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ABSTRACT. In this note we study solid tori in contact manifolds. Specifically, we study
the width of a knot type and give criteria for when it is equal to the maximal Thurston-
Bennequin invariant, and when it is larger. We also prove there are many “non-thickenable”
tori in many knot types. These had previously only been observed in S3.

1. INTRODUCTION

Understanding solid tori in contact manifolds has been an essential tool for our under-
standing of contact manifolds and Legendrian and transverse knots. For example, they are
essential in the study of Legendrian and transverse cables [12, 13] — and were responsible
for the construction of some of the first transversely non-simple knots — and more gen-
erally satellite knots [8]. More recently, they have appeared in the study of “Legendrian
large cables” [34, 38] and the classification of tight contact structures on some small Seifert
fibered spaces [15].

The first real study of solid tori in contact manifolds happened in [12] where the prop-
erty of being uniformly thick was defined. A knot type K is called uniformly thick if any
solid torus with core realizing the knot type K can be contained in another solid torus in
the same knot type that is a standard neighborhood of a maximal Thurston-Bennequin
Legendrian representative of the knot. If a knot type is uniformly thick, then it is easy
to study Legendrian representatives of cables [2, 12] and more general satellites [8] of the
knot. It is known that negative torus knots and the figure eight knot are uniformly thick
[10, 12] as well as many iterated cables of torus knots [28, 29]. Positive torus knots are not
uniformly thick, and it is due to this that many of their cables are not transversely simple
[12, 13]. We note that the contact structure on a standard neighborhood of a Legendrian
knot is universally tight. Thus if K is uniformly thick, the contact structure on any solid
tori in this knot type must be universally tight.

A knot type can fail to be uniformly thick in one of two ways. First, there can be
solid tori with convex boundary having dividing slope larger than the maximal Thurston-
Bennequin invariant, and the second way is that there can be solid tori with dividing slope
less than the maximal Thurston-Bennequin invariant, but that does not thicken to a neigh-
borhood of a maximal Thurston-Bennequin invariant knot. These latter tori are called non-
thickenable tori. To study the first failure of uniform thickness, the first author and Honda
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[12] defined the width of a knot type to be

w(K) = sup{slope of Γ∂S}

where the supremum is taken over all convex solid tori S in the knot type K and where
ΓT denotes the dividing curves on a convex torus T . It is easy to see that

w(K) ∈ [tb(K), tb(K) + 1].

So in trying to verify a knot is uniformly thick one usually first tries to show that w(K) =

tb(K). Unfortunately, we do not know that many examples of knots where we can verify
this. Our first result gives a large family of such examples.

Theorem 1.1. If K is an L-space knot and tb(K) = 2g(K) − 1, where g(K) is the minimal
genus of a Seifert surface for K, then the width of K is equal to the maximal Thurston-Bennequin
invariant of K:

w(K) = tb(K).

It is conjectured [31] that for any L-space knot K we have tb(K) = 2g(K) − 1. If true,
then we know the width of any L-space knot, but we have many families of knots for
which we know this is true, such as positive knots (that is a knot with a diagram in which
all crossings are right-handed), the Berge knots (conjecturally the only knots with lens
space surgeries), and if the equality is true for an L-space knot K then it also holds for any
cable of K which is also an L-space knot [31].

We recall that by the (p, q)-cable of a knot K, denoted by K(p,q), we mean the knot type
obtained by taking the isotopy class of the (p, q)-torus knot on the boundary of a tubular
neighborhood of K, where we assume p denotes the number of times that the knot winds
along the longitudinal direction and q the number of times along the meridional direction.

We can show that having width equal to the maximal Thurston-Bennequin invariant is
a common feature of cables.

Theorem 1.2. Suppose q/p < w(K) for some knot type K that is not Lagrangian slice (that is
there is no Legendrian representative of K that bounds a Lagrangian disk). Then the (p, q)-cable
Kp,q satisfies

w(Kp,q) = tb(Kp,q).

The same is true if K is Lagrangian slice and if q/p ≤ min{w(K),−1/2}.

In this theorem, we note that ifK is Lagrangian slice then tb(K) = −1 sow(K) ∈ [−1, 0].

Corollary 1.3. If K is an L-space knot and tb(K) = 2g(K)−1, then the (p, q)-cable Kp,q satisfies

w(Kp,q) = tb(Kp,q).

Proof. Since K is an L-space knot and satisfies tb(K) = 2g(K) − 1, it follows from Theo-
rem 1.1 that w(K) = 2g(K) − 1. Additionally, K is not Lagrangian slice (unless it is the
unknot, in which case the result follows [12]). By Theorem 1.2, if q/p < 2g(K) − 1, then
w(Kp,q) = tb(Kp,q).

The slope convention in this paper is the inverse of the one in [12] and other main references. The conven-
tion in this paper agrees with the convention used by topologists for specifying cables and surgery slopes.
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Since K is an L-space knot, if q/p ≥ 2g(K) − 1, then Kp,q is also an L-space knot [23,
Theorem 1.10], and tb(Kp,q) = 2g(Kp,q)− 1 [31, Proposition 3.6]. Thus, by Theorem 1.1, if
q/p ≥ 2g(K)− 1, then w(Kp,q) = tb(Kp,q). □

We now study a large family of knots where w(K) > tb(K). It has long been thought
that Legendrian representatives of a (p, q)-cabled knot had their Thurston-Bennequin in-
variant bounded above by pq, [31]; however, in [38] Yasui showed that this was not the
case. This motivated the definition of Legendrian large cables [34, Definition 1.2.]. We say a
non-trivial Legendrian cableL ∈ L(Kp,q) is large if tb(L) > pq. Later McCullough [34] gave
many more examples of Legendrian large cables and showed that if K admits Legendrian
large cables then it also has solid tori representatives on which the contact structure is vir-
tually overtwisted. In particular, these knot types cannot be uniformly thick! Further work
of Chakraborty, Min, and the first author [2] showed that we actually have w(K) > tb(K)
for a knot type admitting Legendrian large cables. It is interesting to note that all the ex-
amples of knots K with their (p, q)-cables having Legendrian representatives with tb > pq
were Lagrangian slice, and the cables all happened to be (n,−1)-cables. It seemed likely,
at the time, that this was just due to the techniques used to construct the cables. But our
next theorem shows that these features are actually essential.

Theorem 1.4. Suppose K is a knot type in S3. If L(Kp,q) contains a Legendrian knot with
Thurston-Bennequin invariant larger than pq then

(1) K has a Legendrian representative that bounds a Lagrangian disk in (B4, ωstd), and
(2) (p, q) = (n,−1) for some positive integer n.

Moreover, we note that if K has a Legendrian large (n,−1)-cable having maximal Thurston-
Bennequin invariant −n+ k then

w(K) ≥ − 1

n+ k
> −1 = tb(K).

We note that in the theorem above k must be less than n according to [2]. Given the
above results, we make the following ambitious conjecture.

Conjecture 1.5. For a knot type K in (S3, ξstd) we have

w(K)


= tb(K) K is not Lagrangian slice
= tb(K) + 1 K is the unknot
∈ (tb(K), tb(K) + 1) otherwise.

All the examples above that support the first part of this conjecture are fibered knots, but
there are non-fibered knots that also support the conjecture. For example, in [19], George
and Mayers showed that all non-trivial positive twist knots are uniformly thick and most
of these are not fibered. In upcoming work of Chatterjee, Min, Rodewald, and the first
author, the same result will be proven for negative twist knots [3].

It is interesting to try to understand a lower bound on the width, and hence also the
maximal Thurston-Bennequin invariant, of a knot typeK. There is little known in general,
but if a fibered knot K supports a contact structure ξK (in the sense of Giroux) then it is
easy to see from the construction of ξK that K admits Legendrian representatives with
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tb = −1. However, in all known examples, tb(K) > 0. While we cannot establish this in
general, there is some partial progress in this direction (this seems to be known to experts
in the area but otherwise not well-known and not in the literature. See also [30]).

Theorem 1.6. IfK is a non-trivial fibered knot in a manifoldM and supports the contact structure
ξK , then tb(K) ≥ 0.

We note that in the proof of the above theorem, we cannot directly use the construc-
tion of ξK from the fibered knot to construct the desired Legendrian knot, so it is not, in
general, easy to see how to create Legendrian representatives ofK with positive Thurston-
Bennequin invariant. Based on known examples, we make the following conjecture.

Conjecture 1.7. If K supports the contact structure ξK , then in ξK there are Legendrian repre-
sentatives of K that have Thurston-Bennequin invariants greater than 0.

We note that the converse of this conjecture is not true as there are many fibered knots
in (S3, ξstd) that do not support ξstd but have positive Thurston-Bennequin invariants. For
example, many connect sums of positive and negative torus knots [11], and many cables
of positive torus knots [29] have this property. However, all of the known examples are
fibered knots whose monodromy is reducible. So we make the following conjecture.

Conjecture 1.8. If K is a fibered knot in S3 and K has irreducible monodromy and does not
support the standard contact structure ξstd), then tb(K) ≤ −1.

As mentioned above, if a knot type is uniformly thick, then any solid torus in the knot
type is universally tight. It turns out that this is a “generic” property of solid tori realizing
a knot, even for non-uniformly thick knots. More specifically, we have the following result.

Theorem 1.9. Let S be any solid torus with convex boundary having 2 dividing curves that is
embedded in (S3, ξstd). Then ξstd restricted to S is universally tight, unless the core of S is in the
knot type of a Lagrangian slice knot and the dividing curves on ∂S have slope in (−1/2, 0).

We now turn to the other way a knot type can fail to be uniformly thick, that is, when
they admit non-thickenable tori. We currently have restricted families of examples of such
tori. For example, Honda and the first author [12] together with LaFountain, the first
and the third author [13] showed that positive torus knots admit non-thickenable tori.
This was improved by LaFountain [29] to show that all iterated positive cables of posi-
tive torus knots admit such tori. The only known examples outside of the standard tight
contact structure on S3 occur in overtwisted contact structures on S3. More specifically,
Min, Mukherjee, and the first author [16] showed that negative torus knots admit non-
thickenable solid tori in some overtwisted contact structures; see below for more discus-
sion of this. Here we give a large family of new examples in many contact manifolds.

Theorem 1.10. IfK is a genus 1 fibered knot in the manifoldM or a knot with trivial monodromy,
and ξ is the contact structure that K supports, then the knot type K admits non-thickenable tori in
the contact structure ξ.

An immediate consequence of this (see Corollary 5.2 for the precise statement) will be
that if ξK is tight, then tb(K) = 1 for any genus 1 fibered knot K.

The theorem above inspires the following conjecture.
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Conjecture 1.11. A fibered knot K in a manifold M admits non-thickenable tori in a contact
structure ξ on M if and only if K supports ξ.

We note work of Lafountain [29], coupled with work of Baker, Van Horn-Morris, and
the first author on cabling open books [1], says an iterated torus knot has non-thickenable
tori if and only if it supports the standard tight contact structure on S3. Moreover, [16]
shows that a torus knot admits a non-thickenable torus if and only if it is in the contact
structure supported by that torus knot. (Here, we note that one needs to be careful about
the definition of non-thickenable torus in overtwisted contact structures because there are
many examples of a Legendrian knot that does not destabilize but does not have maximal
Thurston-Bennequin invariant. So in this case, by non-thickenable, we mean that there is a
solid torus with convex boundary having non-integral slope but is not contained in a solid
torus with a different dividing slope.)

The discussion above is about non-thickenability of fibered knots, and the fact that they
support a contact structure was essential. For non-fibered knots, we have no such con-
sideration, but in upcoming work of Min and the first two authors [14] it will be shown
that if surgery on a knot K yields a manifold with an incompressible torus non-trivially
intersecting the surgery dual knot, then that knot type admits non-tickenable tori in some
contact structure. So we ask the following.

Question 1.12. When do non-fibered knots never have non-thickenable tori?

We end with one question about which we know nothing.

Question 1.13. Is there a knot typeK admitting a non-thickenable torus with dividing slope larger
than tb(K)?

Clearly from Theorem 1.4 one might expect knot types K with Legendrian large cables
to have such tori, but it is unclear if the slope w(K) is realized by a solid torus in the knot
type or if there are other non-thickenable tori in this knot type.
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2. BACKGROUND

We will be using standard facts about the Farey graph and from convex surface theory.
These facts and the conventions used in this paper are discussed thoroughly in [17]. For
convenience, we recall some basic facts about the classification of contact structures on
solid tori and the main result from [5].
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2.1. Contact structures on solid tori. We recall the classification of tight contact structures
on solid tori from [21, 25]. We will describe solid tori as follows. Consider T 2 × [0, 1]. Let
Sm be the quotient of T 2 × [0, 1] obtained by collapsing the leaves of a linear foliation on
T 2 × {0} of slope m. We say Sm is a solid torus with lower meridian m. Similarly, Sm is the
quotient of T 2 × [0, 1] obtained by collapsing the leaves of a linear foliation on T 2 × {1} of
slope m and we say Sm is a solid torus with upper meridian m. Of course, both Sm and Sm

are solid tori, but the first has its boundary oriented with the outward normal first, and the
second has it oriented with the inward normal first. This distinction will be useful when
considering contact structures.

A path in the Farey graph is called a continued fraction block if after a change of coor-
dinates the vertices in the path are −1,−2, . . . ,−n. See [17] for other characterizations of
continued faction block. It is not hard to see that any minimal path in the Farey graph can
be broken into continued fraction blocks.

Given slopes m and r we can consider a clockwise minimal path in the Farey graph
from m to r. We say this path is partially decorated if all the edges have a sign except the
first edge. We say two partially decorated paths are the same up to shuffling in continued
fraction blocks if the number of + signs in each continued fraction bock is the same (this, of
course, implies that the number of − signs is the same too).

Theorem 2.1 (Giroux [21], Honda [25], 2000). Tight contact structure on the solid torus Sm
with lower meridian m and convex boundary with two dividing curves of slope r are in one-to-
one correspondence with partially decorated paths in the Farey graph up to shuffling in continued
fraction blocks.

Moreover, a contact structure as above on Sm is universally tight if and only if all the signs on
the path describing the contact structure are the same.

There is an analogous theorem for solid tori with upper meridianm except that the path
will run from r clockwise to m and all edges will have a sign except for the last edge.

2.2. Splitting symplectic fillings. Given a torus T in a 3-manifoldM with a choice of basis
for H1(T ) so that simple closed curves can be identified with rational numbers, we define
the s-splitting of M along T to be the result of cutting M along T and gluing two solid tori
to the resulting boundary components with each solid torus glued so that the meridian is
glued to the curve of slope s.

If we have a contact structure ξ on M , we say a torus T is a mixed torus if T has a
neighborhood N = T 2 × [−1, 1] such that T = T 2 × {0} and T 2 × [−1, 0] and T 2 × [0, 1]
are basic slices with opposite signs. Notice that to talk about the signs of the basic slices
T must be oriented and this orients T 2 × [−1, 0] and T 2 × [0, 1]. Let si be the dividing
slope on T 2 × {i} for i = −1, 0, 1 and ET be the set of vertices in the Farey graph in the
interval [s1, s−1] with an edge to s0. For e ∈ ET we say an e-splitting of (M, ξ) is obtained
by gluing solid tori to M \ T as above and extending the contact structure by the unique
tight contact structure on these solid tori. (The torus T is oriented so that we can discuss
the signs on the basic slices and one of the boundary components of M \T will be oriented
as T was and the other will have the opposite orientation. To the first, we glue a solid torus
with upper meridian e, and to the second, we glue a solid torus with lower meridian e. As
these solid tori have unique tight contact structures, this distinction is not essential here,
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but in discussions below, it will be useful to keep in mind.) We note that each of these solid
tori that is added to the e-splitting of M is a standard neighborhood of a Legendrian knot
(since the dividing curves on their boundary are longitudinal for their meridian).

Theorem 2.2 (Christian-Menke [5]). If X is an exact symplectic filling of (M, ξ) and T is a
mixed torus in (M, ξ), then there is a symplectic filling X ′ of the e-splitting of (M, ξ) such that X
is recovered by attaching a round 1-handle to the Legendrian knots determined by the e-splitting.

Recall that a round handle attached toX along knotsK1 andK2 is the result of attaching
a 1-handle with attaching sphere a point on K1 and a point on K2 and then attaching a 2-
handle to K where K is obtained by connected summing K1 and K2 in the 3-manifold
boundary of the result of the 1-handle attachment. One must specify framings on K1 and
K2 that induce a framing on K. In the contact setting, the Ki have contact framings, and
K is the connected sum of Legendrian knots and has a natural framing, and the handle is
attached as a Stein 2-handle to the Legendrian knot K.

3. WIDTH OF KNOTS

In this section, we prove our two theorems about the width of certain knots. We begin
with the result stating that w(K) = tb(K) if K is an L-space knot with tb(K) = g(K)− 1.

Proof of Theorem 1.1. Let K be an L-space knot with tb(K) = 2g(K) − 1. Suppose that
w(K) > tb(K). Then there will be a solid torus with convex boundary having dividing
slope p/q for some p/q ∈ (tb(K), tb(K) + 1). We can assume that the boundary of this
torus is in standard form and let L be a Legendrian divide on the torus. Clearly, L is a
Legendrian knot in the knot type of the (q, p)-cable of K. The contact framing on L agrees
with the framing coming from the torus, and this framing differs from the Seifert framing
by pq. Thus tb(L) = pq. Let M be the result of Legendrian surgery on L. One can build a
Stein filling X of M by attaching a Stein 2-handle to B4 along L. It is well-known, see [22,
Corollary 7.3], that smoothly M is also the result of (pq − 1)/q2 surgery on K.

We note that the result of smooth r surgery on K will be an L-space if r ≥ 2g(K) − 1,
[24, 33]. Moreover, any symplectic filling of an L-space must be negative definite, [35]. We
claim that (pq−1)/q2 > 2g(K)−1. Indeed, if p/q ∈ (n, n+1) then p = nq+ r for 1 ≤ r < q.
Now one may easily check that r/q − 1/q2 ∈ (0, 1) from which we see that (pq − 1)/q2 =
n + r/q − 1/q2 and hence is also in (n, n + 1). Since (pq − 1)/q2 > 2g(K) − 1 we see that
M is an L-space and thus any symplectic filling must be negative definitely; however, X
is positive definite since pq − 1 > 0. This contradiction proves that w(K) = tb(K). □

We now prove Theorem 1.2 that claims the width equals the maximal Thurston-Bennequin
invariant for cables of non-Lagrangian slice knots if the cable coefficient is sufficiently neg-
ative. We note that this proof is modeled on the proof of Theorem 1.2 in [12].

Proof of Theorem 1.2. Suppose p/q < w(K) and K is not Lagrangian slice. By hypothesis,
there is a solid torus in the knot typeK with convex boundary having dividing slope larger
than q/p, and by the classification of tight contact structures on solid tori, we know that
inside of this neighborhood, we can find a convex torus with dividing slope q/p. Let L
be a Legendrian divide on this torus. This is smoothly a (p, q)-cable of K, and the contact
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planes have twisting 0 relative to the torus, thus tb(L) = pq. We will prove that the width
of Kp,q is also pq. This will establish that tb(Kp,q) = pq.

Arguing by contradiction, we assume that there is a solid torus S in the knot type Kp,q

with convex boundary having dividing slope larger than pq. From now on we will use
coordinate on ∂S where the longitude comes from the cabling torus. In these coordinates,
the slope of the dividing curves on ∂S are larger than 0. By shrinking S if necessary, we
can assume that ∂S has 2 dividing curves of slope 1/n for some large positive integer n.

Let A be an annulus in the complement of S such that the complement of S together
with a neighborhood of A is contains a solid torus N(K) in the knot type of K. We can
make A convex with boundary ruling curves on ∂S. Notice that there are two dividing
curves on A and they must run from one boundary component to the other, since if not
we could Legendrian realize a core curve on A that was disjoint from the dividing curves
and then expand S to S′ such that ∂S′ contained this Legendrian. This solid torus S′ can
be made to have convex boundary, and its dividing slope must be 0. This implies that in
S′ \ S, there is a convex torus of slope ∞, but a Legendrian divide on this torus bounds
a disk in S, which implies that the contact structure is overtwisted. Thus, the dividing
curves on A must go from one boundary component to the other.

Consider S ∪ (A× [−1, 1]) where the contact structure on A× [−1, 1] is invariant under
translation in the [−1, 1]-direction. After rounding corners, we note that this is diffeomor-
phic to T 2 × [−1, 1], and we will use this to denote this manifold. Let Ti denote T 2 × {i}
with which we consider T1 = ∂N(K) and T−1 ⊂ N(K). Notice that, since the slope of the
dividing curve on S is 1

n , we obtain that the slope of the dividing curves on T−1 is obtained
by performing n+ 1 negative Dehn twists to the dividing curves on T1. So, we can choose
coordinates on T 2 so that the dividing slope on T1 is 1 and on T−1 is −1/n. By the classifi-
cation of tight (minimally twisting) contact structures on thickened tori, we know we can
find a convex torus T0 in T 2 × [−1, 1] that has dividing slope 0 and this splits T 2 × [−1, 1]
into two basic slices T 2 × [−1, 0] and T 2 × [0, 1] each of which have two possible contact
structures, this fact and the following statements can be found in [25]. The possible relative

Euler classes for T 2× [−1, 0] are ±
[
1− n
1

]
and for T 2× [0, 1] are ±

[
0
1

]
. So the relative Euler

class of T 2× [−1, 1] is simply the sum of two of these. We know that evaluating the relative
Euler class on an annulusA′ that is a convex annulus inA× [−1, 1] obtained as a core circle
cross [−1, 1] is simply χ(A′

+)− χ(A′
−) where A′

± are the ± components of the complement
of the dividing set on A′ and χ denotes Euler characteristic. Thus, the relative Euler class
of T 2 × [−1, 1] evaluated on A′ is 0, and hence the basic slices have to have opposite signs.
This implies that the contact structure on T 2 × [−1, 1] is virtually overtwisted, but that
would further imply that K can be realized by a solid torus with a virtually overtwisted
contact structure on it. But this is ruled out by Theorem 1.9 sinceK is not Lagrangian slice.
Thus w(K) = tb(K).

If K is Lagrangian slice, we obtain the same conclusion unless q/p ∈ (−1/2, 0). This is
because the slope of torus with a virtually overtwisted contact structure at the end of the
previous paragraph has an edge in the Farey graph to q/p and so again we get a contradic-
tion to Theorem 1.9. □
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We now turn to the result concerning knot types that admit Legendrian large cables and
show that such knots must be Lagrangian slice, the cable slope of the large cable must be
− 1

n , and the width of the knot is larger than the maximum Thurston-Bennequin number
tb.

Proof of Theorem 1.4. Suppose that K is a knot type such that there is a Legendrian repre-
sentative L in L(Kp,q) that has tb(L) = pq + k for some k > 0. Then according to Theo-
rem 1.10 in [2] there is a continued fraction block of length 2k such that there are k positive
basic slices and k negative basic slices and the slope on the middle torus is q/p. Thus we
have a mixed torus T of slope q/p.

Let e be an exceptional slope for q/p, that is e is an element of ET . The torus T cuts
S3 into a solid torus S and S3

K , the complement of a neighborhood of K in S3. Thus
the e-splitting of S3 along T will result in S with a solid torus with meridional slope e
attached and S3

K with a solid torus of slope e-attached. The first is a lens space and the
second is e Dehn surgery on K, denoted S3

K(e). Since we know that any symplectic filling
of a lens space has a connected boundary [9, 36] we know that the symplectic filling X ′

of the e-splitting of M along T coming from Theorem 2.2 has two components X1 and
X2 with X1 filling the lens space. Now the filling B4 of S3 is recovered from X1 ∪ X2 by
attaching a round 1-handle. Thus one of Xi must be a homology ball and the other must
be a homology S1 × D3. Since lens spaces do not have the latter filling [4, 32, 17] S3

K(e)
must be a homology S1 ×D3 and hence S3

K(e) must be a homology S1 × S2. From this we
know that e must be 0. Denote ∂Xi by Mi.

Since e = 0 and e has an edge in the Farey graph to q/p we see that q/p = 1/n for some
n. Notice if n is positive, then the contact structure on M1 is obtained by gluing a solid
torus with lower meridian ∞ and dividing slope 1/n to a solid torus with upper meridian
0 and dividing slope 1/n. In the latter torus we can find a convex torus with dividing slope
∞ and thus a Legendrian divide on this torus will bound an overtwisted disk. Since M1 is
symplectically fillable, we cannot have n positive.

Now considering negative n, let S′ denote the solid torus that T bounds. Since the
slope of T is in a continued fraction block the other tori in this block must have slope 1/m,
and since you can shuffle basic slices in the continued fraction block we can assume that
all the basic slices between T and the torus of slope −1 have the same sign. Thus the
contact structure on S′ is universally tight. Further, let S′′ be the solid torus in S′ that has
convex boundary with dividing slope −1. Notice that S′′ is a standard neighborhood of a
Legendrian knot L in the knot type of K. One of the components of the e-splitting of S3

along T is obtained by removing S′′ from S3 and gluing in a solid torus with tight contact
structure having meridian 0. We note that this is equivalent to removing the solid torus
S′′ and gluing in a solid torus with tight contact structure having meridian 0. That is M2

is obtained from S3 by contact (+1) surgery on L. Now from [6] we know that L must be
Lagrangian slice and we have already seen that q/p = 1/n. Thus completing the proof of
Items (1) and (2) in the theorem.

We are left to see that the width of K satisfies w(K) ≥ − 1
n+k , but this is clear since T is

the center torus in a continued fraction block of length 2k. □
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We now prove the estimate on the lower bound of the maximal Thurston-Bennequin
invariant of a fibered knot K that says if K is a non-trivial fibered knot in a manifold M

and supports the contact structure ξK , then tb(K) ≥ 0.

Proof of Theorem 1.6. Let Σ be the union of the closures of two fibers in the fibration of
M − K. From the construction of ξK , it is clear that Σ is convex with dividing set K.
Because K is non-trivial, the fiber of the fibration is of positive genus, so one may use
the Legendrian realization principle [25] to realize a non-separating simple closed curve
C on Σ as a Legendrian curve in the complement of K. Then, using a local model for
this Legendrian curve one can create a new convex surface Σ′ (agreeing with Σ outside a
neighborhood of the Legendrian curve) with dividing set K union two parallel copies of
C. Now we can realize a copy of K as a Legendrian curve in the characteristic foliation of
Σ′ that is disjoint from the dividing set. This implies that its Thurston-Bennequin invariant
is 0. □

4. VIRTUALLY OVERTWISTED SOLID TORI

This section is devoted to the proof that the standard contact structure on S3 restricted
to a solid torus in the knot type K will be universally tight unless K is Lagrangian slice
and the slope of the dividing curves is in (−1/2, 0).

Proof of Theorem 1.9. Suppose S is a solid torus with convex boundary having dividing
slope s in (S3, ξstd) in the knot type K that is virtually overtwisted. We know from Theo-
rem 2.1 that ξstd restricted to S will be given by a minimal path in the Farey graph from ∞
clockwise to s with all edges decorated by a ± except for the first edge. Since the contact
structure is virtually overtwisted, some of the signs must be different in the path. Suppose
r is the slope of a torus between a + edge and a − edge. There will be a mixed torus T in
S with slope r. We will choose r to be the first place, moving clockwise from ∞, where the
signs on the edges change.

We can repeat the argument in the proof of Theorem 1.4 above to see that r = 1/n < 0
and K admits a Legendrian representative that is Lagrangian slice.

Finally, since r = 1/n with n ≤ −2 (note −1 would make r an integer and there can be
no changes in the signs on the path in the Farey graph at −1 since the edge from ∞ to −1
will not have a sign), and we know that s > r and hence s ∈ (−1/2, 0). □

5. NON-THICKENABLE TORI

In this section we consider non-thickenable tori and prove Theorem 1.10 that states for
genus one open books, or open books with trivial monodromy, there are non-thickenable
tori in the knot type of the binding contained in the contact structure supported by the
open book. The proof will be broken into two cases. We start with genus 1 fibered knots.

Proposition 5.1. Let K be a genus-1 fibered knot in a closed 3-manifold M and ξK be the contact
structure it supports. Then there are non-thickenable solid tori S±

n in (M, ξ) for n ≥ 2 and S1 with
convex boundary having two dividing curves of slope 1/n.
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Corollary 5.2. With the notation from Proposition 5.1 We note that S1 is a standard neighborhood
of a Legendrian knot L in the knot type K with tb(L) = 1 and rot(L) = 0. In particular,
tb(K) = 1 in ξK for all fibered knots K, if ξK is tight.

Moreover, if ξ is a tight contact structure on M not isotopic to ξK then tb(K) ≤ 0 in ξ and if
M = S3 or −K is isotopic to K then tb(K) ≤ −1.

Proof. It is clear that S1 in Proposition 5.1 is a standard neighborhood of a Legendrian knot
L with the claimed properties (by the Bennequin inequality).

Now if ξ is a tight contact structure on M not isotopic to ξK then we note that K cannot
admit a Legendrian representative L with tb(L) = 1 since its transverse push-off would
have sl = 2g(K) − 1 and the main result in [18] would imply that K supports ξ. Now
suppose that there is a Legendrian knot L with tb(L) = 0. The Bennequin inequality
implies that rot(L) = ±1. If it is −1, then the transverse push-off of L would again have
sl = 2g(K) − 1, leading to the same contradiction as above. If rot(L) = 1 and −K is
isotopic to K then rot(−L) = −1 and the transverse push-off of −L will lead to the same
contradiction. Finally, in the standard tight contact structure on S3 it is well-known that if
K has a Legendrian knot L with rotation number r then there is a Legendrian knot with
the same Thurston-Bennequin invariant and rotation number −r. □

Proof of Proposition 5.1. We first recall a family of contact structures on torus bundles. Let
Y be a torus bundle over S1. For such a manifold, there is a diffeomorphism ψ : T 2 → T 2

such that Y is the mapping torus of ψ, that is Y is T 2 × [0, 1] after (x, 1) is identified with
(ψ(x), 0). We now consider α = f(t) dθ + g(t) dϕ on T 2 × [0, 1] where (θ, ϕ) are angular
coordinates on T 2 and t is the coordinate on [0, 1]. The 1-form α defines a contact structure
if and only if f ′g−g′f > 0. This requirement is the same as saying the curve t 7→ (f(t), g(t))
moves clockwise around the origin in R2. Note that the contact structure is tangent to the
[0, 1]-direction and induces a linear foliation on the tori T 2 × {t} of slope f(t)/g(t).

We can suppose that f(0) = 0 and g(0) = 1, so the characteristic foliation L0 on T 2×{0}
is by lines of slope 0. Let L1 be the linear foliation on T 2 × {1} given by ψ−1(L0). Now
choose f1 and g1 so that they parameterize a curve on R2 that starts at (0, 1) and moves
clockwise until it reaches the angle of the foliation L1. With this choice, we obtain a contact
structure ξ′1 on Y . If we let fn+1 and gn+1 be f1 and g1 extend by rotating around the origin
in R2 2πn extra times we obtain a contact form αn+1 = fn+1(t) dθ + gn+1(t) dϕ and the
contact structure ξ′n+1 on Y .

Now suppose, that M has an open book decomposition with binding K and page
genus 1. Let Y be the result of 0-surgery on K. Note Y is a torus bundle over S1. Let
K ′ be the surgery dual of K in Y . The meridian for K will give a longitude l for K ′. We
can assume that the framing of K ′ given by l is the same as the product framing on K ′

coming from T 2 × [0, 1]. With this choice, we notice that K ′ in (Y, ξ′n) can be realized by a
Legendrian knot L′

n with contact twisting −n. LetN ′
n be a standard neighborhood of L′

n in
(Y, ξ′n) and let ξ±n be the contact structure obtained from (Y, ξ′n) by removingN ′

n and gluing
in a solid torus S±

n with meridional slope ∞ (using the longitude-meridian coordinates on
K). We note that ∂S±

n will be convex with dividing slope 1/n. Thus when n > 1 we see
that there are two possible contact structures on S±

n , one is denoted as S+
n and the other

S−
n . On the other hand, for n = 1 there is a unique contact structure on the solid torus so
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S±
1 is the same independent of the sign ±, but we keep the sign just to be consistent with

the other cases.
Claim: (1) the contact structure ξ±n is ξK for all n and ±, and that (2) the S±

n are non-
thickenable tori in (M, ξK).

The result clearly follows from these two claims.
To establish the first claim we notice that ξ±n is obtained from ξ′n by contact (+n)-surgery

on L′
n. If we let T ′

n be the transverse push-off of L′
n then contact (+n)-surgery on L′

n is the
same as inadmissible transverse 0-surgery on T ′

n. Recall this means one takes a standard
neighborhood of T ′

n and removes it and glue in a new solid torus with meridional slope
0 (using longitude-meridian coordinates on T ′

n where the longitude is the meridian of K
and the meridian is the meridian of T ′

n, this is the same as the ∞ slope using longitude-
meridian coordinates coming from K).

We now give an alternate description of ξ′n. Consider

αn,s,r = s dt+ r(fn(t) dθ + gn(t) dϕ)

where the functions fn and gn are defined above. If s = 0 and r = 1 then αn,s,r = αn.
For s ∈ [0, 1] the forms αn,s,r are all contact, and hence ξ′n is isotopic to the kernel of αn,1,r.
Similarly αn,1,r are contact forms for all r > 0. So we may further isotope ξ′n to the kernel
of ξ′′n = αn,1,ϵ for ϵ > 0 arbitrarily small. We note that F = kerαn,1,0 defines the foliation
of Y by fibers of the fibration of Y over S1. So kerαn,1,r shows that ξ′n is a deformation of
the foliation F . Now K ′ can be thought of as a section of the fibration Y → S1 and as such
it is transverse to F and hence to kerαn,1,ϵ. It is not hard to see that this transverse knot is
transversely isotopic to T ′

n. (Indeed notice that T ′
n is transverse to ξ′n and the deformations

to kern,1,ϵ always keep T ′
n transverse to the contact planes.) Thus ξ±n is obtained from ξ′′n by

inadmissible transverse 0-surgery on T ′
n.

Let N ′
n be a standard neighborhood of T ′

n in ξ′′n. So (M, ξ±n ) is obtained from (Y, ξ′′n) by
removing N ′

n and gluing in a solid torus S̃±
n with meridional slope ∞ (when measured in

the longitude-meridian coordinates coming from K in M ). We can construct a Heegaard
surface Σ for M by taking two fibers F and F ′ of the fibration of (Y − N ′

n) → S1 and
connecting them by an annulus in S̃±

n . All of the singularities in the characteristic foliation
of F are positive (since ξ′′n is a small perturbation of F) and similarly for F ′. But to build
the Heegaard surface Σ one must reverse the orientation on F ′. Thus the singularities in
F ′ ⊂ Σ are negative and in F ⊂ Σ are positive. Moreover, the characteristic foliation on
the annulus in Σ consists of leaves running from one boundary component to the other.
Thus Giroux [20] tells us the dividing set on Σ is simply K sitting on Σ. We note that Σ
breaks M into two handlebodies and each of these handlebodies is a subset of (Y, ξ′′n) and
hence is tight (since ξ′′n is a perturbation of the taut foliation F , it must be tight [7]). Now
since Σ is also a union of two pages of the open book of M associated to K, we know by
[37] that ξ±n is supported by K and hence isotopic to ξK as claimed.

We now prove the second claim above that the S±
n are non-thickenable tori in (M, ξK).

Suppose that there was a solid torus S containing S±
n in ξK . We can then surger S±

n in S
to get back to Y and the contact structure ξ′n. The torus S will become a torus S′ in Y with
convex boundary having dividing slope larger than −n. We will show that this will allow
us to find another solid torus with convex boundary having dividing slope −n + 1. This
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will be a neighborhood of a Legendrian knot L with tb = −n+ 1 that is smoothly isotopic
to L′

n. But since the Giroux torsion of ξ′n is n−1 we know from [27] that the contact twisting
of Legendrian knots isotopic to L′

n is bounded above by −n. This contradiction proves that
S did not exist and S±

n is non-thickenable.
We are left to show that given S′ in (Y, ξ′n) we can find a solid torus in the same knot type

with convex boundary having dividing slope −n + 1. If the dividing slope of S′ is larger
than −n+ 1 then we can find the desired torus inside of S′. So, we are left to consider the
case when the dividing slope of ∂S′ is between −n and −n+1. In this case, we claim there
is a Legendrian L′ knot isotopic to L′

n outside of S′. Given this, we note that we can take
an annulus A with one boundary component on L′ and the other a ruling curve on ∂S′.
We can make the annulus convex and the dividing curves on A will intersect L′ exactly 2n
times and will intersect the dividing curves on ∂S′ more times (since the curves of slope
0 will intersect any curve of slope between −n and −n + 1 more than n times). Thus we
can find a bypass on A for ∂S′. Attaching the bypass will increase the dividing slope. We
can continue to do this until we have a solid torus with boundary having dividing slope
−n+ 1.

We now consider the existence of L′. We do not actually prove L′ exists in Y , but that
we can find a finite cover of Y that unwraps the fibers of Y → S1 in which we can find L′,
which is disjoint from a lift of S′. This is clearly sufficient to obtain the same contradiction
as in the previous paragraph. We note that we consider the cover of Y in which the fiber is
unwrapped to R2, then there will be lifts of L′

n and S′ that will be disjoint, but now there
is clearly a finite cover in which they are disjoint too. □

We now turn to the case of an open book with trivial monodromy.

Proposition 5.3. Let B be the binding of the open book for #2gS
1 × S2 with page the surface Σ

of genus g with one boundary component and monodromy ϕ, the identity map on Σ. Then in the
tight contact structure ξstd on #2gS

1 × S2, B admits non-thickenable tori S±
n for n > 1 and S1,

where ∂S±
n is convex with 2 gcd(2g − 1, n) dividing curves of slope (2g − 1)/n and ∂S1 is convex

with 2 dividing curves of slope 2g − 1. Moreover, these are the only non-tickenable tori in the knot
type of B.

Remark 5.4. We notice that ξstd on #2gS
1 × S2 is supported by the open book in the propo-

sition.

Proof. We will prove the proposition in three steps. We will first see that the only possible
slopes for non-thickenable tori in the knot type of B are the ones given in the proposition,
we will then construct these solid tori in ξstd, and we will finally show they are actually
non-thickenable.
Step 1: Identifying the possible non-thickenable slopes. Suppose S is a non-thickenable
solid torus with convex boundary in the knot type B. There are integers r and s such
that the boundary of S has 2 gcd(r, s) dividing curves of slope r/s. (Here we use standard
longitude-meridian coordinates on ∂S.) Now consider M = (#2gS

1 × S2) \ S. Clearly,
M = Σ× S1 where the S1 factor is parallel to the meridian of S.

We can give a framing to fibers of M using the product structure on M . Thus, we can
assign integers to the contact framing on any Legendrian knot isotopic to an S1-fiber. Let
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L be a Legendrian realization of an S1-fiber on the interior of M with the largest possible
contact framing. We note that the contact framing of L must be less than or equal to −1
because if it were 0 (or if larger, we could stabilize to make it 0), then we could thicken
S to a solid torus with dividing slope ∞ and thus we would see that ξstd is overtwisted
which it is not. Let −k be the contact framing on L for some k ≥ 1. Let N(L) be a standard
neighborhood of L, and we can choose the product structure on M so that N(L) is a disk
D on the interior of Σ times S1. Now we can think of Σ as being built from D by attaching
2g 1-handles. Let α1, . . . , α2g be the cores of these 1-handles. That is, the αi are disjoint
arcs on Σ with endpoints on ∂D and a neighborhood of D, and the αi is Σ minus a collar
neighborhood of ∂Σ. LetAi = αi×S1. These are annuli in the interior ofM with boundary
on N(L). We can assume that ∂Ai are ruling curves on ∂N(L) and that the Ai are convex.
We notice that the dividing curves on eachAi all run from one boundary component to the
other because if not, we would have a bypass for ∂N(L) that would show that L destabi-
lizes. Now if we add I-invariant neighborhoods of the Ai to N(L) and round the corners,
we get a manifold M ′ such that M −M ′ is a thickened torus, and since the dividing curves
on ∂N(L) have slope −k we see that the dividing curves on ∂M ′ have 2 gcd(2g − 1, k)
dividing curves of slope −k/(1 − 2g). The longitude-meridian coordinates on S are the
inverse of those on ∂M ′ coming from N(L) so we see that the complement of M ′ is a solid
torus S′ containing S with dividing slope (2g − 1)/k. Thus, since S is non-thickenable we
must have that r/s = (2g − 1)/k and ∂S must have less than or equal to 2 gcd(2g − 1, k)
dividing curves. (Recall in the definition of non-thickenable, we said that any torus con-
taining S must have the same slope as S but there could be more dividing curves as one
can always “fold” a convex surface in an I-invariant neighborhood to increase the number
of dividing curves.)

We are left to see that ∂S has 2 gcd(2g− 1, k) dividing curves. From above, we just need
to see that it does not have fewer dividing curves. Suppose that l = gcd(2g − 1, k) and ∂S
has 2l′ dividing curves with l′ < l. (Here we assume that l > 1 since if not, there is nothing
to prove.)

Let β1, . . . , β2g be arcs properly embedded in Σ that cut Σ into a disk that contains D
and let Bi = βi × S1. Thus, M cut along the Bi is a solid torus N that contains N(L). We
can arrange that ∂M has ruling curves of slope ∞, that is, parallel to the S1-factor, and
then choose the Bi to have boundary ruling curves on ∂M and be convex. We note that
the dividing curves on each Bi must run from one boundary component of Bi to the other
since, otherwise, there would be a bypass for S that we could use to thicken S. If we cutM
along the Bi and round the corners, we see that ∂N is convex, and we compute the slope
of the dividing curves as follows. Suppose a and b are positive, relatively prime integers
such that a/b = k/(2g − 1). Thus k = la and 2g − 1 = lb. Now the homology class of
a dividing curve on ∂M is (l′a, l′b). Thus, the homology class of a dividing curve on ∂N
is (l′a, l′b − 2g). Recalling the slope conventions above, we see that the dividing curves
on ∂N have slope − l′a

2g−l′b . Notice that this function is decreasing from 0 to l, and thus

− l′a
2g−l′b > − la

2g−lb = −k. So N is a thickening of N(L). Below we will show that N(L)

cannot be thickened in M and thus l′ cannot be less than l and we will complete Step 1.
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Consider an annulus A in M with one boundary component a ruling curve on ∂M and
the other on ∂N(L). Notice that there are no boundary parallel dividing curves on A
since they would give a bypass for either ∂M or ∂N(L), and these are not allowed, as
the former would thicken S (which we are assuming does not thicken) while the latter
would destabilize L (which we are assuming does not destabilize). Thus ∂A intersects the
dividing curves on ∂M 2k times. Now, if N(L) thickened to a solid torus N ′ with dividing
slope s we first note that s must be between −k and −k + 1 since L does not destabilize.
We also note that any curve of slope between −k and −k + 1 intersects the boundary of A
(which has slope ∞) more times than the slope −k curve does. Thus, if A is an annulus
between ∂M and ∂N ′, then there will be a bypass for ∂N ′ on A. Thus, we can thicken N ′.
We can keep doing this until we have thickened N ′ to a solid torus with dividing slope
−k+ 1, but this contradicts the fact that L has the maximal contact twisting among curves
isotopic to the fiber. Thus N(L) does not thicken and Step 1 is complete.

Step 2: We will build a contact structure on M by defining it on N(L) and neighborhoods
of the Ai above, and we will then extend this contact structure over S and show that the
constructed contact structure is indeed ξstd.

Since N(L) is a neighborhood of a Legendrian knot, there is a unique choice for the con-
tact structure on N(L) (once the characteristic foliation on ∂N(L) is fixed). By considering
a standard model for a Legendrian knot, we can see thatN(L) is fibered by Legendrian S1s
isotopic to L. Consider a neighborhood N(Ai) of Ai. Notice that N(Ai) ∩N(L) consists of
two annuli, call one of them Ci. Smoothly, one may think of N(Ai) as Ci × I where I is an
interval. The annulus Ci may be taken to be foliated by ruling curves of ∂N(L) and then
we may extend the contact structure over N(Ai) as an I-invariant contact structure Ci × I .
This defines a contact structure on M for which all S1-fibers are Legendrian and isotopic
to L. The proof of Lemma 3.3 in [26] shows that any Legendrian knot smoothly isotopic
to an S1-fiber has contact twisting less than or equal to −k. In the proof of Theorem 3.8 in
[26], Honda shows how to perturb the fibration so that the fibers are all transverse to the
contact structure.

Given the boundary conditions on ∂M = ∂S there are two universally tight contact
structures on S with this data (except when k = 1, in which case there is one). We extend
the contact structure constructed above over S by either of these two universally tight
contact structures. This gives a contact structure on #2gS

1 × S2. We note that the same
argument as the one used in the proof of Proposition 5.1 above, whose that the constructed
contact structure is ξstd. We denote the constructed solid tori by S±

k (when k = 1, we omit
the ±).

Step 3: We are left to show that the S±
k are non-thickenable tori. To this end, notice that if

S±
k thickened, then the argument at the end of Step 1 would show that N(L) thickens in
M , but we saw in Step 1 that N(L) does not thicken. □

Proof of Theorem 1.10. The theorem clearly follows from the two propositions in this section
which deal with the two cases in the statement of the theorem. □

On behalf of all authors, the corresponding author states that there is no conflict of
interest.
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