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CHAPTER 1

Introduction

In recent years there has been much to suggest that symplectic
and contact geometry are closely related to low dimensional topology.
For example Taubes [T] has related diffeomorphism invariants (the
Seiberg–Witten invariants) of a closed 4-manifold X to the symplectic
geometry of X , if X supports a symplectic structure. Kotschick [Ko],
using these results of Taubes, has shown that a closed minimal sim-
ply connected symplectic 4-manifold is irreducible. Thus symplectic
4-manifolds provide (some) basic building blocks for all 4-manifolds.
They do not, however, exhaust the set of all irreducible 4-manifolds, as
was recently shown by Fintushel and Stern [FS3] and independently
by Szabó. From this is should be clear that a fundamental question in
4-dimensional topology (and symplectic geometry) concerns the exis-
tence of a symplectic form on a given 4-manifold. A necessary condition
for X to admit a symplectic form is that it have an almost-complex
structure (i.e. a map J : TX −→ TX on the tangent bundle of X such
that J2 = −1). If X is an open manifold Gromov [Gr2] has shown
that this is actually sufficient. The picture is not so clear if X is a
closed manifold.

There are two main cut-and-paste constructions one can use to
make irreducible 4-manifolds. In this paper we study when one of
these constructions, called a rational blowdown, can be made symplec-
tic (the other construction, normal connected sum, has recently been
studied extensively by Gompf [G2]). One may briefly describe a ratio-
nal blowdown as follows: Given a 4-manifold X , one forms the rational
blowdown ofX , denoted Xp, by removing a neighborhood C(p) of some
embedded spheres Σi for i = 0, ..., p − 2 intersecting according to the
diagram in Figure 2.11 and replacing it with a rational homology ball
B(p) (i.e. a 4-manifold with boundary whose rational homology agrees
with that of the 4-ball). There are obstructions to making this opera-
tion symplectic; however, in certain circumstances, it is possible to do a
rational blowdown symplectically. In Chapter 6 we prove the following
result.
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Theorem 6.1. If X is a symplectic 4-manifold, the spheres men-
tioned above are symplectically embedded (or Lagrangian) and have a
neighborhood with an ω-convex boundary, then Xp is also symplectic.

By ω-convex I mean there is a vector field v defined in a neighbor-
hood of the boundary of C(p) and transversally pointing out of it so
that the Lie derivative of ω (the symplectic 2-form on X) in the direc-
tion of v is a positive multiple of ω. In most situations it is difficult to
verify the ω-convexity condition in this theorem. Thus the theorem is
most useful in conjunction with

Theorem 6.2. A neighborhood of the spheres mentioned above has
an ω-convex boundary if the spheres are symplectic and p ≤ 3 or Σ0 is
symplectic and the other spheres are Lagrangian.

These two results allow us to show many manifolds have a sym-
plectic structure. In particular, we can see that many of the Gompf–
Mrowka manifolds [GM] as well as manifolds studied by Fintushel and
Stern in [FS1] and [FS2] have symplectic structures.

In the proof of Theorem 6.1, one encounters contact structures on
3-manifolds. A contact structure is a 3-dimensional analog of a sym-
plectic structure. The usual definition of a contact structure is a 2-
dimensional distribution ξ in the tangent bundle of the 3-manifold that
is completely nonintegrable (one can think of this condition as saying
that the planes in ξ cannot be realized, even locally, as the tangent
planes to a 2-dimensional foliation). The ω-convexity of C(p) induces
a contact structure ξ0 on the lens spaces L(p2, p − 1), which is the
boundary of C(p). Next we note that the rational homology ball B(p)
is a Stein manifold, which can be seen by using Gompf’s “Stein calcu-
lus” [G3] for 4-manifolds. Thus B(p) has a symplectic structure and
the boundary of B(p) is ω-convex and so the boundary of B(p), which
is of course also L(p2, p−1), has a contact structure induced on it that
we call ξ1. We prove a theorem in Chapter 3 that allows us to glue B(p)
to X \C(p) while preserving a symplectic structure if we can verify that
ξ0 and ξ1 are contactomorphic contact structures on L(p2, p− 1).

Thus to complete the proof of Theorem 6.1 we develop some tech-
niques to classify (tight) contact structures on lens spaces. The main
idea is to find a nice CW decomposition of a lens space and then see
when a contactomorphism can be build one cell at a time. This results
in the the following theorem.

Theorem. When p is odd there exists an Euler class e ∈ H2(L(p, q);Z)
that may be represented by at most one tight contact structure.
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There is a similar result with p is even but the statement is more
technical and involves the “half-Euler class.” Since the Euler classes
of ξ0 and ξ1 both correspond to the cohomology class mentioned in
the theorem they must be contactomorphic, completing the proof of
Theorem 6.1.

Understanding contact structures on 3-manifolds is interesting in its
own right. Recently there has been a lot of work done on the construc-
tion of tight contact structures on 3-manifolds by Eliashberg [E5] and
Gompf [G3] using Stein 4-manifolds and by Eliashberg and Thurston
[ET] using perturbations of codimension one foliations. However, there
is still very little known about the uniqueness of contact structures on
3-manifolds. Eliashberg has shown there is a unique tight contact struc-
ture on S3 [E4] and RP 3 (unpublished) and Giroux has classified tight
contact structures on T 2-bundles over S1. The techniques developed
in this paper can be used to reprove Eliashberg’s result on RP 3 and
generalize it to other lens spaces. A particularly interesting application
of these techniques is to the nonexistence of tight contact structures.
For example the cohomology class 0 ∈ H2(L(3, 1);Z) is not the Euler
class of a tight contact structure on L(3, 1). These and other results
will be explored in a future paper.

In order to make this work a self-contained as possible we have in-
cluded Chapter 2. In this chapter we review the background necessary
for the remainder of the paper. We begin with basic results from sym-
plectic geometry, the most important of which is the Moser–Weinstein
theorem on local symplectic geometry. In Section 2 we cover the basic
facts from contact geometry. While in Section 3 we discuss the nature
of contact geometry in three dimensions. Finally, in the last section
of Chapter 2 we recall various methods to construct 4-manifolds. We
begin with log transforms and then rational blowdowns and their re-
lationship to log transforms. We then use these constructions to make
many irreducible 4-manifolds, some of which will be shown to be sym-
plectic in later chapters. Chapter 3 contains the material we need on
convexity. In particular we discuss cut-and-paste operations using ω-
convexity. We then show that the manifold C(p) frequently has an
ω-convex boundary and construct a Stein structure on B(p). In Chap-
ter 4 we build up the machinery necessary to see that the two contact
structures induced on L(p2, p−1) as the ω-convex boundary of C(p) and
B(p) are homotopic as 2-plain fields. We do this by recalling Gompf’s
definition of a complete set of invariants for 2-plain fields [G3] and
then computing them for the contact structures of interest to us.

The last two chapters are the core of the paper. In Chapter 5 we
develop a general procedure for analyzing tight contact structures on
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lens spaces, which we apply to prove Theorem 6.1. The techniques
developed here have much wider applications, which will be explored
in a future paper. In the last chapter we prove our main symplectic
result, Theorem 6.1. We then discuss the application of this theorem
to the question of the existence of symplectic forms on 4-manifolds.



CHAPTER 2

Background and Preliminary Results

This chapter contains the background needed in the rest of the
paper. Section 2.1 contains a review of symplectic geometry with its
primary objective a proof of the Moser–Weinstein theorem and some
of its corollaries. We also consider the classical obstructions to a 4-
manifold admitting a symplectic structure. In Section 2.2 we discuss
contact geometry in general and in Section 2.3 we look at contact geom-
etry in 3 dimensions. We will develop a lot of the amazing machinery
of Eliashberg on which much of our work rests. Finally, in Section 2.4,
we will review a little 4-dimensional topology. In particular, we will
consider the two principal cut-and-paste constructions to be examined
in subsequent chapters.

1. Symplectic Geometry

The main goal of this section is to prove the Moser–Weinstein the-
orem. The techniques used to prove this theorem originated in Moser’s
paper [Mo] and were refined by Weinstein in [W1] (see also [GuS]).
It is from this theorem that most standard local uniqueness properties
of symplectic structures follow. In subsequent chapters we will use this
theorem to derive local properties needed for our constructions. The
proof of the Moser–Weinstein theorem and several corollaries appears
in in Subsection 1.4. Before this we will review basic symplectic ge-
ometry for the convenience of the reader. In Subsection 1.1 we discuss
the linear algebra of symplectic forms. Symplectic manifolds and the
classical obstructions to the existence of symplectic forms are discussed
in Subsection 1.2. Several useful examples of symplectic manifolds are
considered in Subsection 1.3.

1.1. Linear Algebra. Before we discuss symplectic manifolds we
recall the basics of symplectic linear algebra. A symplectic vector

space is a pair (V, ω) where V is a finite dimensional real vector space
and

ω : V ⊗ V −→ R

5
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is a nondegenerate skew-symmetric bilinear form. Nondegenerate means
that for any vector v ∈ V if ω(v, w) = 0 for all w ∈ V then v = 0. The
form ω is called a symplectic form. Note that any bilinear form ω
induces a map

φω : V −→ V ∗

by φω(v) : V −→ R with φω(v)(w) = ω(v, w). Saying that ω is non-
degenerate is equivalent to saying that ψω is an isomorphism. The
standard example of a symplectic vector space is V = R2n with

(2.1) ω0 =

n∑

j=1

x∗j ∧ y
∗
j

where {x1, y1, . . . , xn, yn} is a basis for V and {x∗1, y
∗
1, . . . , y

∗
n} is the

dual basis for V ∗.
Let (V 2n, ω) be a symplectic vector space and W a subspace of V .

Define the ω-orthogonal complement to W to be

W⊥ = {v ∈ V : ω(v, w) = 0 for all w ∈ W}.

An exercise in linear algebra shows that

(2.2) dim(V ) = dim(W ) + dim(W⊥).

Thus (W⊥)⊥ = W since clearly W ⊂ (W⊥)⊥ and they have the same
dimension. The subspace W is said to be isotropic if W ⊆ W⊥,
symplectic if W ∩W⊥ = {0} and Lagrangian if W = W⊥. From the
dimension formula (2.2) above we have dim(W ) ≤ n if W is isotropic;
moreover, W is Lagrangian if and only if it is a maximal isotropic
subspace. W is symplectic if and only if ω|W is nondegenerate if and
only if W⊥ is symplectic.

We are now ready to show that there is, up to isomorphism, only
one symplectic vector space of a given (even) dimension.

Theorem 2.1. If (V, ω) is a symplectic vector space, then for some
n there is an isomorphism

ψ : V −→ R2n

such that ψ∗ω0 = ω, where ω0 is the standard symplectic form on R2n.
In particular, we know that V is even dimensional and has a preferred
orientation given by the volume form

ωn = ω ∧ . . . ∧ ω
︸ ︷︷ ︸

n times

.

We can use ψ to pull back the standard basis of R2n to get a basis of
V , this basis is called a symplectic basis for V .
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Proof. We will induct on the dimension of V . If dimV = 1 then
there are no nondegenerate forms on V . So we start with dimV = 2.
In this case take any nonzero vector v. Since ω is nondegenerate there
is a vector w′ such that ω(v, w′) 6= 0. Set w = w′

ω(v,w′)
and W =

span{v, w}. Clearly V = W and the linear map that takes v, w to
x1, y1 is an isomorphism from (W,ω|W ) to (R2, ω0) that preserves the
symplectic form. Now if dimV > 2 then construct W as above. We
have V = W ⊕W⊥ with both W and W⊥ symplectic and each with
smaller dimension than V . Thus,

(V, ω) = (W,ω|W )⊕(W⊥, ω|W⊥) ∼= (R2, ω0)⊕(RdimV−2, ω0) ∼= (R2n, ω0).

The last equivalence can easily be checked from the definition of ω0.
The remaining statements in the theorem follow easily by working

in (R2n, ω0) and pulling the result back to V by ψ. �

A map between symplectic vector spaces that preserves the sym-
plectic form is called symplectic. If the map is also an isomorphism
then it is called a symplectomorphism.

Let ω0 be the standard symplectic form on R2n. The group of
symplectomorphism of R2n is denoted by Sp(n). Before beginning our
analysis of Sp(n) it will be useful to consider Cn with a Hermitian
structure given by

h(v, w) =
n∑

j=1

vjwj

where v, w ∈ Cn. Now take a complex basis {x1, . . . , xn} for Cn and
let yj = ixj , for j = 1, . . . , n, then {x1, y1, . . . , xn, yn} is a real basis
for Cn and explicitly identifies Cn with R2n. It is interesting to note
that ω0 is just the imaginary part of −h, as is quite easy to check using
the above real basis for Cn. Recall that the unitary group U(n) is the
group of linear transformations of Cn that preserve the Hermitian form
h. Since an element of U(n) preserves h it must also preserve ω0 and
hence is in Sp(n). So we have shown

U(n) ⊂ Sp(n).

We will end this section with the following useful lemma, whose proof
may be found in [McS].

Lemma 2.2. Sp(n)/U(n) is a contractable space.

1.2. Symplectic Manifolds. A symplectic manifold is a pair
(X,ω) where X is a manifold and ω is a closed nondegenerate 2-form.
We say that ω a symplectic form on X. By closed we mean dω = 0,
and nondegenerate means that for all x ∈ X , ωx is a nondegenerate
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form on the vector space TxX. Since all symplectic vector spaces are
even dimensional and ω induces a symplectic structure on each tan-
gent space to X , a manifold must necessarily be even dimensional to
admit a symplectic structure. A submanifold Y of a symplectic mani-
fold (X,ω) is called symplectic if ω|Y is a symplectic form on Y and
called Lagrangian if ω|Y = 0. The standard example of a symplectic
manifold is (R2n, ω) where

ω =

n∑

j=1

dxj ∧ dyj

and {x1, y1, . . . , xn, yn} are coordinates on R2n. Indeed, one can easily
check that ω is closed. Furthermore, for each point p ∈ R2n we have
TpR

2n ∼= R2n with ωp exactly ω0 from Equation (2.1) above. So ω is
clearly nondegenerate. We will see many more examples of symplectic
manifolds later.

From our discussion of symplectic vector spaces it is clear that if
(X2n, ω) is a symplectic manifold then Ω = ωn is a volume form on X .
Thus if X is a closed manifold (i.e. compact without boundary) then ω
cannot be exact. For if ω were exact then Ω would also be exact, but
this is impossible since H2n(X ;R) ∼= R and is generated by the volume
form. So ω represents a nonzero class [ω] in H2(X ;R); moreover,

[ω]m = [ω] ∪ . . . ∪ [ω]
︸ ︷︷ ︸

m

= [ω ∧ . . . ∧ ω
︸ ︷︷ ︸

m

] = [ωm]

must also be a nonzero cohomology class for all m ≤ n by a similar
argument to the one above. So a necessary condition for a closed mani-
fold X to admit a symplectic form is that it have a nonzero cohomology
class α ∈ H2(X ;R) such that αm is also nonzero for all m ≤ n. This
simple obstruction already tells us that many manifolds cannot admit
symplectic structures. For instance the 2n-sphere for n 6= 1 has no
symplectic structure since H2(S2n;Z) = 0.

In order to discuss the other classic obstruction to a manifold ad-
mitting a symplectic structure we first must recall a few facts about
almost complex manifolds. A manifold X is called almost complex

if there exists a bundle map

J : TX −→ TX

such that J2 = −idTX . Thus (TxX, Jx) is a complex vector space for
each x ∈ X . Given an almost complex manifold (X, J) we can always
turn TX into a Hermitian vector bundle. By this we mean there is a
smoothly varying Hermitian inner product on the tangent space. The
proof that such a Hermitian structure exists on TX is the standard
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partition of unity proof also used to show that all manifolds admit a
Riemannian metric. A Hermitian structure on TX is just a reduction of
the structure group of TX from SL(2n,R) to U(n). Thus a manifold X
admits an almost complex structure if and only if TX may be reduced
to a U(n)-bundle. For the theory of G-bundles the reader is referred
to [Br].

One may easily check that having a symplectic structure on a man-
ifold X reduces TX to a Sp(n)-bundle. Note that just because TX
reduces to a Sp(n)-bundle we cannot conclude that X has a symplec-
tic structure. We do get a nondegenerate form ω on X but there is
no guarantee that ω is closed. In Lemma 2.2 above we noticed that
U(n) ⊂ Sp(n) and in fact that Sp(n)/U(n) is contractable. Thus
any symplectic manifold admits an almost complex structure which is
unique up to homotopy.

Now if a manifold X2n has an almost complex structure J on its
tangent bundle then we may define Chern classes

cj(X) = cj(TX) ∈ H2j(X ;Z), for j = 1, . . . , n

associated to X (and J). We shall not stop to review characteristic
classes here, but refer the reader to Milnor and Stasheff’s book [MS].
For the rest of this section we shall assume that n = 2 so that X
is a closed four dimensional manifold. Thus we have only two Chern
classes: c1 = c1(X) and c2 = c2(X). It is well known that c2 is equal
to the Euler class e(X) (where TX is thought of as real vector bundle
with orientation induced by the almost complex structure J) and hence

(2.3) χ(X) = 〈e(X), [X ]〉 = 〈c2, [X ]〉

where [X ] represents the fundamental homology class of X in H4(X ;Z)
and 〈·, ·〉 is the pairing between homology and cohomology. We also
have

(2.4) w2(X) = c1 reduced modulo 2

where w2(X) ∈ H2(X ;Z2) is the second Stiefel-Whitney class of X .
The Pontrjagin classes of any complex vector bundle E are determined
by its Chern classes. In particular we have

(2.5) p1(E) = c21(E)− 2c2(E).

The final ingredient we need is the Hirzebruch signature theorem. In
dimension four it says

(2.6) 3σ(X) = 〈p1(TX), [X ]〉

where σ(X) is the signature of the intersection form QX on H2(X ;Z).
An elementary proof of this formula my be found in Kirby’s book [K1].
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Now evaluating both sides of Equation (2.5) on the fundamental class
of X and using Equation (2.6) and (2.3) to evaluate the result yields

3σ(X) = 〈p1(TX), [X ]〉 = 〈c21(X), [X ]〉 − 2〈c2(X), [X ]〉

= 〈c21(X), [X ]〉 − 2χ(X)
(2.7)

and thus

(2.8) 〈c21(X), [X ]〉 = 3σ(X) + 2χ(X).

Notice that the right hand side of this equation is completely deter-
mined by the homotopy type of X4 and thus does not depend on the
almost complex structure or the symplectic structure. This gives us an-
other, more subtle, obstruction to the existence of a symplectic struc-
ture. Specifically, if X4 admits a symplectic structure then it must also
have an almost complex structure and hence a first Chern class c1. So
if X4 does not have an element c ∈ H2(X ;Z) that is a candidate for
c1 of an almost complex structure then X does not admit a symplectic
structure. For c to be a candidate for c1 of an almost complex structure
it must satisfy Equation (2.4) and (2.8).

From Equation (2.8) we can derive other simple topological ob-
structions to a four manifold admitting a symplectic form (or even an
almost complex structure). We begin by noticing that since c1(X) re-
duces modulo 2 to w2(X) its Poincaré dual is a characteristic element
for the intersection form on X . A standard fact form the theory of
intersection forms tells us that

〈c21(X), [X ]〉 ≡ σ(X) mod 8.

Thus

σ(X) ≡ 2χ(X) + 3σ(X) mod 8.

A little algebra shows

(2.9) χ(X) + σ(X) ≡ 0 mod 4.

Now let bi = dimH i(X ;Z) be the ith Betti number of X and let b±2 be
the number of ±1’s down the diagonal of a diagonalization (over R)
of the intersection form QX of X . Notice that b2 = b+2 + b−2 , χ(X) =
2− 2b1 + b2 and σ(X) = b+2 − b−2 , thus we can write Equation (2.9) as

(2.10) 1− b1 + b+2 ≡ 0 mod 2.

So if a simply connected manifold admits a symplectic structure then

b+2 must be odd. This allows us to easily see that #kCP
2#lCP

2
cannot

have a symplectic structure unless k is odd.
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1.3. Examples of Symplectic Manifolds. We begin with per-
haps the most important examples of symplectic manifolds. Given
any manifold M let X = T ∗M be the cotangent bundle of M and let
π : T ∗M −→ M be the projection map. In order to construct a sym-
plectic form on X , we recall the definition of the Liouville 1-form λ
on T ∗M : this is a map

λ : T (T ∗M) −→ R

that is linear on each fiber Tp(T
∗M). Given a vector v ∈ T (T ∗M),

then π′(v) is a linear map π′(v) : TpM −→ R, where π′ : T (T ∗M) −→
T ∗M is the standard projection and p = π ◦ π′(v). Also note that
dπ : T (T ∗M) −→ TM . Thus we may define

λ(v) = π′(v)(dπ(v)).

One may easily check that this is a 1-form.
It is useful to express λ in local coordinates. To this end let

q1, . . . , qn be a local coordinate system on U ⊂ M . So at any point
x = (q1, . . . , qn) in U an element z ∈ T ∗

xM may be written z =
∑n

j=1 pjdqj. Thus local coordinates on T ∗U are p1, . . . , pn, q1, . . . , qn
with π(p1, . . . , pn, q1, . . . , qn) = q1, . . . , qn. By a standard abuse of no-
tation we write π∗(dqj) ∈ T ∗

z (T
∗
xM) as dqj. Now given v ∈ Tz(T

∗M)
we have

λz(v) = π′(v)(dπ(v)) = z(dπ(v))

=
n∑

j=1

pjdqj(dπ(v)) =
n∑

j=1

pjπ
∗dqj(v)

=

n∑

j=1

pjdqj(v).

Thus we may write

λ =

n∑

j=1

pjdqj .

Before we go on to the symplectic structure on T ∗M let us consider λ
further. If β :M −→ T ∗M is any 1-form on M then notice β∗λ will be
a 1-form on M as well. In fact,

β∗λ(m) = β∗(

n∑

j=1

pjπ
∗dqj)(m) =

n∑

j=1

pj(β(m))β∗π∗dqj

=
n∑

j=1

pj(β(m))(π ◦ β)∗dqj =
n∑

j=1

pj(β(m))dqj = β(m).
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It is not hard to show, though we will not, that this property actually
characterizes λ.

Finally, let ω = −dλ. We claim that ω is a symplectic structure on
X . Indeed since ω is exact it is closed and locally,

ω = −dλ = −d
n∑

j=1

pjdqj = −
n∑

j=1

dpj ∧ dqj =
n∑

j=1

dqj ∧ dpj.

Thus it is clearly nondegenerate. Note that if M = Rn then (X =
T ∗M,ω) is just the standard example of a symplectic form on R2n

given above. It is interesting to notice that any 1-form β will embed
M into X and that

β∗ω = β∗(−dλ) = −dβ∗λ = −dβ.

So β(M) is a Legrangian submanifold of X if and only if dβ = 0.
We would now like to construct a symplectic form on CP n. Recall,

that CP n is the quotient of S2n+1 ⊂ Cn+1 by S1, where S1 is thought
of as the unit complex numbers and acts on Cn+1 by multiplication.
Thus we have the S1-bundle π : S2n+1 −→ CP n. Take a point z and set
Wz = {complex span of z}⊥ where we are using the standard Hermitian
metric on Cn+1 to define orthogonal complements. Identifying Cn+1

with TzC
n+1 one may easily check that dπ|Wz

is an isomorphism from
Wz to Tπ(z)CP

n and that this isomorphism is independent of the choice

of z in the same orbit. Now Wz is a symplectic subspace of Cn+1 with
its standard symplectic form ω0. Thus π gives us a nondegenerate form
ω on TCP n which is clearly closed since d commutes with π∗. With a
little thought one can explicitly write ω down. If v0, v1 are two vectors
in TxCP

n then

ω(v0, v1) = Im

(
h(w0, w1)h(z, z)− h(w0, z)h(z, w1)

h(z, z)

)

where z ∈ S2n+1 such that π(z) = x and w0, w1 ∈ TzS
2n+1 with

dπ(wj) = vj for j = 0, 1.
Next consider a complex manifold X with a Hermitian structure h.

If we set ω = −Im(h) then ω is clearly a nondegenerate form on X
since h is nondegenerate. But ω is not necessarily closed. We call X a
Kähler manifold if dω = 0 and then ω is called the Kähler form on
X . Thus by definition a Kähler manifold is also a symplectic manifold.
The following proposition gives us many more examples of symplectic
manifolds.

Proposition. A complex submanifold of a Kähler manifold is also
a Kähler manifold.
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For a proof see [La]. The analysis of CP n above also shows that
CP n is a Kähler manifold. Thus any complex submanifold of CP n is
also a symplectic manifold. So for example any nonsingular algebraic
variety is a symplectic manifold.

We would like to end this section with a construction (for details
see [McS]). Let (X2n, ω) be a symplectic manifold. Assume that there
is a symplectically embedded CP n−1 in X (where we are giving CP n−1

the symplectic structure constructed above, which we now denote ω0).
We also assume that the normal bundle ν(CP n−1) in X is isomorphic
to the universal line bundle L over CP n−1. It can be shown that there
is an ǫ-neighborhood, Nǫ, of CP n−1 in X such that Nǫ \ CP n−1 is
symplectomorphic to B2n

λ+ǫ \B
2n
ǫ , where B2n

κ is a ball of radius κ in Cn

endowed with the standard symplectic form on Cn restricted to B2n
κ .

The blowdown of X along CP n−1 is obtained by removing Nǫ form X
and gluing in B2n

λ+ǫ. We now define an inverse construction. We begin
with a symplectic embedding e of B2n

λ into X . If we let Z be the zero
section of the universal line bundle over CP n−1 then as above we may
find some neighborhood Nǫ of Z in L and a symplectomorphism from
a neighborhood of ∂Nǫ in Nǫ to a neighborhood of ∂B2n

λ in B2n
λ . Define

the blowup of X with weight λ, denoted (X̃, ω̃e), to be the manifold
obtained by removing e(B2n

λ ) from X and gluing in Nǫ. Topologically,

we are gluing X minus a ball to CP
n
minus a ball (one may easily

check that Nǫ is diffeomorphic to this). Thus X̃ ∼= X#CP
n
.

Consider the above constructions on a symplectic 4-manifold (X,ω):
to perform a blowdown all we need is a symplectically embedded 2-
sphere Σ with self intersection number −1. Such a 2-sphere is called
an exceptional sphere and X is called minimal if it contains no
exceptional spheres.

1.4. Local Symplectic Geometry. Most the local geometry of
symplectic manifolds will follow from the following theorem.

Theorem 2.3 (Moser–Weinstein). Let X2n be a manifold and C
a compact submanifold. If ω0 and ω1 are two symplectic forms on
X that are equal on each TxX when x ∈ C, then there exists open
neighborhoods U0 and U1 of C and a diffeomorphism φ : U0 −→ U1

such that φ∗ω1 = ω0 and φ is the identity on C. More generally, φ is
the identity wherever ω0 and ω1 agree.

Proof. Let ωt = (1−t)ω0+tω1 be a path of 2-forms, for 0 ≤ t ≤ 1.
We will try to find φ as the time one map of a flow φt, generated by a
vector field vt, so that φ∗

tωt = ω0. We claim that it will suffice to find
a 1-form α such that α|TCM = 0 and dα = ω1−ω0 . Indeed, given such
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a α we may find a vector field vt in some neighborhood U of C so that

α = −ιvtωt,

since the ωt are nondegenerate on some neighborhood of C. Now let
φt be the flow generated by vt, i.e.

d

dt
φt = vtφt.

By shrinking U if necessary we may assume that φt exists for 0 ≤ t ≤ 1.
Differentiating φ∗

tωt with respect to t we get

(2.11)
d

dt
φ∗
tωt = φ∗

t (
d

dt
ωt + ιvtdωt + dιvtωt).

For a proof of this equation the reader is referred to [GuS]. Now
dωt = 0 and by our choice of α we have

d

dt
ωt =

d

dt
(ω0 + tdα) = dα

Thus we have shown that d
dt
φ∗
tωt = 0, so φ∗

tωt = ω0. In particular,
φ∗
1ω1 = ω0. Note that since α = 0 on TCM , vt = 0 on C and hence
φ1 is the identity on C (clearly on any subset where ω0 = ω1, φ1 will
restrict to the identity).

To finish the proof we must now find α. To this end let σ = ω1−ω0.
We may assume that some neighborhood of C is identified with an open
normal disk bundle N of C. Let ft : N −→ N denote multiplication
by t in the fiber of the bundle, for 0 ≤ t ≤ 1. Note that ft is a
diffeomorphism for t > 0, f1 is the identity on N and f0(N) = C.
Thus f ∗

0σ = 0 and f ∗
1σ = σ. Finally let wt =

d
dt
ft and set

α =

∫ 1

0

f ∗
t (ιwtσ)dt.

Now we have

dα = d

∫ 1

0

f ∗
t (ιwtσ)dt =

∫ 1

0

d(f ∗
t (ιwtσ))dt

=

∫ 1

0

[f ∗
t ιwtdσ + d(f ∗

t (ιwtσ))]dt

=

∫ 1

0

d

dt
(f ∗
t σ)dt = f ∗

1σ − f ∗
0σ

= σ − 0 = ω1 − ω0

as desired. The second equality follows since dσ = 0 and the third
equality follows from Equation (2.11). Note that σ is zero whenever
ω0 = ω1. So σ is zero on TCM ; hence, α is also zero on TCM . �
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This theorem has many significant corollaries.

Corollary 2.4 (Darboux’s Theorem). Any symplectic manifold
(X2n, ω) is locally symplectomorphic to a neighborhood of the origin in
R2n with its standard symplectic form ω0.

Proof. Given any point x ∈ X there is a coordinate chart U
and a diffeomorphism f : R2n −→ U such that f(0) = x. Let ω′ =
f ∗ω|U . By Theorem 2.1 there exists a linear map L : T0R

2n −→ T0R
2n

such that L∗(ω′)0 = (ω0)0. Now consider the map g = f ◦ L and
ω1 = g∗ω. By construction, ω1 and ω0 agree at the origin; hence by
Theorem 2.3 there are neighborhoods of the origin U0 and U1 and a
symplectomorphism φ : U0 −→ U1 such that φ∗ω1 = ω0. Thus the
map g ◦ φ is a symplectomorphism from a neighborhood of the origin
in (R2n, ω0) to a neighborhood of x in (X,ω). �

Corollary 2.5 (Symplectic Neighborhood Theorem). Let (Xj , ωj),
for j = 0, 1, be symplectic manifolds. Assume Yj is a symplectic sub-
manifold of Xj and ψ : Y0 −→ Y1 is a symplectomorphism. If there is a
symplectic bundle map Ψ : ν(Y0) −→ ν(Y1) of the normal bundles that
covers ψ, then ψ extends to a symplectomorphism from a neighborhood
of Y0 to a neighborhood of Y1.

This corollary is one of the ingredients in Gompf’s normal connected
sums theorem (see [G2]). Given two smooth manifolds X0 and X1

with embeddings ji : N −→ Xi, of a compact oriented manifold N of
codimension 2, such that the normal bundles ν0 and ν1 are orientation
reversing diffeomorphic, one may define the normal connected sum

of X0 and X1 along N as follows:

X0#φX1 = (X0 \ ν0) ∪φ (X1 \ ν1),

where φ : ∂ν0 −→ ∂ν1 is induced by the aforementioned diffeomorphism
from ν0 to ν1. In the symplectic case we have the following theorem
which we state only in the 4 dimensional case.

Theorem 2.6. Let Xi be a closed symplectic 4-manifold and Σi a
closed connected symplectic surface in Xi, for i = 0, 1. Suppose that Σ0

is diffeomorphic to Σ1 and that they have opposite squares under the
intersection pairing in Xi. Then X0#φX1 admits a symplectic struc-
ture for any orientation reversing isomorphism φ : ν(Σ0) −→ ν(Σ1).
Moreover, if Σ′

i is another closed symplectic surface in Xi that inter-
sects Σi transversely in l points all with positive sign, then Σ′

0#φ′Σ
′
1 is

a symplectic submanifold of X0#φX1, where φ
′ is induced from φ.

The proof of this theorem would take us too far afield to be given here.
The interested reader is referred to [G2].
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Proof of Corollary 2.5. Standard differential topology tells
us that we may identify ν(Yj) with a neighborhood Nj of Yj in Xj,
for j = 0, 1. Thus Ψ may be thought of as a map from N0 to N1.
Now let ω′

1 = Ψ∗ω1. By hypothesis we know that ω0 and ω′
1 agree on

TX0|Y0. Thus Theorem 2.3 gives us neighborhoods U0 and U1 of Y0
and a symplectomorphism φ : (U0, ω0) −→ (U1, ω

′
1). So the desired

symplectomorphism is Ψ ◦ φ|U0∩N0
. �

Corollary 2.7 (Lagrangian Neighborhood Theorem). Let (X,ω)
be a symplectic manifold with L a Lagrangian submanifold. The exists
a neighborhoods U0 of L in X and U1 of L in T ∗L (where L is the zero
section of T ∗L) and a symplectomorphism φ : U0 −→ U1 (where T ∗L
is endowed with its standard symplectic form).

Proof. We begin by noting that the normal bundle, ν(L), to L
in X is isomorphic to the cotangent bundle T ∗L of L. To see this
first notice that on the vector space level if {x1, . . . , xn} is a basis
for a Lagrangian subspace W of V then we may extend this basis
by {y1, . . . , yn} to get a symplectic basis for V . Since the yj’s span
V/W they also span W ∗ (using the map φω from Section 1 above), so
V/W ∼= W ∗. Now doing this construction at each point in the tangent
bundle TX|L yields an isomorphism TX/TL ∼= T ∗L. But TX/TL is
well known to be isomorphic to the normal bundle to L in X . Thus
confirming our observation above.

Now the symplectic form ω on X induces a symplectic structure,
denoted ω0, on T

∗L by using the isomorphism between ν(L) and T ∗L.
T ∗L also has a canonical symplectic form that we will denote ω1. We
would be done if ω0 and ω1 agreed on T (T ∗L)|Z where Z is the zero
section of T ∗L. This will not be true in general; though, we do always
have ω0 and ω1 agreeing on TZ ⊂ T (T ∗L).

At each point z of Z let Mz be the set of linear maps of Tz(T
∗L)

that take (ω1)z to (ω0)z and are fixed on TzZ ⊂ T (T ∗L). One may
easily check that the Mz’s fit together to from a bundle M over Z. A
little linear algebra shows that Mz is isomorphic to the set of n × n
symmetric matrices. Thus there is a section σ of M over Z since M
has contractable fibers. Consider the map f : T ∗L −→ T ∗L defined by
f(z, v) = (z, σ(z)v). So f is the identity map on Z and df = idTZ ⊕ σ.
Thus f ∗ω0 and ω1 agree on T (T

∗L)|Z and we may now use Theorem 2.3
to complete the proof. �

Our final result on the “local geometry” of symplectic manifolds in-
volves families of symplectic forms.
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Theorem 2.8 (Moser Stability). Let X be a closed manifold and
ωt a smooth family of symplectic forms on X, for 0 ≤ t ≤ 1. If all the
ωt are cohomologous, then there exists a family of diffeomorphisms φt
such that φ0 = idX and φ∗

tωt = ω0.

Proof. We reproduce the beautiful proof in [McS]. As in the
proof of Theorem 2.3 we can construct the desired symplectomorphisms
if we can find a family of 1-forms αt such that d

dt
ωt = dαt. To this

end choose a Riemannian metric on X and let d∗ be the formal L2

adjoint to d. Recall that d is an isomorphism from d∗(Ω2(X)) to the
exact 2-forms. Now d

dt
ωt =

d
dt
(ωt − ω0) is exact (since all the ωt are

cohomologous) so there exists some 1-form αt such that dαt =
d
dt
ωt as

needed. �

2. Contact Geometry

Contact structures are an odd-dimensional analog of symplectic
structures. A k-dimensional distribution ξ on an n-manifold M
is a subbundle of TM such that ξm ≡ TmM ∩ ξ is a k-dimensional
subspace of TmM for every m ∈ M . We say ξ is smooth if we may
locally find k linearly independent smooth vector field on M that span
ξ. A contact structure ξ on a (2n + 1)-dimensional manifold M is
a smooth 2n-dimensional distribution on M that is “maximally nonin-
tegrable.” One may intuitively think of “maximally nonintegrable” as
meaning that the planes in ξ cannot be realized, even locally, as the
tangent planes to a 2n-dimensional foliation.

To get a better understanding of “maximally nonintegrable” we first
need to understand what it means for a distribution of be integrable.
A k-dimensional distribution ξ an n-manifold M is a integrable if we
may locally find a k-dimensional foliation such that ξ is the tangent
bundle to the leaves of the foliation. The following theorem tells us
when a distribution is integrable.

Frobenius Theorem. A k-dimensional distribution ξ on an n-
manifold is integrable if and only if ξ is closed under the Lie bracket
(i.e. if v and w are vector fields contained in ξ then so is [v, w]).

Note that a codimension one distribution ξ may be defined (at least
locally) by a 1-form, say α. By this we mean ξ = ker(α). Hence a vector
field v is a section of ξ if and only if α(v) = 0. Thus the Frobenius
Theorem may be restated as: ξ is integrable if and only if α([v, w]) = 0
whenever α(v) = 0 = α(w). Note that

(2.12) dα(v, w) = vα(w)− wα(v)− α([v, w])
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implies that ξ is integrable if and only if dα|ξ = 0. Finally, a little
thought shows that ξ is integrable if and only if α ∧ dα = 0.

We may now rigorously define “maximally nonintegrable”. We will
say that a 2n-dimensional distribution ξ on a (2n + 1)-dimensional
manifold M is maximally nonintegrable if for any locally defining
1-form α we have α∧dαn 6= 0. If ξ can globally be defined by a 1-form
α then it is said to be transversely oriented (α is usually referred to
as a contact 1-form). One may equivalently say that ξ is transversely
oriented if there is a vector field v on M such that vm and ξm span
TmM for every m ∈ M . Given an contact form α we may choose v
such that ιvdα = 0 and α(v) = 1, and then we call v the Reeb vector

field of α. Notice that the maximal nonintegrability of ξ implies that
dα|ξ is nondegenerate and hence induces a symplectic structure on the
vector bundle ξ. Now if α and α′ are two different 1-forms defining ξ
then there must exist a nonzero function f :M −→ R on M such that

α′ = fα.

So d(fα) = df ∧ α + fdα and thus d(α′)|ξ = fdα|ξ. In other words,
α and α′ define the same symplectic structure on ξ up to a nonzero
scaling factor. Moreover, α′ ∧ dα′n = fn+1α ∧ dαn 6= 0, so if n is odd a
contact structure ξ gives a natural orientation on M .

The standard example of a contact structure is given by R2n+1 with
ξ0 defined as the kernel of

α0 = dt+

n∑

j=1

xidyi

where t, x1, y1, . . . , xn, yn are the standard coordinates on R2n+1. One
may easily check that α0 ∧ dαn0 gives a volume form on R2n+1 that in-
duces the standard orientation; and thus, ξ0 = kerα0 is a transversely
oriented contact structure. Another simple example of a contact man-
ifold is given by S2n+1. In order to construct a contact structure on
S2n+1 we need to think of S2n+1 as the unit sphere in Cn+1. Now at
each point p ∈ S2n+1 let ξp be the set of complex tangencies to S2n+1,
i.e.

ξp = TpS
2n+1 ∩ iTpS

2n+1.

To check that ξ is indeed a contact structure on S2n+1 we will define
a contact form for it. To this end, let x1, y1, . . . , xn+1, yn+1 be a set of
real coordinates on Cn+1 such that yj = ixj for j = 1 . . . (n+ 1). Set

α =
1

2

n+1∑

j=1

(yjdxj − xjdyj).
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We leave it as an exercise to the reader to check that ξ is the kernel
of α|S2n+1 and hence is clearly a nonintegrable 2n-dimensional distri-
bution.

Consider a contact manifold (M, ξ) with contact form α and a sub-
manifold L such that TmL ⊂ ξm for all m ∈ L. Given two tangent
vector fields v, w to L then [v, w] is also a tangent vector field, so
dα(v, w) = vα(w)− wα(v)− α([v, w]) = 0. Thus TmL is an isotropic
subspace of the symplectic vector space (ξm, dαm) and by the dimen-
sion formula (2.2) we know that dimL ≤ n. We call L Legendrian if
dimL = n.

Two contact structures ξ0 and ξ1 on M are contactomorphic if
there is a diffeomorphism f : M −→ M such that df(ξ0) = ξ1. In this
case f is called a contactomorphism. If α1 is a contact 1-form for ξ1
then f is a contactomorphism if and only if f ∗α1 is a contact 1-form
for ξ0.

2.1. Local Contact Geometry. As in symplectic geometry there
are several powerful local results in contact geometry. We begin with
the following theorem.

Theorem 2.9 (Gray’s Theorem). Let M be a closed manifold. If
ξt, 0 ≤ t ≤ 1, a family of contact structures on M , then we may find
a family of diffeomorphisms φt : M −→ M such that (φt)∗ξ0 = ξt.
Moreover, we may assume that φt is the identity map on any subset of
M where all the ξt’s agree.

Proof. As in the proof of Theorem 2.3 we would like to find a time
dependent vector field vt whose flow will give us the φt’s. We begin by
finding contact forms αt for our contact structures ξt (we may only be
able to do this locally but that will not matter in the end). We want
to find φt :M −→M such that

(2.13) φ∗
tαt = ftα0

for nonvanishings functions ft :M −→ R. Since dαt|ξt is nondegenerate
on ξt we can find a vector field vt ∈ ξt ⊂ TM such that

(2.14) ιvtdαt|ξt = −
dαt
dt

|ξt.

Now let φt be the flow of vt. Note that where ξt = ξ0 we can assume
that the αt’s agree, thus the vector field vt = 0 and hence φt is the
identity. We claim that φt satisfies Equation (2.13). To see this we
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compute

d

dt
(φ∗

tαt) = φ∗
t (
d

dt
αt + ιvtdαt + dιvtαt)

= φ∗
t (
d

dt
αt + ιvtdαt).

(2.15)

So by Equation (2.14) we see that the 1-form d
dt
(φ∗

tαt) = 0 on φ∗
t ξt.

Thus since φ∗
t ξt = kerφ∗

tαt we have ker φ∗
tαt ⊂ ker d

dt
(φ∗

tαt). Which
implies

(2.16)
d

dt
(φ∗

tαt) = gt(φ
∗
tαt)

for some smooth function gt : M −→ R. This clearly implies that at
each point m in M , φ∗

tαt lies on a ray in T ∗
mM through α0 and thus

the φt’s satisfy Equation (2.13).
In order to finish the proof when the ξt’s are not transversely ori-

ented, we check that the vt’s above are independent of the αt’s chosen
to represent ξt (thus we can define the vt’s locally and they will patch
together to give a global vector field). So let α′

t be another set of
contact forms for ξt. Then we know

α′
t = gtαt

for some positive functions gt. So

dα′
t = dgt ∧ αt + gtdαt

and
dα′

t

dt
=
dgt
dt
αt + gt

dαt
dt
.

Now if we contract vt defined in Equation (2.14) into the first equation
and then restrict to ξt we get

ιvtdα
′
t|ξt = gtιvtdαt|ξt = −gt

dαt
dt

|ξt

= −
dα′

t

dt
|ξt .

Thus we get vt using the αt’s or the α
′
t’s. �

We may now easily prove the following corollaries.

Corollary 2.10 (Darboux’s Theorem). Any (2n+1)-dimensional
contact manifold (M, ξ) is locally contactomorphic to a neighborhood of
the origin in R2n+1 with its standard contact structure ξ0.
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Proof. As in the proof of the symplectic Darboux Theorem, given
a point m ∈ M we can find a coordinate patch f : R2n+1 −→ U , where
m ∈ U , such that f(0) = m, df0(ξ0) = ξm, f is orientation preserving
and df is a symplectomorphism from (dα0|ξ0)0 to (dα|ξ)m. Now let
α1 = f ∗α and αt = (1 − t)α0 + tα1. Then ξt = kerαt agree with
ξ0 at the origin. Moreover, at the origin dαt = (1 − t)dα0 + t dα1

is a symplectic form on ξt = ξ0 since α0 and α1 agree at the origin.
Thus αt is a contact form near the origin. Gray’s Theorem gives us
φt : N −→ N , where N is a neighborhood of the origin in R2n+1, such
that φt(0) = 0 and (φt)∗ξ0 = ξt. Finally, f ◦ φt is a contactomorphism
from a neighborhood of the origin in R2n+1 to a neighborhood of m in
M . �

Corollary 2.11. Let (M, ξ) be a contact manifold and ψt :M −→
M an isotopy of M with each ψt a contactomorphism outside a subset
U ⊂ M with compact closure. Then there is an isotopy ψ′

t : M −→ M
through contactomorphisms such that ψ′

t = ψt for t = 0 and for all m
not in U .

Proof. Let ξt = ψ∗
t ξ and apply Gray’s theorem to ξt to obtain a

family of contactomorphisms φt :M −→ M such that (φt)∗ξ = ξt. Set
ψ′
t = ψt ◦ φt and notice that

(ψ′
t)∗ξ = (ψt)∗(φt)∗ξ = (ψt)∗ξt = ξ.

Thus all the ψ′
t’s are contactomorphisms. Outside of U we know that

(ξt)m = ξm so ψt|M\U = id and thus ψ′
t = ψt outside U . �

In dimension 3 we get a much stronger result.

Theorem 2.12. Let M be an oriented 3-manifold and C ⊂ M a
compact subset of M . If ξ0 and ξ1 two positive contact structures on
M that agree on C, then there exists a neighborhood N of C such that
the identity idN on N is isotopic rel C to a contactomorphism.

Proof. We will assume that ξi is transversely orientable near C
(the general case can be handled as in the proof of Theorem 2.9). Let
αi be a contact from for ξi and set αt = (1 − t)α0 − tα1. The plane
fields ξt = kerαt are clearly independent of t on C. Now dα0 and dα1

are both positive volume forms on ξt|C and hence so is dαt (a convex
combination of positive volume forms is a volume form). Thus dαt is a
volume from on ξt near C. Therefore, αt is a contact form near C. We
can now use the proof of Gray’s Theorem above to find φt : N −→ N ,
where N is a neighborhood of C, such that (φt)∗ξ0 = ξt. All the φt will
be the identity on C since ξ0 and ξ1 agree there already. �
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2.2. Symplectification. In this subsection we will see that a con-
tact manifold may be realized as a hypersurface in a symplectic man-
ifold in such a way that the contact form and symplectic form are
related. Given a transversely oriented contact manifold (M, ξ) chose a
contact 1-form α for ξ and consider the submanifold of T ∗M

X = {v ∈ T ∗
mM : m ∈M, v = tαm and t > 0}.

Clearly, for each m ∈ M , X ∩ T ∗
mM is the ray in T ∗

mM on which αm
lies and so X = (0,∞) × M . Any other contact from α′ for ξ can
be thought of as a section of X . Thus the manifold X depends only
on (M, ξ) and not on α (α does however provide an embedding of M
in X). We now claim that X is a symplectic manifold. To see this
let ω = ω0|X where ω0 is the canonical symplectic structure on T ∗M .
Recalling that ω0 = dλ, where λ is the Liouville 1-form on T ∗M , we
know that

α∗λ = α.

Hence
π∗α = λ|M ,

where π : T ∗M −→ M is projection and M is thought of as sitting in
X by using α as an embedding. Thus

tπ∗α = λ|X

and so
ω = dλ|X = d(tπ∗α) = dt ∧ π∗α + tπ∗(dα).

If the dimension of M is 2n− 1 then we may finally compute

ωn = tn−1[dt ∧ π∗(α ∧ (dα)n−1)]

which is clearly a volume form on X since α∧ (dα)n−1 is a volume form
on M and X = (0,∞)×M . Hence ω is a symplectic form on X . We
define the symplectification of M , denoted Symp(M, ξ), to be the
manifold X with symplectic form ω.

Notice that the vector field t ∂
∂t

is transverse to α(M) ⊂ X and

Lt ∂
∂t
ω = Lt ∂

∂t
(dt ∧ π∗α + tπ∗(dα))

= dιt ∂
∂t
(dt ∧ π∗α+ tπ∗(dα)) = d(tπ∗α)

= ω,

where Lt ∂
∂t

is the Lie derivative. Thus we say M is a hypersurface

of contact type. More generally, a hypersurface H in a symplectic
manifold (X,ω) is said to be of contact type if there is a vector
field v defined in a neighborhood of H that is everywhere transverse
to H and a symplectic dilation, this means that Lvω = ω. Note
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α = ιvω|H is a contact form on H . Indeed, dα = ω|H so we can find
a vector w ∈ TH such that ω(v, w) 6= 0. Thus kerα is the symplectic
complement of {v, w} in TX|H and so dα is nondegenerate on kerα.

Proposition 2.13. Given a compact hypersurfaceM in a symplec-
tic manifold (X,ω) of contact type with symplectic dilation v there is a
neighborhood of M in X symplectomorphic to a neighborhood of α(M)
in Symp(M, ξ) where α = ιvω|M and ξ = kerα.

Proof. Let ω′ = d(tα) be the symplectic form on Symp(M, ξ). By
the tubular neighborhood theorem we can find a neighborhood ofM in
X that is diffeomorphic to a neighborhood of α(M) in Symp(M, ξ) and
sends the flow lines of v to the flow lines of ∂

∂t
. Now ω′ on α(M) is just

dα and ω on M ⊂ X is also dα. Finally, choosing the above diffeomor-
phism between tubular neighborhood correctly, we can arrange that ω′

on T (Symp(M, ξ))|M agrees with ω on TX|M . Hence by Theorem 2.3
our diffeomorphism may be isotoped into a symplectomorphism. �

3. Contact Geometry on 3-Manifolds

Let M be a 3-manifold. A transversely oriented contact structure
ξ on M gives a preferred orientation on M by α ∧ dα where α is a
contact 1-form for ξ. We will always assume that M is given this
preferred orientation.

If Σ is a surface embedded inM then we may assume (after possibly
a small isotopy) that there are a finite number of points {p1, . . . , pn}
where Σ is tangent to ξ, i.e.

TpjΣ = ξpj for j = 1, . . . , n.

On the rest of Σ we have TΣ transverse to ξ so if m ∈ Σ \ {p1, . . . , pn}
then

TmΣ ∩ ξm = lm a line in TmΣ.

This line field on Σ \ {p1, . . . , pn} integrates to give a foliation on Σ
with singularities at the pj’s called the characteristic foliation of Σ,
denoted by Σξ. We may always locally orient the foliation Σξ thus the
index of a the line field l at a singularity is always defined. Generically,
the index will be ±1. A singular point pj with index +1 will be called
an elliptic point (see Figure 2.1 (a)) and one with index −1 will be
called a hyperbolic point (see Figure 2.1 (b)).

Since M is oriented and ξ is transversely oriented there is an ori-
entation of each of the ξm’s. So if Σ is also oriented then we may ask
if the orientations of TpjΣ and ξpj agree or not. If they agree then
we call the point pj positive and if they disagree it is called nega-

tive. The orientation on Σ also allows us to orient the line field l on
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+1 -1

(a) elliptic singularity (b) hyperbolic singularity

Figure 2.1

Σ \ {p1, . . . , pn}. Thus we get more than a foliation, we actually get a
flow. The positive elliptic points of Σξ are sources of the flow and the
negative elliptic points are sinks for the flow. The sign of a hyperbolic
singularity does not have such an easy interpretation.

We now consider two fundamental examples of contact structures
on R3. Let ρ, φ, z be cylindrical coordinates on R3 and set

α0 = dz + ρ2dφ.

The first contact structure we wish to consider is ξ0 = kerα0. In
Figure 2.2 (a) we have drawn a few representative hyperplanes in ξ0.
One should notice that the hyperplanes in ξ0 are horizontal along the
z-axis and along any ray perpendicular to the z-axis the hyperplanes
twist 90 degrees to the left (from horizontal on the z-axis to vertical
“at infinity”) as they move out to infinity along the ray. Now let

α1 = cos ρ dz + ρ sin ρ dφ

and consider the contact structure ξ1 = kerα1. A few of the hyper-
planes in ξ1 may be seen in Figure 2.2 (b). Once again we see that along
the z-axis the hyperplanes are horizontal but as we travel along a ray
perpendicular to the z-axis the hyperplanes twist to the left infinitely
often.

We would now like to consider the characteristic foliation induced
on the disk D = {(ρ, φ, z) : z = 0 and ρ ≤ π} for each of the above
contact structures. The characteristic foliation Dξ0 is shown in Fig-
ure 2.3 (a). Notice that D is not in general position with respect
to ξ1 so we will bump the boundary of D up (here D is actually
{(ρ, φ, z) : z = ǫρ2 and ρ ≤ π}). The characteristic foliation Dξ1 is
shown in Figure 2.3 (b). Notice that Dξ0 just looks like the standard
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(a) the contact structure ξ0 (b) the contact structure ξ1

Figure 2.2

picture of an elliptic singularity but Dξ1 has an elliptic singularity and
its boundary is a limit cycle. We call Dξ1 the standard overtwisted

disk.

(a) Standard Disk (b) Overtwisted Disk

Figure 2.3

A contact 3-manifold (M, ξ) is called overtwisted if there exists a
disk D embedded in M with Dξ diffeomorphic to Dξ1 (i.e. Dξ contains
a limit cycle and exactly one elliptic point). We call (M, ξ) tight if
for any embedded disk D, Dξ contains no limit cycles. Clearly, an
overtwisted contact structure is not tight. In [E4] Eliashberg showed
that a contact structure that is not overtwisted is tight. Thus contact
structures fall into two disjoint classes: overtwisted and tight.

In [L] Lutz showed that given any 2-dimensional distribution on
a 3-manifold there is an overtwisted contact structure homotopic to
it. Later, in [E1], Eliashberg showed that homotopy classes of 2-plane
fields and overtwisted contact structures (up to homotopy through con-
tact structures) are in one to one correspondence. Thus questions about



26

the existence and uniqueness of overtwisted contact structures reduces
to questions about 2-plane fields, which are well understood in terms
of algebraic topology (see Chapter 4 for more details on this). Note, in
particular, that the above results imply that any 3-manifold admits a
contact structure.

Tight contact structures are much more subtle. Until recently there
was very little known about the existence or uniqueness of tight con-
tact structures. The first existence result was due to Bennequin. In
his 1983 paper [Be] he showed that the standard contact structure
(described above) on S3 is tight. A few years later, in [Gr1], Gro-
mov showed that a symplectically fillable contact structure is tight. A
contact 3-manifold (M, ξ) is called symplectically fillable if there is
a symplectic 4-manifold (X,ω) that M bounds so that ω|ξ does not
vanish and the orientation M inherits as the boundary of X agrees
with the one induced by ξ. Using a result of Eliashberg’s (see [E2] and
Chapter 3 below), Gompf [G3] and Eliashberg [E5] have managed to
construct many examples of tight contact structures.

Even less is known about the uniqueness of tight contact structures
than about the existence. In [E4] Eliashberg proved the following the-
orem:

Theorem 2.14 (Eliashberg, 1992). Two tight contact structures on
the ball B3 which induce the same characteristic foliations on ∂B3 are
isotopic relative to ∂B3.

From this and Darboux’s theorem one may easily show that S3 has
a unique tight contact structure. Eliashberg also managed to show
that R3 has only one tight structure. In Chapter 5 we shall prove of
the following unpublished result of Eliashberg’s:

Corollary 2.15. There is only one tight contact structure on RP 3.

3.1. Legendrian and Transversal Curves. There are two par-
ticularly interesting types of curves in a contact 3-manifold (M, ξ). A
closed curve γ : S1 −→M is called Legendrian if the vectors tangent
to γ, γ′(t), are in ξγ(t). We call γ transversal if γ′(t) is always trans-
verse to ξγ(t). A transverse curve is positive or negative according to
whether or not the vectors {γ′(t), oriented basis for ξγ(t)} form a posi-
tively oriented basis for Tγ(t)M . The nonintegrability of ξ allows us to
show the following lemma:

Lemma 2.16. Any curve in a contact 3-manifold may be made Leg-
endrian by a C0-small isotopy.

To get a better idea of what Legendrian curves look like and to get
an idea of how to prove this lemma, consider Legendrian knots in the
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standard contact structure ξ0 on R3. This structure is given by the
from α = dz+ xdy (the reader should check that this form induces the
same contact structure as α0 above). So if γ is a Legendrian curve then
α(γ′) = 0 or x = −dz

dy
. Thus the x coordinate of γ(t) is determined

by the slope of γ(t) projected into the yz-plane. In other words given
a curve drawn in the yz-plane with no vertical tangencies, we may
construct a Legendrian curve in R3 that projects to it. Figure 2.4 is
a typical example of a yz-projection of a Legendrian knot (the cusps
denote places where the curve is parallel to the x-axis). Note that we

Figure 2.4. Legendrian Knot

do not have to draw the crossings in the projection a Legendrian knot
since they are determined by the slope of the two curves involved; we
shall, however, continue to draw the crossings to avoid confusion. The
idea behind the lemma is now quite simple. We begin by isotoping the
curve (in R3) a little to make its projection onto the yz-plane nice (only
isolated double points). We now leave it to the reader to see that by
adding (C0-small) zigzags to the projection the resulting Legendrian
curve will be C0-close to the original curve. In a general manifold we
perform the above procedure in Darboux charts covering the curve γ.

A framing on a knot γ is given by a vector field along γ that is
transverse to it. Now given a Legendrian curve γ in M the contact
structure gives γ a canonical framing by taking the vector field in ξ|γ
transverse to γ. If γ is null-homologous in M then it bounds a surface
Σ in M and we define the Thurston-Bennequin invariant of γ to
be

tb(γ) = I(γ′,Σ)

where γ′ is obtained by pushing γ off itself using the canonical framing
and I(γ′,Σ) is the oriented intersection number of γ′ and Σ. There is
another invariant of Legendrian knots called the rotation number of
γ, denoted r(γ,Σ). To define r pick a trivialization of ξ|Σ and let T
be a vector field tangent to γ. We define r(γ,Σ) to be the degree of T
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with respect to this trivialization. To calculate tb and r we used a
surface Σ. In general one must keep track of Σ but when the choice of
Σ is irrelevant (e.g. for knots in S3) or obvious, we will usually drop it
from our notation.

If γ is a Legendrian knot in (R3, dz + xdy) then it is quite easy to
compute these two invariants for γ from the yz-projection. To com-
pute the Thurston-Bennequin invariant note that ∂

∂z
gives the canonical

framing on γ and that this framing differs from the blackboard fram-
ing only at the cusps of the yz-projection. The linking number of the
blackboard framing on γ is given by the writhe w(γ). If λ(γ) is the
number of left cusps of the yz-projection of γ then it is easy to convince
oneself that

(2.17) tb(γ) = w(γ)− λ(γ).

To compute the rotation number note that ∂
∂x

trivializes ξ on all of

R3 hence on any surface Σ bounding γ. Thus the degree of T with
respect to this trivialization is just the number of times T rotates with
respect to ∂

∂x
. To calculate this let t+ (t−) be the number of upward

(downward) cusps of the yz-projection of γ. Then we have

(2.18) r(γ) =
1

2
(t+ − t−).

For more details on these formulas we refer the reader to [G3].
If γ is a Legendrian knot in (M, ξ) then we may associate two

transversal knots to it. To this end, notice that we may embed S =
[−ǫ, ǫ] × S1 into M so that {0} × S1 is mapped to γ and Sξ is shown
in Figure 2.5 (we may do this by generically embedding S so that it
twists according to the canonical framing of γ). It is now clear that

γ

Τ+(γ)

Τ−(γ)

Figure 2.5. Sξ

{ǫ} × S1 is a positive transverse knot, denoted T+(γ), and {−ǫ} × S1

is a negative transverse knot, denoted T−(γ).
Now given a transversal knot γ in (M, ξ) that bounds a surface Σ

we may define the self linking number, l(γ), of γ as follows: take a
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nonvanishing vector field v in ξ over Σ and let γ′ be γ slightly pushed
along v. Define

l(γ,Σ) = I(γ′,Σ),

where again I(·, ·) is the oriented intersection number.

Lemma 2.17. If γ is a null homologous Legendrian curve on a con-
tact 3-manifold, then

l(T±(γ),Σ
′) = tb(γ,Σ)∓ r(γ,Σ),

where Σ is any surface bounding γ and Σ′ is the obvious surface asso-
ciated to Σ bounding T±(γ).

A beautiful result of Eliashberg’s [E5] tells us a great deal about
transversal unknots.

Proposition 2.18. Let γ and γ′ be two transversal unknots in a
tight contact 3-manifold. If l(γ) = l(γ′) then there is an ambient iso-
topy of the 3-manifold through contactomorphisms taking γ to γ′.

A similar result is also true for Legendrian unknots. We end this section
by noting that the contact structure near a transversal knot is unique.

Proposition 2.19. Any two transverse knots have contactomor-
phic neighborhoods.

The proof of this proposition follows immediately from Theorem 2.12.

3.2. Surfaces in Contact 3-Manifolds. To understand 3-dimensional
manifolds it is quite useful to cut them up along 2-dimensional subman-
ifolds and study the pieces. Thanks to many powerful tools recently
developed (mainly by Eliashberg and Giroux) we can also study con-
tact structures in this way. In this section we develop these tools. We
begin with the following key lemma which implies that knowing the
characteristic foliation on a surface is the same as knowing the contact
structure in a neighborhood of the surface.

Lemma 2.20. Assume ξ0 and ξ1 are two contact structures that
induce the same (generic) characteristic foliation on a surface Σ in
M (if Σ has nonempty boundary then assume ξ0 and ξ1 agree in some
neighborhood of ∂Σ). Then there exists some neighborhood U of Σ
and an isotopy φt : M −→ M fixed outside U (and also where ξ and
ξ′ already agree) such that φ0 is the identity on M , φt(Σ) = Σ, φt
preserves the characteristic foliation Σξ0 and (φ1)∗(ξ0) = ξ1 on some
neighborhood N ⊂ U of Σ.

Remark: Makar-Liminov [ML] has shown that one can require that
φt is fixed on Σ.
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Proof. We will assume that ξ0 and ξ1 are transversely oriented
(the general case follows as in the proof of Theorem 2.9). Let αi be a
contact form for ξi. For the moment let us assume that α1|Σ = fα0|Σ
for some positive function f defined on Σ. We can extend f over all of
M , then by rescaling α1 we may assume that α0|Σ = α1|Σ. Now take
αt = (1− t)α0 + tαt and note that αt|Σ = α0|Σ. We now claim that the
αt’s are all contact forms on a neighborhood of Σ. To see this, identify
a neighborhood of Σ with Σ× (−ǫ, ǫ) and let z denote the coordinate
in (−ǫ, ǫ). Then

αt = βt,z + ut,z dz,

where βt,z is a 1-form on Σ and ut,z is a function on Σ for each t and
z. Now βt,0 = β0,0 and hence dβt,0 = dβ0,0 since αt|Σ = α0|Σ. One may
readily compute

αt ∧ dαt = βt,z ∧ dβt,z + [βt,z ∧ (dut,z −
∂βt,z
∂t

) + ut,z dβt,z] ∧ dz.

But since βt,z is a 1-from on a surface βt,z ∧ dβt,z = 0 and we get

(αt ∧ dαt)|Σ = [βt,0 ∧ (dut,0 −
∂βt,0
∂t

) + ut,0dβt,0] ∧ dz

= [β0,0 ∧ ((1− t)du0,0 − tdu1,0)−
∂β0,0
∂t

)

+ ((1− t)u0,0 + tu1,0)dβ0,0] ∧ dz

= ((1− t)α0 ∧ dα0 + tα1 ∧ dα1)|Σ.

So (αt ∧ dαt)|Σ is a positive volume from on TM |Σ and thus on TM |U ,
where U is a neighborhood of Σ. Hence αt is a contact form on U for
all t. Now Gray’s Theorem gives us a vector field vt ∈ ξt = kerαt that
satisfies

ιvt dαt|ξt = −
dαt
dt

|ξt .

Let N ⊂ U be a neighborhood of Σ and taper vt to 0 outside of U . Let
φt be the flow generated by vt. Then inside N we have (φ1)∗ξ0 = ξ1.
Now on Σ we have

ιvt dαt|ξt = −
dαt
dt

|ξt = −
∂ut,z
∂t

dz,

which vanishes on Σ (since Σ = {z = 0}). This and the fact that ξt is
two dimensional imply that vt ∈ ξt ∩ TΣ and hence φt preserve Σ and
Σξ0 .

To complete the proof we are left to see that α1|Σ = fα0|Σ for
some positive function f defined on Σ. Since α0 and α1 have the
same kernel it is easy to see that we can define a unique such f on
Σ \ {singular points}. Let U = R2 be a coordinate patch (in Σ) about



31

a singular point. So αi|U : U −→ R2 with an isolated zero at the
origin. We can choose our local coordinates so that α0|U : U −→ R2

is just the identity map id : U −→ R2 (since Σξ0 is generic). Now
α1 = fα0 = f(id). So f extends smoothly across the origin and must
be nonzero since α1 is a local diffeomorphism (again by the fact that
Σξ1 is generic). Thus we may extend f to a positive function on all of
Σ. �

In [Gi], Giroux explores the notion of convex hypersurface in a
contact manifold. In our examination of tight contact structures on
lens spaces in Chapter 5 convex hypersurfaces will play a crucial role.
In a contact manifold (M3, ξ) a vector field is called a contact vector

field if its flow preserves ξ. A surface Σ in M is called convex if there
is a contact vector field transverse to it. We refer the reader to [Gi] to
see that a contact vector field that is defined on part of a manifold may
be extended over the entire manifold. Thus in our definition of convex
surface we might as well assume that the transverse contact vector field
is globally defined. We have the following characterization of convex
surfaces:

Lemma 2.21. Let Σ be a compact surface in the contact manifold
(M3, ξ). Then Σ is a convex surface if and only if there is a tubular
neighborhood N of Σ in M that is contactomorphic to (Σ× (−ǫ, ǫ), β+
u dt) taking Σ to Σ×{0}, where β is a 1-form on Σ and u is a function
on Σ and ǫ > 0.

Proof. First, suppose there is a tubular neighborhood N of Σ in
M and a contactomorphism ψ : (N, ξ|N) −→ (Σ × (−ǫ, ǫ), β + u dt).
Clearly ∂

∂t
is a contact vector field on Σ × (−ǫ, ǫ) that is transverse

to Σ × {0}. Thus (ψ−1)∗
∂
∂t

is a contact vector field defined on N and
transverse to Σ. Hence Σ is a convex surface.

Conversely, assume that Σ is convex and let v be the globally defined
transverse vector field on M . Let ψt :M −→M be the flow generated
by v for t ∈ (−ǫ, ǫ) (note: we may take ǫ small enough that ψt(Σ)∩Σ =
∅ for all t ∈ (−ǫ, ǫ)). Now let α be a contact 1-form on M generating
ξ. Set β = α|Σ and u = (ιvα)|Σ. The map ψ : Σ × (−ǫ, ǫ) −→ M is
a diffeomorphism onto its range, N , which is a tubular neighborhood
of Σ. Moreover, we claim that it is actually a contactomorphism from
(Σ× (−ǫ, ǫ), α′) to (M,α), where α′ = β + u dt. Indeed, clearly

ψ∗α = α′

along Σ× {0}. Now since v is a contact vector field it is easy to check
that ψ∗α = g α′ on all of Σ× (−ǫ, ǫ), for some function g : (−ǫ, ǫ) −→
(0,∞). �
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In Chapter 5 we shall need the following lemma to identify convex
surfaces.

Lemma 2.22. A surface Σ in a contact manifold (M3, ξ) is convex
if the flow of the characteristic foliation Σξ satisfies:

i) All the singularities and closed orbits are hyperbolic (in the
dynamical systems sense),

ii) No trajectory of Σξ travels from a negative singularity to a
positive singularity, and

iii) The orbit of any point under the flow limits to either a singular
point or a closed orbit.

A characteristic foliation that satisfies i)–iii) is sometimes referred
to as an almost Morse-Smale foliation. Below we will give an English
translation of Giroux’s original proof of this lemma that appeared in
[Gi]

Proof. The last two lemmas tell us that it suffices to construct
a vertically invariant structure on Σ × R such that the characteristic
foliation on Σ×{0} is diffeomorphic to Σξ. Denote the foliation Σξ by
F . The strategy of the proof will be to find an area form ω on Σ, a
function u : Σ −→ R and a vector field v that points along F such that

(2.19) u divω v − v · u > 0.

Given these let β = ιvω and define the 1-form α′ = β + u dt on Σ×R.
Note

α′ ∧ dα′ = (β ∧ du+ u dβ) ∧ dt

= (ιvω ∧ du+ u d(ιvω)) ∧ dt

= (−v · u+ u divω v) ω ∧ dt 6= 0.

Thus α′ is a contact 1-form on Σ×R which is clearly vertically invariant.
Moreover, the characteristic foliation on Σ×{0} is given by the kernel
of β which is spanned by v when v 6= 0 and is everything when v = 0.
Hence, F is the characteristic foliation on Σ× {0}.

Now for the construction of v. Choose small disjoint disks around
the elliptic points in F and small disjoint annuli around each periodic
orbit (also disjoint from the disks). Next, choose small bands about
the stable separatrices of the positive hyperbolic points and about the
unstable separatrices of the negative hyperbolic points (these will in
general intersect the disks and annuli). Let Σ0 be the union of these
disks, bands and annuli. See Figure 2.6. We may now find a vector
field v in a neighborhood of each singularity that has positive diver-
gence at the singularity (recall that the divergence of a vector field at
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Figure 2.6. Gray part is Σ0

a singular point does not depend on the volume form) and is tangent
to F . Property ii) insures that we can extend v to a vector field on
a neighborhood U of Σ0 that is tangent to F and points transversely
out of Σ0. One may easily construct a volume from ω on Σ such that
divω v > 0. Now if we take (for the moment) u = 1 on U then on U
we have v, ω and u satisfying Equation (2.19). We would now like to

extend v and u over the rest of Σ. To this end, set Σ1 = (Σ \ Σ0).
Notice that Σ1 is a surface with boundary that supports a nonsingular
foliation. In addition, property iii) says that we can take the foliation
on Σ1 to be transverse to the boundary. Thus the components of Σ1

must be annuli foliated by arcs intersecting the boundary transversely.
Let v′ be a nonzero vector field on Σ1 tangent to F and agreeing with
±v on U ′ = U ∩ Σ1. Finally set v′′ equal to v′ on Σ1 and equal to ±v
on σ0 whichever agrees with v

′ on U ′. We now redefine u to be 1 where
v = v′′ and −1 where v = −v′′ and notice that u, v′′ and ω satisfy
Equation (2.19) on Σ0.

To complete the proof we need to extend u over Σ1. We do this
using the following observation: given a function f : [0, 1] −→ R that
is positive at 0 and negative at 1 there exists a function g : [0, 1] −→ R

such that g equals 1 near 0 and −1 near 1 and satisfies

(2.20) gf −
dg

dt
> 0.

To see that this is true set g(t) = h(t) exp(
∫ t

0
f(x) dx) for some function

h with h′ < 0. We see that this g will satisfy Equation (2.20) and a
little though shows how to pick h so that g satisfies all the above
requirements. This observation tells us how to extend u over one leaf
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of F ∩ Σ1 (where f = (divω v)|leaf and g will be the extension of u).
Notice that smoothly varying f will smoothly vary g, thus we can
extend u over all of Σ1. �

We now proceed to study characteristic foliations on a surfaces in
a contact 3-manifolds. One of the main tool for manipulating char-
acteristic foliations is the elimination lemma (proved in various forms
by Giroux, Eliashberg and Fuchs, see [E5]) which allows one to cancel
singularities under the right conditions.

Lemma 2.23 (Elimination Lemma). Let Σ be a surface in a contact
3-manifold (M, ξ). Assume that p is an elliptic and q is a hyperbolic
singular point in Σξ, they both have the same sign and there is a leaf
γ in the characteristic foliation Σξ that connects p to q. Then there is
a C0-small isotopy φ : Σ × [0, 1] −→ M such that φ0 is the inclusion
map, φt is fixed on γ and outside any (arbitrarily small) pre-assigned
neighborhood U of γ and Σ′ = φ1(Σ) has no singularities inside U .

An excellent proof of this may be found in [E5] (see also [A]). The
idea is to construct a model of the part of the leaf of Σξ connecting
p and q using Lemmas 2.22 and 2.21. Then, in this model, explicitly
write down the desired isotopy. Notice that the elliptic–hyperbolic
pair that are canceled in this lemma are contained in a smooth curve
in the characteristic foliation and that after the cancellation this curve
remains part of the characteristic foliation. The proof also indicates
that one can clearly add an elliptic-hyperbolic pair of singularities to
a characteristic foliation along any leaf.

It is interesting to note that one has great freedom to alter the
characteristic foliation near an elliptic point. We measure this freedom
by means of a monodromy map, which we define for the characteristic
foliation on C0-small perturbations of the disk D = {(r, θ, 0) : r ≤ π}
in (R3, α = dz+r2 dθ). Although this is a very restricted case it will be
sufficient for our purposes. To the elliptic point e in Dξ we associate a
map m : S1 −→ S1 as follows: given a direction ϑ ∈ S1 at e the map
m sends ϑ to the θ coordinate of the point where the trajectory of Dξ

leaving e in the direction ϑ exists the disk. Looking at Figure 2.3 (a) it
is easy to see that m : S1 −→ S1 is the identity map for Dξ; however,
up to C0-perturbations, we have a great deal of freedom to alter m.

Lemma 2.24. A C0-small perturbation of D near the elliptic point
e realizes any orientation preserving diffeomorphism of S1 as the mon-
odromy map of e.
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Proof. Consider the map

F : R2 −→ R3 : (x, y) 7→ (
1

y
, γ(x, y), f(x, y)).

If f ≡ 0, then the closure of the image of R = {(x, y) : 0 ≤ x ≤ 2π, y ≥
π−1} is the disk D in the rθ-plane of R3. The lines {x = c} are mapped
by F to curves γ(c, y) in D that foliate all of D with a single singular
point at the origin. If this was the characteristic foliation of D then by
the proper choice of γ we would be done. To achieve this let

f(x, y) = −

∫
1

(y +m)2
γy(x, y) dy,

where m is a constant to be determined later. Note without loss of
generality we can assume that γ(x, y) = x for y outside some compact
interval. Then consider

F ∗α = (fx +
1

(y +m)2
γx) dx+ (fy +

1

(y +m)2
γy) dy.

One may easily compute that fy+
1

(y+m)2
γy = 0. Moreover, by choosing

m large enough one can show that fx +
1

(y+m)2
γx > 0. Thus the lines

{x = c} will be tangent to kerF ∗α. Hence γ(c, y) will be leaves in the
characteristic foliation of D′, the closure of the image of F. Finally for
m sufficiently large |f(x, y)| < ǫ for any prechosen ǫ. Hence D′ is a
C0-small perturbation of D. �

An easy corollary of this lemma is the following useful result:

Corollary 2.25. By a C0-small perturbation of a surface near an
elliptic point e we can assume that any two rays that abut e lie on a
smooth curve through e.

Later we will also need the following manipulation of the charac-
teristic foliation.

Lemma 2.26. Let p be a hyperbolic point in the characteristic folia-
tion of a surface Σ and γ and γ′ the union of separatrices of p indicated
in Figure 2.7. Then there is a C0-small perturbation of Σ fixed off of
an arbitrarily small neighborhood of γ and on γ and γ′ that achieves
the modification of Σξ indicated in Figure 2.7

The proof of Lemma 2.26 involves constructing a model for the
contact structure near p and then explicitly writing down the isotopy.
The details of this argument may be found in [F].

Now if Σ is a surface in a contact manifold (M, ξ) then we can
define e± and h± to be the number of ± elliptic and hyperbolic points,
respectively, in Σξ. Furthermore, set d± = e± − h±.
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Figure 2.7. Alteration of Σξ near a hyperbolic point.

Proposition 2.27. If Σ ⊂ (M, ξ) is a closed surface, then

d± =
1

2
(χ(Σ)± e(ξ)[Σ]),

where e(ξ) ∈ H2(M,Z) is the Euler class of ξ. If Σ has boundary γ a
transversal knot, then

d± =
1

2
(χ(Σ)∓ l(γ)),

where l(γ) is computed with respect to Σ.

A sketch of this proposition may be found in the proof of Theorem 5.4.
We now restrict our attention to tight contact manifolds for the rest

of this section. On tight manifolds one can simplify the characteristic
foliation on a surface quite a bit. The techniques we will discuss here
were first developed by Eliashberg (see [E4] and [E5]).
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Theorem 2.28. Let Σ be a closed surface in a tight contact 3-
manifold. If Σ is a closed surface, then

|e(ξ)[Σ]| ≤

{

0 if Σ = S2,

−χ(Σ) if Σ 6= S2.

If Σ has boundary γ a transversal knot to ξ, then

l(γ) ≤ −χ(Σ).

If Σ has boundary γ a Legendrian knot, then

tb(γ) ≤ −χ(Σ)− |r(γ)|.

The third part of this theorem follows from the second part since for
any Legendrian knot γ, Lemma 2.17 tells us that l(T±(γ)) = tb(γ) ∓
r(γ). The first two parts of this theorem will follow from Proposi-
tion 2.27 when we show that d− ≤ 0. We can show this by canceling all
the negative elliptic points. To this end we develop some of Eliashberg’s
theory of Legendrian polygons and basins. A Legendrian polygon

in Σ is a pair (D, f) where D is an oriented surface with piecewise
smooth boundary and f : D −→ Σ is an orientation preserving immer-
sion such that f is injective on the interior of D, corners (vertices) of
∂D are mapped to singularities of Σξ, smooth edges of ∂D are mapped
to smooth leaves in Σξ and f does not identify adjacent edges of ∂D.
A Legendrian polygon is called simply connected if D is simply con-
nected. By convention any elliptic point on ∂D will be thought of as
a vertex. The only singularities of Σξ the edges of ∂D can contain are
hyperbolic, these will be called pseudoverticies.

Given an elliptic singularity e in Σξ. We may look at the basin Be

of e, defined to be the union of all leaves of Σξ that limit on e. It is quite
clear that if Be contains no limit cycles of Σξ then it has the structure
of a simply connected Legendrian polygon (if Σ has boundary then we
must also assume that Be is disjoint from the boundary). Moreover,
the elliptic vertices of ∂Be must all have sign opposite that of e (since
a +(−) elliptic point is a source (sink) of the flow).

Theorem 2.29. Let Σ be a surface in a tight contact manifold
(M, ξ) (with at most one boundary component) with boundary trans-
verse to ξ. After a C0 small isotopy of Σ rel ∂Σ we may assume that
Σξ has no positive hyperbolic or negative elliptic singularities.

We will use this theorem later to keep track of characteristic foliations
on surfaces but as mentioned above an immediate corollary is Theo-
rem 2.28.
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Proof. We begin by trying to eliminate the negative elliptic points.
Let e ∈ Σ be such a point. Then Be is a simply connected Legendrian
polygon since we can ensure that Be contains no limit cycles by adding
a positive hyperbolic/elliptic pair of singular points along any repelling
limit cycle (if Σ has boundary we orient Σ so that all the trajectories
of Σξ exit through the boundary, thus Be will be disjoint from the
boundary of Σ). Note using Lemma 2.26 we can ensure that no edges
of the Legendrian polygon are identified. We may also assume that no
vertices in the boundary of Be are identified since if there was a pair
(necessarily elliptic) we could introduce a positive elliptic/hyperbolic
pair of points in Be near them, the result of this will be to change Be

by separating the offending pair of points. All the elliptic vertices of
∂Be are positive, thus there must be some hyperbolic points along the
boundary. At least one of these hyperbolic points must be negative
because if not then we would be able to use the the elimination lemma
to cancel all the elliptic and hyperbolic singular points along ∂Be. Us-
ing Corollary 2.25 this would leave us with an embedded disk Be that
contained a limit cycle contradicting the tightness of ξ. We may now
cancel e with one of the negative hyperbolic points along ∂Be. (If we
had to use Lemma 2.26 then we might have added some negative el-
liptic points, but we can cancel all of them now.) Proceeding in this
manner we may remove all the negative elliptic points.

Now given a positive hyperbolic point h consider a stable separatrix
of h. This separatrix must have originated at a positive elliptic point
since it could not have originated along the boundary of Σ (all the
trajectories of Σ flow out of Σ) or at another hyperbolic point (by the
genericity of Σξ). Thus we may cancel h with this elliptic point along
the separatrix. �

We would like to end this section by noticing that given a sur-
face “with corners” one may sometimes smooth the corners without
changing the characteristic foliation. This was first observed by Makar-
Liminov in [ML]. We begin by saying that Σ in a contact manifold
(M, ξ) is a surface with corners if Σ = ∪ni=0Σi where each of the
Σi’s is a smooth surface embedded in M satisfying the following: if
Σi ∩ Σj 6= ∅ (i 6= j) then Σi ∩ Σj (called corners of Σ) is the union
of components of the boundary of Σi (and Σj) and the intersection
is transverse in M (i.e. TpΣi ∪ TpΣj spans TpM for all p ∈ Σi ∩ Σj),
only two of the Σi’s meat at a corner and Σi ∩ Σj is transverse to ξ.
Notice that there is a well defined characteristic foliation on a surface
with corners. Given a surface with corners we can clearly smooth out
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the corners. The following lemma tells us that we can smooth out the
corners without changing the characteristic foliation.

Lemma 2.30. Let Σ be a surface with corners in the contact man-
ifold (M, ξ). Then there is a smooth embedded surface Σ′ in M that
agrees with Σ away from the corners and is C0-close to Σ near the
corners. Moreover, the characteristic foliation on Σ is homeomorphic
to the characteristic foliation on Σ′.

Idea of Proof. In a neighborhood N of a corner there are no
singularities of the characteristic foliation of Σ. This neighborhood
looks like a neighborhood N ′ of the z-axis in (R3, dz + x dy) (mod
z 7→ z + 1) with N ∩ Σ corresponding to the union of {(x, y, z) ∈ R3 :
y = 0, x ≥ 0} and {(x, y, z) ∈ R3 : x = 0, y ≥ 0}. We cannot use
Lemma 2.20 to make this statement precise since Σ is not a smooth
surface near the corner. We can however strengthen Lemma 2.20 (see
for example the proof of Theorem 5.3) to get a contactomorphism from
N to N ′. We are left to see that we can smooth out the intersection
of {(x, y, z) ∈ R3 : y = 0, x ≥ 0} and {(x, y, z) ∈ R3 : x = 0, y ≥ 0} in
R3. One can explicitly do this. The details are left to the reader (or
see [ML]). �

4. A Little 4-Dimensional Topology

To describe 4-manifolds we will make extensive use of Kirby calcu-
lus. This is a way to describe and manipulate a handlebody decomposi-
tion of a 4-manifold using links in the 3-sphere. We will briefly describe
these pictures; for a complete explanation the reader is referred to [K1]
or [GS]. Given a Kirby picture (for example see Figure 2.8 or 2.9) one
starts with a 4-ball and thinks of the picture as sitting in the boundary
3-sphere. A pair of 2-spheres in the picture (as in Figure 2.9) repre-
sents the attaching sphere of a 1-handle (a circle with a dot on it, as
in Figure 2.10, also represents a 1-handle but for this see the above
reference). A knot with a number by it in the picture represents the
attaching sphere of a 2-handle (the number is the framing of the at-
taching sphere). If the manifold we are considering is closed then there
is a unique way to add 3- and 4-handles, hence these do not appear in
the Kirby pictures.

In trying to understand 4-manifolds it is important to first under-
stand the basic building blocks. By this we mean those manifolds that
cannot be decomposed into smaller manifolds under connected sum. A
4-manifold X is called irreducible if whenever X = X0#X1 then ei-
ther X0 or X1 is homotopic to a 4-sphere. This definition of irreducible
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allows us to avoid the smooth 4-dimensional Poincaré conjecture. One
of the many startling results obtained from the newly defined Seiberg-
Witten invariants is the following result of Kotsckick’s.

Theorem. A closed, minimal simply connected symplectic 4-manifold
is irreducible.

One may find a proof of this beautiful result in [Ko]. The proof
relies on the relation Taubes found between Seiberg-Witten invariants
and pseudo-holomorphic curves in a symplectic manifold (see [T]). As
mentioned in the introduction the main motivation for our work is to
better understand to what extent the converse of this theorem holds. In
the next two subsections we will consider two cut-and-paste operations
that have been used to construct irreducible 4-manifolds.

4.1. Logarithmic Transformations in a Cusp Neighborhood.

Consider a smooth 4-manifold X which contains an embedded 2-torus
T 2 with trivial normal bundle: i.e., a neighborhood of T 2 in X is dif-
feomorphic to T 2 ×D2 . We form the (generalized) logarithmic

transform (or log transform) of X along T 2 by gluing T 2 ×D2 to

X \ (T 2 ×D2) by some diffeomorphism

ψ : ∂(T 2 ×D2) −→ ∂(T 2 ×D2).

We denote the result of performing a log transform on X by Xψ. This
construction arose from and received its name from algebraic geometry.

Lemma 2.31. The diffeomorphism type of Xψ is determined by

ψ({pt} × ∂D2).

Thus a log transform is uniquely specified by a primitive element in
H1(T

3;Z).

Proof. Gluing T 2 ×D2 to X \ (T 2 ×D2) is the same as adding

a 2-handle, two 3-handles and a 4-handle to X \ (T 2 ×D2). Once the
2-handle is added there is only one way to add the remaining handles
(this is a result from [LP]). The 2-handle is added along ψ({pt}×∂D2)
with the framing determined by the product structure on T 2 ×D2 and
ψ. Now let ψ′ : ∂(T 2 ×D2) −→ ∂(T 2 ×D2) be another diffeomorphism
such that ψ′({pt}× ∂D2) = ψ({pt}× ∂D2). To complete the proof we
need to show that ψ and ψ′ induce the same framing on the 2-handle.
Let φ = ψ′ ◦ψ−1 : T 2×S1 −→ T 2×S1 and notice that φ({pt}×S1) =
{pt} × S1. If φ preserves the product framing on T 2 ×D2 then ψ and
ψ′ induce the same framing on ψ({pt}×∂D2). To see that φ preserves
the product framing, consider the Z ⊕ Z cover, R2 × S1, of T 2 × S1.
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One may lift φ to a Z ⊕ Z equivariant map φ̃ : R2 × S1 −→ R2 × S1.
Any two lifts of {pt} × S1 determine the product framing of R2 × S1.

Thus φ̃, and hence φ, preserves the product framing. �

The multiplicity, m, of a log transform is defined to be the degree
of the map

π ◦ ψ|∂D2 : ∂D2 −→ ∂D2,

where π is the projection of ∂(T 2 ×D2) to S1 = ∂D2. We may always
assume that m is nonnegative since there is a diffeomorphism of T 3 =
∂(T 2 ×D2) that takes ∂D2 to itself and reverses the orientation on it.
From Lemma 2.31 we know that a log transform is determined by a
primitive element αψ of

H1(T
2 × ∂D2;Z) ∼= H1(T

2;Z)⊕H1(∂D
2;Z).

projecting αψ ontoH1(∂D
2;Z) yieldsm times a generator ofH1(∂D

2;Z).
Now αψ projected onto H1(T

2;Z) is lα for some integer l and some α a
primitive element in H1(T

2;Z). The element α is called the direction
of the log transform. So, in general, a log transform is determined
by m,α and l where m and l must be relatively prime (since αψ is a
primitive element in H1(T

3;Z)). We will write X(m,α, l) instead of
Xψ.

A cusp neighborhood N in a smooth 4-manifold X is the regular
neighborhood of a PL embedded 2-sphere with a single nonlocally flat
point which is a cone on a right handed trefoil knot and with self
intersection number 0. This 2-sphere is called the cusp. Any such N is
diffeomorphic to the 4-manifold in Figure 2.8. Note that the 4-manifold

0

Figure 2.8. Cusp Neighborhood

shown in Figure 2.9 is diffeomorphic to a cusp neighborhood N . To
see the diffeomorphism simply cancel the two 1-handles with the two
−1 framed 2-handles in Figure 2.9; the result will be Figure 2.8. From
Figure 2.9 it is not hard to see that ∂N is a T 2 bundle over S1 with the
monodromy map represented in the standard basis for T 2 by

(
1 1
−1 0

)
.
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0

-1

-1

Figure 2.9. Another Picture of a Cusp Neighborhood

In fact, N is fibered by tori that degenerate to a singular fiber at the
center. This singular fiber in the center is precisely the cusp 2-sphere
that defines N as a cusp neighborhood. For more details on this and
other facts about elliptic fibrations used below the reader is referred to
[HKK]. So given a cusp neighborhood we have lots of tori on which to
perform log transforms. The following theorem (first proved by Gompf
in [G1]) shows why we are interested in cusp neighborhoods.

Theorem 2.32. Let N be a cusp neighborhood. The result of per-
forming a log transform on a fiber of N is determined up to diffeomor-
phism relative to the boundary by the multiplicity m.

Sketch of Proof. Consider two log transforms on N . First, we
may assume that they are performed on the same fiber since there is
a diffeomorphism of N fixed on ∂N taking any torus fiber to another.
Next, one shows that that the gluing map may be put in a standard
from that depends only on the multiplicity m. More specifically, if

ψ : ∂(T 2 ×D2) −→ ∂(N \ T 2 ×D2) is the map used to perform one
of the log transforms then ψ may be represented by a matrix M in
SL (3,Z), with respect to the basis λ1, λ2, µ for H1(T

3,Z), where λ1, λ2
is a basis for the first homology of T 2 and µ is a meridian to T 2 in

T 2 × D2. Using diffeomorphisms of ∂(N \ T 2 ×D2) that extend over

(N \ T 2 ×D2) (coming from the cusp fiber) and diffeomorphisms of
∂(T 2 ×D2) that extend over T 2 ×D2 one can show that

M =





1 0 0
0 0 1
0 −1 m



 .

Thus ψ only depends on m. For more details see [G1]. �
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In [FS1] Fintushel and Stern made an extensive study of when one
may find a cusp neighborhood in a complex surface and distinguished
many non diffeomorphic h-cobordant manifolds by relating (under suit-
able hypothesis) the Donaldson invariants of a manifold X and its log
transform X(p). A Kirby picture of a p-log transformed cusp neigh-
borhood, N(p), is shown in Figure 2.10.

p

-1
0

p-1

Figure 2.10. A p-log Transformed Cusp Neighborhood

4.2. Rational Blowdowns. Let X be a 4-manifold and suppose
we can find spheres Σi, for i = 0, . . . , (p − 2), embedded in X inter-
secting according to Figure 2.11, i.e. such that Σ0 · Σ0 = −(p + 1),
Σi · Σi = −2, Σi−1 · Σi = 1, for i = 1 . . . (p − 2), and all other in-
tersections are 0. The Σi’s have a neighborhood diffeomorphic to the

-(p+2) -2 -2 -2 -2

p-2

Figure 2.11. Graph of C(p)

4-manifold, C(p), obtained by plumbing (p− 1) disk bundles over the
2-sphere together according to Figure 2.11 (a vertex represents a disk
bundle with Euler number given by the label and an edge indicates the
two vertices are plumbed together). An easy exercise in Kirby calcu-
lus shows that ∂C(p) is the lens space L(p2, p − 1). This lens space
also happens to bound the 4-manifold B(p) given in Figure 2.12. The
rational blowdown of X along the Σi’s, denoted Xp, is the result

of gluing B(p) to X − C(p). This is well-defined since any diffeomor-
phism of L(p2, p− 1) extends over B(p). To see this, recall in [Bo]
Bonahon showed that π0(Diff (L(p2, p− 1))) = Z2. L(p

2, p− 1) can be
realized as the 2-fold cover of S3 branched over a 2-bridge knot K.
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p

p-1

Figure 2.12. Rational Homology Ball

The generator g of π0(Diff (L(p2, p− 1))) is just the deck transform of
this cover. Since K is slice we may consider the 2-fold cover of B4

branched over the slicing disk. This manifold is none other than B(p)
(one may use the methods in [AK] to see this). Thus g extends over
B(p) as claimed. One of our main interests in rational blowdowns is
the following proposition.

Proposition 2.33. Let X be a 4-manifold containing a cusp neigh-
borhood N . The result of performing a p-log transform on a torus fiber

of N , X(p), may be obtained from X#(p−1)CP
2
by a rational blowdown.

Before we begin the proof of this proposition we need to know that
C(p) is diffeomorphic to Figure 2.13. The verification of this is left as
a good exercise in Kirby calculus for the reader.

p

0
-1

-1

-1

Figure 2.13. Another Picture of C(p) (p − 1 handles
with −1 framing)

Proof. In Figure 2.10, a p-log transformed cusp neighborhood, we
see a copy of the B(p). Figure 2.14 is obtained from Figure 2.10 by
a rational blowup (we remove B(p) and glue in C(p)). Pushing the
0 framed 2-handle that is linking the 1-handle p times over each of
the −1 framed 2-handles and isotoping yields Figure 2.15. To get from
Figure 2.15 to Figure 2.16 simply push the −p+1 framed 2-handle over
the right most −1 framed 2-handle. To get to Figure 2.17 push the right
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p

-1
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-1 -1 -1

p-1

Figure 2.14

-1

0

p-1

-p+1
-1 -1 -1

Figure 2.15

most −1 framed 2-handle over the −1 framed 2-handle next to it, then
continue pushing the right most −1 framed 2-handle over its neighbor
until there is only one −1 framed 2-handle left. Sliding the 0 framed
handle over the −1 framed handle and canceling the 1-handle with the
−1 framed 2-handle yields Figure 2.18. Now successively blowing down
the −1 framed handle (we can do this p− 1 times) yields the standard
picture of a cusp neighborhood (Figure 2.8). �

Another reason rational blowdowns are so interesting is that in
[FS2] Fintushel and Stern used them to compute the Donaldson in-
variants of many manifolds and under suitable conditions related the
Seiberg-Witten invariants of X and Xp.

4.3. Examples of Irreducible 4-Manifolds. In this section we
will briefly discuss simply connected irreducible 4-manifolds. We be-
gin with algebraic surfaces, which of course admit symplectic struc-
tures (since they are complex submanifolds of CP n, for some n); and
then construct may irreducible manifolds from these by normal sums,
log transforms and rational blowdowns. Some of these manifolds are
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Figure 2.17

-1

-1
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Figure 2.18

known to admit symplectic structures due to the work of Gompf on nor-
mal sums. Whether or not the remaining manifolds admit symplectic
structures is the subject of Chapter 6.

Simply connected algebraic surfaces break into three classes: ratio-
nal surfaces, elliptic surfaces and surfaces of general type. Throughout
this section we will consider algebraic surfaces up to diffeomorphism,
hence the subtleties involving complex structures shall be ignored. Sur-
faces of general type are just the algebraic surfaces that do not fall into
one of the other groups. Thus we will not say anything specific about
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these surfaces, though we will see several examples of them below. Ra-
tional surfaces are simply those that are birationally equivalent to CP 2.
In other words, an algebraic surface X is rational if one can get from
CP 2 to X by a sequence of blowups and blowdowns. A complete list
of rational surfaces is CP 2, S2 × S2 and blowups of these surfaces.

An Elliptic surface is a compact complex surface X and a holo-
morphic map p :X −→ Σ onto a complex curve that has only finitely
many critical values, and away from the critical values p−1(x) is an
elliptic curve. Since we are interested in simply connected manifolds
we must have Σ = CP 1. The simplest example of an elliptic surface

is E(1) = CP 2#9CP
2
. The elliptic fibration can be seen by taking a

generic pencil of cubic curves in CP 2 and blowing up at the nine points
in the base locus. Since a generic cubic curve is a torus this exhibits
E(1) as an elliptic surface (for more on this see [G1]). The facts perti-
nent to our discussion are that each of the exceptional spheres in E(1)
provide a section of the fibration with normal Euler number -1 and we
can assume that E(1) has exactly six singular fibers each of which is a
cusp (recall that we are ignoring the complex structure on E(1)). We
may now construct E(2), also known as the K3 surface, by forming the
normal connected sum of two copies of E(1) along two regular fibers
(the gluing map should be (idT 2×c) :T 2×∂D2 −→ T 2×∂D2 where the
map c :∂D2 −→ ∂D2 is complex conjugation). We may inductively de-
fine E(n) to be the normal connected sum of E(n− 1) with E(1). The
manifold E(n) contains nine sections with normal Euler number −n
and 6n cusp fibers. We may construct more elliptic surfaces E(n; p, q)
by performing log transforms of multiplicity p and q, where (p, q) = 1,
on E(n). A complete list of (simply connected) elliptic surfaces is given
by E(n; p, q), where n is a natural number and p and q are relatively
prime natural numbers.

We can now construct our first examples of noncomplex irreducible
4-manifolds. These examples were first described in [GM]. Let E ′(2)
be the the normal connected sum of two copies of E(1) along two
regular fibers, but instead of using the map described above in the
construction of E(2) we use the following map: let T 2 be a regular
fiber in E(1) near a cusp fiber, so we can fine a product structure
on T 2 = S1 × S1 so that S1 × {1} and {1} × S1 bound embedded
disks with (relative) normal Euler number −1 (i.e. vanishing cycles).
Thus the boundary of a regular neighborhood of T 2 can be written
as T 3 = S1 × S1 × S1 where S1 × {1} × {1} and {1} × S1 × {1}
are vanishing cycles and {1} × {1} × S1 bounds a section. The map
with which we form E ′(2) is now just a cyclic permutation of the S1
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factors. It was shown in [GM] that E ′(2) is diffeomorphic to E(2). In
order to get new manifolds we need to perform log transforms. Let us
begin by examining E ′(2) more closely, see Figure 2.19. The manifold

D

D

D

D'

D'

D'D'

D1

1

2

2

3
3

4

4

X

X'

Cusp
Cusp

Figure 2.19. The manifold E ′(2)

E ′(2) = X ∪ X ′ where X and X ′ are two copies of E(1) minus a
neighborhood of a regular fiber T 2. By assuming that there are two
cusp fibers near T 2 we can find two disjoint disks D1 and D2 in X that
bound S1×{1}×{1} and another disk D3 that bounds {1}×S1×{1}.
We also have a disk D4 in X coming from a section of E(1) that bounds
{1}× {1} × S1. Similarly X ′, after the cyclic permutation of the S1 in
the boundary, has disks D′

1 and D′
2 bounding {1} × {1} × S1, a disk

D′
3 bounding {1} × S1 × {1} and a disk D′

4 bounding S1 × {1} × {1}.
So inside E ′(2), we see that D4 ∪ D′

1 is a sphere that is dual to a
cusp fiber in X. Let a neighborhood of this configuration be denoted
N1. We also have the sphere D′

4 ∪ D1 that is dual to a cusp fiber
in X ′, denote a neighborhood of this N2. Finally, the disks D2 and
D′

2 provide vanishing cycles for the torus S1 × {1} × S1 ⊂ ∂X thus
providing another cusp with dual sphere given by D3 ∪ D′

3, denote
a neighborhood of this cusp and sphere by N3. Then manifolds Ni

are called nuclei and were first studied in [G1], where in it was show
that given a simply connected manifold containing a nucleus Ni one
can perform two log transforms on tori near the cusps of relatively
prime multiplicities and the result will still be simply connected. Thus
we can form the manifold E ′(2; p1, q1; p2, q2; p3, q3) by performing log
transforms of relatively prime multiplicities pi and qi in Ni. Now let
K = E ′(2; p1, q1; p2, q2; p3, q3), with all the pairs of p’s and q’s relatively
prime and r is the number of even multiplicities of K, then

(1) K is a homotopy E(2) if all the multiplicities are odd, other-

wise it is homotopic to 3CP 2#19CP
2
.
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(2) the product p1q1p2q2p3q3 is a diffeomorphism invariant.
(3) if r ≤ 1, the unordered triple (p1q1, p2q2, p3q3) is a diffeomor-

phism invariant.
(4) if r = 2, then the product piqi which is odd is a diffeomorphism

invariant.
(5) if no pi or qi vanishes and pi or qi 6= 1 for at least two values

of i, then K is not a complex surface (or connected sum of
complex surfaces).

These fact all appear in [GM]. Using the normal connected sum
it is easy to see that K has a symplectic structure if pi = qi = 1 for
some i (actually, this is easy to see if p3 = q3 = 1 but the general
case follows form symmetries of the pi’s and qi’s). We will consider
symplectic structures on the remaining K’s in Chapter 6.

We can use elliptic surfaces to construct other noncomplex surfaces
too. Most of the following constructions are due to Fintushel and
Stern and first appeared in [FS1] or [FS2]. Recall the surface E(4)
contains nine disjoint sections of self intersection −4. Let Ei(4) be
the result of rationally blowing down i of these. It is clear that all the
Ei(4)’s have symplectic structures since they can be realized by normal
connected sums. Moreover, one can show that Ei(4) is a complex
surface for i = 2, 3, 4 or 9. However, E1(4) is not a complex surface and
for i = 5, 6, 7 or 8 it is unknown if Ei(4) is complex or not. We can
now play the same game with E(5). We start with the nine disjoint
sections of self intersection −5 and would like to find dual 2-spheres
with self intersection −2, thus identifying copies of C(3) inside of E(5).
We can in fact find four such 2-spheres resulting in four disjoint C(3) in
E(5). One may do this by realizing E(5) as the 2-fold cover of S2 ×S2

branched over B which is the union of 4 copies of {pt} × S2 and 10
copies of S2 × {pt} with double points resolved. This realized E(5) as
a genus 4 Lefschetz fibration with four singular fibers. A neighborhood
of each of the singular fibers contains a copy of C(3). Now let Ei(5) be
the result of blowing down i copies of C(3). At this point it is unclear
if all the Ei(5)’s have symplectic structures.

Next we claim that E(n) contains two disjoint copies of C(n − 2).
To see this notice that E(n) can be constructed by forming the normal

connected sum of two copies of CP 2#(4n + 1)CP
2
along a surface of

genus n − 1, this construction was first noticed by Stern (see [Fu]).
Thus we realize E(n) as a genus n − 1 Lefschetz fibration with four
singular fibers, two of which are shown in Figure 2.20. In these two
singular fibers we clearly see copies of C(n− 2). Now let G(n) be the
result of rationally blowing down one the C(n − 2)’s and let H(n) be
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Figure 2.20. A singular fiber in E(n).

the result of rationally blowing both C(n−2)’s. It is known that G(n)
is not homotopy equivalent to any complex surface and it is unclear
if it supports a symplectic structure. We will consider this question
in Chapter 6. The manifolds H(n) are Horikawa surfaces, these are
surfaces of general type (and thus admit symplectic structures).



CHAPTER 3

Convexity and Stein Structures in Dimension 4

Our main tool for cutting and pasting symplectic 4-manifolds will
be convexity. There are several notions of convexity in symplectic ge-
ometry; an overview of some of these my be found in [EG]. We will
only discuss a fairly strong notion of convexity here, called ω-convexity.
After establishing the usefulness of ω-convexity below, the remaining
sections of this chapter are devoted to showing the pieces that we want
to cut-and-paste when doing a rational blowdown do in fact have ω-
convex boundaries.

Let U be a domain in a symplectic manifold (X,ω) bounded by
a hypersurface C. The hypersurface C is said to be convex with

respect to ω or just ω-convex if there exists a vector field v defined
in a neighborhood of C that is transverse to C, points out of U and is
expanding (i.e. Lv ω = ω where Lvω stands for the Lie derivative of
ω). We will sometimes abuse terminology and say that U has ω-convex
boundary.

Given an ω-convex hypersurface C consider the 1-form α = i∗(ιvω),
where v is the expanding vector field and i : C −→ X is the inclusion
map.

dα = di∗(ιvω) = i∗(dιvω) = i∗(dιvω + ιvdω)

= i∗(Lvω) = i∗(ω)

So dα will be a symplectic form on any symplectic subbundle of TC ∩
TX . One can easily check that kerα is a such a symplectic subbundle
(it is the symplectic complement of {v, contact vector field of α}) and
thus α is a contact 1-form on C.

Our interest in convexity is explained in the following theorem.

Theorem 3.1. Let Ui be a domain in the symplectic manifold (Xi, ωi)
with ωi-convex boundary Ci, for i = 0, 1. If C0 is contactomorphic to
C1, then there exists a symplectic structure on (X0 \ U0) ∪C0

U1.

Proof. Let αi = ιviωi be the contact structure induced on C = Ci
as the convex boundary of Ui (vi is the expanding vector field). Form
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Symp(C, ξ) where ξ = kerα0. The form α0 allows us to write

Symp(C, ξ) = (0,∞)× C

where α0(C) = {1} × C. By the proof of Proposition 2.13 we have a
neighborhoodN0 of C inX0 symplectomorphic to a neighborhoodN ′

0 of
α0(C) in Symp(C, ξ). Let φ : C −→ C be the postulated contactomor-
phism between (C, α0) and (C, α1). By rescaling ω1, if necessary, we
have fα0 = φ∗α1 where f : C −→ R is a positive function and f(p) < 1
for all p ∈ C. So we can think of α1(C) in Symp(C, ξ) as the graph
of f . Thus α1(C) is disjoint from α0(C) (in fact we may take α1(C)
to be disjoint from N ′

0 as well). Again the proof of Proposition 2.13
allows us to extend φ, thought of as a map from α1(C) ⊂ Symp(C, ξ)
to C ⊂ X1, to a symplectomorphism from a neighborhood N ′

1 of α1(C)
in Symp(C, ξ) to a neighborhood N1 of C in X1. Let X

0
i = Xi\(Ui\Ni)

and T be the subset of Symp(C, ξ) bounded by the N ′
i , for i = 0, 1.

We may now use the symplectomorphisms constructed above to glue
Ni ⊂ X0

i to N ′
i ⊂ T , for i = 0, 1, forming the manifold

Y = X0
0 ∪N0

T ∪N1
(U1 ∪N1).

The manifold Y clearly has a symplectic form on it and is diffeomorphic
to (X0 \ U0) ∪C0

U1 (since T just looks like a collar on X0 \ U0 and U1

is identified to the other end of T by ψ). �

This theorem clearly shows the usefulness in finding convex hyper-
surfaces in a manifold when trying to cut-and-paste symplectic struc-
tures. The remainder of this chapter will consist of trying to find convex
hypersurfaces that will help us perform rational blowdowns symplecti-
cally.

1. Convex Structures on C(p)

In this section we would like to see under what conditions a set
of p − 1 spheres intersecting according to Figure 2.11 in a symplectic
4-manifold will have a neighborhood with convex boundary. The fol-
lowing lemma is a first step in understanding when we can find a such
a neighborhood.

Lemma 3.2. Let Σ be a symplectic sphere in a symplectic 4-manifold
(X,ω). If Σ · Σ is negative, then Σ has a neighborhood with ω-convex
boundary.

Proof. Given such a Σ let E = ν(Σ) be its normal bundle in X .
Choose a 2-form τ on the zero section Z = Σ of E so that it gives
the same orientation to Z that ω gives to Σ and represents an integral
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cohomology class in H2
DR(Z). Note that c1(E) = κ[τ ] for some real

number κ < 0 (since Σ · Σ is negative).
On E we can define a function r : E −→ R which is the radius

function on each fiber. We can also define a vector field ∂
∂θ

on E \ Z
that generates the standard S1 action on E \ Z. There is a 1-form
β on E \ Z with β( ∂

∂r
) = 0, β( ∂

∂θ
) = 1 and dβ = −2πκp∗τ (where

p : E −→ Z is projection). (We can find this 1-form by pulling back,
to E \ Z, a connection 1-form on the unit circle bundle in E.) Set

ω′ = d(r2 −
1

2πκ
)β = 2rdr ∧ β + (r2 −

1

2πκ
)dβ.

Notice that ω′ is only defined on E \ Z but we claim that ω′ extends
to a symplectic form on all of E. To see that ω′ extends, notice that
as r goes to 0, ω′ goes to p∗τ + dx∧ dy (where dx∧ dy is the standard
volume form on the fiber) which is well defined on all of E. As ω′ is
closed, we are left to see that ω′ is nondegenerate. For this we have

ω′ ∧ ω′ = 4r(r2 −
1

2πκ
)dr ∧ β ∧ dβ

(note: dβ ∧ dβ = const.(p∗τ ∧ p∗τ) = const.(p∗(τ ∧ τ)) = 0 since Z is
2-dimensional). Now β∧dβ an volume form on the unit S1 bundle P in
E and E\Z is (0,∞)×P . So dr∧β∧dβ is a volume form on E\Z and
hence is nondegenerate. On Z we saw above that ω′ = p∗τ + dx ∧ dy,
so ω′ ∧ ω′ = p∗τ ∧ dx ∧ dy is a volume from near Z as well.

Now let v =
( r2− 1

2πκ

2r

)
∂
∂r

and compute

Lvω
′ = dιvω

′ = dιv[2rdr ∧ β + (r2 −
1

2πκ
)dβ]

= d[2r
(r2 − 1

2πκ
)

2r
β] = d[(r2 −

1

2πκ
)β]

= ω′.

Thus v is an expanding vector field for ω′ and it is transversely pointing
out of any sufficiently small disk bundle in E. Thus any small disk
bundle about Z in E has ω′-convex boundary. By scaling ω′ if necessary
(which will not affect convexity) we can arrange that ω′ on Z agrees
with ω on Σ. Thus by Theorem 2.5 there is an neighborhood U ′ of Z
symplectomorphic to a neighborhood U of Σ. Inside U ′ there is a disk
bundle with ω′-convex boundary thus there is also a neighborhood of
Σ inside U with ω-convex boundary. �

At this point one might hope that given two spheres, with negative
self-intersection numbers, in a 4-manifold that have a single transverse
intersection, we could find a neighborhood with ω-convex boundary.
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This however is not the case in general, as the following example illus-
trates. Take two disk bundles over the sphere, each with normal Euler
number −1, and plumb them together. After blowing down one of the
−1 spheres we get a 4-manifold diffeomorphic to S2 × D2. So if the
original manifold had ω-convex boundary then so would S2 ×D2, but
this contradicts a theorem of Eliashberg’s [E3].

Before the next lemma we need to review Weinstein’s construction
of symplectic 4-manifolds with convex boundary (see [W2]). First we
define a standard 2-handle as a subset of R4 with symplectic form
ω = dx1 ∧ dy1 + dx2 ∧ dy2. Let f = x21 + x22 −

1
2
(y21 + y22) and F =

x21 + x22 − ǫ
6
(y21 + y22) −

ǫ
2
, where ǫ > 0. Set A = {f = −1} and

B = {F = 0}. We define the standard 2-handle H to be the component
of R4 \ (A∪B) that contains the origin. The attaching region is A∩H
and the core of the handle is the intersection of the y1y2-plane with
H . Now given a Legendrian knot L in the boundary of a symplectic 4-
manifold with ω-convex boundary we can add H along L (the framing
we add H with is determined by the canonical framing of L) to obtain
a new symplectic manifold with ω-convex boundary.

Lemma 3.3. Let (X,ω) be a symplectic four manifold and Σi be
embedded 2-spheres, for i = 0, . . . p−2, that intersect according to Fig-
ure 2.11. Assume that Σ0 is symplectically embedded and that the other
Σi’s are Lagrangian submanifolds. Then there exists a small regular
neighborhood C(p) of the Σi’s that has ω-convex boundary.

Proof. Lemma 3.2 gives us a tubular neighborhood N0 of Σ0 with
an ω-convex boundary. We would like to see how to extend N0 to a
neighborhood N1 of Σ0 ∪ Σ1 with ω-convex boundary. To do this we
will try to add a 2-handle to N0, as discussed above, inside X . The
core of this 2-handle will be Σ1 \ (Σ1 ∩ N0). Thus we need to see
that L1 = Σ1 ∩ ∂N0 is a Legendrian knot inside ∂N0 (with the contact
structure induced by ω and v, the expanding vector field for N0). By
shrinking the tubular neighborhood N0 if necessary, and recalling the
symplectic structure constructed on N0 in Lemma 3.2, we may assume
that there is a Darboux coordinate chart U that contains N0 ∩ Σ1

yielding the following local model: R4, ω′ = dx∧dy+ dz∧dw, U ∩Σ0

corresponds to the xy-plane, N0 corresponds to a tubular neighborhood
N of the xy-plane and U∩Σ1 corresponds to the graph of a function f :
R2 −→ R2 from the xy-plane to the zw-plane such that f(0, 0) = (0, 0).
We also claim that we can replace v by ∂

∂R
in our local model, where

∂
∂R

stands for the radial vector field on R4. To see this we will find an

expanding vector field transverse to ∂N that interpolates between ∂
∂R
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and v and is equal to ∂
∂R

near Σ1 ∩ N , and then replace v with this

vector field. To this end let ρ be a the pull-back to R4 of a smooth
function on R2 (the xy-plane) that is 1 in a neighborhood V of (0, 0)
and 0 outside a larger neighborhood V ′, where V is chosen large enough
so that V × R2 contains Σ1 ∩ N . Set α = ιvω

′ and α′ = ι ∂
∂R
ω′. Since

d(α−α′) = ω′ −ω′ = 0 and we are in R4 we can find a function g such
that dg = α−α′. Now let β = α−d(ρg) and notice that dβ = ω′. Thus
the vector field w corresponding (under ω′) to β will be expanding:

Lwω
′ = dιwω

′ = dβ = ω′.

Also note that on V×R2, w = ∂
∂R

and outside of V ′×R2, w = v. Finally,

note that w is transverse to ∂N since the vector field v − ρ(v − ∂
∂R

)
clearly is, the vector field corresponding to (dρ)g is tangent to ∂N and
w is the sum of these two vector fields.

Now let us examine our local model. If the function f representing
Σ1 is linear then we can represent it by a 2× 2 matrix (using the basis
for R4 above) and the graph is a Lagrangian surface if and only if the
determinant is −1. One may now easily check that in this case Σ1∩∂N
is Legendrian. Now given an arbitrary function f whose graph, Γf , is
Σ1 we claim that we can perturb Σ1 near the origin so that it is the
graph, ΓA, of the linear map given by A = df(0,0). Then by shrinking
N if necessary we can conclude that Σ1 ∩ ∂N is Legendrian. To prove
the above claim we will look at Γf as the graph of a closed 1-form σ on
T ∗ΓA (we may do this by using Theorem 2.7 to identify a neighborhood
of ΓA in R4 and a neighborhood of the zero section in T ∗ΓA). Now we
just need to see that we can perturb σ into a closed 1-form σ′ that
vanishes near the origin. To do this let ρ be a function on ΓA ∼= R2

that is 0 near (0, 0) and 1 further out. Since σ is a closed form on R2

there is a function g such that dg = σ. Now set σ′ = d(ρg). Clearly σ′

is closed, 0 near the origin and equal to σ away from the origin.
Now abstractly form the symplectic manifold Y , using Weinstein’s

techniques, by gluing a 2-handle to a copy of N0 along L1 so that Y
also has convex boundary. Thus N0 inside Y is symplectomorphic to
N0 inside X . Using a relative version of Theorem 2.7 (see [Gr3]) we
can extend this symplectomorphism over a neighborhood of the core of
the 2-handle since the core is a Lagrangian disk and so is Σ1 \ (Σ∩N0).
Examining Weinstein’s construction we see that we can find a new 2-
handle H inside the one we added that is contained entirely in the
neighborhood where the symplectomorphism is defined. Thus N1 =
N0 ∪ H is a neighborhood of Σ0 ∪ Σ1 with ω-convex boundary inside
X .
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We may continue to add handles as above to N1 to get C(p) if we
can see that Σ2 ∩ ∂N1 is a Legendrian knot in N1 (the argument for
the rest of the Σi’s is exactly the same). To see this we once again
look at a local model. A neighborhood of Σ1∩Σ2 is symplectomorphic
to a neighborhood of the origin in R4 = T ∗R2 where Σ1 goes to R2

and Σ2 goes to a fiber in T ∗R2 (this is easy to do since Σ1 and Σ2

are Lagrangian and have transverse intersection). Arguing as above
we can assume that our expanding vector field is ∂

∂r
, the radial vector

field in the fiber of T ∗R2. Now one can easily check in this model that
Σ2 ∩ ∂N1 is Legendrian. �

We would now like to see what can be said about C(p) when all
the spheres Σi are symplectically embedded. For this we will need the
following lemma.

Lemma 3.4. If Σ is a symplectically embedded sphere in a sym-
plectic 4-manifold X with Σ · Σ = −2, then the symplectic structure
on the ambient 4-manifold may be changed near Σ to make Σ a La-
grangian sphere. In addition, any symplectic surface in X that has a
(positive) transverse intersection with Σ will remain symplectic in the
new symplectic structure.

Proof. First consider the symplectic 4-manifold (Y = S2×S2, ω =
ωS ⊕ ωS). Let S0 ⊂ Y be the graph of the antipodal map on S2 and
S1 ⊂ Y be the graph of the identity map on S2. One may readily
check that S0 · S0 = −2 and S1 · S1 = 2. Moreover, S0 is a Lagrangian
sphere and S1 is a symplectic sphere. Finally, we may observe that
S0 ∩ S1 = ∅ and that each of the Si’s intersects the symplectic sphere
{x} × S2 once, for all x ∈ S2.

Now given Σ as in the lemma we may perform a normal sum of Σ in
X and S1 in Y (see Theorem 2.6). Topologically X is unchanged (since
Y \ S1 is a disk bundle over S0 which is isomorphic to the normal disk
bundle to Σ in X) but Σ has been replaced by S0, a Lagrangian sphere,
and the symplectic structure on X has been altered near this sphere.
Any symplectic surface with a positive transverse intersection with Σ
may be summed with some {x}×S2 in Y when we perform the normal
sum, thus remaining symplectic in the new symplectic structure. �

Theorem 3.5. Let (X,ω) be a symplectic four manifold and Σi
be symplectically embedded 2-spheres, for i = 0, . . . p− 2, that intersect
according to Figure 2.11. Then if p = 2 or 3 there exists (after changing
ω near the spheres) a small regular neighborhood C(p) of the Σi’s that
has ω-convex boundary.
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Proof. If p = 2, then we are done by Lemma 3.2. If p = 3, then
there are just two spheres involved. We may use the previous lemma
to make Σ1 into a Lagrangian sphere while preserving the fact that Σ0

is symplectic. Now Lemma 3.3 gives us the neighborhood C(p) with
ω-convex boundary. �

It is reasonable to think that C(p) has an ω-convex boundary for
p > 3. If this were true then all the theorems in Chapter 6 would have
much greater applicability. We hope to return to this question in a
future paper.

2. Stein Structures and the Convexity of B(p)

In this section we will show that the rational homology ball B(p)
also has an ω-convex boundary. To do this we show that B(p) admits a
Stein structure and that all Stein manifolds have an ω-convex “bound-
ary.” A Stein manifold is a proper nonsingular complex analytic sub-
variety of Cn. Given a function ψ : X −→ R on a Stein manifold X we
define the 2-form ωψ = −d(J∗(dψ)) where J∗ : T ∗X −→ T ∗X is the ad-
joint operator to the complex structure J on X . We call ψ a plurisub-

harmonic function on X if the symmetric from gψ(·, ·) = ωψ(·, J ·) is
positive definite. Note that this implies that ωψ is a symplectic struc-
ture on X ; and, moreover, hψ = gψ + iωψ is a Hermitian metric on X .
Hence we see that X is a Kähler manifold. It is easy to see that any
Stein manifold admits a proper exhausting plurisubharmonic function.
For example the restriction of the radial distance function on Cn to X
will be such a function. Grauert (in [Gra]) proved a complex manifold
X is a Stein manifold if and only if X admits an exhausting plurisub-
harmonic function. Thus we know that any Stein manifold admits a
symplectic structure. It can in fact be shown that this symplectic struc-
ture is essentially unique. In [EG] it was shown that given any two
plurisubharmonic functions ψ and φ on a Stein manifold X , (X,ωψ) is
symplectomorphic to (X,ωφ).

Our interest in Stein manifolds is indicated in the next lemma.

Lemma 3.6. The gradient vector field ∇ψ of a plurisubharmonic
function ψ on a Stein manifold X is an expanding vector field for ωψ
(the gradient is taken with respect to gψ).

Thus the nonsingular level sets of ψ inherit a contact structure from
ωψ.
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Proof. First by definition we have ι∇ψgψ = dψ. So

ι∇ψωψ(·, ·) = ωψ(∇ψ, ·) = −gψ(∇ψ, J ·)

= −J∗gψ(∇ψ, ·) = −J∗dψ.

Thus

L∇ψωψ = dι∇ψωψ + ι∇ψdωψ

= dι∇ψωψ = −dJ∗dψ = ωψ.

Hence ∇ψ is an expanding vector field for ωψ. �

We now show that the manifold B(p) has a Stein structure on it.
For this we will need the following theorem.

Theorem 3.7. An oriented 4-manifold is a Stein manifold if and
only if it has a handle decomposition with all handles of index less than
or equal to 2 and each 2-handle is attached to a Legendrian circle γ
with the framing on γ equal to tb(γ)− 1.

This theorem is implicit in Eliashberg’s paper [E2]. For a complete
discussion of this theorem see the paper [G3] of Gompf. We have the
following immediate corollary.

Corollary 3.8. The (interior of the) rational homology ball B(p)
can be given the structure of a Stein manifold. Thus B(p) is a sym-
plectic 4-manifold with convex boundary.

Proof. Figure 3.1 shows a handle decomposition of B(p). To see

-p-1

Figure 3.1. Stein Structure on B(p)

that this is really B(p) take the standard picture for B(p), Figure 2.12,
and slide the 2-handle over the 1-handle. One may easily compute
using Formula (2.17) (we did not discuss this formula in the presence
of 1-handles but it is still valid, see [G3]) that the Thurston-Bennequin
invariant of the attaching sphere for the 2-handle in Figure 3.1 is −p.
Thus Theorem 3.7 tells us that B(p) is indeed Stein.

�



CHAPTER 4

Homotopy Classes of 2-Plane Fields on

3-Manifolds

In Chapter 5 we will show that the two contact structures induced
on the lens spaces L(p2, p− 1) as the boundary of B(p) and C(p) are
contactomorphic. With this goal in mind, in this chapter we show that
they are homotopic as 2-plane fields. In the first section we discuss the
general theory of 2-plane fields on 3-manifolds and define a complete set
of invariants for them. These invariants were first defined in Gompf’s
paper [G3]. In the second section we will compute these invariants for
for the two contact structures on L(p2, p− 1) thus showing they are
homotopic.

1. General Theory

Throughout this section let M be an oriented 3-manifold and let
ξ be a transversely oriented 2-plane field on M . The most obvious
invariant of ξ is the Euler class e(ξ) of ξ thought of as an oriented
two dimensional vector bundle. If M bounds an almost complex 4-
manifold X such that ξ is the field of complex lines in TM then we get
another interpretation of e(ξ). Since TX is a complex bundle over X ,
c1(X) is a well defined two dimensional cohomology class. We claim
that c1(X) restricted to ∂X = M is e(ξ). To see this first notice that
TX|M = ξ⊕L where L is the trivial complex line bundle overM . Now
we have

e(ξ) = c1(ξ) = c1(ξ) + c1(L) = c1(ξ ⊕ L) = c1(TX|M).

Now place a Riemannian metric on M . Since ξ is transversely
oriented we may choose a unit vector field v on M such that vm is
perpendicular to ξm for all m ∈ M . Note that given v we may find ξ
so knowing v is equivalent to knowing ξ. It is well known that every
oriented 3-manifold has a trivial tangent bundle (see [K1]). By fixing
a trivialization TM ∼= M ×R3 we may regard v as a section of the unit
sphere bundleM×S2 ⊂M×R3 and thus as a map fξ :M −→ S2. If we
homotope ξ then v will also be homopoted as will f . Thus a homotopy
class of 2-plane fields gives us a homotopy class of maps from M to S2

59
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(this correspondence of course depends on the trivialization of TM).
Now let Φ(M) be the set of homotopy classes of 2-plane fields on M .
From the above discussion we have

(4.1) Φ(M) = [M,S2].

We may now use the Thom–Pontrjagin construction (see [P] and [M])
to better understand the set Φ(M), but first we will need a few def-
initions. A framed submanifold L of M is a submanifold with a
fixed trivialization F of its normal bundle. Two framed submanifolds
(Lj,Fj), j = 0, 1, are framed cobordant if there exists a framed sub-
manifold (N,N ) of M × [0, 1] such that N ∩M × {j} is Lj and Fj is
induced from N .

Theorem 4.1. For a fixed trivialization of TM we have

Φ(M) =
∐

Φx(M),

where the disjoint union is taken over x ∈ H2(M,Z) and

Φx(M) = {ξ ∈ Φ : PD[f−1
ξ (pt.)] = x}.

Moreover, e(ξ) = 2x and Φx(M) is isomorphic to Zd(2x) where d(y) is
the divisibility of y in H2(M,Z) modulo torsion.

Proof. Given a map f : M −→ S2 we may assume that f is
smooth and thus we get a link Lf in M as the preimage of a regular
value of f and a framing Ff on Lf pulled back from S2. One can check
that the framed cobordism class of (Lf ,Ff), up to framed cobordism,
is independent of f , up to homotopy, and the regular value of f we
pick. Thus, we have set up a map from [M,S2] to framed cobordism
classes of framed links in M . This is part of the Thom–Pontrjagin
construction. The other part gives an inverse to the this map (see [M]).
Thus we have a one-to-one correspondence. So using Equation (4.1)
we have a one-to-one correspondence between 2-plane fields and framed
cobordism classes of framed links given by sending ξ to (Lfξ ,Ffξ). Note
e(ξ) = c1(ξ) = f ∗

ξ c1(TS
2) since ξ = f ∗

ξ TS
2. Thus 2Lfξ = PD(e(ξ))

because PD(c1(TS
2)) = 2[p] where [p] is the 0-homology class of a the

regular value p and Lfξ = f−1
ξ (p). Now given x ∈ H1(M ;Z) set

Φx(M) = {ξ ∈ Φ(M) : [Lfξ ] = x}.

Clearly this is the same as the Φx(M) defined in the statement of the
theorem.

We now want to show that Φx(M) is isomorphic to Zd where d is
the divisibility of 2x in H1(M ;Z) modulo torsion. To this end choose a
knot K representing x and choose a framing F on K. Now we have a
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map h : Z −→ Φx(M) given by sending n to K with framing Fn, where
Fn is the framing on K given by adding n right handed twists to F .
The map h is clearly a surjection. Now suppose that h(n) is framed
cobordant to h(m). Thus we have a framed surface in M × [0, 1] or by
gluing M × {0} to M × {1} we get a closed surface T in M × S1 with
self-intersection n−m. Let C = x× [S1] ∈ H2(M × S1;Z) and note

n−m = [T ] · [T ] = (([T ]− C) + C) · (([T ]− C) + C) = 2([T ]− C) · C

where the last equality follows from ([T ]−C) ∈ H2(M ;Z) ∼= H2(M ;Z)⊗
H0(S

1;Z) which is true since ([T ] − C) ∩ [M × {0}] = 0 (if part of
([T ] − C) lay in H1(M ;Z) ⊗ H1(S

1;Z) then it would have nontrivial
intersection with M ×{0}). Now n−m = ([T ]−C) · (2x) in H∗(M ;Z)
again since ([T ]− C) lives in H2(M ;Z). Thus n−m is divisible by d.
Conversely, let α ∈ H2(M ;Z) be a homology class with the property
that c1(ξ)(α) = d (one can easily find such a class by Poincaré duality
since we are working modulo torsion). We can now find a closed surface
T representing α + C in H2(M × S1;Z) so that when we cut M × S1

open to getM× [0, 1], T will become a surface Σ that cobounds a copy
of K in M × {0} and a copy in M × {1}. Notice

(α + C) · (α + C) = 2α · C = α · (2x) = c1(ξ)(α),

where α · (2x) is computed in M . Thus we have constructed a framed
cobordism (Σ,N ) (the framing on Σ comes from T ) from (K,Fn) to
(K,Fn+d). So the map h : Z −→ Φx(M) is onto and has kernel dZ. �

So far our discussion of Φ(M) has relied on fixing a trivialization
of TM . In practice it is quite hard to manipulate trivializations. For
example, given a 3-manifold described in two different ways it will be
quite difficult, in general, to compare trivializations in the different pre-
sentations of the manifold. This problem led Gompf in [G3] to define
two invariants of 2-plane fields that can be computed and compared
without keeping track of the trivializations and completely determine
in which homotopy class a plane field lies. As Theorem 4.1 indicates
there is a 2-dimensional invariant that refines the Euler class and a
3-dimensional invariant (an integer mod d). We will only discuss these
invariants when e(ξ) is a torsion element since this is all we will need
in our applications and is easier than the general case. For the general
definitions see [G3].

We begin with the 3-dimensional invariant. Let X we an almost
complex 4-manifold that M bounds so that ξ is the field of complex
lines in TM (we can always find such a manifold, see for example [G3]).
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We now define our 3-dimensional invariant to be the rational number

θ(ξ) = c21(X)− 2χ(X)− 3σ(X)

where c21(X) is defined as follows: we would like to say that c21(X)
is just the 4-dimensional cohomology class c21(X) evaluated on the
fundamental homology class of X but since X is not a closed mani-
fold it does not have an absolute 4-dimensional fundamental homol-
ogy class. By Poincaré duality we can represent c1(X) by an element
c′ ∈ H2(X, ∂X ;Z). Consider the following piece of the long exact se-
quence for (X, ∂X)

. . . −→ H2(X)
j

−→ H2(X, ∂X)
b

−→ H1(∂X) −→ . . .

Clearly b(c′) ∈ H1(∂X) is the Poincaré dual to the Euler class e(ξ)
(which is the restriction to ∂X = M of c1(X)). If in the above se-
quence we use rational coefficients then b(c′) = 0 since e(ξ) is a torsion
class over Z and therefore zero over Q. Thus we may find a class
c ∈ H2(X ;Q) such that j(c) = c′. Absolute homology classes have a
well defined intersection pairing so we define c21(X) to be c·c. Note that
c is not necessarily unique but any other homology class that maps to
c′ will have the same self intersection number. We claim that θ(ξ) only
depends on M and the homotopy class of ξ. To see this let ξ and ξ′

be two 2-plane fields on M in the same homotopy class. Now choose
almost complex 4-manifolds X and X ′ that bound (M, ξ) and (M, ξ′)
respectively, where M is M with the opposite orientation. One may
easily check that the manifold Y formed by gluing X and X ′ together
along their boundary will have an almost complex structure. Since Y
is a closed almost complex manifold equation (2.8) tells us that

(4.2) c21(Y )− 2χ(Y )− 3σ(Y ) = 0.

We also clearly have

χ(Y ) = χ(X) + χ(X ′) and

σ(Y ) = σ(X) + σ(X ′).

Now consider c1(Y ). We claim that PD(c1(Y )) = c+c′ where c (respec-
tively c′) is an absolute 2-homology class (over Q) in X (respectively
X ′) that is the pull back of the relative 2-homology class PD(c1(X))
(respectively PD(c1(X

′))). This is quite easy to see by considering the
restrictions of c1(Y ) to M,X and X ′. So finally we have

c21(Y ) = c21(X) + c21(X
′),

and thus equation (4.2) says

θ(ξ) = −θ′
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where θ′ = θ(ξ′), computed as a 2-plane field on M . Now fixing our
choice of X ′ we see that if we compute θ(ξ) using any almost complex
4-manifold X that bounds (M, ξ) we will get −θ′. Thus θ(ξ) is inde-
pendent of the choice of X . Moreover, note the above argument shows
that θ(ξ) flips sign if we reverse the orientation on M .

We now turn our attention to the 2-dimensional invariant of a 2-
plane field ξ. Let Spin(M) be the group of spin structures on M and
G = {x ∈ H1(M ;Z) : 2x = PD(c1(ξ))}. For the reader unfamiliar
with spin structures see [GS] for a discussion of all the facts needed
below. The invariant we will define is a map

Γ(ξ, ·) : Spin(M) −→ G.

This invariant will clearly refine the Euler class since 2Γ(ξ, s) = e(ξ) for
any s ∈ Spin(M). We will give two definitions of this invariant. From
the first it is fairly easy to see that it is well–defined. Given a spin
structure s on M we can find a trivialization τ on TM that induces s.
By Theorem 4.1, τ assigns to ξ a map fξ : M −→ S2. We now choose
a regular value, p, of fξ and set

Γ(ξ, s) = [f−1(p)].

Another “more intrinsic” (and more amiable to computation) way to
define Γ(ξ, ·) is as follows: let v be a vector field in ξ with zero locus
(counted with multiplicity) 2γ where γ is a smooth curve in M . The
vector field v gives a trivialization of ξ on M \ γ and hence a trivializa-
tion of TM on M \ γ. This trivialization induces a spin structure on
M \ γ, and finally, since v vanishes to order 2 on γ we can extend this
spin structure over γ to obtain a spin structure s′ on all of M . We can
now define

Γ(ξ, s′) = [γ].

To see that this is the same as the first definition choose a vector field
w on S2 with on zero of order 2 at p. Then v = f ∗

ξ (w) (notice that

fξ gives an isomorphism from ξm to Tfξ(m)S
2 and thus f ∗

ξ (w) is well–
defined) is a vector field in ξ that vanishes to order 2 along the curve
f−1(p). Moreover, it is not hard to see that the spin structure that v
induces on M is in fact s. Hence, our two definitions are the same if
the second one is well–defined.

To see that the second definition is well–defined let v0 and v1 be
two vector fields as described in the definition. We can now form
the difference class ∆(v0, v1) of the nonzero vector fields v0 and v1 in
ξ|M\(γ0∪γ1) where γi is the zero set of vi. Note this is a cohomology
class in H1(M \ (γ0∪γ1);Z). (Difference classes of vector fields in ξ are
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defined analogously to difference classes of spin structures, see [GS].)
Moreover, we have

(4.3) ∂PD(∆(v0, v1)) = 2([γ0]− [γ1]).

Since both v0 and v1 vanish to order two we can uniquely extend the
mod 2 reduction of ∆(v0, v1) to a cohomology class ∆ in H1(M ;Z2).
It is not hard to see that ∆ is the difference class ∆(s0, s1) for the spin
structures si associated to vi. Now let β be the Bockstein homomor-
phism induced by the coefficient sequence Z −→ Z −→ Z2. Then we
clearly have (using Equation (4.3))

(4.4) β(PD(∆(s0, s1))) = [γ0]− [γ1].

Thus if v0 and v1 define the same spin structures then [γ0] = [γ1].
Hence Γ(ξ, ·) is well–defined. In addition, we have seen that Γ(ξ, ·) is
H1(M ;Z2)-equivariant where H

1(M ;Z2) acts on the set of spin struc-
tures as usual and on G by the Bockstein homomorphism. Note that
this implies that Γ(ξ, ·) is determined by its value on one spin structure.

We are now ready to state the following:

Theorem 4.2. Let ξ0 and ξ1 be two 2-plane fields on a closed ori-
ented 3-manifold. If e(ξ0) is a torsion class, then ξ0 and ξ1 are ho-
motopic if and only if, for some choice of spin structure s, Γ(ξ0, s) =
Γ(ξ1, s) and θ(ξ0) = θ(ξ1).

We refer the reader to [G3] for a proof of (a stronger version of)
this result.

2. Our Examples

We shall now consider the contact structures induced on L(p2, p− 1)
as the convex boundary of B(p) and C(p). Let ξ0 denote the contact
structure induced from B(p) and ξ1 denote the one induced from C(p).
We begin by computing the Euler class for these two examples. To do
this we compute the first Chern class of the almost complex 4-manifolds
they bound. To compute c1(B(p)) we use the following lemma, whose
proof follows easily from the proof of Theorem 3.7 (see [G3]).

Lemma 4.3. If X is a Stein 4-manifold obtained by adding handles
to D4 as in Theorem 3.7, then c1(X) is represented by the cocycle

c =
∑

r(γi)fhi ,

where the sum is over the knots γi to which the 2-handles hi are attached
and fhi is the cochain that is 1 on core of hi and 0 elsewhere.
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The handle decomposition in Figure 3.1 of B(p) provides a conve-
nient basis for the cellular chain groups of B(p). Namely,

C1(B(p);Z) = 〈α〉 C2(B(p);Z) = 〈h〉

C1(∂B(p);Z) = 〈a〉 C2(B(p), ∂B(p);Z) = 〈A〉

where α, h and A correspond to the core of the 1-handle, core of
the 2-handle and co-core of the 2-handle, respectively, and a corre-
sponds to the meridian of the surgery unlink in the standard picture of
L(p2, p− 1) = ∂B(p). Now let γ be the curve to which the 2-handle was
added. Using formula (2.18) we can easily compute r(γ) = −1 (when
γ is given the appropriate orientation). So c1(B(p)) is represented by

(4.5) c(B(p)) = −fh.

The Poincaré dual to c(B(p)) is represented by the relative cycle −A ∈
C2(B(p), ∂B(p);Z). So the Poincaré dual of the restriction of c(B(p))
to ∂B(p) is −pa, since ∂A = pa as can easily be seen by Kirby calculus
or from the long exact homology sequence of the pair (B(p), ∂B(p)).
Thus we have

(4.6) e(ξ0) = PD(−pa).

The handle body decomposition of C(p) indicated in Figure 2.11
gives the following cellular chain groups

C2(C(p);Z) = 〈h0, . . . , hp−2〉 C2(C(p), ∂C(p);Z) = 〈B0, . . . Bp−2〉

C1(∂C(p);Z) = 〈a〉

where hi, bi correspond to the core, respectively co-core, of the 2-
handles and a is as above. For our applications we can always assume
that the homology classes corresponding to the hi’s are represented by
symplectic 2-spheres Σi in C(p). Choosing an almost complex struc-
ture compatible with the symplectic structure on C(p) we have the
adjunction formula

(4.7) c1(C(p))(Σi) = χ(Σi)− Σi · Σi.

Thus

(4.8) c1(C(p))(Σi) =

{

−p if i = 0,

0 if i > 0.

So c1(C(p)) is represented by the cochain

(4.9) c = −pfh0 .
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The Poincaré dual to c1(C(p)) is represented by −pB0. Hence the
Poincaré dual to the restriction of c1(C(p)) to ∂C(p) is given by −pa
since ∂B0 = a as can easily be seen from Kirby calculus. Thus

(4.10) e(ξ1) = PD(−pa).

We now refine our above computations by computing Γ(ξi, ·). If p is
odd then Spin(L(p2, p−1)) and G = {x ∈ H1(M ;Z) : 2x = PD(c1(ξ))}
contain only one element making it easy to compute Γ. We have

(4.11) Γ(ξi, s) = −
1

2
(pa),

where s is the unique element in Spin(L(p2, p − 1)). If p is even then
the situation is a little more complicated and we will proceed as fol-
lows: Let s denote the spin structure induced on L(p2, p − 1) as the
boundary of C(p) (notice that C(p) has a unique spin structure on it).
The spin structure s is characterized by the fact that it will extend
across a 2-handle added to a with framing 0. To compute Γ(ξ1, s) we
must find a vector field in ξ1 that will induce s. We saw above that
PD(c1(C(p))|∂C(p)) = PDe(ξ1) = −pa. Thus we may find a vector
field in ξ1 that vanishes along −a with multiplicity p, or more to the
point a vector field v in ξ1 that vanishes along −p

2
a with multiplicity

2. This vector field clearly induces the spin structure s. Thus

Γ(ξ1, s) = −
p

2
a.

Now to compute Γ(ξ0, s) we need to know that s is the spin structure
on ∂B(p) that will extend across a 2-handle attached to a, in Figure 4.1,
with framing 0 (it is a simple exercise in Kirby calculus to see that a in
Figure 4.1 is the same as the a above; it is important to note, however,
that the 0-framings also correspond). Our next task is to find a vector

-p-1

a

C'

Figure 4.1. a and C ′ in ∂B(p)

field v that lies in ξ0, induces s and has a zero locus of multiplicity 2.
We begin with the vector field v′ defined as follows: let v′ = ∂

∂x
the

region of R3 ⊂ S3 to which we are adding handles. As shown in [G3], it
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makes sense to say v′ = ∂
∂x

on all of S1×S2 = ∂(0-handle ∪ 1-handle).
Finally we can extend v′ over ∂B(p) to a vector field in ξ0 with zero
set equal to C ′,in Figure 4.1 (since C ′ is the boundary of the co-core of
the 2-handle). It is clear that v′ is not the vector field we want since
its zero set has multiplicity 1. Next we will construct a difference class
between v′ and the vector field we can use in our computation. To
this end consider the surface F0 indicated in Figure 4.2. Notice that
the framing F0 induces on k is tb(k) = blackboard − 1. So if we set
F = F0∪core of 2-handle the ∂F = −C ′, since the 2-handle is attached
with framing tb(k) − 1. Furthermore, the curve C, with [C] = −p

2
a,

lies on F0 ⊂ F (see Figure 4.2). It is now easy to see that F ′ = F \ C

-p-1

F0

C
k

Figure 4.2. The surface F0 in ∂B(p)

is an integral homology class in ∂B(p) \ {C ∪ C ′} and ∂F ′ = 2C −C ′.
The class PD[F ′] is the difference class for v′ and some vector field v
on ∂B(p) with zero locus 2C. Now v will induce a spin structure, sv,
on ∂B(p) and

Γ(ξ0, sv) = [C] = −
p

2
a.

Finally we need to see that sv is the same as s. This will be true if
sv extends over a 2-handle added to a with framing 0. In order to
verify this, note that a ∩ F ′ = 1 and thus the spin structure on a
neighborhood of a induced by v is not the one that is induced from v′.
Moreover, the spin structure induced from v′ does not extend over a
2-handle added to a with framing 0 since on the core of the 2-handle
the the spin structure is the one induced by the tangent vector field to
its boundary circle which of course does not extend (its degree is odd).
Thus we finally have

Γ(ξ0, s) = [C] = −
p

2
a.

We would now like to compute the three dimensional invariants of
ξ0 and ξ1. To do this we will need to calculate c21(B(p)) and c21(C(p)).
We begin with c21(B(p)). Remember, to do this calculation we must
pull PD(c1(B(p))) ∈ H2(B(p), ∂B(p);Q) back to an absolute homology
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class and then calculate the self-intersection number of this class. For
B(p) this is quite simple since H2(B(p);Q) = 0. Thus c21(B(p)) = 0
and we get

(4.12) θ(ξ1) = c21(B(p))−2χ(B(p))−3σ(B(p)) = 0−2(1)−3(0) = −2.

Now to compute c21(C(p)) we will need to consider the following part
of the long exact sequence for (C(p), ∂C(p))

H2(C(p);Q)
j

−−−→ H2(C(p), ∂C(p);Q)

‖ ‖

〈[h0] . . . , [hp−2]〉
M

−−−→ 〈[B0], . . . , [Bp−2]〉

where M is the matrix










−(p + 2) 1 0 0
1 −2 1 0
0 1 −2 1

. . .

1 −2 1
0 1 −2











representing j in the basis given on the second row. One may easily
check that

(4.13) c =
1

p

p−1
∑

i=1

(p− i)[hi−1]

is the unique element of H2(C(p);Q) that M maps to PD(c1(C(p))) =
−p[B0]. So we get

c21(C(p)) = c · c =
1

p2
(

p−1
∑

i=1

(p− i)[hi−1])
2

=
1

p2

[

−(p− 1)2(p+ 2)− 2

p−1
∑

i=2

(p− i)2 + 2

p−1
∑

i=1

(p− i)(p− i− 1)

]

= 1− p.

Thus

θ(ξ1) = c21(C(p))− 2χ(C(p))− 3σ(C(p))

= (1− p)− 2(p)− 3(−(p− 1)) = −2.
(4.14)

The above calculations and Theorem 4.2 give us the main result of
this chapter.
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Theorem 4.4. The two contact structures ξ0 and ξ1 on L(p
2, p− 1)

are homotopic as 2-plane fields.



CHAPTER 5

Tight Contact Structures on Lens Spaces

It is still not clear what one expects to find when studying tight con-
tact structures on lens spaces. We begin by considering the existence
question. Given a lens space L(p, q), with p > 0 and q > 0 relatively
prime and q < p, one may easily construct a tight contact structure
on it using Gompf’s Stein calculus [G3]. To do this let r0, r2, . . . , rn
be a continued fractions expansion of −p

q
and notice that both Kirby

diagrams in Figure 5.1 represent the lens space L(p, q). Now it is clear,

r

r r r r
0

1 n-1 n2

-p
q

Figure 5.1. Two Kirby diagrams of L(p, q)

since ri < −1 for all i, that the Kirby diagram on the right may be
made into a Stein diagram thus realizing L(p, q) as the boundary of a
Stein manifold. In general this is all that we can say about tight con-
tact structures on L(p, q). We can say considerably more about L(p, 1)
(see [E5]). If p is odd, then we can realize all elements of H2(L(p, 1);Z)
as the Euler class of a tight contact structure except possibly the zero
class. If p is even, then we can realize every element of H2(L(p, 1);Z)
as the half Euler class (i.e. Γ-invariant) of a tight contact structure
except possibly the class p

2
, see Figure 5.2. This leads to the following

conjecture:

Conjecture. Each element inH2(L(p, 1);Z) is realized by a unique
tight contact structure except the zero class if p is odd or the class p

2
if

p is even.

As mentioned in Section 2.3 there is not a lot known about the
uniqueness of tight contact structures on 3-manifolds. In particular,
Eliashberg has shown (see [E4]) that S1×S2, S3 and RP 3 have unique

70
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L(2,1)

L(3,1)
L(4,1)

tb=-1
r=0

tb=-2
r=1

tb=-2
r=-1

tb=-3
r=-2

tb=-3
r=0

tb=-3
r=2

Figure 5.2. Tight contact structures on L(p, 1)

tight structures. Thus the uniqueness question has been answered for
L(p, q) only when p = 0, 1 or 2. In this chapter we will reprove Eliash-
berg’s p = 2 result and then extend it to show that there is only one
tight contact structure realizing the Euler class “e = q + 1” when p is
odd and a similar but more technical result when p is even (see The-
orem 5.2). A corollary of this result is the following theorem that will
be needed in Chapter 6.

Theorem 5.1. If the spheres used to from C(p) are all symplec-
tic or Lagrangian, then the two contact structures ξ0 and ξ1 induced
on L(p2, p − 1) as the boundary of B(p) and C(p), respectively, are
contactomorphic.

1. Characteristic Foliations on Generalized Projective Planes

In this section we discuss a procedure for showing two tight contact
structures on a given lens space are contactomorphic. For this we use
two decompositions of a lens space. First, every a lens space L = L(p, q)
(we will normalize p and q so that p ≥ 0 and q < |p|) has a genus one
Heegaard splitting. More specifically,

L = V0 ∪M V1,

where each Vi is a solid torus andM : ∂V0 −→ ∂V1 is a diffeomorphism
represented in a standard basis for T 2 = ∂Vi by

M =

(
q p′

p r

)

,

where rq − pp′ = −1. (A standard basis is given by µ, the boundary
of a meridinal disk, and λ, a longitude for T 2 given by the product
structure on Vi and oriented so that µ ∩ λ = 1.) Secondly, L has a
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simple CW decomposition. To see this let Γ be a core curve in V0 and
∆ a meridional disk in V1. Now γ = ∂∆ is a meridional curve on ∂V1
and is mapped byM to a (p, q)-curve on ∂V0. We can find an annulus A
in V0 with its interior embedded in the interior of V0 \Γ, one boundary
component on γ ⊂ ∂V0 and the other boundary component wrapping
p times around Γ. We will call D = ∆ ∪A a generalized projective

plane in L. Given a point x on Γ, a CW decomposition of L is given
by

{x} ∪ Γ ∪D ∪ B,

where B is a 3-ball. We can now state the main result of this chapter.

Theorem 5.2. Let L = L(p, q) be a lens space and ξi, i = 0, 1, be
two tight contact structures on L. If

(1) p is odd and e(ξi)(D) = (q + 1) mod p, for i = 0, 1, or
(2) p is even and Γ(ξi, s) · D = 1

2
(q + 1) mod p, for i = 0, 1,

where s is the spin structure on L that does not extends over
a 2-handle attached to Γ with framing 0,

then ξ0 and ξ1 are contactomorphic.

The proof of this theorem involves most of the rest of this chap-
ter. We begin by showing that the “characteristic foliation” of a tight
contact structure on D determines that structure on L. We then turn
our attention to simplifying this foliation. Before we embark on this
journey let us first pause to show that Theorem 5.1 follows from this
theorem.

Proof of Theorem 5.1. Theorem 5.2 tells us that we need to
compute e(ξi)(D) (when p is odd). In the standard picture of L(p2, p−
1) as surgery on an unknot we will take our disk ∆ to be the meridional
disk in the surgery torus. Considering C(p) (the case of B(p) is just
the same), the Poincaré dual to e(ξ) will be represented by −p times
a meridional curve a (see Figure 5.3). To see how this curve intersects
D we will push it into the surgery torus. One may readily compute
that a goes to p− 1 times a longitude and hence (being careful about
orientations) we have

D ∩ (a push off of a) = p− 1.

Thus we have

e(ξi)(D) = −p(p−1)+mp2 = −p2+ p+mp2 = p+n′p2 = q+1+n′p2,

where n′ = m− 1.
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- p2

p - 1

a

Figure 5.3. The lens space L(p2, p− 1)

Now if p is even we need to compute Γ(ξi, s) ·D. In Section 4.2 we
computed

Γ(ξi, s
′) = −

1

2
(pa),

where s′ is the spin structure on L that extends across a 2-handle
attached to Γ with framing 0. So to compute Γ(ξi, s) we first compute

β(PD(∆(s, s′))) =
p2

2
a,

where β is the Bockstein homomorphism discussed in Chapter 4. Now
we can compute

Γ(ξi, s) ·D = Γ(ξi, s
′) ·D + β(PD(∆(s, s′))) ·D

= −
1

2
p(p− 1) +

p2

2
(p− 1) +mp2 =

1

2
p+m′p2

=
1

2
(q + 1) +m′p2.

�

We now begin to standardizing our contact structure on L. Given
an oriented contact structure ξ on L we may ambiently isotope L
so that Γ is transverse to ξ. We may now write down a standard
model for V0 that will be used many times in this chapter. Let U
be a tubular neighborhood of the z-axis in R3 modulo the action
(r, θ, z) 7→ (r, θ + 2πq

p
, z + 1). Now by shrinking V0 if necessary we

can find a diffeomorphism from U to V0 taking the z-axis to Γ and
S = {(r, θ, z) : θ = 2kπ

p
for k = 0, . . . , p − 1} to A. We will see that

this diffeomorphism may be isotoped into a contactomorphism with-
out changing the properties described above. Even though D is not an
embedded surface, ξ will clearly induce a singular foliation, Dξ, on it
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and we can choose the orientation on D so that the flow Dξ is directed
toward Γ. If ξ is tight Dξ essentially determines ξ.

Theorem 5.3. Let L0 and L1 be two copies of L(p, q). Let ξi be a
tight oriented contact structure on Li and Di the generalized projective
plane in Li, i = 0, 1. Assume that the 1-skeleton Γi of Di is transverse
to ξi. If a diffeomorphism f : L0 −→ L1 may be isotoped so that it takes
(D0)ξ0 to (D1)ξ1 then it may be isotoped into a contactomorphism.

Proof. We would like to begin by isotoping f to a contactomor-
phism near Γ. To this end we note that f takes (D0)ξ0 to (D1)ξ1 and
thus Γ0 to Γ1; moreover, if p > 2, the fact that f takes (D0)ξ0 to
(D1)ξ1 tells us that f takes (ξ0)m to (ξ1)f(m) for m ∈ Γ0. Thus using
Theorem 2.12 we may isotope f into a contactomorphism near Γ. Un-
fortunately, without exercising care, this isotopy might change the fact
that f takes D0 to D1, much less (D0)ξ0 to (D1)ξ1. To see that this does
not happen consider the model U for V0 described above and let ψ be
the diffeomorphism from U to V0. Now set α = ψ∗α0 and α

′ = ψ∗f ∗α1.
We have

α = a dr + b dθ + c dz

and
α′ = a′ dr + b′ dθ + c′ dz,

where a, b, c, a′, b′ and c′ are functions on U . We may also take c and
c′ to be nonzero since Γ is transverse to ξi. If we restrict both these
forms to S we get

α|S = a dr + c dz

and
α′|S = a′ dr + c′ dz.

Since α and α′ have the same kernel on S it is easy to see that a = hc
and a′ = hc′ for some function h (note for this we need to know that the
kernel always has a radial component, but by taking V0 small enough
we can assume this). One may now check that on S, α′ = c′

c
α. So back

in L0 we have that α0|A is some nonzero multiple of f ∗α1|A. Moreover,
since c′

c
is a well-defined function near Γ we may clearly extend it over

L0 and thus by rescaling α1 we may assume that α0|A = α1|A. Thus
referring back to the proof of Lemma 2.20 we see that the vector field
used to define the above isotopy points along the characteristic foliation
on A. Hence after the above isotopy, f is a contactomorphism when
restricted to a neighborhood N of Γ and still takes (D0)ξ0 to (D1)ξ1 .

Now we may use Lemma 2.20 applied to the disk D0 \ (D0 ∩ N ′),
where N ′ is a neighborhood of Γ0 contained in N , to further isotope
f to a contactomorphism in a neighborhood U of all of D0. Finally,
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consider the 3-ball B = L0 \ (L0 ∩ U ′), where U ′ is a neighborhood of
D0 contained in U . Theorem 2.14 says we may now isotope f |B rel ∂B
to a contactomorphism on B, thus obtaining a contactomorphism from
(L0, ξ0) to (L1, ξ1). �

This theorem shows the importance of understanding the character-
istic foliation Dξ. To do this we will always assume that the 1-skeleton
Γ ofD is transverse to the contact structure ξ. Notice that V0 is a tubu-
lar neighborhood of Γ. By shrinking V0, if necessary, we may assume
that γ = D ∩ ∂V0 = ∂∆ is a transverse curve and that no singularities
of Dξ lie in A = D ∩ V0.

Theorem 5.4. Assume we are in the situation described in the
preceding paragraph. Then

(5.1) e(ξ)(D) ≡ (−l + q) mod p,

where l = l(γ).

Proof. We begin by recalling that Proposition 2.27 tells us that

−l = d+ − d−

where d± is the number of ±-elliptic points minus the number of ±-
hyperbolic points in ∆ξ. One way to see this is to let w be the vector
field directing ∆ξ and v the nonzero vector field used to compute l(γ).
So if γ′ is the knot formed by pushing γ along v, then l(γ) = I(γ′,∆);
and, if γ′′ is the knot formed by pushing γ along w, then I(γ′′,∆) = 0.
Let

φ : ∆ −→ S1 : x 7→ (angle between vx and wx).

Then it is a standard fact that

I(γ′′,∆)− l(γ) = total variation of φ around γ = degree(φ|γ)

=
∑

sing. pts. pi

−degree(φ|
∂(∆−B(pi))−γ

)

=
∑

sing. pts. pi

degree(φ∂B(pi))

where B(pi) is a small ball about the singular point pi. One can now
easily check that

degree(φ∂B(pi)) =

{

+1 pi is + elliptic or − hyperbolic,

−1 pi is − elliptic or + hyperbolic.

Now to compute e(ξ)(D) we will choose a vector field in ξ that is
nonzero along the 1-skeleton of D and extend it to a vector field in ξ
on all of D. Then e(ξ)(D) will be the signed count of the zeros of this
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vector field. We will find this vector field by extending w across A. To
do this we just have to look in V0, we can use our model U for V0 (see
page 73). In this model A will be a p-pronged star shaped graph in
the xy-plane crossed with the z-axis. We only have w defined along
A ∩ ∂V0 and there it is pointing radially inward. Now define w along
the z-axis to be the vector field that points along the negative y-axis
at (0, 0, 0) and twists by 2πq

p
as we traverse the z-axis from (0, 0, 0) to

(0, 0, 1). This will give a nonzero vector field along Γ in V0. Now extend
w across A arbitrarily. Thus we have

e(ξ)(D) =
∑

x a zero of w

index(x)

=
∑

x a zero of w|∆

index(x) +
∑

x a zero of w|A

index(x).

At a positive elliptic point x of ∆ξ (hence a zero of w), ξx and Tx∆ have
the same orientation and w ∈ T∆∩ ξ near x; thus index(x) will be the
same thought of as a vector field in T∆ or one in ξ. So, index(x) = +1.
Similarly index(x) = +1 if x is a negative hyperbolic point in ∆ξ and
index(x) = −1 if x is a negative elliptic point or a positive hyperbolic
point of ∆ξ. Thus

∑

x a zero of w|∆

index(x) = −l.

To compute the second sum we need to consider our model of V0 again.
Let A′ = S1 × [0, 1] be an annulus and f : A′ −→ V0 a map from A′ to
A sending S1 ×{0} to Γ and S1 ×{1} to γ. Now f ∗ξ is A′ ×R2. If we
choose a trivialization of f ∗ξ so that f ∗w twists 0 times as we traverse
S1 × {1} then f ∗w will twist q times about S1 × {0}. Thus we may
conclude that ∑

x a zero of w|A

index(x) = q.

Thus finishing the proof of Equation (5.1). �

This theorem is sufficient for our purposes when p is odd but for p
even we need the following refinement.

Theorem 5.5. Let p be even and s be the spin structure on L
described in Theorem 5.2. Then

(5.2) Γ(ξ, s) ·D ≡
1

2
(−l + q) mod p.

Proof. We start by canceling the negative elliptic and positive
hyperbolic points in Dξ. Now the strategy of the proof is to start with
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the vector field w used in the proof of Theorem 5.4 and form another
vector field v ∈ ξ by coalescing the zeros of w into zeros of multiplicity
2. While constructing v from w we will be careful not to change w in a
neighborhood of Γ thus the spin structure induced in a neighborhood of
Γ by w and v will be the same. It is not hard to see that this structure
will not extend across a 2-handle attached to Γ with framing 0. Thus
the spin structure induced by v will be s and we can use v to compute
Γ(ξ, s). Assuming we can construct such a v then it should be clear
that

Γ(ξ, s) ·D ≡
1

2
(−l + q) mod p.

We now begin to construct v. On V0 notice that we have a map from
A×R2 −→ TL|V0 that sends A to A and {pt.}×R2 to ξ{image of pt.}.

We can thus pull w back to a section of (∂A)× R2. It is quite easy to
see (see the proof of Theorem 5.4 for the definition of w on A) that we
can extend this section over A to a vector field with exactly q−1

2
zeros

of multiplicity 2 and one zero of multiplicity 1. Now let v on A ⊂ L
be in image of this section. Thus v is a vector field in ξ that has q−1

2
multiplicity 2 zeros and a multiplicity 1 zero at x. Notice that we can
assume that w and v agree in a neighborhood of Γ. Moreover, we can
assume that x is connected by a leaf in the foliation to an elliptic point
e0 in ∆. The remaining elliptic points e1, . . . , en pair up with hyperbolic
points h1, . . . , hn, i.e. ei is connected to hi by a stable sepratrix on hi.

We must now see how to coalesce ei with hi for i = 1 . . . n and x
with e0. Let Ni be a neighborhood, in ∆, of the stable sepratrix of
hi that connects it to ei. We will see how to alter w in Ni so that it
has a single zero of multiplicity two in Ni and is unchanged near the
boundary. Thus v will be w on the complement of the Ni’s (and A)
and this new vector field on Ni. The neighborhood Ni can be broken
into three pieces: a neighborhood Ei of ei, a neighborhood Hi of hi
and N ′

i = Ni \ (Ei ∪ Hi) (see Figure 5.4). In Ei the contact planes

N'

EH
i

ii

i

i eh

Figure 5.4. The neighborhood Ni
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are almost tangent to the tangent planes of Ei. Thus we can choose a
nonzero vector field tangent to Ei as shown in Figure 5.4 and then tilt
them to lie in the contact planes, call the resulting vector field v. We
can do the same in Hi. Now over N ′

i the contact planes form a trivial
bundle. In addition, we have a trivialization given to us by the vector
field w (since it is nonzero in N ′

i). We already have v defined on part of
the boundary of N ′

i , on the rest of the boundary set v equal to w. As we
traverse the boundary of N ′

i , v will spin around twice as measured with
respects to w. Thus we can extend v over N ′

i so as to have precisely
one zero of multiplicity two. Finally, we can alter w in a neighborhood
of the leaf connecting e0 to x just as we did in the Ni’s. This completes
the construction of v on D. We can easily extend the to a vector field v
in a neighborhood of D with the requited properties. Thus we are left
to extend v over a 3-ball (= L(p, q) \ (neighborhood of D)). This is an
easy exercise we leave to the reader (be careful that the zeros continue
to have multiplicity two). �

This theorem tells us the type of singularities we can expect to
encounter in our proof of Theorem 5.2.

Corollary 5.6. For a contact structures ξ on L(p, q) satisfying
(1) or (2) of Theorem 5.2 we have

l = −1 + 2np.

Proof. Theorem 5.4 tells us that

l = −e(ξ)(D) + q +mp,

for some m. If our contact manifold satisfies (1) of Theorem 5.2 then
we clearly have

l = −(q + 1) + p+mp = −1 +mp.

Now since p is odd if m is not even then −1 + mp is even. This
contradicts Proposition 2.27 which implies that l must be odd. Thus
m is even and we may write

l = −1 + 2np,

as required. Now if our manifold satisfies (2) of Theorem 5.2 then
Theorem 5.5 tells us

l = −2Γ(ξ, s) ·D + q + 2np

= −2(
1

2
(q + 1)) + q + 2np = −1 + 2np.

�

This corollary indicates how we might try to prove Theorem 5.2.
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Corollary 5.7. Let ξ0 and ξ1 be two contact structures on L =
L(p, q) as in Theorem 5.2. If we can isotope D0 in (L, ξ0) and D1 in
(L, ξ1) so that l = −1 in both ξ0 and ξ1, then ξ0 is contactomorphic to
ξ1.

Proof. Since l = −1 in both cases we can use Theorem 2.29 to
make the characteristic foliation on Di quite simple, consisting of a
single positive elliptic point in ∆i with leaves leaving this point and
flowing to Γi. Given any map from D0 to D1 it is quite clear that
it can be isotoped to take (D0)ξ0 to (D1)ξ1 . This may of course be
realized by an ambient isotopy of L. Thus Theorem 5.3 tells us (L, ξ0)
and (L, ξ1) are contactomorphic. �

Thus we are left to try to simplify the characteristic foliation ∆ξ.

2. Simplifying the Characteristic Foliation

In this section we will see how to simplify the foliation on a gen-
eralized projective plane in a lens space L(p, q) with a tight oriented
contact structure ξ. As a warm up let us prove Corollary 2.15: there is
a unique tight contact structure on RP 3. As noted in Chapter 2 this is
an unpublished result of Eliashberg’s; we assume his proof is similar.

proof of Corollary 2.15. We may construct RP 3 by gluing
the 3-ball B3 to RP 2. Later we will show that for any tight contact
structure ξ on RP 3 we can arrange (after an isotopy) that the charac-
teristic foliation RP 2

ξ has one singular point (necessarily elliptic) and
no limit cycles. Assuming this for the moment, let ξ and ξ′ be two tight
contact structures on L and L′, two copies of RP 3. Isotope RP 2 in L
and L′ so that the characteristic foliation on RP 2 is as described above.
Clearly, one may construct a diffeomorphism from L to L′ which takes
RP 2 to RP 2 and RP 2

ξ to RP 2
ξ′. Lemma 2.20 will allow us to extend

our diffeomorphism to a contactomorphism from a neighborhood U of
RP 2 in L to a neighborhood U ′ of RP 2 in L′. Notice L \ U and L′ \ U ′

are both 3-balls, B and B′ respectively and the diffeomorphism from L
to L′ takes B to B′. Since the diffeomorphism is a contactomorphism
from U to U ′ we have (∂B)ξ mapped to (∂B′)ξ′. Thus by Theorem 2.14
we may isotope our diffeomorphism to a contactomorphism on all on
L, finishing the proof.

We now show that we can isotope RP 2 in (RP 3, ξ) as claimed above.
We can consider RP 3 as L(2, 1) so we decompose RP 3 as in the previous
section. That is: let D denote a projective plane in RP 3 and assume
that the 1-skeleton Γ of D is transverse to ξ. We can find a Heegaard
splitting RP 3 = V0 ∪ V1 with Γ the core curve in V0 and ∆ = D ∩ V1
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the meridional curve in V1. Finally, take V0 sufficiently small that
γ = ∂∆ is a transverse curve. Isotope ∆ so that it contains only
positive elliptic and negative hyperbolic points. Theorem 5.4 tells us
that l(γ) = −1 + 2n where n is necessarily a nonpositive integer.

First we claim that we can isotopeD so that n = 0 or−1. To do this
we notice that ∆ may be isotoped so that ∆ξ appears as in Figure 5.5
(this will be proved below in more generality, see Theorem 5.9). By

+ elliptic point

- hyperbolic point

∆ξ

Figure 5.5. Singularities on ∆

this we mean that the singularities in ∆ξ form a star with one positive
elliptic point in the center and |n| edges each with one negative hyper-
bolic point in the interior and one positive elliptic point at the end. By
following the flow of Dξ the boundary of ∆ is mapped two-to-one onto
Γ. Choosing a point x in Γ we can use this map to break γ = ∂∆ into
two arcs B0 and B1. Clearly, if n < −2 then there must be a hyper-
bolic point h with both of its unstable separatrices exiting ∆ through,
say B0. This is also true for n = −2; to see this label the hyperbolic
points h0 and h1. Traversing γ = ∂∆ in a counterclockwise direction
we encounter both the end points of the unstable separatrices of, say
h0, and then both of the ones from h1. Label these end points coming
from h0, h

f
0 or hs0 according to the order in which they are encountered

(f for first and s for second) and similarly for h1. We can choose the

point x in Γ so that one of its preimage points lies behind the point hf0
and hs1 does not lie between it and hf0 . Now it should be clear that if

hf0 and hs0 do not lie within one of the Bi’s then h
f
1 and hs1 must. Note

that the unstable separatrix of h separates an elliptic point e from the
rest of ∆. Now isotope part of Γ in D so that it lies on a subarc of B0

that contains the ends of the unstable separatrix of h (see Figure 5.6).
Then push a subarc B′ of Γ ∩B0 across the unstable separatrices of h
in ∆ as indicated in Figure 5.7. We have found a new transverse curve
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Γ

B0

B1

γ
h0 h0

f s

Figure 5.6. Isotopy of Γ

�Γ

eh

Γ'

Figure 5.7. Isotopy of Γ in ∆

Γ′ in D. Using Γ′ we can see a new decomposition of RP 3 = V ′
0 ∪ V

′
1

where Γ′ is the core of V ′
0 and D ∩ V ′

1 = ∆′. We now need to compare
∆′
ξ and ∆ξ. Notice ∆∩Γ′ separates ∆ into two parts ∆0 and ∆1 where

∆0 contains h and e. Moreover, ∆′ is just ∆1 ∪B′ ∆0 (see Figure 5.8).
Remember that we have not actually moved D so Dξ looks the “same,”

B0
B0B1

B1

-h
+e

+h
-e

∆1∆0

∆0
∆1

∆'∆

Figure 5.8. ∆ and ∆′
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i.e. has the same singularities (note D in nonorientable so there are
no signs on the singularities of Dξ). But the orientation ∆0 inherits
as a subset of ∆′ is opposite the orientation it inherits as a subset of
∆. Thus ∆′ has −n positive elliptic points, 1 negative elliptic point,
−n − 1 negative hyperbolic points and 1 positive hyperbolic point (h
and e changed sign since the orientation on ∆0 changed). We may now
cancel h with a positive elliptic point and e with a negative hyperbolic
point (see the proof of Theorem 2.29 for this), thus by Proposition 2.27

l = −(−n− 1)− (−n− 2) = −1 + 2(n+ 2).

Hence, repeating the above process as necessary, we can arrange that
n = 0 or −1 as claimed above.

If n = 0, then we are done since Dξ is as claimed above: one elliptic
point and no closed orbits. So we are left to deal with the n = −1 case.
We claim that this cannot occur in a tight contact structure on RP 3.
To see this suppose we have a tight contact structure with n = −1. So
there is precisely one negative hyperbolic point h in ∆ξ. If the unstable
separatrices of h both exit ∆ through, say, B0 then we may proceed as
in the previous paragraph to find a Γ′ and ∆′ so that γ′ = ∂∆′ is an
unknot with l > 0, contradicting the tightness of ξ (see Theorem 2.28).
Thus we may assume that each Bi has an unstable separatrix exiting
through it. If we follow one of the unstable separatrices of h through
Γ and back onto ∆ we see that it will have to end at an elliptic point e
(it cannot end back at h since we are assuming that Dξ is generic). It
is easy to see that the other unstable separatrix of h when it returns
to ∆ will also end at e (see Figure 5.9). By perturbing ∆ a little

B1

e
h

NB0

Figure 5.9. An impossible characteristic foliation

in a neighborhood of e we may assume that the unstable separatrices
of h hit e on opposite sides (as in Corollary 2.25). Now let N be a
neighborhood of one of the unstable separatrix of h (see Figure 5.9).
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Orienting N so that e is a positive elliptic point will make h a positive
hyperbolic point of Nξ since if the orientation of N agrees with that
of ∆ at e it must disagree with it at h. Thus we may cancel e with
h in N and both the unstable separatrix of h will remain part of the
characteristic foliation of D, i.e. they will form a closed orbit in Dξ.
This closed orbit bounds a disk in D contradicting the tightness of ξ.
Thus n is not equal to −1. �

Now let us see how we can generalize the above proof. As in the
previous section let D denote a generalized projective plane in L =
L(p, q). Further assume that the 1-skeleton Γ of D is transverse to
ξ. We can also find a Heegaard splitting L = V0 ∪ V1 with Γ the
core curve in V0 and ∆ = D ∩ V1 the meridional curve in V1. Finally,
take V0 sufficiently small that γ = ∂∆ is a transverse curve and the
characteristic foliation on A = D ∩ V0 contains no singularities.

Theorem 5.8. In the situation described above if l(γ) < −2p, then
we may isotope D to D′ so that D′ satisfies all the properties listed
above for D and l(γ′) = l(γ) + 2p.

First we need to understand what ∆ξ looks like. As always we
can use Theorem 2.29 to insure that ∆ξ has only positive elliptic and
negative hyperbolic points. By Proposition 2.27 we know that there are
k positive elliptic points and k− 1 hyperbolic points, for some positive
integer k. We can actually standardize ∆ξ even more:

Lemma 5.9. We may isotope ∆ so that the singularities of ∆ξ form
a star, that is the union of the singularities and stable separatrices
forms a graph with the vertices elliptic points, one hyperbolic point in
the interior of each edge, one k-valent vertex and k−1 univalent vertices
(see Figure 5.5).

Proof. We begin by defining the graph of singularities in ∆ξ to
be the union of singular points and stable separatrices in ∆ξ. We
will show that by a C0-small isotopy of ∆, supported away from the
boundary, that we can affect the graph of singularities in ∆ξ as shown
in Figure 5.10. Since the graph of singularities in ∆ξ must be a tree (if
there was a closed loop in the graph one of the unstable separatrices of
a hyperbolic point on the loop would have no place to go) a sequence
of these isotopies will clearly yield the conclusion of the lemma.

Now assume that part of the graph of singularities in ∆ξ is as shown
on the left hand side of Figure 5.10. Let D be a subdisk of ∆ that con-
tains all the singularities of ∆ξ and is disjoint from the boundary of ∆.
Lemma 2.22 tells us that ∆ is a convex disk and thus, by Lemma 2.21,
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Elliptic Singularity

Hyperbolic singularity

Figure 5.10. Change in Graph of Singularities.

has a neighborhood contactomorphic to ∆ × (−δ, δ) with a vertically
invariant (tight) contact structure on it. Note that this implies that
the characteristic foliation on D × {t} is diffeomorphic to Dξ for all
t ∈ (−δ, δ). We may now form the ball B = D × [−ǫ, ǫ], for some ǫ,
and sphere S = ∂B (to be precise we should smooth the corners on
S as discussed at the end of Section 2.3, but since this will not affect
the characteristic foliation, see Lemma 2.30, we will ignore this point).
To complete the proof we will find a disk D′′ in B with which we can
replace D in ∆, so that the new ∆ will have characteristic foliation
as indicated on the right side of Figure 5.10. To this end, let D′ be
a disk in (R3, dz + x dy) with the characteristic foliation indicated in
Figure 5.11 (it is not hard to construct such a disk). By Lemma 2.22,

Figure 5.11. Characteristic Foliation on D′.

D′ is a convex surface and thus there is a vertically invariant (tight)
contact structure ξ′ on D′×(−δ, δ) so that (D′×{t})ξ′ is diffeomorphic
to the characteristic foliation on D′ in R3, for all t ∈ (−δ, δ). Let B′ be
the ball D′ × [−ǫ′, ǫ′], for some ǫ′, and S ′ be the sphere ∂B′. Now by
choosing ǫ and ǫ′ correctly and isotoping S ′ to remove the separatrix
connections between hyperbolic points we can arrange that S and S ′

have identical characteristic foliations. Let ψ we a diffeomorphism from
B to B′ taking the characteristic foliation on S to the one on S ′. We
can, moreover, assume that ψ takes (∂D) × [−ǫ, ǫ] to (∂D′) × [−ǫ′, ǫ′]
in such a way that (∂D) × {t} is mapped to (∂D′) × {f(t)}, where
f : [−ǫ, ǫ] −→ [−ǫ′, ǫ′] is smooth and f(0) = 0. Now Theorem 2.14
tells us that ψ may be isotoped rel boundary into a contactomorphism
from B to B′. Set ∆′ = (∆\D)∪ψ−1(D′×{0}) (and smooth corners).
Notice that ∆′ is a C0-small isotopy of ∆ fixed near the boundary and
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the characteristic foliation on ∆′ is indicated in Figure 5.11. We can
clearly isotope ∆′ further so that the graph of singularities of ∆′

ξ is
as shown on the right hand side of Figure 5.10. Thus completing the
proof of our claim. �

Proof of Theorem 5.8. We first use Lemma 5.9 to arrange the
singularities of ∆ξ into a star. Since we are assuming that l < −2p
we know there are at least p edges (hyperbolic points) in the star. By
following the flow of the characteristic foliation on D there is a p-to-1
mapping from γ = ∂∆ to Γ. The inverse image of a point x in Γ will
break γ up into p arcs, B0, B1, . . . , Bp−1. We can also use the flow
on Aξ and x to break A into p rectangles A0, A1, . . . , Ap−1. As in the
proof of Corollary 2.15 we can assume, by properly choosing the point
in Γ, that there is a hyperbolic singularity h in ∆ξ whose unstable
separatrices have their end points contained in one of the Bi’s, say B0,
and separate exactly one elliptic point e from the rest of D.

We would now like to perform the same isotopy of Γ that we did in
the proof of Corollary 2.15. But in the present situation we will have to
isotope D as well, so the characteristic foliation on D will necessarily
change. To see how it will change we consider the isotopy one step at a
time. The first part of the isotopy is to ambiently isotope a piece of Γ in
A to a subarc of B0 containing the end points of the unstable separatrix
of h. To see the effect of this isotopy on the rest of A (hence D since
this isotopy can be supported arbitrarily close to V0) we will consider
our standard model U for V0 (see page 73). In this model, remember,
A will be the image of the “suspended cross” shown in Figure 5.12 (a)
when p = 4. In this model we can also take the point x in Γ to be

Γ

Γ

(a) V0 before isotopy (b) V0 after isotopy

Figure 5.12. Model for V0
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(0, 0, 0). The ambient isotopy of Γ takes A to A′, where A′ is shown in
Figure 5.12 (b). This isotopy clearly moves Γ through transverse knots
and A′ has no singularities (since the tangencies of A′ are “bounded
away from the horizontal” and the 2-planes in ξ are arbitrarily close
to horizontal planes). Thus our isotopy, so far, has not significantly
affected Dξ.

The next step in our isotopy is to push part of Γ∩B0 across the un-
stable separatrices of h. Note this is not an isotopy through transverse
knots, as the one above, but at the end of the isotopy Γ will again be a
transverse knot. To see what happens to the rest of D we will consider
the case when p = 3, the case for larger p being analogous. Near Γ∩B0

we have ∆ on one side of Γ and A1 and A2 fanning out behind Γ (see
Figure 5.13 (a)). We can assume that A1, say, meets Γ ∩ B0 so that

(b) A after the isotopy(a) A before the isotopy

A0 A0

A1 A1

A2
A2

Figure 5.13. A1 and A2 near Γ ∩ B0

A1 ∪ ∆ form a smooth surface and A2 is above A1. When we push
part of Γ ∩ B0 across the unstable separatrices of h we will transfer h
and e from ∆ to A1 as we did in the proof of Corollary 2.15. Now we
will have to drag part of A2 along with us through the isotopy (the
gray part in Figure 5.13), but notice that we can drag it so that it is
arbitrarily close to A1 (see Figure 5.13 (b)). Thus the characteristic
foliation on the part of A2 we dragged along is topologically equivalent
to the foliation just transferred onto A1, since Peixoto’s Theorem (see
[AP]) says that the foliation ∆ξ is structurally stable (all the fixed
points are hyperbolic (in the sense of dynamics), there are no periodic
orbits and no saddle points are connected by a leaf). In particular, this
means that we have added an elliptic and a hyperbolic singularity to
A2. After isotoping Γ we have a new transverse curve Γ′ and a new
generalized projective plane D′. Using Γ′ we also get a new Heegaard
decomposition L = V ′

0 ∪ V
′
1 where V ′

0 is a small tubular neighborhood
of Γ′. Let ∆′ = D′ ∩ V ′

2 and γ′ = ∂∆′.
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We now claim that l(γ′) = l(γ) + 2p. To see this let ∆0 be the
component of ∆ \ Γ′ that contains h and e. We can see that ∆′ will
essentially look like ∆ with ∆0 removed in one place and p−1 copies of
it glued on along subarcs of B1, . . . , Bp−1 (see Figure 5.14). Now just

B0
B0

B3

B2

B1

B2

B3

B1

+h

+h

+h

-h

-e -e

-e
+e

∆
∆'

Figure 5.14. ∆ and ∆′ when p = 4.

as in the proof of Corollary 2.15 the orientations on the copies of D0

in ∆′ will be opposite that of D0 in ∆. Thus ∆′
ξ has one less positive

elliptic and one less negative hyperbolic point than ∆ξ but has p − 1
more negative elliptic and positive hyperbolic points. Thus when we
cancel the negative elliptic and positive hyperbolic points from ∆′

ξ we
will have p fewer positive elliptic and negative hyperbolic point than
∆ξ had. Hence our claim follows from Proposition 2.27. �

We are now ready to finish the proof of our main result.

Proof of Theorem 5.2. Corollary 5.6 tells us that for the con-
tact structures we are interested in l(γ) = −1 + 2np2 where n is a
nonpositive integer. Theorem 5.8 insures that we can isotope D so
that l(γ) = −1. Thus Corollary 5.7 finishes the proof. �



CHAPTER 6

Symplectic Constructions in Dimension 4

In this chapter we will prove our main results about symplectic
manifolds and examine their consequences. We begin, in Section 1,
by determining when a rational blowdown and log-transform may be
done symplectically. In the last section we show that may irreducible
4-manifolds are symplectic and discuss the relation between irreducible
4-manifolds and symplectic 4-manifolds.

1. Rational Blowdowns and Symplectic Manifolds

We begin this section with the following result:

Theorem 6.1. Let (X,ω) be a symplectic 4-manifold. Suppose
there exists embedded spheres Σi in X, for i = 0, . . . , (p − 2), such
that Σ0 ·Σ0 = −(p+1), Σi ·Σi = −2, Σi−1 ·Σi = 1, for i = 1 . . . (p−2),
and all other intersections are 0 (see Figure 6.1). Let C(p) be a tubu-
lar neighborhood of the Σi’s. If C(p) may be chosen to have ω-convex
boundary and the Σi’s are either Lagrangian or symplectic spheres, then
the rational blowdown Xp has a symplectic structure on it.

From the proof below it is be clear that we may take the symplectic
structure on Xp \B(p) to be the same as the one on X \ C(p).

-(p+2) -2 -2 -2 -2

p-2

Figure 6.1. Graph of C(p)

Proof. By assumption we know that C(p) in X has ω-convex
boundary. Corollary 3.8, moreover, says thatB(p) has ω′-convex bound-
ary, where ω′ is the symplectic structure B(p) inherits from its Stein
structure. Thus Theorem 3.1 tells us that Xp will have a symplectic
structure if the contact structures induced on L(p2, p−1) as the convex
boundary of C(p) and B(p) are the same. But this is the content of
Theorem 5.1 �

88
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In specific examples it can be difficult to directly verify the hypoth-
esis that C(p) have ω-convex boundary. Lemma 3.3 and Theorem 3.5
help us find such C(p). For the convenience of the reader we restate
these results as:

Theorem 6.2. Let (X,ω) be a symplectic 4-manifold. Suppose
there exists embedded spheres Σi in X, for i = 0, . . . , (p− 2), such that
Σ0 ·Σ0 = −(p+1), Σi ·Σi = −2, Σi−1 ·Σi = 1, for i = 1 . . . (p−2), and
all other intersections are 0 (see Figure 6.1). If Σ0 is a symplectically
embedded sphere and either

i) Σi is Lagrangian for i = 1, . . . , (p− 2), or
ii) p = 3 and Σ1 is symplectically embedded,

then we may take C(p) to have an ω-convex boundary.

An immediate corollary of Theorems 6.1 and 6.2 is the following:

Corollary 6.3. Let (X,ω) be a symplectic 4-manifold containing
spheres Σ0, . . . ,Σp−2 along which X may be rationally blowdown. If Σ0

is symplectically embedded and the rest of the spheres are Lagrangian
or if p = 2 or 3 and all the spheres are symplectically embedded, then
Xp has a symplectic structure.

We would like to use this corollary to explore symplectic log trans-
forms. In order to relate rational blowdowns to log transforms we need
to be an a cusp neighborhood (see Proposition 2.33); moreover, if we
wish the log transform to be a symplectic operation we will need some
relation between the cusp and the symplectic structure. Recall a cusp
has a neighborhood that has an elliptic fibration over a disk with one
singular fiber, the cusp (see Figure 2.9). We may perturb the fibration
to obtain an elliptic fibration over the disk with two fishtail fibers, F1

and F2. A fishtail fiber is an immersed 2-sphere with one transverse
double point and self-intersection number 0. On F1, say, there is a
curve that bounds a disk D (the vanishing cycle for F2) and inside a
neighborhood N of F1 ∪D is a cusp. In fact, we can think of N as an
elliptic fibration over the disk with a single cusp C as the singular fiber
or with two fish tails, F1 and another, as the singular fibers. Thus N is
a cusp neighborhood. If N is in a symplectic manifold (X,ω) then we
will call N a symplectic cusp neighborhood if F1 is symplectic. We
will also say a cusp C is a symplectic cusp if it has a neighborhood
in which C may be perturbed into two fishtail fibers both of which
are symplectic. Clearly if (X,ω) contains a symplectic cusp then it
contains a symplectic cusp neighborhood.
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Theorem 6.4. Let (X,ω) be a symplectic 4-manifold that contains
a symplectic cusp neighborhood N . Then a p = 2 or 3 log transform on
a torus fiber in N yields a symplectic manifold X(p). Moreover, if C is
a symplectic cusp, then performing multiplicity 2 and 3 log transforms
on torus fibers in a neighborhood of C yields a symplectic manifold
X(2, 3).

Proof. Let F be the symplectic fishtail in N. If we blow up X at
the double point of F, then the proper transform of F is an embedded
symplectic 2-sphere with self-intersection number −4, see Figure 6.2. If

0 -4

-1

-5

-2

-1

Figure 6.2. The fiber F and its blow ups.

we blow up again (at the intersection of F and the exceptional divisor)
we will obtain two embedded symplectic 2-spheres realizing the config-
uration in Figure 6.1, see Figure 6.2. Thus, by Theorem 6.2, we can

realize C(2) in X#CP
2
or C(3) in X#2CP

2
with ω-convex bound-

ary. So the rational blowdown will be a symplectic manifold that is
diffeomorphic to to the p log-transform X(p), by Proposition 2.33.

If we have a symplectic cusp in X then there are two symplectic
fishtail fibers. After blowing up and rationally blowing down once, as
above, we will have a symplectic manifold X(3), say, that still contains
a symplectic fishtail fiber; moreover, it will still be in the neighborhood
of a cusp. Thus when we perform the second blow up and rational
blowdown we will get a symplectic manifold diffeomorphic to X(2, 3).
�

2. Examples of Symplectic 4-Manifolds

In this section we would like to return to the question of symplectic
structures on the irreducible 4-manifolds constructed in Section 4.3.
We begin with the Gompf–Mrowka examples.

Theorem 6.5. If pi, qi are relatively prime numbers for i = 1, . . . , 3
and p3 and q3 are in the set {1, 2, 3}, then the manifold E ′(2; p1, q1; p2, q2; p3, q3)
supports a symplectic structure.

Proof. As mentioned in Section 4.3 the manifold E ′(2; p1, q1; p2, q2; p3, q3)
has a symplectic structure on it if p3 = q3 = 1. Thus we need to see
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that the cusp neighborhood N3 on which the p3 and q3 log-transforms
are performed is in fact a symplectic cusp neighborhood. There are
several ways to do this. The simplest is to notice that N3 is a cusp
neighborhood in a (complex) elliptic fibration of K ′(2) (see [GM]),
thus is a symplectic cusp. �

Next recall that E(n) contains two disjoint copies of C(n− 2). It is
clear from the construction in Section 4.3 that the spheres in C(n− 2)
are actually symplectic spheres. Moreover E(4) contains nine copies
of C(2) containing symplectic spheres and E(5) contains four copies of
C(3) in which all of the spheres are symplectic. Thus Ei(4) and Ej(5)
all have symplectic structures for i = 1, . . . , 9 and j = 1, . . . , 4.

We would like to end by saying that these results should apply to
many other 4-manifolds. In particular, we think that they will apply
to most of the manifolds studied in [FS1]. In a future paper we will
consider when symplectic cusps may be found in these and other 4-
manifolds.
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