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Abstract. In this note we point out an error in [2]. We show how to repair the proof in dimension

5. The results are true in general as can easily be seen from recent work of Borman, Eliashberg
and Murphy [1].

The proof of Lemma 3.4 in [2] is incorrect. Below we will describe the problem with the proof and
then show how it can easily be repaired in dimension 5. We then observe that Lemma 3.4, and thus
the main results of the paper, is true in all dimensions based on recent work of Borman, Eliashberg
and Murphy [1]. However this approach does not give an explicit construction and hence goes against
the sprit of the original paper and in addition all the results of [2] follow directly from [1].
Acknowledgement: We thank Yasha Eliashberg for pointing out the error in the proof of Lemma 3.4
in [2]. The first author was partially supported by a grant from the Simons Foundation (#342144)
and NSF grant DMS-1309073.

1. Exact Lagrangians, Liouville flows, and the error in the proof of Lemma 3.4

We begin by recalling the statement of Lemma 3.4 from [2]. To state the lemma we first estab-
lish some notation (that is slightly different that what was used in [2]). Consider T 2 × [0, 1] with
coordinates (θ, φ, r) and the contact structure ξi = kerαi, i = 1, 2, where

αi = ki(r) dθ + li(r) dφ.

Here we have k1(r) = cos π2 r and l(r) = sin π
2 r, and for i = 2 we have k2 and l2 agreeing with k1

and l1 near r = 0 and 1, and the curve (k2(r), l2(r)) in R2 has 5π/2 winding about the origin. In
particular notice that ξ2 is obtained from ξ1 by adding Giroux torsion. Lemma 3.4 from [2] now
reads as follows.

Lemma 1. Let W be a manifold with contact form λ, there is a contact structure on W × [0, 1] ×
([0, 1]× T 2) such that the following properties are satisfied:

(1) near W×{0}× [0, 1]×T 2 and W× [0, 1]×{0, 1}×T 2 the contact structure is contactomorphic
to λ+ etα1, and

(2) near W × {1} × [0, 1]× T 2 the contact structure is contactomorphic to λ+ etα2.

Here t is the coordinate on the first [0, 1] factor.

See [2] for details on how the main constructions and theorems of the paper follow from this
lemma.

The strategy of the proof in [2] was:

(1) To construct a contact structure on W×[0, 1]×T 3 that near W×{0}×T 3 is given by λ+etβ0
and near W ×{1}× T 3 is given by λ+ et × β1, where βi is the contact structure on T 3 with
Giroux torsion i and we are thinking of T 3 as S1×T 2 with the S1-factors Legendrian curves.

(2) Then cut W × [0, 1]×T 3 along W × [0, 1]× ({θ0, θ1}×T 2) so that one of the resulting pieces
is as described in the lemma.

To try to arrange this let β = p1 dθ1+p1 dθ2 be the Liouville form on T ∗T 2 = R2×T 2 with coordinates
(p1, p2, θ1, θ2). Notice that α = λ + β is a contact form on W × T ∗T 2. We will see below that we
can arrange the two items above that are needed for our proof if there is a radial vector field v in R2

centered at a point p whose flow expands dβ (that is, Lvdβ = dβ) and a Lagrangian torus T 2 in a
small neighborhood of {q}×T 2 ⊂ T ∗T 2 that is exact with respect to ιvdβ that is isotopic to {q}×T 2

by an isotopy disjoint from {p} × T 2. One may easily arrange all of this except for either the last
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requirement of disjointness or the exactness of the Lagrangian torus. In [2] we assumed this could
be arranged (though in the presentation there it was not clear these were precisely the conditions
necessary), but to the best of our knowledge this cannot be done. More explicitly in [2] we took the
Lagrangian torus T 2 × {(0, 0)} and the radial vector field v to be centered at a point disjoint from
the origin. Notice that the torus is exact with respect to β but not with respect to ιvdβ, and thus
the construction does not work. In the next section we will see that the condition of having an exact
Lagrangian torus can be removed in the 5 dimensional setting. (For simplicity or presentation below
we will take p = (0, 0).)

Let X = D×T 2 where D is a disk of radius R about the origin in R2 and R > 2 is some constant.
The form β restricts to the contact form β0 on T 3 = ∂X. Now let X ′ = D′ × T 2 where D′ is a
small disk about the origin in R2. By noticing that since the radial vector field v = p1

∂
∂p1

+ p2
∂
∂p2

is

the Liouville field for β on T ∗T 2 one easily sees that X −X ′ is a piece of the symplectization of the
minimally twisting tight contact structure on T 3.

Let γ1 be the intersection of D with the ray leaving the origin in R2 that forms an angle of π/2
with the positive p1-axis and similarly let γ2 be the intersection of D with the ray in R2 that forms an
angle of −3π/4 with the positive p1-axis. Setting Y equal to the component of X −X ′ cut along the
γi × T 2 that contains points lying above the negative p1-axis in R2, one easily sees that Y is a piece
of the symplectization of α1 (using the notation from above) on T 2 × [0, π/2] (here we have rescaled
[0, 1] to [0, π/2]) and the parts of Y lying above γ1 and γ2 are the “vertical” or flat boundaries of the
symplectization).

If there is an exact Lagrangian torus T 2 in T ∗T 2 as discussed above then Lemma 3.6 in [2] shows
there is an embedding Φ: W × T 2 → W × T ∗T 2 so that Φ(W × T 2) is contact, disjoint from
Z = W × {(0, 0)} × T 2 and isotopic to Fq = W × {q} × T 2 in the complement of (a neighborhood
of) Z. (For convenience we take q to be a point on the negative p1-axis in D. If this were not the
case we might need to re-choose the γi.) We can then let C be the 2-fold cover of W ×X branched
over Φ(W × T 2). It is well known that C has a contact structure that away from the branched locus
is just the lift of the contact structure on W ×X, see for example [3, Theorem 7.5.4]. Moreover it is
clear that the cover is diffeomorphic to W ×X. Notice that the boundary of C is W × T 3 and in a
neighborhood of the boundary the contact structure is simply W times a piece of the symplectization
of the Giroux torsion 1 contact structure on T 3, so that the boundary of C is W times the convex
end of the piece of the symplectization.

Notice that we can take W×X ′ to be a neighborhood of Z in W×X that is disjoint from Φ(W×T 2)
and the isotopy of Φ(W ×T 2) to Fq. Clearly W ×X ′ lifts to two disjoint copies of W ×X ′ in C. Let
N be one of these and set C ′ = C \N . It is clear that ∂C ′− ∂C has a neighborhood in C ′ where the
contact structure looks like W times a piece of the symplectization of the standard minimally twisting
contact structure on T 3, so that the boundary component is W times the concave end of the piece of
the symplectization. Furthermore notice that each γi × T 2 lifts to two copies in C ′. The copies that
intersect with N will divide C ′ into two pieces. Let C ′′ be the piece that contains the branch locus.
Notice that the branched covering map restricted to a neighborhood of (∂C ′′− ((∂C)∩C ′′)) in C ′′ is
mapped diffeomorphically (and contactomorphically) to a neighborhood of (∂Y − ((∂X)∩ Y )) in Y .
Moreover the remaining boundary component of C ′′ can easily be seen to have a neighborhood that
is contactomorphic to W times a piece of the symplectization of α2. From this discussion it should
be clear that the contact structure on W ′′ is the structure described in the lemma.

2. Fixing the error in dimension 5

In this section we show how to fix the proof of Lemma 3.4 from [2] in the 5 dimensional case.

Lemma 2. There is a contact structure on S1× [0, 1]×([0, 1]×T 2) such that the following properties
are satisfied:

(1) near S1×{0}×[0, 1]×T 2 and S1×[0, 1]×{0, 1}×T 2 the contact structure is contactomorphic
to dθ + etα1, and

(2) near S1 × {1} × [0, 1]× T 2 the contact structure is contactomorphic to dθ + etα2,

where θ is the angular coordinate on S1 and t is the coordinate on the first [0, 1] factor.
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Proof. We will be considering S1 × T ∗T 2 with the contact structure α = dθ + p1 dθ1 + p2 dθ2.
From the discussion in the previous section we only need to check that there is an embedding
Φ: T 3 → S1 × T ∗T 2 so that Φ(T 3) is contact, disjoint from Z = S1 × {(0, 0)} × T 2 and isotopic to
Fq = S1 × {q} × T 2 in the complement of (a neighborhood of) Z where q = (−1 − ε, 0), for some
small ε > 0, is a point in R2.

Using coordinates (φ, φ1, φ2) on T 3 we define

Φ(φ, φ1, φ2) = (φ+ φ2, sinφ,−1− ε+ cosφ, φ1, φ2).

Now we see

β = Φ∗α = dφ+ dφ2 + (sinφ) dφ1 + (−1− ε) dφ2 + (cosφ) dφ2

= dφ+ (sinφ) dφ1 + (cosφ) dφ2 − ε dφ2.
and

dβ = (cosφ) dφ ∧ dφ1 − (sinφ) dφ ∧ dφ2.
Thus

β ∧ dβ = (sin2 φ+ cos2 φ) dφ ∧ dφ1 ∧ dφ2 − ε(cosφ) dφ ∧ dφ1 ∧ dφ2
= (1− ε cosφ) dφ ∧ dφ1 ∧ dφ2.

Since (1− ε cosφ) > 0 we have a contact embedding. Also note

Φδ(φ, φ1, φ2) = (φ+ φ2, δ(sinφ),−1− ε+ δ(cosφ), φ1, φ2)

is an isotopy from Φ to a map with image the T 3 above (0,−1− ε) in R2 and the isotopy is disjoint
from the T 3 above (0, 0). �

3. Overtwisted contact structure approach

In this section we show that Lemma 3.4 from [2], recalled as Lemma 1 above, is indeed true due
to Borman, Eliashberg, and Murphy’s recent breakthrough [1].

We first note that Lemma 1 explicitly defines a contact structure near the boundary of W × [0, 1]×
([0, 1] × T 2). It is easy to check that α2 and α1 are homotopic, rel boundary, as plane fields, cf. [3,
Lemma 4.5.3]. Let αt be the homotopy. Now e−tλ+αf(t), for some function f(t), extends the contact

form from a neighborhood of the boundary of W × [0, 1]× ([0, 1]× T 2) to a nonsingular form on the
whole manifold. Moreover its kernel splits as ξ2 ⊕ ξ′ where ξ2 is contained in the tangent space of
[0, 1] × T 2 and ξ′ projects isomorphically onto the tangent space of W × [0, 1]. Thus ξ′ inherits a
complex structure from e−tλ and ξ2 inherits one as an oriented plane field. Thus we have constructed
an almost contact structure on W × [0, 1]×([0, 1]×T 2) that extends our given contact structure. The
main result of [1] implies this almost contact structure is homotopic to an actual contact structure by
a homotopy that is fixed outside any open neighborhood of the “non-contact” region. The resulting
contact structure can be taken to be the one promised by Lemma 3.4 in [2].

References

[1] M. Borman, Y. Eliashberg, and E. Murphy. Existence and classification of overtwisted contact structures in all

dimensions. ArXiv e-prints, April 2014.
[2] John B. Etnyre and Dishant M. Pancholi. On generalizing Lutz twists. J. Lond. Math. Soc. (2), 84(3):670–688,

2011.

[3] Hansjörg Geiges. An introduction to contact topology, volume 109 of Cambridge Studies in Advanced Mathematics.
Cambridge University Press, Cambridge, 2008.

School of Mathematics, Georgia Institute of Technology, 686 Cherry St., Atlanta, GA 30332-0160
E-mail address: etnyre@math.gatech.edu

URL: http://math.gatech.edu/~etnyre

Mathematics Group, International Centre for Theoretical Physics, Trieste, Italy

E-mail address: dishant@cmi.ac.in


