Contact Geometry and Low-Dimensional Topology

PCMI Lecture 1
John Etnyre
Notes by: Shea Vick

Contact Geometry has been a key tool in the following recent results in low-dimensional
topology.

{1) Kronheimer and Mrovka’s proof that non-trivial knots satisfy property
p- (i.e. non-trivial surgery on non-trivial knots yields non-simply connected
manifolds. )

(2) Ozvath and Szabd’s proof that the unknot, trefoil, and figure eight knot
are determined by surgeries on them. (i.e. Let K =unknot, trefoil, or figure
eight knot. Let K’ be a knot. If 3 r € Q such that S3(K) = S3(K')
{orientation preserving), then K = K”.)

(3) Ozvath and Szabd’s proof that Heegaard-Floer invariants detect the Thurston
norm of a manifold and the seifert genus of a knot.

The following are some of the key ideas that went into these results. (All definitions
will be given later.) ‘

' Start with a closed 3-manifold M and a surface £ C M such that ¥ is minimal
genus among surfaces homologous to it (assume the genus of L is positive).

(1) Gabai gives a taught foliation ¥ that contains ¥ as a leaf.

(2) Eliashberg - Thurston give a positive and negative contact structure £
on M that is C° close to 5.

(3) They also give a symplectic structure on M X [~¢, €] that “dominates” {or

“Blls”) (M, £) HT(M, €-.).

—~ (1.3)

(h1.)
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(4) Eliashberg, E. find a closed symplectic manifold X that M x [—e¢, ¢] embeds
into

these “caps” are constructed using
(a) Giroux’s correspondence between open books and contact structures.
(b) Eliashberg, Weinstein’s ideas on contact.surgery and symplectic han-
dle attachment.

(5) Uses Seiberg-Witten or Heegaard-Floer to conclude something about M
and ¥ based on the existence of X. (e.g. HF invariant of X £ 0 =
HFt(M,s5) #0 = |{a(ss),[Z])| < 2¢g ~ 2; but since T is a leaf of T
we have |(ci(ss), [Z])| = 2g — 2; thus the Heegaard-Floer basic classes detect
the Thurston norm).

Then contact geometry part of the above is steps (2) - (4). The goal of these
lecture is to

¢ Introduce the basic ideas in contact geometry.

¢ Explain the ideas behind (2), (3), and {4b}, and explain what (4a) means.
Part 1: Basic Ideas and Definitions
Let M be an oriented 3-manifold.

A plane field £ on M can (locally) be given as the kernel of a 1-form «.
& =ker(ay), zeM

Exercise 1: Show that £ is orientable if and only if « can be chosen as a global
1-form. '
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Examples: _
(1) R3, 51 = ker(al), o = dz

(2) B% & =ker(og), oy =dz—ydz, or
R? & =ker{as), az=dz+ydr

LH-dwisd
(LY

Definition

(1) £ is a foliation if a A da = 0.

(2) £ is a positive (resp. negative) contact structure if a A da is never zero
and induces the given (resp. opposite) orientation on M (i.e. a Ada > 0 (
resp. a Ada < 0)).

(3) £ is a positive (resp. negative) confoliation if aAda > 0 (resp. aAda < 0).

]Exercise 2: Show that these definitions don’t depend on the choice of . ]

Frobenius Theorem “If a plane filed £ is closed under Lie bracket, then M = [ .Sy
(S5x a surface with &, = 7.,.5,).

Exercise 3: Show that a A do = 0 if and only if £ is closed under Lie bracket.
(Here closed under Lie bracket means if v and w are sections of £ then [v,w] is
also a section of £.)
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Examples:
(1) B3, & = ker(a1), ai = dz. In this case, d(dz) = 0, so a; is a foliation.
Letting S,, = {(z,¥, 20)}, we have that Tiz, vy, 20)S,, = E(z,9,20)-
a4 — (Planes pavallel 4o
XY~ Plane.

N
(2) Let M = S x
T,({0} x Z).
(3) & is a positive contact structure on R? since as Adag = dzAdyAdz. Similarly,
£, s a negative contact structure on R? since az A dag = —~dx A dy A dz.

(4) S* C C? with & = ker(ay), where aq = 3 dfy + 72 db,.

lExercise 4: Check that a4 A day > 0 on S5,

Omne natural question to ask at this point is the following. “How prevalent are
contact structure and foliations?”

Answer: All oriented 3-manifolds have foliations and positive (negative) contact
structures.

Lemma Given a plane field £ one can find local coordinates (z,y, ) such that a
can be written

a=dz —a(z,y, z)dz

Lemma
(1) € is a positive (resp. negative) contact structure if and only if da/0y > 0
(resp. 8a/8y < 0).
(2) ¢ is a foliation if and only if Ba/0y =0

{|{ Exercise 5: prove the previous two lemmas. (Hint: For the first lemma, let
¢ :{—1,1] x [~1,1] — M be an embedded disk such that d¢(3,) .lfl'f . Now use ¢
and the flow of v to build the desired coordinate neighborhood.)

Theorem (Darboux, Pfaff)

(1) If £ is a foliation, then we can take o = dz. _
(2) If £ is a positive (resp. negative) contact structure, then we can take o =
dz —ydx (resp. a =dz +ydz).

ike)
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This tells us that, locally all foliations and positive/negative contact structures
“look the same”. So unlike in Riemannian geometry, nothing interesting happens
locally. Instead, contact structures and foliations give us global information about
our manifold.

The above theorem is one example of the many similarities between contact struc-
tures and foliations. There is, however, one very big difference. Foliations have
non-trivial deformations, whereas contact structure do not.

Theorem (Gray’s Theorem) Let &, t € [0, 1] be a family of contact structure on M3,
then there exists a family of diffeomorphisms 1, : M — M such that (1).(&) = &.

In the above theorem, we call 9; a contactomorphism (for a fixed t), and we say
that &, &, are isotopic.

This tells us that we can’t “deform” a contact structure. On the other hand, foli-
ations DO have non-trivial deformations, as can be seen in the following example.

Example:
Let F, = the foliation of T2 by lines of slope s, and let £, = F, x S be a foliation
of T3, )

Exercise 6: Show that there does not exist a family of diffeomorphisms ¢, :
T3 — T3 such that (1,).(£,) = &.
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To see more similarities between contact structures and foliations, we need a few
more definitions and examples.

Examples:

quotieal
2214

o A mer idio nal

Jdisk of

(2) A Lutz tube is a contact structure on S* x D? obtained as follows.
Let S'x D? = {(r,8,2) | r < 7} C R® and let &, = ker(cos(r)dz —
rsin{r) df).

h 4

P;c£0f€ 1.5 .
L(Sammc'\‘:r'ic n
B . Planes rotate
130° as f"T’l‘r‘

*To get the
”‘t';vbe‘\, quotien?
by 7 5211,
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If D is a miridional disk, then the singular foliation induced on D is.

W, « Here the
closed leerf
i 1he

fol”

This is called an overtwisted disk.

Exercise 1: Show that if D is given by “bumping the interior of D slightly in
the positive z-direction, while fixing 8D”, then the above picture of the singular
line field on I is accurate.

It is easy to construct foliations with Reeb components and contact structures with
Lutz tubes, but it is harder to construct foliations and contact structures without
them.

Exercise 2: Try to prove the above statement. (This is a difficult exercise if you
don’t know how to get started, but is still probably worth pondering.)

A contact structure without overtwisted disks (or equivalently without Lutz tubes)
is called tight. Otherwise it is called overtwisted.

Eliashberg classified overtwisted contact structures on 3-manifolds. In short, there
are lots of them (infinitely many), and, up to isotopy, they are in 1-1 correspondence
with homotopy classes of plane fields.

Exercise 3: Show that all 3-manifolds have infinitely many homotopy classes of
plane fields.

Not all 3-manifolds have tight contact structures! For instance the Poincaré homol-
ogy sphere has no tight contact structure (E-Honda).

4
Exercise 4: Find a hyperbolic manifold without a tight contact structure. (This
Tnight be hard.)
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Recall an oriented 2-dimensional bundle (like £) has an Euler class e € H(M ; Z).

Theorem
(1) (Thurston) If £ is a Reebless foliation, then for any surface ¥ embedded in

{el@h[ED] £ —x(&) if T#5°
=0 otherwise

(2) (Eliashberg) If £ is a tight contact structure, then the same inequality /equality
holds. :

Exercise 5: Show that this theorem implies that only finitely many ¢ €
H?(M ;Z) can be the Euler class of a Reebless foliation or a tight contact struc-
ture.

This theorem and a result of Gabai (see below) imply that the Euler classes of
Reebless foliations characterize the Thurston norm. Then Eliashberg-Thurston tell
us that the same is true for tight contact structures. '

How do we find tight contact structure?

Recall that a 4-manifold X is symplectic if there exists a 2-form w such that dw = 0,
and w A w is never zero.

If M = 0X, and § is a contact structure on M, then we say w dominates ¢ if
wlg > 0.

If (M, &) is one component of a contact manifold (¥,¢), and (X,w) is a compact
symplectic 4-manifold such that w dominates &, then we say (X,w) is a week
semi-filling of (M, £) (if Y is connected, then we call this a weak-filling).

Theorem (Eliashberg-Gromov) If (M, €) is weakly (semi-)fillable, then ¢ is tight.

Example:

Consider S* C C*, with £ = ker(a), where & = r} d6) + 72 d6,. Then we have that
w=da = 2ry dry A dfy 4 21y dry A dfy is a symplectic form on C? (and therefore
also on B4).

Now S* = 9B*, and w|¢ = da; > 0 (since & A dav > 0). This tells us that (53, ¢) is
tight (i.e. has no Lutz tubes).

The above is in stark contrast with a theorem of Novikov, showing that any foliation
of 53 has Reeb components.

We will find many other fillable contact structures later, but it is worth noting that
there are tight non-fillable contact structures (see E-Honda).
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Part 2: (Con-)Foliations Into Contact Structures

Consider the interesting foliation of 2 x S!.
{woy = T(S* x {6})

Theorem (Eliashberg-Thurston) Any oriented C?foliation £ on an oriented 3-
manifold M, other than the above foliation of 52 x S, may be C%approximated by
positive and negative contact structures.

We say £ can be C*-deformed into a contact structure if there is a C*-family &
such that & is contact for ¢ > 0 and & = £.

¢ is C*-approximated by a contact structure if in any C*-neighborhood of £, there
is a contact structure (need not be a deformation).

Example: On T® consider of, = dz + ¢ (cos{2rnz) dz + sin(2wnz) dy). At ¢ = 0,
we get a foliation of T2 by T?’s. For £ > 0, we get contact structure .

Note that Gray’s theorem tells us that £¢ is independent of t, so we denote it &n.

Kanda, Giroux tell us that &, are all distinct and give all the tight contact structures
on T3, -

Remarks:

(1) A foliation can be approximated by (deformed into) infinitely many different
contact structures!

(2) The above theorem implies only that a foliation can be approximated by con-
tact structure, not deformed (though it still may be true for deformations).

(3) We loose smoothness on C° (C? is still maybe true).
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Theorem (Eliashberg-Thurston) Any oriented C?-foliation £ on an oriented 3-
manifold M, other than the above foliation of S? x S*, may be C%approximated by
positive and negative contact structures.

Why is € on 5% x S? special?

Reeb Stability (for confoliations) Suppose a confoliation £ on M admits an
embedded integral 2-sphere S (i.e. Vr € S, T.5 = &;). Then (M, £) is diffeomorphic
to (82 x S, Q). ,

Exercise 5: Try to show this if £ is a foliation. (Hint: Try to show that the
subset of M foliated by S%s is closed and open.)

Similarly,

Theorem Any confoliation of 2 x § 1 (®close to the foliation ¢ is a foliation
diffeomorphic to . (Here we just need that the S* factor is transverse to the plane
field.)

Theorem Let & be a confoliation on the 3-ball B which is standard near 8B (i.e.
near 8B, £ is given by ker(dz)). Then £ is a foliation and diffeomorphic to the
standard foliation on all of B.

Proof
Given (B, &), take ¢ on 5% x 5. Now embed B into 52 x 5 as shown below. Now
replace (|p with £ to get {' on 5% x S*.

According to Reeb stability, (' is diffeomorphic to C . eomorphism sends £
to (|-

&
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Not only do these theorems explain the unique nature of ¢ on 52 x 8, they also
allow us to see you can’t “locally” perturb a foliation into a contact structure.

The proof of the Eliashberg-Thurston theorem involves two steps. Given a foliation
on M.

(1) Perturb £ into a confoliation £’ such that {’ is contact on a “sufficiently large”
portion of M.
(2) Perturb £ into a contact structure.

Let’s think about step 2 first, so we can figure out what “sufficiently large” in step
1 means.

Given a confoliation & let
H(¢) = {z e M| & is contact at = (ie. (aAda), >0)}
This is called the hot region {or contact region). Now let
G(¢) = {z € M| 3 apath v from = to y with y € H({') and v tangent to £}
Theorem If G(£) = M then & can be C*-deformed into a contact structure.

There are two ways to prove this.

e An analytic way due to Altschuler.
o A topological way due to Eliashberg and Thurston.

Analytic Way

Choose a Riemannian metric on M. Choose a I-form a such that ker(a) = £ and
|a| =1 at all points of M.

Consider the equations

5]
Eﬁ = *(aAdf)

B, O) = a()

Where f = ={a A df -+ B A da). Now try to solve for § € Q' (M) x R.

This is a weakly-parabolic system. Altschuler proved that there exists a unique
smooth solution for ¢ € [0, c0}. The function evolves by the equation

af
"é‘g _Aaf‘l'vx.f

Where X is some time-dependent vector field, and A, is the “Laplacian on ker(a)”.

A version of the maximum principal gives
If f(p,0) > 0, then f(p,t) > 0 for all ¢t > 0.
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If ¢ connected to a point p by a path tangent to £ and f(p,0) > 0, then
flg,t) >0 forallt> 0.
“Heat flows infinitely fast to all points on M accessible to the hot region.”

Soif G{¢'y = M, then f(p,t) >0 forallpe M and £ > 0.

Now consider

n=a-te B =p{(-1)
;I‘hen

d?’] = d(l + Edﬁl,
and hence
_ nAdy=aAda+eaAdf + Fi Ada)+ 6 Adp.

Thus, for € small enough, 7 is a contact form.

Topological Way

First observe we have a neighborhood V,

. .

and in V & = ker{a), a = dz — a{z, y, z)dz. Suppose £ is contact near y = 1. Then
we will show there is a C*-small deformation of £ in V to a contact structure that
agrees with £ along 8V.

Sinee ¢ is a confoliation, we know that

-@ > 0 inV and

— > 0 neary=1,since £ is contact here.




J. Etnyre Contact Geometry and Low-Dimensional Topology Page 4

So for fixed zy and zo, a{zo, ¥y, 2o) is of the form

bﬁ

0 b— >J
We can clearly replace this with a new a whose graph looks like

a . -
In particular, 8a/dy{zo, y, z0) > O for this new a.

Ifxercise d: Show you can do this for all z, z simultaneously. J

Now pick arcs 71, .. -, such that -y; is tangent to £, each +; has a neighborhood
V; as above, and the Vs cover M — H{{').

We can fix £ on one V; at a time. We needs to be cautious of the fact that as you
change & on V;, we might mess up the modles on the other V;'s.

Exercise 6: Convince yourself that if the perturbation on V; is sufficiently small,
then you can slightly modify the V;'s so that they still have the appropriate form.

é

Now we know that in step 1, we need to perturb £ to a confoliation £ such that
G{¢") = M (i.e. every point in M is connected to a contact region by a path tangent
to £'.)

For this we need to consider the holonomy of the foliation £.

Let v be a closed curve in M tangent to £. Let A = (—¢,€) x S' be an embedded
annulus in M such that

(1) {0} x ' =~
{2) A is transverse o {
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£ induces a line field on A.

e, e,

" /;—-—"'"— ]
Considering this foliation of A, pick p € S and set I = {—¢,¢) x {p}.

When defining a return map

¢y I — 1,
we note that ¢., might not be defined on all of I, but will be defined in a neighborhood
of 0 (since ¢, (0) = 0).

$ is called the holonomy of £ at p along 7.

Note: ¢, only depends on the homotopy class of -y (through curves tangent to ¢).
Definition
Holonomy is called
non-trivial if ¢, # id; ,
non-trivial linear holonomy if ¢ (0) # 1
attracting if |¢,(z)] < |z|
repelling if {¢.(z)] > |z|
weakly attracting if |¢.(r)| < {z{ on intervals arbitrarily close to 0.
weakly repelling if ¢, (z}| > |z| on intervals arbitrarily close to 0.
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Recall that we’re trying to prove the Eliashberg-Thurston theorem. To finish things
off, we need to show that £ can be perturbed into a confoliation & such that every
point in M can be connected to a point where £ is a contact structure. To prove
this, we use holonomy?

Theorem (M, £) a C*-foliation

(1) If T is a curve in a leaf with non-trivial linear holonomy, then £ can be C*-
deformed into a positive {negative) contact structure in a neighborhood U
of I', leaving £ fixed outside a larger neighborhood.

(2) If T has weakly attracting holonomy, then £ can be C%approximated by a
positive (negative) contact structure in a neighborhood V' of I', leaving &
fixed outside a large neighborhood.

proof X Y 3
(1) Let U = I' x [~1,1] x [~1,1] be a neiborhood such that ¢ = ker(c), where
a = dz — a(z, z)dzx.

Claim: We can choose coordinates (x,y, z) such that

da
-— > ¢ for some ¢ > 0.
Oz

Exercise 1: Prove the above claim. (Hint: Consider I x [~1 ~ 1], and find an
¢ with the desired properties so that the induced return map is the same as the
given one. Now find a diffeomorphism to the original I x [—1, 1] so that the flow
1s preserved. Now construct the neighborhood as before.)

Now let k& be the function pictured below.
44

_:L
Let § = h(y* + 22} dy, and note that

)
a/\dﬁ:mah’?.zdz/\dy/\dz+~§hdx/\dy/\dz.
\—’W—/ Z

L
20 >0

Exercise 2: Check that & = ¢ + € is a contact form for ¢ sufficiently small.
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A More General Idea
2, | A"Vt
. ZTTI7TI 77772770
Y o :
| J . - X ’ —

145

=1

ﬁ

e
&=4

In the region R between A_; and A_; 2 2pply a diffeomorphism that is the identity
~on 8UNK and so that on A_,/, all the tangents to the foliation are rotated clockwise

from where they were. For example A_;/» should look something like the following
after the diffeomorphism.

e

vz ne

Now as y goes from A_j ;5 to A; rotate these tangents back to where they were. This
turns the region between A_;/, and A, into a contact region.

Exercise 3: Make the above argument more rigorous. (Hint: in the linear

holonomy case, the following lernma will be helpful. In the non-linear holonomy
case, a similar lemma is true.)

Lemma Let v, be a family of smooth functions on [—1, 1} such that v,{0) = 0 and v,
is monotonically increasing in z. ‘Then there exists a diffeomorphism f : {-1,1] —
[—1,1], C*®-close to the identity and C*-tangent to the identity at {—1,1} satisfying

f(2)ve(2) > v,(f(2)) forall 2 € (~1,1) and 2.

Similarly one can find such an f satisfying the opposite inequality.

Hint 2: take v,(z) = a(x, z), with o as above.
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The moral of the story is that holonomy is good. If we can arrange that every leaf
in a foliation is arbitrarily close to a leaf with holonomy, then we would be done.

With that in mind, let £ be a foliation on M, and define a minimal set in M to be
a non-empty closed union of leaves that contains no such smaller set. (i.e. a closed
union of leaves that is the closure of any leaf in it.)

Iiﬂxercise 4: Show that any leaf limits to a minimal set.

Thus we just need to see we can perturb £ so that every minimal set has curves with
holonomy.

Theorem In a C%foliation on a 3-manifold M, every minimal set is one of the
following.

(1) All of M. (In this case the foliation is called minimal.)

(2) A closed, compact leaf.

(3) An exceptional minimal set. (There are only finitely many of these.)

Tﬁeorem(Stacksteder) An exceptional minimal set contains leaves with linear ho-
lonomy.

We now consider the two remaining possibilities. If £ is minimal, then either it has
has holonomy or it doesn’t. If £ has holonomy, then a theorem of Ghys tells us that
it has linear holonomy, and we’re done. If it has no holonomy, then a theorem of
Tishler implies that £ can be C%approximated by a fibration over a circle {this is
one of the places “C° and “approximate” enter the picture).

shifbins £hinas

Now perturb the picture as shown 1below. Glons this
Have S <5 | & line.
\‘/l Y

think of this P—— |
as = We have A clo

_ == oo
M= 3 x o] /n T ———  laves, bu/ tio

(©,x) ~(1,%69 —— eolh have

1 ) ( I ) I —— he /omow;\\j

T
This perturbation gives us linear holonomy, finishing the minimal case.

In the case where the minimal set is a closed leaf ¥, we first perturb our foliation ¢
to get a new foliation with only finitely many closed leaves. Now we have three basic
cases (this three case list is actually not exhaustive, but is “essentially” complete).
In the first case, our leaf has linear or weakly attracting holonomy, and we're done.
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In the second case, our closed leaf has only trivial holonomy. If this happens, we can
apply a different form of Reeb stability to conclude that our foliation is 5 x (-1, 1)
in a neighborhood of . This is a contradiction since £ has only finitely man closed
leafs.

The final case to consider is where £ has holonomy, but it is neither weakly attracting,
nor weakly repelling. This tells us that our holonomy is weakly attracting on one
side, and weakly repelling on the other. If this is the case, we cut out X2, and replace
it as follows.

—:—_N: cut and

VEp la c_e 7
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Part 3: Taut foliations and fillability

Given a foliation £ on M we can perturb it into a contact structure £, but what can
we say about £'7 Is ¢’ tight, fillable, overtwisted,...?

Recall that if £ is Reebless, then for all ¥ # 52, we have that

(e(€), 2]/ {i VO

0 otherwise

If £ is C%close to £, then we get the same inequality for &', In particular, this
indicates that £ might be tight. A slightly stronger form of this inequality (for
surfaces with boundary) actually does show that €' is tight.

So if  is Reebless, we have that £ is tight. But what if £ is not Reebless; can £ still
be tight?

Example: Consider S° built from two solid tori, each of which is given the standard
Reeb foliation. There are two ways to do this, both of which give $* with Reeb
components.

Claim One of these perturbs to a tight contact structure on S*, and the other to
an overtwisted contact structure.

Exercise 1: Figure out which is which. J

Definition A foliation is called taut if each leaf is intersected by a closed transverse
curve.

An equivalent definition of taut is that there exists a vector ﬁeld v transverse to £
that preserves some volume for Qon M.
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IExercise 2: Show that the two definitions of taut are equivalent.

Note: If £ has a Reeb component, then £ is not taut.

has crossed the
bovndlovy, /4 con't
Sei berckt r‘flS';L‘Je
to close vp.

This tells us that if a foliation is taut, then it is also Reebless.

Theorem (Eliashberg-Thurston) Suppose that £’ is a contact structure that is C%-
close to £. Then if £ is taut, £ i1s symplectically fillable.

Proof

Let X = M x [—1,1], and let £ = ker(a). Let £,,£  be positive, negative contact
structures C° close to £. Set & = 1,0 (from above), and note that

(1) @le >0 (if e <0, then reverse v.}
(2) do = de, QY = de, 2+ 0, d2 =L, =0

Set w=wted(ta) =w+edt A Thendw =0, and wAw = 2B AdtAa.

: lExercise 3: Show that w A w > 0. |

This tells us that w is a symplectic form for X, and that wlexgx1y > 0. Thus, since
£ is C%close to £, we have that w|eie(t1y > 0. Similarly wle, > 0. Therefore w flls
(M, &) I{—M,£_), (note £_ is a positive contact structure on —M).

We can now construct lots of tight contact structures using the following theoremn.

Theorem (Gabai) Let M be an irreducible 3-manifold, and let F C M be an
orientable surface representing a non-trivial homology class. Suppose F has minimal

genus among all representatives of this class. Then there exists a taut foliation £ on
M with F as a leaf.

Corollary Let M and F be as above. Then there is a fillable contact structure £’
on M such that {e(£'),[Z]) = £(2 — 2¢(X)).

Actually we need to argue a little more to get this corollary. The £ from Gabai’s
theorem is only C” if the genus of ¥ is > 2. If the genus of %) is equal to one, then
the only non-C?-part of the foliation is along 3, and this will have linear holonomy:.
So the above proof still works.

Now ihat this corve
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Part 4: Constructing Symplectic Fillings and Legendrian
Surgery

Let (X, w) be a symplectic manifold. A vector field v is symplectically dialating
if
Loy = w.
Suppose v is transverse to M = 38X, and that v points out of M. Set a = (s,w)|pr,
then '
da = diyw + pde = Lw = w.
So
oA da = (L,w) Aw = %L(w/\w)

This tells us that « is a contact form on M.

A contact manifold (M, ¢) is said to be strongly filled by a compact symplectic
manifold (X,w) if there exists a dialating vector field v for w that is transversely
pointing out of M = 90X and (,w is a contact form for £&. We also say (X,w) is a
strong convex filling of (M, &) (will be concave if v points inward).

Exercise 4: Show that if (X,w) strongly fills (M,¢), then (X,w) weakly fills
(M, £).

Why do we care so much about strong filings? They allow us to make gluing argu-
ments work.

Example If { = &', then we can glue X; and X, together to get a closed symplectic
manifold

(M, %)

Exercise 5: Show that in the above situation, you can glue X, and X, together
to get a closed symplectic manifold. {this might be a bit hard if you haven’t ever
studied symplectic geometry.)

Exercise 6: If M is a homology sphere then a weak filling can be made strong.

Now for some four dimensional topology. We start with a 4-manifold X.
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A 1-handleis A' = D' x D® glued to X along (D) x D* = §%x D* = {2—pts} x
D3. To glue h' down, we just need to identify the two points. In three dimensions,
the picture looks like thls

R g

A 2-handle is ? = D? x D? glued to 8X along (8D?) x D? = S x D To glue A2
to X we must identify a knot K (that S* x pt will be glued to) and a framing of
the normal bundle of K. In three dimensions, the picture looks as follows.

VT oI
Note that if X’ = X U A? glued along K with framing F, then 0X' = 8X — (51 x
2 2 1
PRI These parts are
Now port of
{1 fAQl ?'E (Y 7 Lhe intewrjSor.

So 8X' is obtained form dX by Dehn surgery on K with framing F.

Exercise 7: Check that this is the correct Dehn surgery. (Hint: think about
where 8D? x pt is mapped.)

Definition Let (M, £) be a contact 3-manifold. A knot K in M is Legendrian if
T.KCé forallze K.

Note that if v, € {; is a vector transverse to K along K, then it defines a framing
of K called the contact framing.

Theorem (Weinstein) If (X, w) is a symplectic manifold with strongly/weakly con-
vex boundary and X' is obtained from X by attaching a 1-handle or attaching a




J. Etnyre Contact Geometry and Low-Dimensional Topology Page 5

2-handle along a Legendrian knot in 8X with framing one less than the contact fram-
ing, then w extends to a symplectic form «’ on X' such that X' is strongly /weakly
convex.

Note that if X’ is obtained from X by a 2-handle attachment as in the theorem,
then OX" = (M’ £). If (M,€) = 8(X,w), then we say that (M', £') is obtained from
(M, &) by Legendrian surgery.

{dea of the proof for strong filling:

In C? construct & model 1-handle.

Yy M’—M\Z’

c’)g_?oyd I'.vg V‘; \v4

RN

orth oy g

’°°k|v&5 ~ X, X 3 (x'w.)
e imsg
vd v’

Use v and v' to glue the handle to X. .

Exercise 8: Try to make this work. (Hint: you need a strong form of Darboux’s
theorem and flows of v and v'.}

Exercise 9: Try to figure out the 2-handle attachment. In particular, why must
you attach with contact framing -17 o
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Part 5: Open Books and Symplectic Caps

Theorem (Eliashberg, E.) Let (X,w) be a compact symplectic manifold which
weakly fills (M,&), then there is a closed symplectic manifold (X', w') into which
(X, w) embeds.

(xw) <

Caps

We need one more ingredient to prove this.

Definition Let ¥ be a compact, oriented surface with boundary, and let ¢ : & — %
be an orientation preserving diffeomorphism that is the identity near the boundary
of &. Then

Ty = % % {0,1])/(z,0) ~ (¢(z), 1)
is called the mapping torus of (¥, @).

For each component of 0., we see the following.

\l

Tet

Mg =Ty (8! x D?)/ ~,

Where ~ tells us to glue the solid tori to Ty so that {pt} x D? goes to the y curve
in the picture above and 5! x {pt} goes to the = curve.

Exercise 1: If L = cores of all $' x D%s in M 4y, show that M — L fibers
over the circle with fibers = ¥ (called pages). L is called the binding.
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An open book decomposition of a 3-manifold M is an identification of M with
Mz, 4y for some (£, ¢) as above.

Fact: All 3-manifolds have open book de decompositions.

Exercise 2: Try to prove the above fact. (Hint: Think about branched covers
over braids.)

An open book decomposition (X, ¢) for M is said to be compatible with {or sup-
port by) a contact structure ¢ if there exists a contact form « for £ such that,

1V e(T'L)y>0

(2) dor{pages # 0 is a volume form for .

A theorem of Thurston and Winkelnkemper tells us that all open books support
contact structures.

Given an open book (3, ¢) for (M,£) a positive stabilization is the open book
with '
1) page ' = 2 U (1 - handle).
e ( ) new 2-handle

(2) ¢' = ¢ o D, where D), is a positive Dehn twist along any curve v such that
~ runs over the 1-handle once.

Exercise 3: Show that Mz 4 = M5 4, and that both open books support the
same contact structure.

Theorem (Giroux) There is a 1-1 correspondence between oriented contact struc-
ture up to isotopy, and open book decompositions up to positive stabilization.

To see how to use this, we need to figure out how Legendrian surgery interacts with
open boaoks.

Given (M, &) and an open book (X, ¢) supporting it, let v be a simple closed curve
a the page of the open book. Observe that the -y gets an induce framing, ¥, from
the page.

Let M’ be obtained from M by F 4 1-Dehn surgery on +.

Exercise 4: Show that an open book for M’ 1s (£, ¢o Df) (Hint: Think about
the proof that all 3-manifolds are obtained by surgery on a link in $3.)
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Fact: If 7 is non-separating on the page, then we can isotope the open book slightly
- so that v is Legendrian and so that the contact framing agrees with the page framing.

Let (M’,f’) be obtained from (M, £) by Legendrian surgery along .
Fact: In this situation, (M, £') is supported by (Z,¢ o D).
So given a symplectic manifold (X,w) filling (M,£) with open book (Z,¢) and

Legendrian -y on.a page of the open book, if we attach a symplectic 2-handle to (X, w)
to get (X',w’), then 3(X',w') = (M',£") with supporting open book (¥, 40 D).

(PO sl

(xw)

To go farther, we need a few facts about the mapping class group of surfaces.

Fact: If ¥ is a surface with one boundary component, then any diffeomorphism of
> (fixed near the boundary) can be written, up to isotopy, as

¢=DloDllo---0D

Where ¢ is a curve parallel to the boundary and the +; are non-separating closed
curves on ..

Now we start to construct the caps.

Given (X,w) weakly filling (M,£), (X, ) an open book supporting (M, ¢), assume
¥ has one boundary component, and assume

_ m £l +1
¢p=DToDI o OD'yn'

Now using the idea above, we can Legendrian realize all the +;, then construct
(X', w") by attaching 2-handles to (X,w) along the v,...,v,.

(X, w)

Then we will have I(X',w') = (M',£"), with open book (I, ¢'), where ¢/ = D™,
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Now attach more handles so that ¢’ = D" o Dy, 0---0 Ds,, .

Exercise 4: If genus ¥ = g, then M’ is the following homology sphere.
|

Fact: If (X, w) is a weak ﬁlrling of (M, £) and M is a homology sphere, then we can
slightly perturb w so that (X',w’) is a strong filling of (M’,£') and (X, w) embeds
into (X', w').

)

£]

If we stabilize (L', ¢') enough, then after adding positive Dehn twists, we get ¢" =
D,
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‘To do this we use the chain relation
(Dy,o---0 2

Exercise 5: Use this relation to verify the above claim. In particular, show that
(X, 9") can be stabilized and more positive Dehn twists can be added to get the
claimed open book.

After symplectic 2-handles have been added corresponding to the above added Dehn
twists, we have a symplectic 4-manifold (X", w") with 8(X", w) = (M",£") sup-
ported by (', ¢"), ¢" = D, and so that (X,w) embeds into (X",w").

Exercise 6: Show that M” is an 5'-bundle over &' with Euler number -1, where
37 =¥ with a disk glued to 8%

Exercise 7: Show that if Y = D?-bundle over 3 with Euler number 1, then
Y admits a symplectic structure with concave boundary and 8Y = —M". Also
show that the induced contact structure is contactomorphic to £7.

‘Therefore, using the fact about gluing form last time, we can glue ¥ and (X", w")
to get a closed symplectic manifold.




