
SYMPLECTIC CONVEXITY IN LOW DIMENSIONAL

TOPOLOGY

JOHN B. ETNYRE

Abstract. In this paper we will survey the the various forms of convex-
ity in symplectic geometry, paying particular attention to applications of
convexity in low dimensional topology.

Keywords: !-convex; symplectically �llable; pseudo-convex

AMS classi�cation: Primary 57-02 Secondary 57M50; 53C15

1. Introduction

For quite some time it has been known that there is a relation between the
topology of a manifold and the geometry it supports. In recent years there
has been much work to indicate that low dimensional topology is closely
related to symplectic and contact geometry. The advent of Seiberg-Witten
theory (see [D]) has done much to strengthen these ties. In particular, the
work of Taubes [T] has shown that symplectic manifolds are basic building
blocks in 4-dimensional topology (In the sense that a closed minimal simply
connected symplectic 4-manifold is irreducible). Recently there has been a
great deal of work constructing symplectic manifolds. Most of these meth-
ods have involved symplectic convexity in some way. In 3-dimensions tight
contact structures also have something to say about topology. For exam-
ple Eliashberg [E4] gave a proof of Cerf's theorem using contact geometry.
Cerf's theorem says that any di�eomorphism of S3 extends over the 4-ball.
The structure of contact 3-manifolds is inuenced by symplectic convexity:
it can be used to construct and distinguish contact structures. This paper
is a survey of various forms and uses of convexity in symplectic geometry,
paying particular attention to what happens in low dimensions.
We begin in Section 2 by discussing the strongest form of convexity, that

of !-convexity. It is !-convexity that is a necessary component in most
cut-and-paste constructions of symplectic manifolds; however, !-convexity
is not su�cient for these constructions. Indeed, this lack of su�ciency can
be exploited to understand contact manifolds better (see [LM] or page 19
below). In Section 3 we give several constructions of !-convex hypersurfaces
and then review several constructions of symplectic manifolds which can be
interpreted in terms of !-convexity. Speci�cally, we show how the symplectic
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normal connected sum operation of Gromov [Gr2], used by Gompf [G1] and
McCarthy-Wolfson [MW1], follows from !-convexity. We also see how Mc-
Carthy and Wolfson's gluing along !-compatible hypersurfaces [MW2] can
(usually) be seen as an !-convex gluing. In Sections 4 and 5 we consider
three weaker forms of convexity and discuss their relation to !-convexity.
(See Figure 1 for these relationships and the appropriate sections for the
relevant de�nitions.) Unfortunately, these weaker forms of convexity can
rarely be used to perform a symplectic cut-and-paste; however, they are use-
ful in constructing tight contact structures. This is the content of Section 6,
where we show how symplectic convexity has quite a lot to say about con-
tact geometry in dimension three. In Section 7 we discuss some questions
and conjectures.

!-convex  ! dominate �! weak symplectic �lling
# %

pseudo-convex
(a)

!-convex �! dominate  ! weak symplectic �lling
l %.

pseudo-convex
(b)

Figure 1. Relation between the notions of convexity in di-
mensions above four (a) and in dimension four (b).

This paper is intended for a topologically minded reader who might not be
an expert in symplectic geometry. Thus we have tried to include complete
proofs of most results. A notable exception is in Section 3 where many of
the proofs are only indicated as their inclusion would have greatly increased
the length of this paper. In addition, good proofs of these results appear
elsewhere. Though we do assume familiarity with symplectic geometry we
have included an appendix to review a few basic facts.
I would like to acknowledge my indebtedness to the paper [EG]: the �rst

paper to treat symplectic convexity as a subject unto itself. I would also
like to thank Bob Gompf who has taught me a great deal about symplectic
geometry and four dimensional topology. Lastly I would like to thank Rob
Ghrist and Margaret Symington for encouragement during the writing of this
paper and many excellent comments and suggestions on the �rst draft of this
paper.
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2. Strong Convexity

Let (X;!) be a symplectic manifold. Given a vector �eld v we can ask
how ! changes along v. We will consider the situation when

Lv ! = c !;(1)

where Lv! is the Lie derivative of ! in the direction of v and c 2 R . If c = 0,
then v is locally Hamiltonian (i.e. about any point we can �nd a function H
such that dH = �v !). If c 6= 0, then we can renormalize v to obtain a vector
�eld v0 = 1

c
v so that

Lv0 ! =
1

c
Lv ! = !:(2)

A vector �eld v that satis�es Equation (1) with c 6= 0 is called a symplectic
dilation. Given a symplectic dilation v we will always assume that it has
been normalized so that c = 1: (Many authors take this to be the de�nition
of a symplectic dilation.) If the dimension of X is larger that two then we
more generally could have assumed that c in Equation (1) was a function
c :X ! R . Since in this case we have

dc ^ ! = d(c !) = dLv ! = 0

(the �rst and last two equalities follow since ! is closed). Thus the nonde-
generacy of ! implies that dc = 0 when the dimension of X is larger than
four (for details on this type of argument see the proof of Proposition 11).
So c is once again a constant.
A compact hypersurface S in (X;!) is said to have contact type if there

exists a symplectic dilation v in a neighborhood of S that is transverse to S.
There is an equivalent de�nition of contact type but before we can state it we
need to observe that S has a distinguished line �eld, LS; in its tangent bundle
called the characteristic line �eld. There are several ways to describe
this line �eld, the simplest being as the symplectic complement of TS in
TX. (Since S is codimension one it is coisotropic and thus the symplectic
complement lies in TS and is one dimensional.) We could also de�ne LS as
follows: since S is a hypersurface it can be cut out by a function H :X ! R

(i.e. a is a regular value of H and M = H�1(a)). The line bundle LS is
spanned by the symplectic gradient vH of H (vH is the unique vector �eld
satisfying dH = �vH !). It is a simple exercise in the de�nitions of symplectic
gradient and symplectic complement to see that these two de�nitions are the
same.

Proposition 1 (Weinstein: 1971 [W2]). Let S be a compact hypersurface in
a symplectic manifold (X;!) and denote the inclusion map i : S ! X. Then
S has contact type if and only if there exists a 1-form � on S such that

(i) d� = i�! and
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(ii) the form � is never zero on the characteristic line �eld.

Proof. Suppose S is a hypersurface of contact type and v is the symplectic
dilation transverse to S. Then �0 = �v ! is a 1-form de�ned in a neighborhood
of S. Moreover,

! = Lv ! = (d�v + �vd)! = d�v ! = d�0:

Thus the 1-form � = i��0 satis�es (i) To verify (ii) let H : X ! R be a
function that de�nes S. Then

�(vH) = (�v !)(vH) = !(v; vH)

= �!(vH ; v) = �dH(v) 6= 0;
(3)

since v is transverse to S.
Conversely, suppose S is a hypersurface and � is a 1-form on S satisfying

(i) and (ii). We �rst extend � to a 1-form �0 de�ned in a neighborhood of S.
With a little care we can choose �0 so that d�0 = !: (One uses that fact that a
tubular neighborhood of S deformation retracts onto S.) The nondegeneracy
of ! de�nes a vector �eld v satisfying

�v ! = �0:

Clearly v is a symplectic dilation. Equation (3) and property (ii) show us
that v is transverse to S.

To justify the terminology \contact type" notice that if S is a hypersurface
of contact type then the 1-form � guaranteed by Proposition 1 is a contact
form on S. To see this we �rst observe that

ker� �= TS=LS;

which is easy to see since the bundle map that sends a vector in ker� to
its equivalence class in TS=LS is clearly well-de�ned and injective. Thus
since the two bundles have the same dimension they are isomorphic. Now
i�! is nondegenerate on TS=LS since LS is the symplectic complement of
TS in TX. Thus d� is nondegenerate on ker� which is equivalent to �
being a contact form. Notice, the injectivity of the above map is equivalent
to property (ii) in Proposition 1. In fact, if you assume property (i) then
property (ii) is equivalent to the nondegeneracy of d� on ker�.
We have seen that a hypersurface of contact type in a symplectic manifold

inherits a co-oriented contact structure. (Recall that co-oriented means that
there is a nonzero vector �eld transverse to the contact �elds. This is equiv-
alent to the existence of a global 1-form de�ning the contact structure.) We
would like to see to what extent every co-oriented contact structure arises
in this fashion. To this end let (S; �) be a co-oriented contact manifold. We
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will now build a symplectic manifold, (Y; !); in which S sits. Choose a con-
tact 1-form � for � (note this is where we need co-oriented) and consider the
submanifold of T �S

Y = fv 2 T �mS : m 2 S; v = t�m and t > 0g:

Clearly, for each m 2 S, Y \ T �mS is the ray in T �mS on which �m lies and
so Y = (0;1) � S. Any other contact from �0 for � can be thought of as
a section of Y . Thus the manifold Y depends only on (S; �) and not on �:
(The form � does however provide an embedding of S in Y:) We now claim
that Y is a symplectic manifold. To see this let ! = !0jY where !0 = d� is
the canonical symplectic structure on T �S and � is the Liouville 1-form on
T �S: Viewing � as a map � :S ! T �S; the Liouville 1-form � satis�es

��� = �:

Hence

���jS = �jS;

where � : T �S ! S is projection and S is thought of as sitting in Y by using
� as an embedding. Thus

t��� = �jY

and so

! = d�jY = d(t���) = dt ^ ���+ t��(d�):

If the dimension of S is 2n� 1 then we may �nally compute

!n = tn�1 [dt ^ ��(� ^ (d�)n�1)]

which is clearly a volume form on Y since � ^ (d�)n�1 is a volume form on
S and Y = (0;1) � S. Hence ! is a symplectic form on Y . We de�ne
the symplecti�cation of S, denoted Symp(S; �); to be the manifold Y with
symplectic form !.
Notice that the vector �eld t @

@t
is transverse to �(S) � Y and

Lt @
@t
! = Lt @

@t
(dt ^ ��� + t��(d�))

= d�t @
@t
(dt ^ ��� + t��(d�)) = d(t���)

= !:

Thus S is a hypersurface of contact type in Symp(S; �): We summarize the
above in the following

Proposition 2. If (S; �) is a co-oriented contact manifold, then there is a
symplectic manifold Symp(S; �) in which S sits as a hypersurface of contact
type. Moreover, any contact form � for � gives an embedding of S into
Symp(S; �) that realizes S as a hypersurface of contact type.
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We would also like to note that all the hypersurfaces of contact type in
(X;!) look locally, in X; like a contact manifold sitting inside its symplecti-
�cation.

Proposition 3. Given a compact hypersurface S of contact type in a sym-
plectic manifold (X;!) with the symplectic dilation given by v there is a neigh-
borhood of S in X symplectomorphic to a neighborhood of �(S) in Symp(S; �)
where � = �v !jS and � = ker�.

Proof. Let !0 = d(t�) be the symplectic form on Symp(S; �). By the tubular
neighborhood theorem we can �nd a neighborhood of S in X that is di�eo-
morphic to a neighborhood of �(S) in Symp(S; �) and sends the ow lines of
v to the ow lines of @

@t
. Now !0 on �(S) is just d� and ! on S � X is also

d�. Finally, choosing the above di�eomorphism between tubular neighbor-
hoods correctly, we can arrange that !0 on T (Symp(S; �))jS agrees with ! on
TXjS. Hence using Moser's method (see appendix) our di�eomorphism may
be isotoped into a symplectomorphism.

The contact structure � = ker� induced on a hypersurface S of contact
type in (X;!) is determined up to isotopy by S � X and the co-orientation
the symplectic dilation v gives to the normal bundle of S; or in other words the
direction of the symplectic dilation v. To see this let w be another symplectic
dilation that is transverse to S and pointing in the same direction. Then
vt = (1 � t) v + t w is a family of symplectic dilations that are transverse
to S. This gives us a family �t = �vt !jS of contact forms on S. Gray's
theorem (see Appendix) then yields the desired isotopy from �0 = ker�0 to
�1 = ker�1.
Let U be a domain in a symplectic manifold (X;!) bounded by a hyper-

surface S. We say that U is !-convex (!-concave) if there exists a vector
�eld v de�ned in a neighborhood of S that is transverse to S, points out
of (into) U and is a symplectic dilation. In other words, S is a hypersur-
face of contact type and the symplectic dilation points out of (into) U . We
will sometimes abuse terminology and say that U has !-convex (!-concave)
boundary. From the discussion above we know that S will inherit a unique
(up to isotopy) contact structure as the !-convex boundary of U . Knowing
the contact structure induced on S is not su�cient to reproduce the sym-
plectic structure in a neighborhood of S � X; it is, however, su�cient (up
to scale) for the purposes of cutting-and-pasting.

Theorem 4. Let Ui be a domain in the symplectic manifold (Xi; !i) with
!i-convex boundary Si, for i = 0; 1. If S0 is contactomorphic to S1, then
there exists a symplectic structure on (X0 n U0) [S0 U1.

Proof. Let �i = �vi !i be the contact structure induced on S = Si as the
convex boundary of Ui (vi is the symplectic dilation). Form Symp(S; �)
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where � = ker�0. The form �0 allows us to write

Symp(S; �) = (0;1)� S

where �0(S) = f1g � S. By the proof of Proposition 3 we have a neigh-
borhood N0 of S in X0 symplectomorphic to a neighborhood N 0

0 of �0(S) in
Symp(S; �). See Figure 2. Let � : S ! S be the postulated contactomor-

X X

X
X

N N

T
S S

U U

0

0

0

0

0
00 0 1

1

1

1

1

1

N'

N'

Figure 2. The manifolds X0; Symp(S; �) and X1

phism between (S; �0) and (S; �1). By rescaling !1, if necessary, we have
f�0 = ���1 where f :S ! R is a positive function and f(p) < 1 for all p 2 S.
So we can think of �1(S) in Symp(S; �) as the graph of f . Thus �1(S) is
disjoint from �0(S) (in fact we may take �1(S) to be disjoint from N 0

0 as
well). Again the proof of Proposition 3 allows us to extend �, thought of as
a map from �1(S) � Symp(S; �) to S � X1, to a symplectomorphism from a
neighborhood N 0

1 of �1(S) in Symp(S; �) to a neighborhood N1 of S in X1.
Let X0

i = Xi n (Ui nNi) and T be the subset of Symp(S; �) bounded by (and
including) the N 0

i , for i = 0; 1: We may now use the symplectomorphisms
constructed above to glue Ni � X0

i to N 0

i � T , for i = 0; 1; forming the
manifold

Y = X0
0 [N0

T [N1
(U1 [N1):

See Figure 3. The manifold Y clearly has a symplectic form on it and is
di�eomorphic to (X0 n U0) [S0 U1 (since T just looks like a collar on X0 n U0

and U1 is identi�ed to the other end of T by �).

Consider a domain U whose boundary, S, is a hypersurface of contact type.
Above we said that U has !-convex boundary if the symplectic dilation is
pointing out of U . Notice, we could have equivalently said that U has !-
convex boundary if the orientation induced on S from the contact structure
agrees with the orientation induced on S as the boundary of U .
We end this section with a little terminology. If (S; �) is a contact manifold

then we say that it is strongly symplectically �llable if S is the !-convex
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X
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1

1

Figure 3. The manifold Y .

boundary of some compact symplectic manifold (U; !) and � is the induced
contact structure.

3. Examples and Applications

In this section we consider applications of !-convexity to the construc-
tions of symplectic manifolds. Providing complete proofs for all the theorems
stated would add a great deal of length to this paper. So we shall usually
just sketch the proofs and provide references to the literature.
Hypersurfaces of contact type exist in abundance. Proposition 2 tells

us that given a co-oriented contact manifold (S; �) we can always �nd a
symplectic manifold realizing S as a hypersurface of contact type. Find-
ing !-convex hypersurfaces that bound compact pieces is a little more dif-
�cult. The symplectic manifolds guaranteed by Proposition 2 are noncom-
pact. Even worse, S separates the symplectic manifold into two noncompact
pieces. Thus Proposition 2 is of no help in �nding !-convex hypersurfaces
that bound compact pieces. We do however have one particularly simple
example S2n�1 � R

2n. Indeed, if we endow R
2n with the standard symplec-

tic structure then the radial vector �eld will be a symplectic dilation that
is transverse to S2n�1 (thought of as the unit sphere) and pointing out of
the unit ball in R

2n. The next few results give us many more (important)
examples.

Proposition 5. Let E be a rank two symplectic vector bundle over a sym-
plectic manifold (S; !S). Denote by ! the symplectic form on the total space
of E: Assume c1(E) = c [!S]. Then any su�ciently small disk bundle in E
has !-convex or !-concave boundary according as c is a negative or positive
constant.

By disk bundle we mean the set of all points (s; v) 2 E with jvj � �; where
s 2 S and v is in the �ber above s: One may �nd a proof of this in [M3].
The basic idea is to construct a nice symplectic form !0 on E where it is easy
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to see the !0-convexity and then use the symplectic neighborhood theorem
to transfer this back to the E with the original form. To construct !0 pick
a connection 1-form � on the unit circle bundle in E with d� = �2�c p�!s,
where p :E ! S is the projection map. Then pull � back to all of E minus
the zero section (the pull back will not be well de�ned along the zero section)
and then set !0 = d (r2� 1

2�c
) �; where r is the radial coordinate in the �ber.

We now claim that it is easy to see that this is a well de�ned symplectic
form on all of E and the (rescaled) radial vector �eld will be a symplectic
dilation transverse to the boundary of disk bundles. This proposition has
the following very useful consequence.

Corollary 6. Let (S; !S) be a codimension two symplectic submanifold of a
symplectic manifold (X;!): If c1(�(S)) = c [!S], where c is a negative (posi-
tive) constant, then S has arbitrarily small tubular neighborhoods in X with
!-convex (!-concave) boundary. In particular, if S is a symplectic surface in
a symplectic 4-manifold (X;!) with negative self-intersection, then inside any
tubular neighborhood of S there is another neighborhood of S with !-convex
boundary.

One may also use Lagrangian submanifolds to �nd many examples of !-
convex hypersurfaces.

Proposition 7. Let S be a Lagrangian submanifold in a symplectic mani-
fold (X;!). Then S has a tubular neighborhood with an !-convex boundary.
Moreover, if Si are Lagrangian submanifolds of X, for i = 1; : : : ; n, with
each pair of Si's intersecting transversely, then [ni=1Si has a neighborhood
with !-convex boundary.

The proof of this proposition (when n = 1) is quite easy once one realizes
that any Lagrangian submanifold has a neighborhood symplectomorphic to a
neighborhood of the zero section in its cotangent bundle (this result originally
appeared in [W1]). When n > 1 the proof is more di�cult (see [E], cf. [E2]).
Proposition 7 brings up the natural question: can Corollary 6 be extended
for a family of symplectic submanifolds? In general, this cannot be done. For
example, consider two symplectic 2-spheres in a symplectic 4-manifold, both
with self-intersection �1 and a single point of transverse intersection between
them. A neighborhood N of these two spheres has boundary S1�S2. So this
neighborhood would be a strong symplectic �lling of S1� S2 if its boundary
were !-convex. Moreover, after blowing down a �1 sphere we would have a
strong symplectic �lling of S1 � S2 by D2 � S2. But Eliashberg has shown,
[E3], that S1�S2 cannot be symplectically �lled by D2�S2. Thus N cannot
have !-convex boundary. There is, however, one very special case when a
pair of symplectic surfaces in a symplectic 4-manifold can have an !-convex
neighborhood.
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Proposition 8. Let S1 and S2 be two symplectic surfaces in a symplectic
4-manifold (X;!). Assume that S2 is a sphere with self-intersection �2;
S1 has negative self-intersection and S1 and S2 intersect transversely at one
point. Then there exists a tubular neighborhood of S1 [ S2 that has !-convex
boundary.

The idea of the proof is to replace S2 with a Lagrangian sphere. Then with
some care the appropriate neighborhood can be constructed, see [E].
Given two smooth manifoldsX0 and X1 with embeddings ji : �! Xi, of a

compact oriented manifold � of codimension 2, with the normal disk bundles
�0 and �1 orientation reversing di�eomorphic, one may de�ne the normal
connected sum of X0 and X1 along � as follows:

X0#�X1 = (X0 n �0) [� (X1 n �1);

where � : @�0 ! @�1 is induced by the aforementioned di�eomorphism from
�0 to �1. In the symplectic case we have the following theorem.

Theorem 9. Let (Xi; !i) be a closed symplectic manifold and ji :� ! Xi a
symplectic embedding of a closed connected codimension two manifold (�; !),
for i = 0; 1. Suppose that the normal Euler classes of j0(�) and j1(�) sat-
isfy e(�0) = �e(�1): Then X0#�X1 admits a symplectic structure for any
orientation reversing � : �(j0(�))! �(j1(�)).

This theorem �rst appeared in [Gr2] and was later exploited by Gompf [G1]
and McCarthy and Wolfson [MW1]. For a complete proof of this result and
some spectacular applications the reader is referred to [G1]. We sketch a proof
in dimension four using !-convexity. If the normal Euler number e(�i) 6= 0
then j0(�), say, has a neighborhood with !0-convex boundary and j1(�) has
a neighborhood with !1-concave boundary (by Proposition 6). Let S0 be the
!0-convex boundary of the neighborhood of j0(�) and S1 be the !1-convex
boundary of X1 n (neighborhood of j1(�)): We now claim that the contact
structures induced on S0 and S1 are contactomorphic. Let �0 be the contact
1-form induced on S0 and �1 be the pull-back of the contact 1-form on S1 to
S0 via �: It is not hard to check that d�0 and d�1 are equal to (some positive
multiple of) ��!; where � :S0 ! � is the bundle projection. Thus if we set
�t = t �1 + (1 � t)�0 for 0 � t � 1; then d�t = td�1 + (1 � t)d�0 = ct �

�!
where ct is some positive constant depending on t: Moreover, ker�t is always
transverse to the S1 �bers and hence d�t is nondegenerate on ker�t: In
other words, �t are all contact forms on S0: Thus Gray's theorem tells us
that there is a contactomorphism, isotopic to the identity, from (S0; �0) to
(S0; �1): Hence we may conclude that � is isotopic to a contactomorphism.
We can now use Proposition 4 to �nd a symplectic structure on the normal
connected sum of X0 and X1: When the normal Euler number e(�i) = 0
the neighborhoods of ji(�) do not have !i-convex boundaries. In this case



SYMPLECTIC CONVEXITY IN LOW DIMENSIONAL TOPOLOGY 11

though it is quite easy to glue X0 n �(j0(�)) to X1 n �(j1(�)) using the fact
that the punctured unit disk in C can be symplectically turned inside out
(one does this in each of �bers in the normal bundle).
In [MW2] McCarthy and Wolfson introduced the notion of an !-compatible

hypersurface. Let (X;!) be a 2n-dimensional symplectic manifold and M a
(2n�1)-dimensional submanifold which supports a �xed point free S1 action.
The manifold M is called !-compatible if the characteristic line �eld LM
is tangent to the orbits of the S1 action. One can show that if the �rst Chern
class of M ! (M=S1) is nonzero then M is a hypersurface of contact type
(note that one must work with orbifolds since the S1 action is not necessarily
free, see [MW2]). Thus assuming M splits X into two pieces let X� be the
piece for which M is the !-convex boundary and let X+ be the other piece.
We are now ready to state:

Theorem 10 (McCarthy and Wolfson: 1995 [MW2]). Let (X2n
i ; !i) be a sym-

plectic manifold, M2n�1 a compact manifold with a �xed point free S1 action
and ji :M ! Xi a map such that ji(M) is an !1-compatible separating hy-
persurface, for i = 0; 1: Further assume that the symplectic forms �i induced
on M=S1 by !i are symplectomorphic. Then there is a symplectic form on
Y = X�

0 [M X+
1 :

Through a similar analysis to the one in the proceeding paragraph it can be
shown that the contact structures induced onM as the !i-convex boundaries
of X�

i are contactomorphic. Hence in the case of nonzero �rst Chern class
the theorem follows from Proposition 4. In the case of zero �rst Chern class
one must construct a canonical model for a neighborhood of M (as we did
in Proposition 3 for the !-convex case). For details on this see [MW2],
where McCarthy and Wolfson prove this theorem using a beautiful theorem
of Duistermaat-Heckmann and McDu�.
Weinstein [W3] has given us another nice way to construct !-convex hy-

persurfaces. He shows how, given an !-convex 2n-manifold, one can add
k-handles to it while preserving the !-convexity, if k � n: We will indicate
how to add a 2-handle to an !-convex 4-manifold, for the general case see
[W3]. First we de�ne a standard 2-handle as a subset of R 4 with symplec-
tic form ! = dx1 ^ dy1 + dx2 ^ dy2. Let f = x21 + x22 �

1
2
(y21 + y22) and

F = x21 + x22 �
�
6
(y21 + y22) �

�
2
, where � > 0. Set A = ff = �1g and

B = fF = 0g. We de�ne the standard 2-handle H to be the closure of
the component of R 4 n (A [ B) that contains the origin, see Figure 4. The
attaching region is A \ H and the core of the handle is the intersection of
the y1y2-plane with H. Notice that the attaching circle of H (this is the core
intersected with the attaching region) is a Legendrian curve in the boundary
of H: Now the vector �eld v = 2x1

@
@x1

+ 2x2
@
@x2
� y1

@
@y1
� y2

@
@y2

is a sym-
plectic dilation and is transverse to A and B: Given a Legendrian knot L in
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A

A

y

x
BB

H

Figure 4. The standard 2-handle.

the boundary of a symplectic 4-manifold with !-convex boundary there is a
neighborhood of L contactomorphic to a neighborhood of the attaching circle
in A: This contactomorphism is determined by the canonical framing of L
(the framing given by the contact structure). Using this contactomorphism
and choosing � small enough it is now easy to add H along L to obtain a new
symplectic manifold with !-convex boundary (Figure 5).

H

Figure 5. The new manifold with handle added.

4. Convexity and Symplectic Filling

In this section we will examine two more notions of convexity. As motiva-
tion for the �rst, recall that a co-orientable contact manifold (M; �) is called
strongly symplectically �llable if it is the !-convex boundary of a symplectic
\domain" (X;!), were X is compact and @X =M . We will say that (M; �) is
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symplectically �llable (or weakly symplectically �llable) when there
exists a compact symplectic manifold (X;!) such that M is the oriented
boundary of X and !j� is nondegenerate (recall that M is oriented by � if
the dimension ofM is 2n+1 and n is odd, otherwise the orientation condition
should be ignored).
For the second notion of convexity, notice that given a contact manifold

(M; �) there is a canonical conformal class of symplectic forms on �. To see
this let � be a contact 1-form for �, then d�j� is a symplectic structure on the
vector bundle �: (This could be taken as the de�nition of a contact structure.)
Given any other contact 1-form �0 for � there is a positive function f onM so
that �0 = f �. Thus d�0j� = f d�j�. This con�rms that d� de�nes a unique
conformal class of symplectic forms on �. Finally, given a symplectic manifold
(X;!) with @X =M we will say that the symplectic form ! dominates the
contact structure � when !j� is in the canonical conformal class of symplectic
forms on �:
Clearly, if (X;!) is a symplectic manifold that dominates the contact man-

ifold (M; �), then (X;!) is a (weak) symplectic �lling of (M; �). In dimension
three these two notions actually coincide. To see this let (X;!) be a sym-
plectic �lling of (M; �). Thus !j� is a symplectic structure on �. Let � be any
contact 1-form for �, then d�j� is also a symplectic structure on �. Since � is
a 2-dimensional bundle, a symplectic structure on it is just an\area form" on
each �ber. Thus there is a positive function f on M such that !j� = f d�j�
(to see this one just needs to check that ! and d� give � the same orien-
tation), which, of course, implies that (X;!) dominates (M; �): When the
dimension is greater that four these two types of convexity are not the same.
We will verify this in Section 5.
It is quite clear (in light of the comments after the proof of Proposition 1)

that a contact structure � on M that is strongly symplectically �lled by
(X;!) is also dominated by ! . It is surprising that in dimensions above four
these two concepts are equivalent. This was �rst noticed by McDu� in [M3].

Proposition 11. Let (X;!) dominate the contact manifold (M; �). If the
dimension of M is greater than four, then (X;!) is also a strong symplectic
�lling of (M;!).

Proof. Let � be a contact 1-form for �. Then there exists a positive function
f :M ! R so that !j� = f d�j�. Now replace � with 1

f
�, so that we get

!j� = d�j�: Let v be the Reeb vector �eld of � (i.e. the vector �eld uniquely
determined by �(v) = 1 and �v d� = 0). Then we can �nd a vector �eld v0

in TXjM satisfying !(v; v0) = 1 (notice that v0 is not in TM). If we now set
� = �v !; then

! = d� + � ^ �:(4)
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Thus

d� ^ � � � ^ d� = d! = 0:(5)

So �v(� ^ d�) = 0 since �v(d� ^ �) = 0. Expanding this out yields d� � � ^
�v d� = 0. So � ^ d� = � ^ � ^ �v d� = 0. Which implies (by Equation (5))
that

d� ^ � = 0:(6)

This allows us to conclude that � = 0. Indeed, if w 2 � then we can �nd two
vectors w1; w2 in � that are d�-orthogonal to w and d�(w1; w2) = 1. Thus
�(w) = d�^�(w1; w2; w) = 0. One can similarly check that � = 0 for vectors
not in �: We have thus shown that ! = d� on TXjM . Hence we are done by
Proposition 1 and the observations following its proof.

In dimension three strong symplectic �llability is a stronger notion than
domination. We can see this in several ways. First notice that if (X;!)
is a strong �lling of (M; �) then ! is exact and thus evaluates trivially on
two dimensional submanifolds of M . However, if ! just dominates � then
it might not be exact. For example let X be the unit disk bundle in the
cotangent bundle of a surface S �= T 2 with the canonical symplectic form !.
The boundary of X is !-convex. However, if we perturb ! by adding some
small multiple of ��!S to it, where !S is any symplectic form on S and �
is projection onto S, then @X is no longer !-convex (! is no longer exact
since it evaluates nontrivially on a T 2 in the boundary) but ! still dominates
the induced contact structure on the boundary (it is easy to see that (X;!)
is a weak �lling of (M; �) which, as we have seen, is equivalent (in three
dimensions) to dominating �).
One might hope that in dimension three if (U; !) is a weak �lling of (M; �)

and ! is exact then it is also a strong �lling. This however is also not true.
Once again we delay the proof of this until Section 5.
There is an even stronger sense in which a weak symplectic �lling is not a

strong �lling in dimension three. We have seen that a weak symplectic �lling
is not necessarily a strong �lling, but it still might be possible that a weakly
�llable contact manifold (M; �) might always be strongly �llable by some
other symplectic manifold. This, however, was shown, in 1996, not to be the
case by Eliashberg [E5]. To understand this we need to pause a moment and
discuss Giroux's classi�cation of contact structures on the 3-torus.
On the 3-torus T 3 for each integer n > 0 consider the 1-form

�n = cos(2n�z) dx + sin(2n�z) dy;

where we are thinking of T 3 as the quotient of R 3 by the integer lattice. It is
not hard to check that �n is a contact form on T 3. We claim that each contact
structure �n = ker�n is weakly symplectically �llable. The contact structure
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�1 is actually strongly �llable. To see this �rst notice that T 3 = T 2 � S1 is
the boundary of the unit disk bundle T 2 � D2 in the cotangent bundle of
T 2. There is a canonical symplectic structure ! on T 2 � D2 � T �T 2 and
we saw in Proposition 7 (since the zero section of the cotangent bundle is
Lagrangian) that @(T 2�D2) is !-convex. We leave it as an exercise to check
that �1 is the contact structure induced on T 3 as the !-convex boundary of
T 2�D2. Now to check the weak �llability of �n for n > 1 let !0 = !+� ��!T 2

be a new symplectic form on T 2 �D2, where !T 2 is any symplectic form on
T 2, � > 0 and � is projection onto T 2. Notice that T 2�fptg is a symplectic
submanifold with this form. Thus we now have a weak �lling of �1 that is
not a strong �lling since !0 evaluates nontrivially on T 2 � T 2 � S1. Since
T 2 � f0g is symplectic we can take the n-fold cover of T 2 � D2 branched
over T 2 � f0g and obtain a new manifold di�eomorphic to T 2 � D2 with
a symplectic form !n. The reader may check that the result of pulling the
plane �eld �1 back using the covering map is the contact structure �n. It is
also easy to see that (T 2�D2; !n) is a weak symplectic �lling of (T 3; �n). It
cannot be a strong �lling since, once again, !n will evaluate nontrivially on a
torus in T 3. Giroux [Gi] and independently Kanda [K] have shown that any
weakly �llable , in fact any tight, contact structure on T 3 is contactomorphic
to (T 3; �n) for some n > 0.
We would now like to give some version of Eliashberg's argument why

the �n above cannot be strongly �lled by any symplectic manifold. Let T 2

be a Lagrangian torus in R
4. Then T 2 has a neighborhood N in R

4 with

!-convex boundary. Let X be the n-fold cover of R 4 nN . Then (X;!) is
a symplectic manifold with n standard ends. By this we mean that there
are n ends of X and each one is symplectomorphic to an end of R 4 with its
standard symplectic structure. The boundary of X is T 3 which is !0-concave.
Moreover, the contact structure induced on T 3 is �n. Thus if there were a
strong symplectic �lling, say (U; !U), of (T

3; �n) then we could construct a
symplectic form !Y on the manifold Y = X [ U that has n standard ends.
This contradicts a theorem of Gromov [Gr1] if n > 1; thus there is no strong
�lling of (T 3; �n):
We end this section by discussing a necessary condition for !-convexity.

Let (M; �) be the !-convex boundary of (X;!): Recall there is a line �eld LM
onM de�ned as symplectic complement to TM in TX: The !-convexity ofM
actually allows us to orient LM . We do this by saying that a vector w 2 LM
de�nes a positive orientation if !(v; w) > 0; where v is the symplectic dilation.
Notice that this orientation on LM agrees with the orientation it receives
from the contact structure � = ker�; where � = �v !: Thus �(w) > 0 for any
positively oriented vector �eld in LM: Now we can restate Proposition 1 as
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follows: M is !-convex if and only if there exists a 1-form � on M such that
d� = ! (on M) and �(w) > 0 for any positively oriented vector �eld in LM:

5. J-Convexity

Let (X; J) be a 2n-dimensional almost complex manifold (i.e. J : TX !
TX is a linear isomorphism on each �ber such that J � J = �idTX). If
M is a codimension one submanifold then there exists a unique hyperplane
�eld of complex tangencies in TM . By this we mean that there is a (2n�2)-
dimensional subbundle � of TM such that J j� is a complex structure on �. As
a complex bundle � is uniquely oriented. Thus there is a 1-form � onM such
that � = ker�. The Levi form, L, is de�ned to be the restriction of d�(�; J �)
to �. If L is identically zero we say that M is Levi at (this implies that �
de�nes a codimension one foliation ofM). If L is positive de�nite then we say
thatM is (strictly) J-convex. (IfM is (strictly) J-convex for an unspeci�ed
almost complex J then we say that M is (strictly) pseudo-convex.) From
now on we will not preface convexity with the adjective \strictly," though it
is always implied. If M is J-convex, then � is an oriented contact structure.
We would now like to consider how pseudo-convexity is related to the

notions of symplectic convexity discussed above (see Figure 1). To expect
any relation at all, we must of course have some compatibility between our
symplectic form and almost complex structure. In particular we say that
an almost complex structure J on X is tamed by the symplectic form ! if
!(v; Jv) > 0 for all v 2 TX that are not equal to zero. Given a symplectic
structure one can always �nd a tame almost complex structure, see [McS].
If J is tamed by !; then ! is nondegenerate on any J-complex subbundle
of TX. Moreover, it is easy to check that the symplectic orientation and
complex orientation on the subbundle agree. Thus it is easy to see that if
(X;!) is a symplectic manifold bounded byM andM is J-convex for some J
that is tamed by !; then (X;!) is a weak symplectic �lling of (M; �), where
� is the hyperplane �eld of complex tangencies to M .
Now let (X;!) be a symplectic manifold bounded by the contact manifold

(M; �). Further, suppose that ! dominates �. We then claim that M is
pseudo-convex. In order to see this we construct an almost complex structure
J tamed by ! that has � as its �eld of complex tangencies toM:We begin by
noticing that TXjM = � � �?; where �? is the symplectic complement to �:
On each of � and �? we can �nd complex structures tamed by !j� and !j�?;
respectively, see [McS]. Thus we have J de�ned on TXjM . It is not hard
to extend this J to an ! tame complex structure over the rest of TX (again
see [McS]). Hence by construction � is the �eld of complex tangencies to M:
Since ! dominates � there is some contact 1-form � such that !j� = d�j�.
Thus d�(v; Jv) = !(v; Jv) > 0 for all v 2 �; verifying that M is J-convex.
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Notice that in dimension three we have shown that pseudo-convexity, weak
symplectic �llability and domination are equivalent concepts. It is not true
though that in dimensions above four pseudo-convexity implies domination.
Let S be a hypersurface in an almost complex manifold (X; J): If S is cut

out by a function f :X ! R (i.e. 0 is a regular value of f and S = f�1(0)),
then there is a particularly nice way to write down a 1-form that represents
the hyperplane �eld, �; of complex tangencies to S: To �nd this 1-form recall
that the kernel of df is TS: Thus a vector v 2 TS is in � if J(v) is also in
TS = ker df: Said another way v 2 TS is in � if v is in the kernel of J�df:
Thus if we de�ne the 1-form

� = �J�df jS

on S; then the � = ker�:
Now consider C n with its standard complex structure J: Let t be the circle

of radius t in C � C � C
(n�1) and f : C n ! R be given by f(z1; : : : ; zn) =

(jz1j�1)2+
Pn

i=2 jzij
2: Then f�1([0; �)) is a tubular neighborhood of 1. The

boundary of this neighborhood, T = f�1(�); is J-convex as can easily be
seen since we know the �eld of complex tangencies is given by � = �J�df:
Now if ! is the standard symplectic structure on C

n then we claim that
T is not !-convex even though J is tamed by !: To see this notice that
T \ (C 1 � f0g) = 1�� [ 1+� are two curves in T that are both tangent
to the characteristic line �eld LT: If we let w be a vector �eld tangent to
1�� providing the unique orientation to LT that !-convexity would demand,
then �(w) < 0. This contradicts the criterion for !-convexity stated at the
end of the last section. This example, along with more subtle versions of
it, �rst appeared in [EG]. Notice we have now shown that J-convexity does
not imply !-convexity in any dimension. Thus in dimensions above four J-
convexity does not imply domination either, by Proposition 11. Moreover,
we see that weak symplectic �llability does not imply domination in these
dimensions. In dimension three we can now see, yet again, that domination
does not imply !-convexity (since J-convexity is equivalent to domination in
this dimension).
A Stein manifold is a proper nonsingular complex analytic subvariety

of C n. Given a function  : X ! R on a Stein manifold X we de�ne the
2-form ! = �d(J�(d )) where J� :T �X ! T �X is the adjoint operator to
the complex structure J on X. We call  a plurisubharmonic function
on X if the symmetric form g (�; �) = ! (�; J �) is positive de�nite. Note
that this implies that ! is a symplectic structure on X; and, moreover,
h = g + i! is a Hermitian metric on X. Hence we see that X is a
K�ahler manifold. It is easy to see that any Stein manifold admits a proper
exhausting plurisubharmonic function. For example the restriction of the
radial distance function on C

n to X will be such a function. Grauert [Gra1]
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proved a complex manifold X is a Stein manifold if and only if X admits
an exhausting plurisubharmonic function. Thus we know that any Stein
manifold admits a symplectic structure. It can in fact be shown that this
symplectic structure is essentially unique. In [EG] it was shown that given
any two plurisubharmonic functions  and � on a Stein manifold X, (X;! )
is symplectomorphic to (X;!�).
Our interest in Stein manifolds is indicated in the next lemma.

Lemma 12. The gradient vector �eld r of a plurisubharmonic function  
on a Stein manifold X is a symplectic dilation for ! (the gradient is taken
with respect to g ).

Thus the nonsingular level sets of  are ! -convex.

Proof. First by de�nition we have �r g = d . So

�r ! (�; �) = ! (r ; �) = �g (r ; J �)

= �J�g (r ; �) = �J
�d :

Thus

Lr ! = d�r ! + �r d! 

= d�r ! = �dJ�d = ! :

Hence r is an expanding vector �eld for ! .

In [E2], Eliashberg demonstrates how to construct Stein manifolds. In
particular he proves:

Theorem 13 (Eliashberg: 1990 [E2]). Let J be an almost complex structure
on X2n; and  :X2n ! R a proper Morse function all of whose critical points
have index less that or equal to n: If n > 2, then J is homotopic to a complex
structure J 0 for which  is plurisubharmonic. Hence (X2n; J 0) is a Stein
manifold.

The situation when n = 2 was not explicitly discussed in [E2]; however,
implicit in this paper was:

Theorem 14. An oriented 4-manifold is a Stein manifold if and only if it
has a handle decomposition with all handles of index less than or equal to 2
and each 2-handle is attached to a Legendrian circle  with the framing on 
equal to tb()� 1 (where tb() is the Thurston-Bennequin invariant of ).

For a complete discussion of Theorem 14 and its may interesting consequences
see the paper [G2] of Gompf.
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6. Convexity in 4-Dimensions and Contact 3-Manifolds

A contact structure on a 3-manifold falls into one of two classes: tight or
overtwisted. The contact 3-manifold (M; �) is called overtwisted if there is
some disk inM whose characteristic foliation contains a limit cycle, otherwise
it is called tight. It is surprising that these two classes have such di�erent
properties. For example, it is quite easy to construct overtwisted structures
on any closed 3-manifold [L], where as the existence of tight structures on
a given 3-manifold cannot yet be answered in general. The classi�cation of
overtwisted contact structures is the same as the classi�cation of homotopy
classes of 2-plane �elds [E1]. Thus understanding them is reduced to algebraic
topology. In contrast, tight structures are much more rigid. For example,
on a given 3-manifold there are only �nitely many Euler classes that can be
realized by a tight contact structure. For more details on what is known
about tight contact structures the reader is referred to [E4].
Recall that a contact manifold (M; �) is �llable if there is a compact sym-

plectic manifold (X;!) such that @X = M; !j� is nondegenerate and the
orientation on M induced by � and X agree. It is a remarkable fact that a
�llable contact structure is tight. This is a result of Gromov [Gr1] and Eliash-
berg [E3]. Thus we have a way of constructing tight contact structures. They
will arise as the boundary of any symplectic manifold with convex boundary
(notice that any type of convexity discussed above will su�ce since they all
imply symplectic �llability). For example, Gompf, in [G2], uses Theorem 14
to construct tight contact structures on most Seifert �bered spaces.
One can also use convexity to distinguish contact structures. A simple

example of this uses the fact that tight and overtwisted contact structures
on a manifold form two distinct classes. Thus we can distinguish two contact
structures by showing that one is tight and the other overtwisted. Bennequin
[Be] essentially did this to prove the existence of two distinct contact struc-
tures on S3: In general, given a �llable contact structure on M we construct
a second contact structure by performing a Lutz twist [L] on M:
A much more subtle example is provided by Lisca and Mati�c's beautiful

use of !-convexity to distinguish tight contact structures on homology 3-
spheres that are homotopic as plane �elds. They begin by constructing,
using Theorem 14, several contact structures �k; for 1 � k � n � 1; on
the Brieskorn homology sphere �(2; 3; 6n� 1) that are homotopic as 2-plane
�elds and strongly symplectically �lled by Stein manifolds W k

n : Then they
show that if �k is contactomorphic to �k0 then k = k0 or k = n � k0: This
is done by constructing a symplectic manifold using the !-convexity of W k

n

and W k0

n that cannot exist unless the condition on k and k0 is satis�ed (this
nonexistence is due to Seiberg-Witten theory). For more details see [LM]
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We end this section by mentioning a result of Rudolph. In the paper [R]
he �nds an obstruction to smoothly slicing a knot using contact geometry.
We can give a proof of his result using, among other things, Theorem 14.
Recall a knot  � S3 is called slice if there is an embedded disk D � B4

such that  = @D = D \ @B4: The knot  is called smoothly (topologically)
slice if D is a smoothly (topologically) embedded disk. Given any knot  in
S3 we may isotope  into a Legendrian knot, where we are using the contact
structure on S3 induced as the !-convex boundary of B4 and B4 is given
its standard symplectic structure. In fact, there are many ways to do this.
For each Legendrian knot associated to  there is an associated Thurston{
Bennequin invariant (see appendix). Let TB() be the maximum of these
invariants. It can be shown that this is always a �nite number, thus TB()
is clearly an invariant of the isotopy class of : We are now ready to state
Rudolph's main result from [R].

Theorem 15. If TB() � 0; then  is not smoothly slice.

To see why this is true let  be a knot with TB() � 0 and assume that
it is smoothly slice. Then we �nd a Legendrian knot isotopic to  (we will
still call it ) with Thurston{Bennequin invariant equal to 0. Theorem 14
allows us to construct a Stein 4-manifold Y by attaching a 2-handle to  with
framing �1: Now since  is slice there is an embedded 2-sphere S in Y with
self-intersection �1: Corollary 3.3 in [LM] says that we can �nd a minimal
K�ahler surface X in which Y embeds. But now S sits in X thus by a result
of Taubes [T] we can �nd a symplectic 2-sphere in X with self-intersection
�1; contradicting the minimality of X: Thus  could not have been smoothly
slice. Rudolph uses Theorem 15 to �nd many examples of topologically slice
but not smoothly slice knots (see [R]).

7. Final Remarks

Recall Figure 1. In this paper we have given proofs of all the implications
in the �gure and shown that any implication in the �gure not indicated,
except one, is not true in general. The one implication we did not prove or
give a counterexample to is

weak symplectic �lling �! pseudo-convex(7)

in dimensions above four. Thus we have our �rst

Question 1. Is the implication in Equation (7) true in dimensions above
four?

We have seen in many ways that

domination �! !-convex(8)

is not true in dimension four.
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Question 2. Under what conditions is the implication in Equation (8) true
in dimension four?

Or more generally

Question 3. Given a domain U in a symplectic 4-manifold when does it
have an !-convex boundary?

These are extremely important and subtle questions. Their importance is
clear: to symplectically cut-and-paste we need !-convexity, but it is usually
easier to prove domination (or weakly �llable or pseudo-convex). For example
Grauert has shown that a neighborhood of plumbed symplectic spheres has
a pseudo-convex boundary if the intersection form of the neighborhood is
negative de�nite [Gra2]. This is precisely the situation one encounters when
trying to do a symplectic rational blowdown (see [FS] or [E]). In [E] it was
shown that if this neighborhood had an !-convex boundary then rational
blowdowns could be done symplectically. Thus an answer to Question 2 in
this case would complete the proof that the important topological operation
of rational blowdown can be done in the symplectic category. For partial
results along these lines see [E].1

There is an answer to Question 3 given by McDu� [M1]. She gives a
necessary and su�cient condition for a domain to have !-convex boundary
in terms of structure currents associated to the contact form (see [M1] for
the de�nitions of these terms).

Problem 4. Understand strongly symplectically �llable contact structures on
3-manifolds.

Theorem 14 is obviously very useful here. In [G2] Gompf found strongly
�llable contact structures on all Seifert �bered spaces. Usually such a struc-
ture could be found regardless of the orientation on the Seifert �bered space.
A stubborn exception to this led Gompf to ask

Question 5. Does the Poincar�e homology sphere with reversed orientation
have a Stein �lling?

Gompf actually conjectured the answer to Question 5 should be no. There are
many strong �llings of most Seifert �bered spaces, prompting the following
question about which little is known.

Question 6. When are strong symplectic �llings of contact 3-manifolds unique?
When they are not unique, can they be classi�ed?

1Added in proof: Margaret Symington has recently shown that the neighborhoods that
arise when performing rational blowdowns along symplectic spheres always have an !-
convex boundary.
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Eliashberg's result described above (on page 15) shows that not all tight
contact structures are strongly symplectically �llable. But it is still possible
that all tight contact structures are weakly symplectically �llable. So we end
with

Question 7. Are all tight contact structures symplectically �llable?

Appendix

Here we will give a terse overview of a few basic facts we need from sym-
plectic and contact geometry. This is intended to establish notation and
terminology. The reader wishing a more thorough introduction should con-
sult [A] or [McS] where in proofs for all the statements below may be found.
A symplectic manifold is a pair (X;!) where X is a manifold and ! is

a closed nondegenerate 2-form. We say that ! is a symplectic form on X:
By closed we mean d! = 0, and nondegenerate means that for all x 2 X,
!x is a nondegenerate form on the vector space TxX: Since all symplectic
vector spaces are even dimensional and ! induces a symplectic structure on
each tangent space to X, a manifold must necessarily be even dimensional
to admit a symplectic structure. Moreover, ! de�nes an orientation on X.
We will always assume that X is given this orientation. A submanifold Y
of a symplectic manifold (X;!) is called symplectic if !jY is a symplectic
form on Y , called Lagrangian if !jY = 0 and called coisotropic if TY ? �
TY: Two symplectic manifolds are called symplectomorphic it there is a
di�eomorphism between them that sends one symplectic form to the other.
Symplectic manifolds have no local structure. For example using Moser's
method [Mo] one can show:

Theorem (Moser{Weinstein). Let X2n be a manifold and C a compact sub-
manifold. If !0 and !1 are two symplectic forms on X that are equal on each
TxX when x 2 C, then there exists open neighborhoods U0 and U1 of C and
a di�eomorphism � : U0 ! U1 such that ��!1 = !0 and � is the identity on
C. More generally, � is the identity wherever !0 and !1 agree.

One may use this theorem to prove Darboux's theorem which says that
any two points in any two symplectic manifolds have neighborhoods that
are symplectomorphic. Another corollary is the symplectic neighborhood
theorem.

Theorem. Let (Xj; !j), for j = 0; 1, be symplectic manifolds. Assume Yj is
a symplectic submanifold of Xj and  : Y0 ! Y1 is a symplectomorphism. If
there is a symplectic bundle map 	 : �(Y0) ! �(Y1) of the normal bundles
that covers  , then  extends to a symplectomorphism from a neighborhood
of Y0 to a neighborhood of Y1.
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Contact structures are an odd-dimensional analog of symplectic structures.
A k-dimensional distribution � on an n-manifold M is a subbundle of
TM such that �m � TmM \ � is a k-dimensional subspace of TmM for every
m 2 M . Note that a codimension one distribution � may be de�ned (at
least locally) by a 1-form, say �. By this we mean � = ker�. We will say
that a 2n-dimensional distribution � on a (2n + 1)-dimensional manifold M
is maximally nonintegrable if for any locally de�ning 1-form � we have
�^d�n 6= 0, or equivalently d� in nondegenerate on ker�: A contact struc-

ture on a (2n+1)-dimensional manifoldM is a 2n-dimensional distribution
� that is maximally nonintegrable. Two contact manifolds are said to be
contactomorphic if there exists a di�eomorphism that sends one contact
distribution to the other. Two contact structures on the same manifold are
called isotopic if they are contactomorphic by a contactomorphism that is
isotopic to the identity. Contact structures also have no local structure. The
analog of Darboux's theorem holds for contact structures and Gray's theo-
rem [G] says that two contact structures that are homotopic (through contact
structures) are isotopic.
A submanifold L of a contact manifold (M2n+1; �) is called Legendrian

if TmL � �m for all m 2 L and the dimension of L is n: In a 3-dimensional
contact manifold (M; �) a Legendrian submanifold is a curve. Notice that the
contact planes de�ne a canonical framing on a Legendrian curve : Framings
are in one-to-one correspondence with the integers, but the correspondence
is not unique. However, we can specify a unique correspondence if  is null
homologous by choosing a surface that  bounds. The integer corresponding
to the canonical framing is called the Thurston-Bennequin invariant of
 and is denoted tb(): Finally, note that given a surface � in (M3; �) we
can get a singular line �eld T� \ � on �. We can integrate this line �eld to
get a singular foliation �� called the characteristic foliation of �:
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