i(2π−δ)s e−iδ

′s e−iδ
′′s

µ̂ = −2 µ̂ = −2 µ̂ = −1 µ̂ = −1
index = −1 index = −1 index = 0 index = 0
Coker, const Coker, const Isomorphism Isomorphism

Capping operator,
negative puncture e−iδs e−iδs eiδ

′s e−i(2π−δ
′′)s

µ̂ = −1 µ̂ = −1 µ̂ = 0 µ̂ = −2
index = 0 index = 0 index = 1 index = −1

Isomorphism Isomorphism Ker, const Coker, const

Table 2. Capping operator at a chord of type S1. The direc-
tion corresponding to the angle δ′ is along the flow line in the
direction of the unknot parameter. The direction corresponding
to the angle δ′′ is the direction of the fiber of the conormal bun-
dle.

in the cokernel by fixing a vector

vcoker(b) ∈ TbΛ,
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Aux1 Aux2 Real1 Real2

Front

Lagrangian

Complex angle,
negative puncture π − δ π − δ π − δ′ δ′′

Closing rotation,
negative puncture −δ −δ −δ′ −(π − δ′′)

Capping operator,
negative puncture e−iδs e−iδs e−iδ

′s eiδ
′′s

µ̂ = −1 µ̂ = −1 µ̂ = −1 µ̂ = 0
index = 0 index = 0 index = 0 index = 1

Isomorphism Isomorphism Isomorphism Ker, const

Table 3. Local data at a chord of type S0.

perpendicular to the direction of the knot, which is the direction corresponding
to the positive eigenvalue of the Hessian along the Bott manifold of Reeb chords
of ΛU and hence correspond to the largest eigenvalue after perturbation. The
basis (

vcoker(b), vker(b)
)

determines the orientation of the operator ∂̄b− , and constant functions with
values in the lines spanned by the basis vectors are approximate solutions.

When b appears as a negative puncture, we see from its parity and the
conventions of [14, Subsection 3.3.6] that both the kernel and cokernel are
trivial.

6.3.3. Orientation data at a chord of type S0,L1 or L2. The discussion for the
other types of chords is similar to that of chords of type S1 in Section 6.3.2,
so we discuss them only briefly here. Recall that while a chord of type L1 can
appear as a positive or negative puncture, chords of the other two types only
occur as punctures of one sign.

A Reeb chord a of ΛK of type S0 has even parity and only appears as a
negative puncture. Thus, as indicated in Table 3, the capping operator ∂̄a−
splits into two 1-dimensional problems, one of index 0 which is an isomorphism
and one of index 1 with 1-dimensional kernel. As in Section 6.3.2 the kernel
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Aux1 Aux2 Real1 Real2

Front

Lagrangian

Complex angle,
positive puncture δ δ δ′ π − δ0

Complex angle,
negative puncture π − δ π − δ π − δ′ δ0

Closing rotation,
positive puncture −(π − δ) −(π − δ) −(π − δ′) −δ0

Closing rotation,
negative puncture −δ −δ −δ′ −(π − δ0)

Capping operator,
positive puncture e−i(2π−δ)s e−i(2π−δ)s e−i(π−δ

′)s e−iδ0s

µ̂ = −2 µ̂ = −2 µ̂ = −1 µ̂ = −1
index = −1 index = −1 index = 0 index = 0
Coker, const Coker, const Isomorphism Isomorphism

Capping operator,
negative puncture e−iδs e−iδs e−i(π+δ

′)s eiδ0s

µ̂ = −1 µ̂ = −1 µ̂ = −2 µ̂ = 0
index = 0 index = 0 index = −1 index = 1

Isomorphism Isomorphism Coker, const Ker, const

Table 4. Capping operator at a chord of type L1. The direction
corresponding to δ′ is along the equator (along the parameter of
the unknot). The direction corresponding to δ0 is perpendicular
to the equator (along the fiber).

functions of the index 1 component are approximately constant and we fix an
orientation of the capping operator by fixing a vector

vker(a) ∈ TaΛ
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Aux1 Aux2 Real1 Real2

Front

Lagrangian

Complex angle,
positive puncture δ δ π − δ′ π − δ0

Closing rotation,
positive puncture −(π − δ) −(π − δ) −δ′ −δ0

Capping operator,
positive puncture e−i(2π−δ)s e−i(2π−δ)s e−iδ

′s e−i(π+δ0)s

µ̂ = −2 µ̂ = −2 µ̂ = −1 µ̂ = −2
index = −1 index = −1 index = 0 index = −1
Coker, const Coker, const Isomorphism Coker, const

Table 5. Capping operator at a chord of type L2. The direction
of δ′ is along the equator. The direction of δ0 perpendicular to
it.

perpendicular to the direction of the knot. We can assume vker(a) is perpen-
dicular to the knot because the second real coordinate (the last column in
Table 3) represents the unstable manifold of a, thought of as a braid saddle
point. Constant functions with values in the line spanned by this vector are
approximate solutions of ∂̄a− .

Noting the parity of the grading of a chord c of type L1 and a chord e of
type L2, the conventions of [14, Subsection 3.3.6] imply the two capping oper-
ators each split into two 1-dimensional problems with kernels and cokernels as
indicated in Tables 4 and 5. As above, we fix orientations on these problems
by fixing vectors vker(c), vcoker(c) and vcoker(e).

6.4. Signs in the unknot differential—proof of Theorem 4.6. Fix the
Lie group spin structure on Λ. The corresponding trivialization of TΛ is then
the canonical trivialization of the tangent bundle of the 2-torus coming from
the identification T 2 = R2/Z2. Here, we take coordinates on Λ as described in
Section 4.

Recall for the unknot there are four rigid flow trees IN , IS, YN , and YS
with one puncture which is at c that contribute to ∂c, and there are two rigid
strips with positive puncture at e and negative puncture at c. Consequently,
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by Lemma 5.1, for σ > 0 sufficiently small there are four corresponding rigid
holomorphic disks with positive puncture at c and two corresponding rigid
holomorphic strips E1 and E2 connecting e to c. We next compute their signs.

Theorem 6.3. For any choice of basic orientations there is a choice of capping
operator at c such that the signs of the rigid disks satisfies

ǫ(IS) = ǫ(IN) = ǫ(YS) = ǫ(YN ) = 1,

ǫ(E1) = −ǫ(E2).

Proof. We first show that ǫ(IS) = ǫ(IN ). To this end consider a geodesic
arc in S2 which passes through Π(c) and which contains both poles. Let x1
be a coordinate along this arc with Π(c) corresponding to 0 and let x2 be a
coordinate perpendicular to the arc. Then {x = (x1, x2) : |x1| ≤ π + δ, |x2| <
δ} parametrizes a disk D in S2 and we find a complex trivialization of the
tangent bundle of T (T ∗S2) over D by noting that the metric is flat and using
coordinates (x+ iy).

Let ∂̄c denote the positive capping operator at c, let ∂̄I denote the linearized
boundary condition of any one of the four disks with positive puncture at c,

and let Î denote the problem on the closed disk obtained by gluing these two.
Then the following gluing sequence is used to orient moduli spaces:

0 −−−→ ker(∂Î) −−−→ ker(∂̄I) −−−→ 0,

see [14, Equation (3.17)] and Table 4. Note first that the trivialized boundary
conditions of IN and IS agree. The signs of the disks are then obtained by
comparing the oriented kernel of ∂̄I with the orientation induced by conformal
automorphism. Note furthermore that if u : ∆1 → T ∗S2 is a parametrization of
IN then −u parametrizes IS, where −(x+ iy) = (−x− iy) in the coordinates
discussed above. Since the automorphism group of ∆1 is 2-dimensional the
signs of the two disks agree, ǫ(IN) = ǫ(IS). An identical argument shows that
ǫ(YN) = ǫ(YS).

After noting that the orientation of the capping operator at c determines
the sign in the orienting isomorphism above, it remains only to show that
ǫ(IN ) = ǫ(YN ) to complete the proof of the first equation. To this end we
compare the boundary condition of ∂̄IN and ∂̄YN . Note that the boundary
conditions of the disks are arbitrarily close to the boundary conditions of the
corresponding trees and that the trees IN and YN are identical except near the
north pole, (x1, x2) = (π, 0). Using the trivialization (over the disk D above)
of the (x + iy)-coordinates around the north pole, the Lie group spin of the
torus Λ is (∂s, ∂t) and induces the trivialized boundary condition

(cos t ∂x1 + sin t ∂x2 , − sin t ∂y1 + cos t ∂y2)

on the IN -disk and

(cos t ∂x1 − sin t ∂x2 , sin t ∂y1 + cos t ∂y1)

on the YN -disk.
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Now, the homotopy of Lagrangian boundary conditions which are given by
acting by the complex matrix

(
1 0
0 eiθ

)
, 0 ≤ θ ≤ π

takes one trivialization to the other and we conclude that multiplication by
the matrix at θ = π takes the positively oriented kernel of ∂̄IN to that of ∂̄YN .
Comparing this orientation to the orientation induced by source isomorphisms,
for example by evaluation at a point where the disks agree, we find that the
signs of the two disks agree.

The argument for finding signs of the two disks E1 and E2 is similar to the
above arguments: both disks come from flow lines and their boundary con-
ditions are identical. Again the disks are related by multiplication by −1 in
suitable coordinates. Here however, the kernel of the linearized operator and
the automorphism group are both 1-dimensional and it follows that multipli-
cation by −1 reverses orientation. The lemma follows. �

In our computations of the signs for the differential in the Legendrian al-
gebra of ΛK we will use the capping operators of chords of type L2 and L1

which correspond to the capping operators of e and c, respectively, for which
Lemma 6.3 holds.

6.5. Conformal structures. Conformal parameters for flow trees are best
represented as moving boundary minima in standard domains, see Section 5.3.1.
In the general orientation scheme of [14] the space of conformal structures was
represented as the location of boundary punctures on the unit disk in the
complex plane. The main purpose of this section is to relate these two repre-
sentations in order to allow for the representation best adapted to trees to be
used in computations.

Consider first the representation of conformal structures Cm, used in [14],
on the (unit) disk Dm in C with m ≥ 3 boundary punctures p0, . . . , pm−1.
Recall punctures are ordered counter-clockwise. Fix the (distinguished) punc-
ture p0 at 1, p1 at i, and pm−1 at −i. Then the locations of the remaining
punctures in the boundary arc between i and −i determine the conformal
structure uniquely. Thus the space Cm of conformal structures on the disk
with m boundary punctures on, one of which is distinguished, is an (m − 3)-
dimensional simplex. We write bj for the tangent vector that corresponds to
moving the jth puncture pj in the positive direction and keeping all other
punctures fixed. Then b2, . . . , bm−2 is a basis in TCm.

Consider second the representation of Cm using standard domains ∆m. Re-
call that a standard domain is a strip with slits of fixed width, that a standard
domain determines a conformal structure on the disk with m boundary punc-
tures, and that two standard domains determine the same conformal structure
if and only if they differ by an overall translation. Assume that m > 3 and
let tj ∈ TCm denote the tangent vector which is the first order variation that
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corresponds to moving the jth boundary minimum toward −∞ and keeping
all other boundary minima fixed.

Lemma 6.4. Let m > 3. Then

tj =

j∑

k=2

ξkbk +
m−2∑

k=j+1

ηkbk ∈ TCm,

where ξk > 0, k = 2, . . . , j and ηk < 0, k = j +1, . . . , m− 2. In particular, we
can represent TCm as the vector space generated by t1, . . . , tm−2 divided by the
1-dimensional subspace generated by the vector

t1 + t2 + · · ·+ tm−2,

and the orientation given by the basis b2, . . . , bm agrees with that induced by
t2, . . . , tm.

Proof. Consider the map which takes a neighborhood of +∞ in an infinite
strip to a neighborhood of the origin in the upper half plane:

w = −e−πz.
Under such a change of coordinates the vector field 1 on the w-plane corre-
sponds to the vector field π−1eπz on the strip since

1 =

(
dw

dz

)
π−1eπz.

Let H−δ;k denote the Sobolev space of vector fields along ∆m which are
tangent to ∆m along the boundary and with a small negative weight at each
puncture, i.e., a weight function of the form e−δ|τ | in a strip region, τ + it ∈
[0,∞)× [0, 1] or τ + it ∈ (−∞, 0] × [0, 1], and with k derivatives in L2. The
∂̄-operator ∂̄ : H−δ;k → H−δ;k−1 has index

1− (m− 2) = −(m− 3),

where 1 = dim(R) and −(m−2) is the Maslov index of the boundary condition
with a negative half turn at each boundary minimum. The exact degree of
regularity of the vector fields we use will be of no importance and we will be
dropped from the notation. Let b′j denote cut-off versions of the vector fields

eπz supported in the jth strip end. Then we can think of TCm as the quotient
space

∂̄(H−δ ⊕ 〈b′2, . . . , b′m−2〉)/∂̄(H−δ)

In this setting, we can interpret tj as follows, see [8, Section 2.1.1]. Consider
∆m ⊂ C and let z = x + iy be the standard complex coordinate on C. Let
Tj denote a vector field on C supported in a small ball Br centered at the jth

boundary minimum and equal to −∂x in Br/2 and tangent to the boundary of
∆m in Br−Br/2. The conformal variation tj is then represented by ∂̄Tj ∈ H−δ.
(To see this, linearize the comparison of conformal structures, κ and dφ−1κdφ
where φ : ∆m → ∆m is a small diffeomorphism associated to the vector field
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Tj , To first order, dφ−1κdφ ≈ κ+κ∂̄Tj .) Because {∂b̄′k}k spans the cokernel of
∂,̄

∂̄Tj =

m−2∑

k=2

αk(∂̄b
′
k) + ∂̄v,

for some v ∈ H−δ and real constants α2, . . . , αm−2. We first show that αk 6= 0,
k = 2, . . . , m−2. Define the vector field w : ∆m → C as w = Tj−

∑
k αkb

′
k−v.

Then w satisfies a Lagrangian boundary condition of Maslov index −(m− 3)
and lies in a Sobolev space with exponential weight −δ in the strip like end
around the puncture at −∞, at the first and last punctures at +∞, and at all
punctures for which αk = 0, at punctures where αk 6= 0 the weight is −π − δ.
If the number of punctures with αk = 0 is N then the index of the ∂̄-operator
on the Sobolev space with Lagrangian boundary condition and weights as just
explained equals

index(∂̄) = 1− (m− 3) + (m− 3−N) = 1−N.
Note that w 6= 0 since Tj is not tangent at the boundary while v+

∑m−2
k=2 αkb

′
k

is tangent. Since ∂̄w = 0 and w 6= 0, it follows by automatic transversality in
dimension 1 (i.e., the argument principle) that N = 0, i.e., αk 6= 0, all k.

To determine the signs in the expression for tj, consider the limit as the
shift of the boundary minimum goes to −∞. In this limit the disk ∆m splits
into three components: a three punctured disk containing the puncture at
−∞ and two punctures at +∞ where two standard domains ∆m′ and ∆m′′

are attached. We choose notation so that the punctures in ∆m at +∞ to the
left of the moving slit ends up in ∆m′ and those to the right in ∆m′′ . From
the point of view of the representations of conformal structures via boundary
punctures on the closed disk, the punctures in ∆m′ collides at −1 and those
in ∆m′′ collides at 1. As the coefficients αk, k = 2, . . . , m− 2 are non-zero for
the infinitesimal deformation tj at each instance of this total deformation it
follows that αk > 0 for k < j and αk < 0 for k ≥ j. �

Remark 6.5. Lemma 6.4 also has an intuitive justification using harmonic mea-
sure. Suppose the conformal structure changes by slightly decreasing the jth

boundary minimum. Then the harmonic measure of the jth slit (the proba-
bility of a Brownian motion particle first hitting the boundary of ∆m at that
slit) increases while the measures of all other boundary components decrease.
Harmonic measure is preserved under a conformal map from ∆m to Dm. Thus,
the corresponding changes in measures of the boundary arcs of Dm can only
occur if puncture pi moves in the negative direction for i = 2, . . . j and the
positive direction for i = j + 1, . . . , m− 2.

6.6. Signs of rigid quantum flow trees—proof of Theorem 4.6. In this
subsection we compute the signs of rigid quantum flow trees determined by
ΛK ⊂ J1(S2) and thereby prove Theorem 4.6. Recall from Corollary 5.14 that
there are four types of rigid quantum flow trees: (QT∅), (QT0), (QT′

0) and
(QT1). We will consider each case separately.
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Let A denote the Lagrangian boundary condition, suppressing auxiliary di-
rections, on the domain ∆m of the linearized ∂̄-problem corresponding to the
Jη-holomorphic disk uη. Recall that we think of η > 0 as small, see Equa-
tion (5.1). As in [13, Section 6], we must close up the boundary conditions
at each puncture using a “negative J-twist.” This is illustrated in Tables 2–5
under the “Closing rotation” row(s). Note that this may contribute to the

index of ∂̄A. Let ∂̄A denote the linearized problem with this boundary. Let Â
denote the boundary condition after adding the appropriate capping opera-
tors. Define ∂̄Â similarly. For each of the four cases above, we must compute
the exact sequence [14, Equation 3.17].

6.6.1. The sign of a quantum flow tree of type (QT∅). A rigid holomorphic
disk near the limit in a neighborhood of a quantum flow tree of type (QT∅)
lies in a small neighborhood of a rigid flow tree in Λ ⊂ J1(S2) determined
by ΛK . Let Γ be such a rigid flow tree with positive puncture b and negative
punctures a1, . . . , am−1. Recall that, since the front of ΛK ⊂ J1(Λ) has no
singularities, all vertices of such a rigid tree are trivalent Y0-vertices except for
1-valent vertices at Reeb chords. Let t1, . . . , tm−2 denote the trivalent vertices
of Γ. Note that each trivalent vertex corresponds to a boundary minimum in
the domain ∆m of the holomorphic disks uη which corresponds to Γ for small η.
We number the trivalent vertices according to the order of the corresponding
boundary minima in the vertical direction of the complex plane. We write τj
for the boundary minimum corresponding to the trivalent vertex tj.

Lemma 6.6. There exists a choice of basic complex orientation oC such that
if η > 0 is sufficiently small and if uη is a rigid holomorphic disk in a neigh-
borhood of the rigid flow tree Γ then the sign of uη is given by

ǫ(uη) = ǫ(Γ) = σpos(Γ)σ(n,Γ),

where n = vcoker(b), see Section 3.4.4 for notation.

Proof. Since η is small, uη lies close to Γ. Using the trivialization of T (T ∗S2)
in a neighborhood of Λ induced by the trivialization of T (T ∗Λ), the boundary
condition A is very close to constant R2 boundary conditions (for C2-valued
vector fields) on ∆m. For such disks with m punctures, using closing rotation
angles from Tables 2 and 3, we compute

index(∂̄A) = µ(A) + 2 = (m− 1)× (−1) + 1× 0 + 2 = −(m− 3).

Adding capping operators at the punctures to A, see Table 2 for the positive
puncture and Table 3 for the negative punctures, we get a boundary condition
Â on the closed disk which also has boundary conditions very close to constant.
It follows that ker(∂̄Â) is 2-dimensional with kernel spanned by almost constant
sections, and that coker(∂̄Â) is 0-dimensional. By definition of the canonical
orientation, see Section 6.2, the positive orientation of the determinant of ∂̄Â is
represented by a basis of its kernel which converges to constant solutions that
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form a positively oriented basis of TΛ (and a positive sign on its 0-dimensional
cokernel).

Consider first the case m = 2. In this case the tree is simply a flow line,
the operator ∂̄A has index 1 and 1-dimensional kernel spanned by an almost
constant solution that converges to vflow(Γ) as η → 0, see Section 3.4.4 for
notation. The exact gluing sequence that determines the orientation is then,
see [14, Equation (3.17)],

0 −−−→ ker(∂̄Â) −−−→ ker(∂̄a1−)⊕ ker(∂̄A) −−−→ 0,

Here ker(∂̄a1−) is spanned by an approximately constant section which con-
verges to vker(a1), which is perpendicular to Γ, see Table 3. It follows that the
sign of the disk agrees with the orientation sign of the basis (vker(a1), v

flow(Γ))
of TΛ, where vflow(Γ) is the vector field induced by the automorphism of the
strip, times the sign of the determinant of the capping operator of a positive
puncture at b, which is an isomorphism.

Gluing the positive and negative capping operators ∂̄b+ and ∂̄b− at b gives
an operator ∂̄b0 of index 0 with dim(ker∂̄b0) = dim(coker(∂̄b0)) = 1. Here
the kernel is spanned by the constant solution vker(b) and the cokernel by
the constant solution vcoker(b) of the dual problem. Note that the canonical
orientation of det(∂̄b0) changes with oC. Choose oC so that vker(b) ∧ vcoker(b)
represents the positive orientation of det(∂̄b0) if (v

coker(b), vker(b)) is a positively
oriented basis of TΛ. Then the sign of the disk can be expressed as

sign
(
〈vflow(Γ), vker(b)〉 · 〈vker(a), vcoker(b)〉

)
= σpos(Γ)σ(n,Γ)

as claimed.
Consider the case m ≥ 3. Here the exact gluing sequence that gives the

orientation is

(6.1) 0 −−−→ ker(∂̄Â)
α−−−→ ker(∂̄−)

β−−−→ coker(∂̄A) −−−→ 0,

where we write

∂̄− = ⊕m−1
j=1 ∂̄aj−.

Since uη is a rigid disk and index(∂̄A) = −(m−3), we get that dim(coker(∂̄A)) =
m−3, and that coker(∂̄A) is spanned by linearized conformal variations which
we represent as motion of the boundary minima in the domain, see Lemma 6.4.
Here ker(∂̄Â) is endowed with the canonical orientation and ker(∂̄−) with the
orientation from capping operators. The sequence then induces an orientation
on coker(∂̄A) which gives a sign when compared to the orientation induced
from the space of conformal variations, as indicated in [14, Remark 3.18].

Applying Lemma 3.1 and Remark 3.3 of [14], the map α is defined as follows.
An element in ker(∂̄aj−) is a solution of the ∂̄-equation with boundary condition
given by the negative capping operator at aj. This solution is cut off and
thereby defines an element in the space of sections over the closed disk. In this
way, we identify ker(∂̄−) with an (m− 1)-dimensional subspace of the domain
of the operator ∂̄Â. The map α is then given by L2-projection of ker(∂̄Â) to
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this subspace. Likewise, we identify coker(∂̄A) with a subspace of the target
space of ∂̄Â by cutting off solutions of the dual problem and define the map β
as ∂̄Â followed by L2 projection.

The boundary condition of uη is very close to constant R2 boundary condi-
tions and the complex (Kähler) angles at the punctures are close to either 0
or π. Thus there is a deformation of ∂̄A which takes the boundary conditions
to constant R2 boundary conditions and which introduces a small negative
exponential weight where the complex angle is close to 0 and a small positive
exponential weight where it is close to π, which is sufficiently small so that the
kernel and cokernel of ∂̄A undergoes a continuous deformation (in particular
dimensions of kernel and cokernel do not change). The capping operators can
be deformed accordingly. We will use these deformed operators to determine
the sign in the gluing sequence above. For simplicity, we will keep the notation
∂̄A and ∂̄Â for the deformed operators.

We next introduce notation for parts of the tree Γ as well as for correspond-
ing parts of the domain ∆m. We write Eij for the edge connecting the ith

trivalent vertex ti to the jth, tj , and Rij for the (finite) strip region in ∆m

corresponding to Eij , where we think of the boundary of Rij as vertical line
segments located below the ith boundary minimum τi and above the jth, τj .
We write E0 for the edge ending at the positive puncture and we take R0 to
be the half strip with a slit in ∆m with boundary given by the two vertical
segments bounding Rji and Rji′, where τj is the minimal boundary minimum.
We write El, l = 1, . . . , m− 1 for edges that end at negative punctures and Rl

for the the corresponding half infinite strip which is a neighborhood of the lth

negative puncture in ∆m.
Then

∆m −
(
⋃

Ei⊂Γ

Ri ∪
⋃

Eik⊂Γ, i<k

Rik

)

is a disjoint union ⋃

1≤i≤m−2, i 6=j
Vi,

where Vi is a neighborhood of τi. Consider the vertical segment l through τi.
The boundary ∂l of l lies in the boundary of ∆m, if the boundary segment
containing the lower endpoint of l lies in the lower boundary on ∆m we define
i− = 0 and if it lies on a boundary segment containing τk we define i− = k.
Likewise, if the upper endpoint lies in the upper boundary segment of ∆m then
we define i+ = m − 1 and if it lies in a boundary segment containing τk′ we
define i+ = k′. Note that i− < i < i+.

In order to deal with coker(∂̄A), we introduce below the space Vcon of con-
formal variations of ∆m. Write ṽconi for the conformal variation supported in

Vi. Then ∂̄A(ṽ
con
i ) = duη(∂̄(∂̃τ )), where ∂̃τ is a cut-off of the constant vec-

tor field ∂τ supported in Vi. See Section 6.5. Thus, as η → 0, ∂̄A(ṽ
con
i ) is

supported in three rectangular regions Ri
s, s = 0, 1, 2, containing the vertical
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segments in the boundary ∂Vi and lying in the strip regions corresponding
to the incoming edge Ei

0 and the outgoing edges Ei
1 and Ei

2, respectively, at
ti. Then in Ri

s, s = 0, 1, 2, ∂̄A(ṽ
con
i ) approaches ∂̄T is , where ∂̄T

i
s is a cut-off

constant vector field tangent to Ei
s, s = 0, 1, 2, directed towards the positive

puncture. For the purpose of calculating signs we thus replace ṽconi with vconi

where ∂̄Av
con
i = ∂̄(T i0 + T i1 + T i2) and think of Vcon as the vector space spanned

by the m− 3 conformal variations vconi , i 6= j.
Let HA and H′

A (respectively HÂ and H′
Â
) denote the spaces of vector fields

on the closed disk D (respectively the punctured disk ∆m) which are the
domain and target, respectively, of ∂̄A (respectively of ∂̄Â). Recall that

∂̄A : HA ⊕ Vcon → H′
A

is an isomorphism because ker(∂̄A) is trivial and coker(∂̄A) is mapped onto
by ∂̄A(Vcon). Viewing ∆m as a subset of D, we define ∂̄Â(v

con
i ) = ∂̄A(v

con
i ) for

vconi ∈ Vcon and write

∂̄Â, con : HÂ ⊕ Vcon →H′
Â

for the operator with extended domain. Then ∂̄Â, con is an operator of index

2 + (m− 3) which has a (m− 1)-dimensional kernel.
We will define a map ψ : Vcon → ker(∂̄−) such that β ◦ψ : Vcon → coker(∂̄A),

see Equation (6.1), is an isomorphism which induces the same orientation on
coker(∂̄A) as the isomorphism ∂̄A : Vcon → coker(∂̄A). It then follows that the
sign of the disk uη equals the sign of the determinant of the isomorphism

ker(∂̄Â, con) ≈ ker(∂̄Â)⊕ Vcon
α+ψ−−−→ ker(∂̄−),

between oriented vector spaces, where α is as in Equation (6.1). To finish
the proof we must thus first define ψ and then compute α and the resulting
determinant.

We introduce certain vector fields on ∆m which are supported in neighbor-
hoods of the strip regions of the form Rl or Rlk in ∆m associated to edges in
Γ as explained above. We will call these vector fields edge solutions. More
precisely, we take n1

0 and n2
0 to be constant sections supported in R0, cut off

in a neighborhood of its boundary where n1
0 is tangent to the second outgoing

edge at tj and n
2
0 tangent to the first, see Figure 25.

Along edges Eik (respectively Ei) we define two cut-off constant vector fields:
νik (respectively wi) perpendicular to the edge and ζik (respectively ζi) tan-
gent to the edge. Here ζik (resp. ζi) has support in a neighborhood of Rik

(respectively Ri), whereas νik (respectively wi) has support in a neighborhood
of Ri ∪ Vi, see Figure 26. We call νik, ζik, and ζi interior edge solutions and
wi exterior edge solutions.

Furthermore, we assume that the elements vconi ∈ Vcon are chosen in such a
way that the following holds: in any component C of the support of ∂̄Av

con
i

lying in an edge region Rlk or Rl the corresponding edge solution ζlk (or ζl)
satisfies the matching condition ∂̄Aζlk = ∂̄Av

con
i (or ∂̄Aζl = ∂̄Av

con
i ).
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τj

supp(nk0), k = 1, 2

tj
n2
0

n1
0

Γ2

Γ1

Γ

Figure 25. Vector fields supported in R0.

supp(ζik)

supp(wi)

τi

τk

ai

Figure 26. Supports of edge solutions.

We can now say that the (m+1)-dimensional kernel of ∂̄Â, con is spanned by
m+ 1 linear independent sections

κ10 = n1
0 + (w1 + · · ·+ wj) + E1

j ,

κ20 = n2
0 + (wj+1 + · · ·+ wm) + E2

j ,

κi = (−(wi−+1 + · · ·+ wi) + (wi+1 + · · ·+ wi+))

− σn1
0,Γ

1(ti)v
con
i + Ei, 1 ≤ i ≤ j − 1,

κi = (−(wi−+1 + · · ·+ wi) + (wi+1 + · · ·+ wi+))

− σn2
0,Γ

2(ti)v
con
i + Ei, j + 1 ≤ i ≤ m− 1,
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where Γ1 and Γ2 are the partial flow trees obtained by cutting Γ at the first
and second outgoing edge at tj , respectively, and where σn,Γ is as in Equa-
tion (3.10). Here Ei, i 6= j (resp. Eα

j , α = 1, 2) are some linear combinations
of interior edge solutions and conformal variations, respectively, that are sup-
ported in the component of ∆m − s, where s the vertical segment through τi
(resp. τj), that contains punctures at +∞, see Figure 27. (The matching con-
ditions for edge solutions imply that linear combinations Ei and Eα

j , α = 1, 2,

exists so that the sections indeed lie in ker(∂̄Â, con.)

tk

supp(Ek)

τk

Ek supported here

Figure 27. Support of additional interior edge solutions.

Using these equations we define the map ψ as follows:

ψ(vi) = σns
0,Γ

s(ti)(−(wi−+1 + · · ·+ wi) + (wi+1 + · · ·+ wi+) + Ei),

where s = 1 if i < j and s = 2 if i > j. Since ∂̄κi = 0 we have, by construction
of κi, ∂̄ψ(vi) = ∂̄vi. By definition, the orientation on coker(∂̄A) induced by
conformal variations is given by L2-projection of ∂̄A(Vcon) (with orientation on
Vcon as in Section 6.5). Thus β◦ψ induces the correct orientation on coker(∂̄A).

In order to compute the sign we first note that the projection of the subspace
spanned by κ1, . . . κj−1, κj+1, . . . , κm−3 to Vcon is an isomorphism and that the
map from its complement spanned by κ10, κ

2
0 given by evaluation at the positive

puncture gives an isomorphism to ker(∂̄Â) which consists of constant solutions.
It follows that the sign of the rigid disk uη is given by

ǫ(uη) = s1s2s3,

where sk, k = 1, 2, 3 are as follows. First, s1 equals the sign of the orientation
given by

ξ10 ∧ ξ20 ∧ ξ1 ∧ · · · ∧ ξj−1 ∧ ξj+1 ∧ ξm−2



112 T. EKHOLM, J. ETNYRE, L. NG, AND M. SULLIVAN

on ker(∂̄−) where

ξ10 = w1 + · · ·+ wj,

ξ20 = wj+1 + · · ·+ wm−1,

ξ1 = −w1 + (w2 + · · ·+ w1+),

ξ2 = −(w2−+1 + w2) + (w3 + · · ·+ w2+),

...

ξj−1 = −(w(j−1)−+1 + · · ·+ wj−1) + wj ,

ξj+1 = −(wj+1) + (wj+2 + · · ·+ w(j+1)+),

...

ξm−1 = −(w(m−2)−+1 + · · ·+ wm−2) + wm−1.

Second, s2 equals the sign of the orientation on Vcon given by

(σn1
0,Γ

1(t1)v
con
1 ) ∧ · · · ∧ (σn1

0,Γ
1(tj−1)v

con
j−1)∧

(σn2
0,Γ

2(tj+1)v
con
j+1) ∧ · · · ∧ (σn2

0,Γ
2(tm−2)v

con
m−2).

Third, s3 equals the sign of the orientation on ker(∂Â) given by

n̄1
0 ∧ n̄2

0,

where n̄s0 is a constant solution agreeing with ns0 in the region where ns0 is
constant, s = 1, 2.

We have

ξ10 ∧ ξ20 ∧ ξ1 ∧ · · · ∧ ξj−1 ∧ ξj+1 ∧ ξm−2

= (−1)j−1ξ10 ∧ ξ1 ∧ · · · ∧ ξj−1 ∧ ξ20 ∧ ξj+1 ∧ ξm−2

= (−1)j−1w1 ∧ · · · ∧ wm−1

= (−1)j−1 Πm−1
s=1 〈ws, vker(as)〉 vker(a1) ∧ · · · ∧ vker(am−1),

and thus

s1 = (−1)j−1 Πm−1
s=1 〈ws, vker(as)〉.

Next,

v1 ∧ · · · ∧ vj−1 ∧ vj+1 ∧ · · · ∧ vm−2 = (−1)j−1∂q3 ∧ · · · ∧ ∂qm ,
by Lemma 6.4, where ∂q3 ∧ · · · ∧ ∂qm is the standard orientation of Cm cor-
responding to moving the last m − 3 punctures counter clockwise along the
boundary of the disk, and thus

s2 = (−1)j−1 Πj−1
s=1σn1

0,Γ
1(ts) Π

m−1
s=j+1σn2

0,Γ
2(ts).

Finally, recall that oC was chosen so that vcoker(b) ∧ vker(b) represents the
positive orientation on TΛ. Since vker(b) is parallel to the vector vcon(tj) related
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to the conformal variation at τj , we find that

n̄1
0 ∧ n̄2

0 = (n1
0 + n2

0) ∧ (−n1
0 + n2

0)

= 〈(n1
0 + n2

0), v
coker(b)〉〈(−n1

0 + n2
0), v

ker(b)〉 vcoker(b) ∧ vker(b)
= 〈(n1

0 + n2
0), v

coker(b)〉σ(tj)〈vflowΓ , vker(b)〉 vcoker(b) ∧ vker(b).
Thus, if n1

0 and n2
0 are the vector splittings of vcoker(b) then s3 = σ(tj), and

s1s2s3 = σpos(Γ)σ(n,Γ).

�

6.6.2. The sign of a quantum flow tree of type (QT′
0). Let Ξ be a quantum flow

tree whose big disk part is a rigid strip Θ. Assume that Ξ has m punctures.
Let e denote its positive puncture (a Reeb chord of type L2), let c denote its
negative puncture (of type L1) and denote remaining punctures by a1, . . . , am−2

(all of type S0). It then follows that Θ is a strip with positive puncture at a
Reeb chord of Λ close to e and negative puncture at a Reeb chord of Λ close to
c. Let t1, . . . , tm−1 denote the junction points (i.e., the points on the boundary
of Θ where trees are attached) and the trivalent vertices in the trees attached.
Then each tj corresponds to a unique boundary minimum τj in the domain
∆m of a holomorphic disk uη corresponding to η and we number the points
tj according to the vertical coordinate of the boundary minima τj in ∆m. We
write I for the set of junction points of Ξ and for tj ∈ I we write Γj for the
tree attached at tj and nj for the vector at tj which is tangent to the boundary
of Θ and points toward the positive puncture e.

Lemma 6.7. The sign of the rigid disk uη corresponding to Ξ is given by

ǫ(uη) = ǫ(Ξ) = ǫ(Θ)Πtj∈I σ(nj,Γj),

see Sections 3.4.4 and 4.3 for notation.

Proof. Consider first the casem = 2, i.e., when there are no flow trees attached
to the disk. In this case the linearized operator ∂̄A as well as the capping oper-
ators are small deformations of the linearized operator and capping operators
of the corresponding disk with boundary on Λ. It follows that the signs of the
two disks agree and hence ǫ(uη) = ǫ(Θ) as claimed.

In order to prepare for the case m > 2 we write down the gluing sequence for
m = 2, see [14, Equation (3.17)], that gives the sign explicitly. Using Tables 3,
4 (as a negative puncture) and 5 we have

0 −−−→ ker(∂̄c−)⊕ ker(∂̄A)
β−−−→ coker(∂̄e+)⊕ coker(∂̄c−) −−−→ 0,

where we use the fact that the glued operator ∂̄Â is an isomorphism. (To see
this note that ∂Â splits into a direct sum of two 1-dimensional operators both
of index 0.)

Noting that the boundary conditions of ∂̄A are close to R2 conditions we de-
form them to constant R2 boundary conditions inserting weights as determined



114 T. EKHOLM, J. ETNYRE, L. NG, AND M. SULLIVAN

by the complex angles, exactly as in the proof of Lemma 6.6. The solutions
in the above sequence can then be thought of as cut-off constant solutions
(which may be extended on a sufficiently large domain so that the supports of
vker(c−) and vcoker(e+) overlap in order for the sequence to be exact) and the
sign is given by

ǫ(uη) = ǫ(Γ) = 〈vker(c), vcoker(e)〉 〈vflow(Γ), vcoker(c)〉.
Consider next the case m > 2. As above we use the associated weighted

problem corresponding to A with constant boundary conditions and expo-
nential weights. Again ∂̄Â is an isomorphism and the gluing sequence which
determines the sign is

0→ ker(∂̄−)⊕ ker(∂̄c−)→ ⊕coker(∂̄e+)⊕ coker(∂̄c−)⊕ coker(∂̄A)→ 0,

where ker(∂̄−) =
⊕m−2

j=1 ker(∂̄aj−) is spanned by cut off (constant) solutions of

the capping operators at the negative punctures a1, . . . , am−2, where ker(∂̄c−)
and coker(∂̄e+) are as above, where the orientation of ker(∂̄−) ⊕ ker(∂̄c−) is
induced by the order of the punctures, and where coker(∂̄A) is equipped with
the orientation induced by the space of conformal variations of ∆m.

As in the proof of Lemma 6.6 we stabilize the operator ∂̄Â by adding the
finite dimensional space Vcon spanned by conformal variations supported near
all boundary minima except τr, where we take τr to be the boundary mini-
mum corresponding to the junction point tr immediately following the negative
puncture c, or if there is no junction point after c, the junction point tr im-
mediately preceding c. Here the conformal variation vconj near a boundary
minimum τj such that tj /∈ I is defined exactly as the elements of Vcon in the
proof of Lemma 6.6. Conformal variations supported near boundary minima

τi with ti ∈ I have the form ∂̄A(ṽ
con
i ) = duη(∂̄(∂̃τ )), where ∂̃τ is a cut-off of

the vector field ∂τ in the domain of the holomorphic disk part of Γ which
is tangent to the boundary and directed towards the positive puncture and
continued constantly into the domain corresponding to the tree attached, see
Figure 28. As η → 0, ∂̄Aṽ

con
j converges to a ∂̄ṽflow in the part of the domain

corresponding to the holomorphic disk part of Γ, where ṽflow is a cut-off of the
constant vector field vflow pointing toward the positive puncture, and to ñi in
the part of the domain corresponding to the tree (near the junction point),
where ñi is a cut-off of the constant vector field ni. In analogy with vconj for

tj /∈ I, we define vconi for the deformed boundary conditions so that ∂̄Av
con
i

agrees with the operator acting on these cut off constant vector fields in the
two components of its support. This gives the stabilized operator

∂̄Â, con : HÂ ⊕ Vcon →H′
Â

and the new sequence

0 −−−→ ker(∂̄Â, con) −−−→ ker(∂̄−)⊕ ker(∂̄c−)

−−−→ coker(∂̄e+)⊕ coker(∂̄c−) −−−→ 0,
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τj

tj

Θ

supp(vconj )

Γj

Figure 28. Support of conformal variation at junction point.

which by an argument similar to that used for the stabilized sequence in
Lemma 6.6 gives the correct sign.

In addition to conformal variations we also introduce internal and external
edge solutions corresponding to edges of the flow trees Γj, tj ∈ I attached
exactly as in Lemma 6.6, where we start the construction for the tree Γj with
the vector nj at tj ∈ I. We also introduce an extra cut-off solution, which
compensates for the lack of conformal variation at τr: let v

sol = vflow+vr where
vflow is the constant vector field along Θ cut off near each junction point and
near c, and where vr is a conformal variation of the usual type supported near
τr, see Figure 29.

Θsupp(vsol)

Γ1
Γ2

Γ3Γ4

ce

Figure 29. The support of vsol. Here Γ3 is the first partial tree
to follow the puncture c in the positive direction of the boundary
of the domain.

As in the proof of Lemma 6.6 we assume that cut-off tangential edge solu-
tions and vsol agree with conformal variations on intersections of supports of
their derivatives.
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Define Vsol as the 1-dimensional space spanned by vsol and stabilize the
operator one more time:

∂̄Â, con, sol : HÂ ⊕ Vcon ⊕ Vsol → H′
Â
.

Noting that the projection of ∂̄vsol to coker(∂̄c−) equals the corresponding
projection of ∂̄vflow to coker(∂̄c−) for the disk Θ we can determine the sign in
the exact sequence for the stabilized operator ∂̄Â, con, sol, which reads

0 −−−→ ker(∂̄Â, con,sol) −−−→ ker(∂̄−)⊕ ker(∂̄c−)

−−−→ coker(∂̄e+) −−−→ 0,

in combination with the sign of 〈vsol, vcoker(c−)〉.
In analogy with the sign calculation in Lemma 6.6, we find a basis in the

(m− 2)-dimensional kernel of ∂̄Â, con, sol given by κ1, . . . , κm−2, where

κi = −(wi−+1 + · · ·+ wi) + (wi+1 + . . . wi+)− σns(i),Γs(i)
(ti)v

con
i + Ei,

if ti /∈ I,
κj = (wj−+1 + · · ·+ wj)− vconj + Ej,

if tj ∈ I and j 6= r,

κr = (wr−+1 + · · ·+ wr)− vsol −
∑

j 6=r
vconj + Ej.

where Γs(i) is the attached flow tree in which ti /∈ I lies, and where Ej denotes
linear combinations of interior edge solutions of edges below tj, exactly as in
the proof of Lemma 6.6.

It follows that

ǫ(uη) = s1s2s3,

where the signs sj, j = 1, 2, 3 are as follows. First, s1 equals the orientation
on ker(∂̄−) given by

(−1)r−1
(
Πti /∈Iσns(i),Γs(i)

(ti)
)
ξ1 ∧ ξr−1 ∧ ξr+1 ∧ · · · ∧ ξm−1,

where

ξi = −(wi−+1 + · · ·+ wj) + (wi+1 + . . . wi+), if ti /∈ I,
ξj = (wj−+1 + · · ·+ wj), if tj ∈ I.

Second, up to a positive factor,

s2 = 〈vsol, vcoker(c−)〉 = 〈vr + vflow, vcoker(c−)〉 = 〈vflow, vcoker(c−)〉.
Third, s3 = (−1)r−1〈vker(c), vcoker(e)〉, by the orientation conventions for se-
quences, see [14, Section 3.2.1]. We conclude that, with notation as in Theo-
rem 4.6,

ǫ(uη) = ǫ(Ξ) = ǫ(Θ)Πl
j=1σ(nj ,Γj).

�
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6.6.3. The sign of a quantum flow tree of type (QT0). Let Ξ be a quantum flow
tree with holomorphic component Θ, a rigid disk with one puncture. Assume
that Ξ has m punctures. Let c denote its positive puncture (a Reeb chord of
type L1) and a1, . . . , am−1 denote its negative punctures (all Reeb chords of
type S0). We use notation as in Section 6.6.2 for junction points and trivalent
vertices of Ξ.

We mark two points q′0 and q0 on the boundary of the rigid disk Θ right
after the positive puncture using two parallel oriented hypersurfaces near the
positive puncture. Let ṽflow denote the holomorphic vector field along the disk
which vanishes at the positive puncture and at the second marked point and
which is directed toward the positive puncture along the boundary. At each
junction point tj ∈ I, let nj denote the value of ṽflow at tj .

Lemma 6.8. The sign of the rigid disk uη corresponding to Ξ is given by

ǫ(uη) = ǫ(Ξ) = ǫ(Θ)Πl
j=1σ(nj ,Γj),

see Sections 3.4.4 and 4.3 for notation.

Proof. Let ∂̄A denote the linearized operator corresponding to the rigid disk
Θ with domain thought of as a strip with punctures at the positive puncture
and at q0. Then the linearized operator

∂̄A : HA →H′
A

with m − 1 = 0 negative punctures has index 1. The 1-dimensional kernel
for an appropriate choice of orientation of the hypersurface makes ṽflow give
the positive orientation to the moduli space. The proof then follows from an
argument similar to the proof of Lemma 6.7 so we just sketch the details.

Assume that uη hasm punctures. Adding capping operators we get an oper-
ator ∂̄Â on the closed disk of index 2 with two dimensional kernel corresponding
to linearized conformal automorphism. Adding the vanishing condition at the
marked point q0 for the vector fields in HÂ we get a new operator ∂̄Â∗ with do-
main a codimension one subspace HÂ∗ ⊂ HÂ. The restriction of the operator
gives an operator

∂̄Â∗ : HÂ∗ →H′
Â

of index 1 with 1 dimensional kernel. We then consider the stabilized problem

∂̄Â∗, con : HÂ∗ ⊕ Vcon →H′
Â

which has index (m − 1) and find that the sign of uη is given by the sign of
the map

0 −−−→ ker(∂̄Â∗, con) −−−→ ker(∂−) −−−→ 0,

where ker(∂−) =
⊕m−1

j=1 ker(∂̄aj−) is the sum of cut off kernel functions of the

capping operators at all the negative punctures of uη. The equation ǫ(uη) =
ǫ(Θ)Πl

j=1σ(nj ,Γj) then follows from a slightly simpler version of the analogous
calculation in the proof of Lemma 6.8. �
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6.6.4. The sign of quantum flow tree of type (QT1). Consider a quantum flow
tree Ξ with m punctures and with big disk part a once punctured constrained
rigid disk Θ which is constrained to pass through Π(b) where b is a Reeb chord
of type S1. Let the positive puncture of Ξ be e (a Reeb chord of type L2), let
the negative punctures be b (a Reeb chord of type S1), and a1, . . . , am−2 (Reeb
chords of type S0). We use notation for trivalent vertices and junction points
of Ξ as in Section 6.6.2. Let ṽflow denote the holomorphic vector field along Θ
which vanishes at e and b and which is directed toward the positive puncture
e along the boundary. Let nj be the value of ṽflow at tj ∈ I.
Lemma 6.9. The sign of the rigid disk uη corresponding to Ξ is given by

ǫ(uη) = ǫ(Ξ) = ǫ(Θ)Πl
j=1σ(nj ,Γj).

see Sections 3.4.4 and 4.3 for notation.

Proof. The proof follows along the lines of previous lemmas in the section and
detailed calculations will be omitted. We use notation as before. Start with
the case of no negative punctures. Consider first the orientation sequence for
the moduli space containing the 1-dimensional disk. We write ∂̄E for the cor-
responding operator. Then ∂̄E has 3-dimensional kernel whereas the capped
off operator ∂̄Ê has 2-dimensional kernel corresponding to linearized automor-
phism of the disk with one puncture and we get the gluing sequence

0 −−−→ ker(∂̄Ê) −−−→ ker(∂̄E) −−−→ coker(∂̄e+) −−−→ 0,

thus coker(∂̄e+) together with conformal automorphisms orient the moduli
space and we can identify coker(∂e+) with the vector field ν which is the
positively oriented tangent vector of the 1-dimensional moduli space, see Sec-
tion 4.3.

Consider first the case m = 2. The operator ∂̄Â is an isomorphism and the
gluing sequence is

0 −−−→ ker(∂̄b−)⊕ ker(∂̄A) −−−→ coker(∂̄e+)⊕ coker(∂̄b−) −−−→ 0

and we find that

ǫ(uη) = 〈ν, vker(b)〉〈vflow(Γ), vcoker(b)〉 = ǫ(Θ)

as claimed. In the case m > 2 the gluing sequence is

0 −−−→ ker(∂̄−)⊕ ker(∂̄b−)

−−−→ coker(∂̄b−)⊕ coker(∂̄e+)⊕ coker(∂̄A) −−−→ 0,

as in Lemma 6.7 we stabilize to an operator

∂̄Â, con, sol : HÂ ⊕ Vcon ⊕ Vsol →H′
Â

of index m− 2, where Vcon is spanned by conformal variations and where Vsol
is a 1-dimensional space spanned by vsol, which is a sum of an extra conformal
variation at the fixed boundary minimum and a cut-off of vflow of ṽflow and
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which maps non-trivially to vcoker(b). The resulting map which determines the
sign is then

0 −−−→ ker(∂̄Â, con, sol) −−−→ ker(∂̄−)⊕ ker(∂̄b−)

−−−→ coker(∂̄e+) −−−→ 0,

and the lemma follows from computation similar to those in the proof of
Lemma 6.6. �
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