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ABSTRACT. In this note we will determine which contact structures on manifolds ob-
tained by certain surgeries on the right handed trefoil are Stein fillable and which are not.
This continues a long line of research and shows that there seems to be few underlying
patterns to when a contact structure is Stein fillable or not.

1. INTRODUCTION

There has been a long history of trying to understand the symplectic fillability of con-
tact 3-manifolds and in particular the distinction between different types of fillability. In
this paper we will focus on the distinction between Stein fillability and exact fillability
as opposed to strong fillability, see Section 4.1 for definitions. From the definition it is
clear that a Stein fillable contact structure is exactly fillable, and an exactly fillable contact
structure is strongly fillable. Though we do not address these issues here it is also true
that a strongly fillable contact structure is weakly fillable and that a weakly fillable con-
tact structure is tight. It is known that none of the reverse implications is true, [2, 6, 9, 13].

While there has been some work about the distinctions between the types of fillability
on hyperbolic 3-manifolds [4, 19, 21], the original examples showing the types of filla-
bility were distinct were on Seifert fibered spaces (or their connect sums). In addition,
we know quite a bit about the types of fillability of small Seifert fibered spaces. Recall
these are Seifert fibered spaces with base 𝑆2 and three singular fibers, and they have an
important integer valued invariant denoted by 𝑒0. We have a complete classification of
contact structures on small Seifert fibered spaces with 𝑒0 ≠ −2,−1, [14, 26], and all of
them are Stein fillable. In fact, any minimal symplectic filling of them is Stein since they
are supported by planar open books [7]. So much of the interesting behavior mentioned
above occurs on small Seifert fibered spaces with 𝑒0 = −1. In fact, we can already see such
results on small Seifert fibered spaces obtained by Dehn surgery on the right handed tre-
foil with surgery coefficient less than 5. For example, in [22], Lisca and Stipsicz showed
that when the surgery coefficient is between 1 and 4, one has tight contact structures and
none of them are fillable in any sense. And in [13, 15] Ghiggini and Van Horn-Morris
showed that when the surgery coefficient is 1/𝑛, all tight contact structures are strongly
fillable, and some are not exactly fillable, while others are Stein fillable. From their work
and work of Min in [23] one might expect a pattern to from as to when contact structures
on manifolds obtained by 𝑟 ∈ (0, 1) surgery on the right handed trefoil are exactly fillable
and when they are not. This paper continues this investigation and shows that there are
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few patterns and understanding which contact structures are Stein fillable and which are
not, is a very difficult question.

We now go into detail about the work of Ghiggini and Van Horn-Morris in [15]. There
they classified contact structures on −Σ(2, 3, 6𝑛+5), the manifold obtained from 1/(𝑛+1)
surgery on the right handed trefoil. They showed that −Σ(2, 3, 6𝑛 + 5) had exactly 𝑛(𝑛 +
1)/2 tight contact structures. They can naturally be arranged in a triangle as in Figure 1.
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FIGURE 1. Triangle representing tight contact structures on −Σ(2, 3, 41).

More specifically, they break into a group of 𝑛 structures {𝜉1
𝑛−1 , . . . , 𝜉

1
1 , 𝜉

1
0}, 𝑛−1 struc-

tures {𝜉2
𝑛−2. . . . , 𝜉

2
0}, all the way down to a group with only one structure {𝜉𝑛0 }. (We are

using different notation than is found in [15] as this fits better in our discussion below.)
They, moreover, showed that the contact structures in the bottom row were all Stein fill-
able and the one at the top was not Stein fillable (in fact, not even exactly fillable). They
conjectured that all the other rows were not exactly fillable either. It is known that all of
these contact structures are strongly fillable.

Recently, Min [23] showed that the contact structures on the interior of the triangle are
not exactly fillable; that is, there are (𝑛 − 2)(𝑛 − 3)/2, for 𝑛 ≥ 3, contact structures that
are known not to be exactly fillable. In general, we do not know the fillability status of
the other 2(𝑛 − 2) contact structures on the right and left edges of the triangle. However,
in upcoming work of Min, Tosun, and the first author [18], it will be shown that on
−Σ(2, 3, 23) all the contact structures, except the one at the top of the triangle are Stein
fillable.

Generalizing the story above, we define 𝑆3
𝑇
(𝑟) to be the result of 𝑟-Dehn surgery on the

right handed trefoil 𝑇. In the upcoming work of Min, Tosun, and the first author [18], the
contact structures on 𝑆3

𝑇
(𝑟) will be classified (and more generally, on manifolds obtained

by surgery on other torus knots). The classification for 𝑟 ∈ (0, 1/2) looks significantly
different than for other values of 𝑟. To state their result let

Φ(𝑟) = (𝑎1 − 1) · · · (𝑎𝑛 − 1)
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where 1/𝑟 = [𝑎0 , 𝑎1 , . . . , 𝑎𝑛]. This will be the number of tight contact structures on a solid
torus with meridional slope 𝑟 and dividing slope 1/𝑛, where 𝑛 is the largest integer such
that 1/𝑛 is bigger than 𝑟.

Theorem 1.1 (Etnyre, Min, and Tosun). For a rational number 𝑟 ∈ [1/(𝑛 + 1), 1/𝑛) the 3-
manifold 𝑆3

𝑇
(𝑟) has exactly

𝑛(𝑛 + 1)
2

Φ(𝑟)

tight contact structures up to isotopy.

Notice that, just as for the case of −Σ(2, 3, 6𝑛 + 5) above, these contact structures can
be arranged in a triangle, but each vertex in the triangle corresponds to Φ(𝑟) contact
structures. More specifically, we can denote the contact structure 𝜉𝑘

𝑙,𝑃
were 𝑘 and 𝑙 are

as above, and 𝑃 is a parameter that takes on Φ(𝑟) possible states. If 𝑟 ∈ [1/(𝑛 + 1), 1/𝑛),
then we say a contact structure 𝜉𝑘

𝑙,𝑃
is on the interior of the triangle if 𝑘 = 2, . . . , 𝑛 − 1 and

𝑙 = 1, . . . , 𝑛 − 𝑘 − 1, at the top of the triangle if 𝑘 = 𝑛, at the base of the triange if 𝑘 = 1, and
on the vertical sides of the triangle otherwise (that is if 𝑘 = 2, . . . , 𝑛 − 1 and 𝑙 = 0 or 𝑛 − 𝑘).
This will be discussed more thoroughly in Section 3.

One might expect that the fillability of the contact structures on 𝑆3
𝑇
(𝑟) would follow a

similar pattern to those on −Σ(2, 3, 6𝑛 + 5) = 𝑆3
𝑇
(1/(𝑛 + 1)). It is easy to see that the ones

in the bottom row are Stein fillable and Min’s result extends to show that the ones on the
interior of the triangle are non-exactly fillable. So one might ask if the ones at the top of
the triangle are not exactly fillable. Our first main result says that this is not the case for
all 𝑟.

Theorem 1.2. If 𝑛 > 3 and

𝑟 ∈
[

2𝑛 − 1
2𝑛2

,
2

2𝑛 + 1

)
then 𝑆3

𝑇
(𝑟) has

𝑛(𝑛 + 1)
2

Φ(𝑟)

tight contact structures,

• (2𝑛 − 1)Φ(𝑟) are Stein fillable (these are the contact structures at the base, top and half
the structures at along the vertical sides of the triangle),

• (𝑛−3)(𝑛−2)
2 Φ(𝑟) are strongly fillable, but not exact, or Stein, fillable (these are the ones in

the interior of the triangle), and
• (𝑛−2)Φ(𝑟) that are strongly fillable, but we do not know if they are Stein fillable (these are

half of the structures along the vertical sides of the triangel). These later contact structures
are Stein fillable if and only if the contact structures at the same place on the triangle for
−Σ(2, 3, 6𝑛 + 5) are Stein fillable.

For 𝑛 = 2 or 3 all the contact structures are Stein fillable.
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We now observe that the top of the triangle can admit both Stein fillable and non-Stein
fillable contact structures.

Theorem 1.3. For

𝑟 ∈
[

9
25
,

4
11

)
the manifold 𝑆3

𝑇
(𝑟) has 3Φ(𝑟) tight contact structures of which (2Φ(𝑟) + 2) are Stein fillable and

(Φ(𝑟) − 2) are strongly symplectically fillable, but not exactly symplectically fillable.

We note that 𝑟 in this theorem is in (1/3, 1/2) and the proof will show that the contact
structure that are not Stein fillable are all at the top of the triangle, but two at the top are
Stein fillable.

Theorem 1.4. For

𝑟 ∈
[

13
49
,

4
15

)
the manifold 𝑆3

𝑇
(𝑟) has 6Φ(𝑟) tight contact structures of which (5Φ(𝑟) + 2) are Stein fillable and

(Φ(𝑟) − 2) are strongly symplectically fillable, but not exactly symplectically fillable.

We note that 𝑟 in this theorem is in (1/4, 1/3) and the proof will show that all the contact
structures are Stein fillable, except for (Φ(𝑟) − 2) at the top of the triangle.

We also note that the last two theorems give a complete classification of the types of
fillings that a tight contact structure can have. Apart from the result of Min, Tosun, and
the first author on −Σ(2, 3, 23) mentioned above, this is the first such classification of
types of fillings of 𝑟 surgery on the right handed trefoil when 𝑟 ∈ (0, 1/2), which is the
region where the most interesting things can happen.

The main techniques used to prove the above theorems are surgeries on cables and
decomposing fillings using mixed tori. More specifically, in [1], Baldwin and the first
author introduced the notion that surgery on a Legendrian cable of a knot can sometimes
be interpreted as surgery on the underlying knot too, and in [18], Min, Tosun, and the first
author showed that this sometimes produce Stein fillings when one could not produce
such fillings using the original knot. This is how we construct most of our Stein fillings
in our theorems above. To rule out Stein, or exact, fillings we use work of Christian and
Menke [3]. In that work they show that given an exact filling of a contact manifold with a
special torus in it, one can “split" the filling into fillings of other contact manifold, which
in some cases do not admit exactly fillings.

We assume the reader is familiar with basic results in contact and symplectic geometry.
In Section 2, we will review various results, and fix notation about Dehn surgery, surgery
on cables, the classification of contact structures on solid tori, and contact surgery. In
particular, we prove a results from [1, 18] about Legendrian surgery on cables of knots
that is the key to the theorems above. In Section 3, we discuss details about, Theorem 1.1,
the classification of tight contact structures on surgeries on the right handed trefoil. Then
in Section 4, we recall the notions of symplectic fillability that are of interest to us in this
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paper and recall the theorem of Christian and Menke [3]. In the last two sections of the
paper we prove Theorem 1.2 and Theorems 1.3 and 1.4, respectively.
Acknowledgments: The first author was partially supported by National Science Foun-
dation grants DMS-1906414 and DMS-2203312. The second author was partially sup-
ported by TÜBİTAK, the Scientific and Technological Research Council of TURKEY. Both
authors were also partially supported by the Georgia Institute of Technology’s Elaine M.
Hubbard Distinguished Faculty Award.

2. CONTACT STRUCTURES ON SOLID TORI AND SURGERY ON CABLED KNOTS.

In this section we will discuss smooth surgeries and contact surgeries. Specifically
we set up the notation for smooth surgeries on knots and discuss surgeries on cabled
knots in Section 2.1. In Section 2.4 we discuss contact surgery and for this discussion we
need to review the classification of tight contact structures on solid tori which is done in
Section 2.3 after discussing the Farey graph in Section 2.2

2.1. Dehn surgery and surgery on cables. Let 𝐾 be a knot in 𝑆3 and 𝜈(𝐾) � 𝑆1×𝑆2 be the
tubular neighborhood of 𝐾 in 𝑆3. We denote the complement of the interior of 𝜈(𝐾) by
𝑆3
𝐾

. There is a unique curve 𝜇 on 𝜕𝜈(𝐾) that bounds a disk in 𝜈(𝐾). Any other embedded
curve 𝜆 in 𝜕𝜈(𝐾) that intersects 𝜇 transversely one time is called a longitude for 𝐾 and
determines a framing. We will use (𝜆, 𝜇) as a basis for the homology 𝐻1(𝜕𝜈(𝐾)), so every
element in the homology group can be expressed as a pair of integers (𝑎, 𝑏). It is well-
known that the homology class can be represented by an embedded curve on the torus if
and only if 𝑎 and 𝑏 are relatively prime. For relatively prime pairs (𝑎, 𝑏) we can represent
them as an element 𝑏/𝑎 in the rational numbers union infinity. So an element of ℚ∪ {∞}
specifies a unique simple closed curve on the torus 𝜕𝜈(𝐾). We call 𝑏/𝑎 the slope of the
embedded curve.

When 𝐾 is in 𝑆3 one has the Seifert framing, that is a curve 𝜆 on 𝜕𝜈(𝐾) that is null-
homologous in 𝑆3

𝐾
. If not otherwise specified, we will always use this Seifert framing

when discussing Dehn surgery.
We denote by 𝑆3

𝐾
(𝑝/𝑞) the manifold obtained from 𝑆3

𝐾
by gluing a solid torus 𝑆1 × 𝐷2

via a diffeomorphism 𝜑 : 𝜕
(
𝑆1 × 𝐷2) → 𝜕𝑆3

𝐾
that send the curve {𝑝𝑡} × 𝜕𝐷2 to the 𝑝/𝑞

curve on 𝜕𝑆3
𝐾

. We say 𝑆3
𝐾
(𝑝/𝑞) is obtained from 𝑆3 by 𝑝/𝑞 Dehn surgery on 𝐾.

We will give a different interpretation of Dehn surgery that will be useful for our con-
structions. Consider 𝑇2 × [0, 1]. We can foliate 𝑇2 × {0} by curves of slope 𝑟 ∈ ℚ ∪ {∞}
(here we have fixed a basis for 𝐻1(𝑇2) so that we can relate simple closed curves on 𝑇2

to rational numbers (union infinity) as above). Let 𝑆𝑟 be the quotient space of 𝑇2 × [0, 1]
with each leaf of the slope 𝑟 foliation on 𝑇2 × {0} collapsed to a point. It is clear that 𝑆𝑟 is
a solid torus and the meridian in the solid torus has slope 𝑟 (with respect to to the given
basis). Now we can think of 𝑆3 as 𝑆3

𝐾
∪ 𝜈(𝐾) where 𝜈(𝐾) is 𝑆∞ in the 𝜆, 𝜇 basis. So 𝑆3

𝐾
(𝑟)

is simply 𝑆3
𝐾
∪ 𝑆𝑟 . So instead of gluing a fixed 𝑆1 × 𝐷2 to 𝑆3

𝐾
via a diffeomorphism of the
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boundary, we just replace 𝑆∞ with 𝑆𝑟 (where the boundaries are glued by the identity
map).

Expanding on the construction above, we can also define 𝑆𝑟 to be the quotient space
of 𝑇2 × [0, 1] with each leaf of the slope 𝑟 foliation on 𝑇2 × {1} collapsed to a point. This
is also clearly a solid torus. We say 𝑆𝑟 is a solid torus with upper meridian 𝑟 and when
necessary, for emphasis, we say 𝑆𝑟 is a solid torus with lower meridian 𝑟.

Given a knot 𝐾 and a tubular neighborhood 𝜈(𝐾), then we define the (p,q)-cable of 𝐾 to
be the knot, denoted 𝐾𝑝,𝑞 , given by a slope 𝑞/𝑝 curve on 𝜕𝜈(𝐾). Our results will crucially
rely on the following result.

Lemma 2.1. The following manifolds are diffeomorphic

𝑆3
𝐾

(
𝑝𝑞 ± 1
𝑝2

)
� 𝑆3

𝐾𝑝,𝑞
(𝜆𝑇 ± 1)

where the surgery coefficient 𝜆𝑇 ± 1 means one more or one less than the framing 𝜆𝑇 of 𝐾𝑝,𝑞
coming from the torus that contains 𝐾𝑝,𝑞 .

This is well-known, but we give the simple proof as we will need the details in our
construction.

Proof. Recall that if Σ is a surface in a 3-manifold 𝑀 and 𝛾 is a curve on Σ, then cutting
𝑀 along Σ and re-gluing by a 𝜏±𝛾 (where 𝜏𝛾 is a right handed Dehn twist about 𝛾) results
in the manifold 𝑀𝛾(𝜆Σ ∓ 1), where 𝜆Σ is the framing of 𝛾 induced by Σ, [24]. Thus
𝑆3
𝐾𝑝,𝑞

(𝜆𝑇±1) is diffeomorphic to the result of cutting 𝑆3 along 𝜕𝜈(𝐾) and re-gluing the solid

torus by 𝜏∓
𝐾𝑝.𝑞

. One may easily compute that the meridian of 𝜈(𝐾) maps to ±𝑝2𝜆+(1±𝑝𝑞)𝜇
under this diffeomorphism. So we are removing 𝜈(𝐾) from 𝑆3 and gluing it back in so
that the meridian goes to the (𝑝𝑞 ± 1)/𝑝2 curve, in other words we are doing (𝑝𝑞 ± 1)/𝑝2

Dehn surgery on 𝐾. □

Remark 2.2. Below it will be helpful to know the diffeomorphism used in the proof above.
That re-gluing map is (

1 ∓ 𝑝𝑞 ±𝑝2

∓𝑞2 1 ± 𝑝𝑞

)
.

2.2. The Farey graph. To discuss contact structures on thicken tori and solid tori, we
will need a convenient way to describe curves on a torus. We will do this with the Farey
graph. The Farey graph lives in the unit disk in ℝ2 and we consider the hyperbolic metric
on the interior of the disk. To construct the Farey graph we first label the point (0, 1) by
0 = 0

1 and (0,−1) by ∞ = 1
0 . We now define the Farey sum of to fractions as follows:

𝑎
𝑏
⊕ 𝑐

𝑑
= 𝑎+𝑐

𝑏+𝑑 . Now considering points on the boundary of the unit disk with 𝑥-coordinate
positive, if a point is half way between two labeled points 𝑟 and 𝑠 , then label it with the
Farey sum of the two points 𝑟 ⊕ 𝑠 and then connect the new point to the two old points
with hyperbolic geodesics. Iterate this process until all positive rational numbers are
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labeled. We now do the same thing for points on the boundary of the disk with negative
𝑥-coordinate except now we take ∞ = −1

0 . See Figure 2.

∞

0

−1 1

−2 2

−1/2 1/2

−1/3 1/3

−2/3 2/3

−3/2 3/2

−3 3

FIGURE 2. The Farey graph.

We now discuss some notation that will be used below. Given two rational numbers
𝑟0 and 𝑟1 we will denote by the interval (𝑟0 , 𝑟1) all the rational numbers that are strictly
clockwise of 𝑟0 and strictly anti-clockwise of 𝑟1. We can similarly define [𝑟0 , 𝑟1] by remov-
ing “strictly" from the previous definition. We will also write 𝑟0 ⊕ 𝑛𝑟1 to be the result of
Farey summing 𝑟1, 𝑛 times to 𝑟0.

2.3. Contact structures on thickened and solid tori. Here we review the classification
of tight contact structures on thickened tori and solid torus [16, 17], following [17]. We
assume the reader is familiar with the basic terminology about convex surfaces as given
in [8, 17], though we note that our slope conventions are the reciprocal of their’s, this is
to better agree with topologist’s slope conventions.

When considering the manifold 𝑇2 × [0, 1] we will denote 𝑇2 × {𝑖} by 𝑇𝑖 . Given a tight
contact structure on 𝑇2 × [0, 1] with convex boundary and 𝑇𝑖 having dividing slope 𝑠𝑖 ,
we say the contact structure is minimally twisting if any convex torus in 𝑇2 × [0, 1] that is
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isotopic to a boundary torus, has dividing slope clockwise of 𝑠0 and anti-clockwise of 𝑠1

in the Farey graph. We denote by Tight𝑚(𝑇2 × [0, 1], 𝑠0 , 𝑠1) the set of isotopy classes of
tight, minimally twisting contact structures on 𝑇2 × [0, 1] with convex boundary having
two dividing curves each and dividing slopes 𝑠0 on 𝑇0 and 𝑠1 on 𝑇1. Honda [17] and
Giroux [16] classified the contact structures in Tight𝑚(𝑇2 × [0, 1], 𝑠0 , 𝑠1), but we will only
need to consider the case when 𝑠0 and 𝑠1 are connected by an edge in the Farey graph.
In this case Tight𝑚(𝑇2 × [0, 1], 𝑠0 , 𝑠1) has exactly two elements. These elements are called
basic slices and are determined by a sign on the edge (this corresponds to the sign of the
relative Euler class of the contact structure, but we will not need this), so we call one a
positive basic slice and the other a negative basic slice.

Recall in the previous subsection we defined the solid torus 𝑆𝑟 with lower meridian 𝑟
and the solid torus 𝑆𝑟 with upper meridian 𝑟. We would now like to give the classification
of tight contact structures on these tori. We let Tight(𝑆𝑟 , 𝑠) be the isotopy classes of tight
contact structures on 𝑆𝑟 with convex boundary having two dividing curves of slope 𝑠.
Notice that when there is an edge between 𝑠 and 𝑟 in the Farey graph, then one of the
dividing curves on 𝜕𝑆𝑟 is a longitude for 𝑆𝑟 and a theorem of Kanda [20] says that there
is a unique tight contact structure on 𝑆𝑟 with these boundary conditions.

More generally, let 𝑃 be a minimal path in the Farey graph starting at 𝑟 and moving
clockwise to 𝑠. An assignment of signs to each edge in 𝑃, except the first edge, is called
a decorated path. A subset of a path 𝑃 of length 𝑛 is called a continued fraction block,
if, after a change of coordinates on 𝑇2, it is the path −𝑛,−𝑛 + 1, . . . ,−1, 0. We say two
decorations of a path 𝑃 differ by shuffling in continued fraction blocks if they have the same
number of + signs (and hence − signs) in each continued fraction block. Shuffling in
continued fraction blocks gives an equivalence relation on decorated paths.

Theorem 2.3. The elements in Tight(𝑆𝑟 , 𝑠) are in one-to-one correspondence with equivalence
classes of decorated paths in the Farey graph from 𝑟 clockwise to 𝑠.

We note here that a non-minimal decorated path from 𝑟 to 𝑠 will also define a contact
structure on 𝑆𝑟 . We say a non-minimal path can be shortened if two adjacent edges can be
removed and replaced with a single edge. We say a decorated path can be consistently
shortened if the two edges being replaced have the same sign, and the shortened path
will then have the new edge with the sign of the two removed edges. If one of the edges
has no sign (that is the one with one vertex the meridional slope) then we can shorten
and the new edge will not have a sign either. A contact structure on a solid torus given
by a non-minimal path is tight if and only if it can be consistently shortened to a minimal
path. We note one can reverse this process and take a minimal decorated path and split
some of the edges in to several edges and then new edges will have the same sign as the
original edge. This gives the same contact structure but described with a longer path. We
in particular note that given any slope 𝑡 ∈ (𝑟, 𝑠) we can lengthen the path describing a
tight contact structure on 𝑆𝑟 to go through 𝑡.
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We have the same discussion for Tight(𝑆𝑟 , 𝑠) except we will be considering minimal
paths from 𝑟 anti-clockwise to 𝑠 and again the first edge will not be decorated.

An important part of the classification that will be useful for us below is that given a
contact structure in Tight(𝑆𝑟 , 𝑠) and 𝑡 ∈ (𝑟, 𝑠), there is a convex torus 𝑇𝑡 in 𝑆𝑟 parallel to
the boundary such that 𝑇𝑡 is convex with two dividing curves of slope 𝑡. See [17].

2.4. Contact Surgery. Given a Legendrian knot 𝐿 in a contact manifold (𝑀, 𝜉), let 𝑁 be
a standard neighborhood of 𝐿. Namely, 𝑁 is a solid torus neighborhood of 𝐿 on which
the contact structure is tight and the boundary of 𝑁 is convex with two dividing curves
whose slope is given by the contact framing on 𝐿. In the notation of the previous section,
when 𝐿 is null-homologous, using standard coordinates on 𝜕𝑁 , we see that the contact
structure on 𝑁 is the unique one in Tight(𝑆∞ , tb(𝐿)). We will denote 𝑁 by 𝑆∞ to empha-
size that the meridian has slope ∞. (Recall our notation for solid tori from Section 2.1.) It
will be useful to note below that if 𝑁± is a standard neighborhood of the ± stabilization
of 𝐿 inside of 𝑁 , then 𝑁 \ 𝑁± will be a ± basic slice.

Contact (𝑟)-surgery on 𝐿 is the result of removing 𝑆∞ from 𝑀 and replacing it with
𝑆tb(𝐿)+𝑟 on which we take any contact structure in Tight(𝑆tb(𝐿)+𝑟 , tb(𝐿)). We note that this
does not produce a unique contact structure on the manifold 𝑀𝐿(tb(𝐿) + 𝑟), but when
𝑟 = 1/𝑛 it does produce a unique contact structure. When 𝑟 = −1 we call this surgery
operation Legendrian surgery on 𝐿. In [5], it was shown that for 𝑟 < 0, contact (𝑟)-surgery
on 𝐿 can be achieved by a sequence of Legendrian surgeries on copies of stabilization of
𝐿 (and all of these can be done inside the standard neighborhood of 𝐿). Since it is known
that Legendrian surgery preserves tightness [25] and all forms of fillability [10], the same
is true for contact (𝑟)-surgery for all 𝑟 < 0.

It will be useful to reinterpret the above result using coordinates on the neighborhood
of the torus that are not “standard". Given a Legendrian knot 𝐿 it will always have a
standard neighborhood, but if different coordinates are chosen on the boundary of the
neighborhood, then the meridional slope could be any slope 𝑟. So we will denote this
neighborhood by 𝑆𝑟 . The contact structure gives 𝐿 a framing and that determines the
slope of the dividing curves on 𝜕𝑆𝑟 . Since the framing corresponds to a longitude in the
torus (that is a curve that intersects the meridian one time), that slope 𝑠 must have an edge
to 𝑟 in the Farey graph. (Notice we could change coordinates on the neighborhood so that
the meridional slope was ∞ and the contact framing was an integer.) Now Legendrian
surgery on 𝐿 is the result of removing 𝑆𝑟 from 𝑀 and gluing in 𝑆𝑟⊕𝑠 on which there
is a unique tight structure. More generally, for any 𝑡 ∈ (𝑟, 𝑠) contact (𝑡)-surgery on 𝐿

corresponds to a sequence of Legendrian surgeries as discussed above.
We end this section by considering Legendrian surgeries on certain cables.

Lemma 2.4. Let given a contact structure 𝜉 ∈ Tight(𝑆𝑠/𝑟 , 𝑡) on the solid torus 𝑆𝑠/𝑟 . Let 𝑞/𝑝 be
any slope in (𝑠/𝑟, 𝑡). Recall that 𝜉 is determined by a decorated minimal path from 𝑠/𝑟 clockwise
to 𝑡 in the Farey graph. As discussed after Theorem 2.3, we can lengthen the path so that it goes
through 𝑞/𝑝. Denote 𝑃1 the path from 𝑠/𝑟 clockwise to 𝑞/𝑝 and 𝑃2 the path from 𝑞/𝑝 clockwise
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to 𝑡. Let 𝐿 be a Legendrian divide on the convex torus 𝑇 of slope 𝑞/𝑝. The result of Legendrian
surgery on 𝐿 is the tight contact structure in Tight(𝑆(𝑞2𝑟+(1−𝑝𝑞)𝑠)/((1+𝑝𝑞)𝑟−𝑝2𝑠) , 𝑡) given by the
union of the paths 𝑃1‘ ∪ 𝑃2, where 𝑃1‘ is obtained from 𝑃1 by applying the diffeomorphism of 𝑇2

given in Remark 2.2.

Proof. Notice that we can take a neighborhood 𝑁 = 𝑇2 × [−1, 1] of 𝑇 so that 𝑇 is 𝑇2 × {0}
and the contact structure is invariant in the [−1, 1] direction. The complement of the in-
terior of 𝑁 consists of two pieces, a solid torus 𝑆 and a thickened torus 𝐴. Also note that
the contact structure on 𝑆 is given by 𝑃1. Any tight contact structure on a solid torus em-
beds in a tight contact structure on some lens space, and so Legendrian surgery on 𝐿 can
be thought to take place in this tight lens space. Hence the contact structure we obtained
on 𝑆𝑠/𝑟 after Legendrian surgery on 𝐿 is tight. In particular, the contact structure on 𝑁 is
tight after surgery on 𝐿. Notice that the dividing curves on both boundary components
of 𝑁 still have slope 𝑞/𝑝 (since the diffeomorphism in Remark 2.2 fixes the slope 𝑞/𝑝).
Moreover, the contact structure on 𝑁 after surgery must be minimally twisting since if
not, the contact structure on the lens space would be overtwisted. Thus, we see that the
contact structure on 𝑁 after surgery on 𝐿 is still an [−1, 1]-invariant contact structure on
𝑁 . The surgery on 𝐿 does not affect the contact structure on 𝐴 and it does not affect the
contact structure on 𝑆 however 𝑆 is re-glued, as discussed in the proof of Lemma 2.1, by
the diffeomorphisms of it boundary given by the matrix in Remark 2.2. From this we see
the tight contact structure on 𝑆 is given by 𝑃′

1 and the lemma follows. □

3. TIGHT CONTACT STRUCTURES AND SURGERIES ON THE TREFOIL

In the upcoming work [18], Min, Tosun and the first author will classify tight contact
structures on manifolds obtained by surgery on torus knots in 𝑆3. Here we will discuss
this classification for surgeries on the right handed trefoil 𝐾 with surgery coefficient in
(0, 1). To do this, we must first recall work of LaFountain, Tosun, and the first author,
[11]. To state that result we recall that 𝑆3

𝑇
denotes the complement of a neighborhood of

the trefoil 𝑇.

Theorem 3.1. For all 𝑛 ≥ 1 there exist a unique tight contact structure 𝜉𝑛 on 𝑆3
𝑇

with convex
boundary with two dividing curves of slope 1

𝑛 such that

(1) (𝑆3
𝑇
, 𝜉𝑛) embedded in tight (𝑆3 , 𝜉𝑠𝑡𝑑), and

(2) any convex torus in
(
𝑆3
𝑇
, 𝜉𝑛

)
parallel to the boundary has dividing slope 1

𝑛 .

If 𝑛 > 1 then the solid tori 𝑆±𝑛 with the contact structure given by the path in the Farey graph from
∞ clockwise to 1/𝑛 with a ± on the edge from 0 to 1/𝑛 can be glued to (𝑆3

𝑇
, 𝜉𝑛) to get (𝑆3 , 𝜉𝑠𝑡𝑑)

(that is there are two ways of embedding (𝑆3
𝑇
, 𝜉𝑛) in (𝑆3 , 𝜉𝑠𝑡𝑑)). For 𝑛 = 1 there is a unique way

of embedding (𝑆3
𝑇
, 𝜉1) whose complement is the solid torus 𝑆1 with contact structure given by the

path in the Farey graph from ∞ clockwise to 1.

We can now state the classification of contact structures on 𝑆3
𝑇
(𝑟) for 𝑟 ∈ (0, 1).
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Theorem 3.2. Given 𝑟 ∈ (0, 1), there is a positive integer 𝑛 with 𝑟 ∈
[ 1
𝑛+1 ,

1
𝑛

)
such that

(1) For any 𝑘 ≤ 𝑛 and contact structure 𝜉 ∈ Tight(𝑆𝑟 , 1/𝑘) the result of gluing (𝑆3
𝑇
, 𝜉𝑘) to

(𝑆𝑟 , 𝜉) will be a tight contact structure on 𝑆3
𝑇
(𝑟).

(2) Any tight contact structure on 𝑆3
𝑇
(𝑟) will come from such a gluing.

(3) Two contact structures on 𝑆3
𝑇
(𝑟) will be isotopic if and only if they come from gluing the

same contact structures on 𝑆3
𝑇

and 𝑆𝑟 .

We now discuss a convenient way to denote the tight contact structures on 𝑆3
𝑇
(𝑟).

Consider a contact structure constructed from gluing (𝑆3
𝑇
, 𝜉𝑘) to a contact structure in

Tight(𝑆𝑟 , 1/𝑘). The latter is determined by a path in the Farey graph from 𝑟 clockwise to
1/𝑘. This path consists of a portion 𝑃 from 𝑟 to 1/𝑛 and then the continued fraction block
1/𝑛, 1/(𝑛 − 1), . . . , 1/𝑘. There are 𝑛 − 𝑘 edges in the latter part of the path and so there
are 𝑛 − 𝑘 + 1 possibilities for the, equivalence class of, ways to put signs on the path; in
particular, this is determined by the number of − signs in the continued fraction block.
So we can denote the contact structure on 𝑆3

𝐾
(𝑟) by 𝜉𝑘

𝑙,𝑃
, where 𝑙 ∈ {0, . . . , 𝑛 − 𝑘} denotes

the number of − signs last continued fraction block and 𝑃 is a decorated path from 𝑟 to
1/𝑛.

Lemma 3.3. If 𝑛 is the largest integer such that 1/𝑛 > 𝑟, then the number of contact structures
in Tight(𝑆𝑟 , 1/𝑛) is given by

Φ(𝑟) = (𝑎1 − 1) · · · (𝑎𝑛 − 1)

where 1/𝑟 = [𝑎0 , 𝑎1 , . . . , 𝑎𝑛].

Proof. Notice that 1/𝑟 is larger than 1. We claim that the vertices in the shortest path
in the Farey graph going from 1/𝑟 anti-clockwise to 1 is obtained by [𝑎0 , 𝑎1 , . . . , 𝑎𝑛],
[𝑎0 , 𝑎1 , . . . , 𝑎𝑛 − 1], and one continues to subtract 1 from the last entry in the continued
fraction, with the convention that [𝑎0 , . . . , 𝑎𝑘 , 1] is the same as [𝑎0 , . . . , 𝑎𝑘 − 1], until one
reaches 1. Moreover, the continued fraction blocks correspond to the vertices are de-
scribed by a continued fraction of a fixed length. The same algorithm was given in Sec-
tion 2.3 of [12] (and is well-know) for paths from a rational number less than −1 clockwise
to 1, and the proof of this algorithm is the same. Now from Theorem 2.3 we can see that
the number of contact structures on a solid torus with upper meridian 1/𝑟 and dividing
slope 1 will be (𝑎0 − 1)(𝑎1 − 1) · · · (𝑎𝑛 − 1) (if this is not clear this is the same argument
used on Honda’s classification of contact structures on solid tori [17], see also [12]). Also
notice that the first integer in the path is [𝑎0 −1] (and in our case this is 𝑛). So the number
of tight contact structures on a solid torus with upper meridian 1/𝑟 and dividing slope
𝑎0 − 1 will be given by (𝑎1 − 1) · · · (𝑎𝑛 − 1).

Consider the diffeomorphism of 𝑇2 × [0, 1] that sends 𝑡 ∈ [0, 1] to 1 − 𝑡 and exchanges
the coordinates on 𝑇2. This is an orientation preserving diffeomorphism and quotienting
out curves on the boundary to get solid tori. This diffeomorphism will induce a diffeo-
morphism from 𝑆𝑎 to 𝑆1/𝑎 (see Section 2.3 for the notation). Above we gave the formula
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for the number of contact structures in Tight(𝑆1/𝑟 , 𝑛) so using this diffeomorphism the
same formula gives the number of contact structures in Tight(𝑆𝑟 , 1/𝑛), as claimed. □

From the above, we see that the number of contact structures on 𝑆3
𝐾
(𝑟) coming from

(𝑆3
𝑇
, 𝜉1) is 𝑛Φ(𝑟) and form (𝑆3

𝑇
, 𝜉2) is (𝑛 − 1)Φ(𝑟) and so on until we see there are Φ(𝑟)

coming from (𝑆3
𝑇
, 𝜉𝑛). That is there are (𝑛+1)𝑛

2 Φ(𝑟) contact structure, as claimed in Theo-
rem 1.1. Moreover, we can think of them as arranged in a triangle, as in Figure 1, where
each vertex in the triangle corresponds to Φ(𝑟) edges.

4. SYMPLECTIC FILLINGS AND SPLITTING OF SYMPLECTIC FILLINGS

In this section we recall various notions of symplectic fillability and the splitting theo-
rem of Cristian and Menke [3] for symplectic fillings.

4.1. Symplectic fillings. There are several different notions of symplectic fillability for
contact structures. We will be interested in three of them: strong fillability, exact fillability
and Stein fillability.

A closed contact manifold (𝑀, 𝜉) is said to be strongly symplectically fillable if there is a
compact symplectic manifold (𝑋, 𝜔) such that

• 𝜕𝑋 = 𝑀 as oriented manifolds,
• 𝜔 is exact near the boundary,
• a primitive 𝛼 for 𝜔 near the boundary can be chosen so that 𝑘𝑒𝑟(𝛼 |𝑀) = 𝜉.

In this case, (𝑋, 𝜔) is called a strong symplectic filling of (𝑀, 𝜉).
The strong symplectic filling of (𝑌, 𝜉) is said to be an exact symplectic filling if the prim-

itive 𝛼 for 𝜔 in the definition can be chosen on all of 𝑋.
A Stein manifold is a triple (𝑋, 𝐽, 𝜙) where 𝐽 is a complex structure on 𝑋 (more specifi-

cally, 𝐽 : 𝑇𝑋 → 𝑇𝑋 is a bundle map induced from the complex structure on 𝑋), and 𝜙 is a
proper exhausting function such that 𝜔𝜙(𝑣, 𝑤) = −𝑑(𝑑𝜙 ◦ 𝐽)(𝑣, 𝑤) is non-degenerate (and
hence a symplectic form). A sub-level set of 𝜙 is called a Stein domain. We say a contact
manifold (𝑀, 𝜉) is Stein fillable if 𝑌 is the boundary of a Stein domain and 𝜉 = ker(𝑑𝜙 ◦ 𝐽).

It is clear from the definitions that a Stein fillable contact structure is exactly fillable
and an exactly fillable contact structure is strongly fillable.

4.2. Splittings of symplectic fillings. A key tool in our results is a theorem of Christian
and Menke that shows how to split a symplectic filling along a solid torus under certain
circumstances. We need a few preliminary definitions before stating their theorem.

Given a 4-manifold 𝑋 with boundary 𝑀 and a properly embedded solid torus 𝑆 in 𝑋
we call 𝑋′ = 𝑋 \ 𝑆 the result of splitting 𝑋 along 𝑆. Notice that the boundary 𝜕𝑋′ can
be described by cutting 𝑀 along 𝑇 = 𝜕𝑆 and gluing in two solid tori to the resulting
boundary components. We note that both solid tori are glued so that the meridian goes
to the same curve on both torus boundary components of 𝑀 \𝑇. We denote the resulting
manifold 𝑀′ and say it is obtained from 𝑀 by splitting along 𝑇. If we have coordinates
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on 𝑇 so that curves can be indicated by a slope and the solid tori are Dehn fillings along
curves of slope 𝑠 then we say that 𝑀′ is obtained from 𝑀 by a splitting of slope 𝑠 along 𝑇.

A convex torus 𝑇 in a symplectic manifold (𝑀, 𝜉) is called a mixed torus if there is a
neighborhood 𝑇2 × [−1, 1] of 𝑇 = 𝑇2 × {0} such that the contact structure restricted to
𝑇2 × [−1, 0] and to 𝑇2 × [0, 1] are both basic slices and they have different signs. We call
𝑇 × {1} and 𝑇2 × {−1} the associated tori to 𝑇. Let 𝑠𝑖 be the slope of the dividing curves on
𝑇2 × {𝑖}. Denote by 𝐸 the set of vertices in the Farey graph that are in the interval [𝑠1 , 𝑠−1]
(that is clockwise of 𝑠1 and anti-clockwise of 𝑠−1) that have an edge to 𝑠0. We call 𝐸 the
exceptional slopes for 𝑇.

We are now ready to state Christian and Menke’s splitting theorem [3].

Theorem 4.1. If (𝑋, 𝜔) is a exact filing of the contact manifold (𝑀, 𝜉) and 𝑇 is a mixed convex
torus. Then 𝑋 can be split along some solid torus 𝑆 with boundary𝑇 so that the resulting manifold
𝑋′ is an exact symplectic filling of 𝑀 after a slope 𝑠 splitting along 𝑇 for some 𝑠 ∈ 𝐸.

We now give Min’s proof about the non-exact fillability of some of the contact struc-
tures on −Σ(2, 3, 6𝑛+5). To do so, we first let 𝐵 be the torus bundle over 𝑆1 obtained from
0-surgery on the right handed trefoil and 𝐶 be the core of the surgery torus. It is known
that 𝐵 has tight contact structures 𝜉𝑛 , 𝑛 ≥ 0, where (𝐵, 𝜉1) is Stein fillable and (𝐵, 𝜉𝑛), for
𝑛 > 1 is strongly but not Stein fillable, see [15]. One may easily see that −Σ(2, 3, 6𝑛 + 5) is
obtained from −𝑛 surgery on 𝐶, see [15]. In 𝜉1, 𝐶 can be realized by a Legendrian knot 𝐿1

with contact twisting 0 (with respect to a framing coming from the bundle structure) and
we notice that the complement of a standard neighborhood of 𝐿1 is also the complement
of the maximal Thurston-Bennequin invariant realization of the right handed trefoil in
(𝑆3 , 𝜉𝑠𝑡𝑑). So one can stabilize 𝐿1, 𝑛 − 1 times to obtain a Legendrian knot with twisting
−𝑛 + 1. Then Legendrian surgery yields a contact structure on −Σ(2, 3, 6𝑛 + 5). Denote
this contact structure by 𝜉1

𝑙
where 𝑙 is the number of negative stabilizations done to 𝐿1.

Notice that all of these contact structures are Stein fillable since so is 𝜉1. More generally
we have,

Lemma 4.2. Using the notation for tight contact structures on 𝑆3
𝑇
(𝑟) established before Lemma 3.3,

the contact structure 𝜉1
𝑙 ,𝑃

is Stein fillable.

Proof. The manifold 𝑆3
𝑇
(𝑟) is obtained from 𝐵 by −1/𝑟 Dehn surgery on 𝐶 in 𝐵. Since

−1/𝑘 < 0, we see that this is Legendrian surgery on 𝐿1 in (𝐵, 𝜉1) which is Stein fillable,
hence (𝑆3

𝑇
(𝑟), 𝜉1

𝑙 ,𝑃
) is too. □

Similarly, in (𝐵, 𝜉𝑘) there is a Legendrian realization 𝐿𝑘 of 𝐶 with contact twisting −𝑘 +
1. (We note that the complement of a standard neighborhood of 𝐿𝑘 is the contact structure
(𝑆3
𝐾
, 𝜉𝑘) from Theorem 3.1.) So if we stabilize −𝑛 + 𝑘 times we obtain a knot with contact

twisting −𝑛+1. Thus, Legendrian surgery on 𝐿𝑘 yields a contact structure on −Σ(2, 3, 6𝑛+
5) which we denote by 𝜉𝑘

𝑙
where 𝑙 is the number of negative stabilizations done to 𝐿𝑘

before surgery. The 𝜉𝑘
𝑙

for 𝑘 ≤ 𝑛, and 𝑙 ∈ {0, . . . , 𝑛 − 𝑘} are all the tight contact structures
on −Σ(2, 3, 6𝑛 + 5). Now Min’s result [23] says the following.
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Theorem 4.3. The contact structure 𝜉𝑘
𝑙

is not exactly fillable if 𝑙 ≠ 0 or 𝑛 − 𝑘.

We give the proof here as a warmup of our proofs below.

Proof. If 𝑙 is not 0 or 𝑛 − 𝑘, then the Legendrian knot 𝐿𝑘 discussed above was stabilized
both positively and negatively to get 𝐿′

𝑘
on which we performed Legendrian surgery to

get 𝜂𝑘,𝑙 . Thus, the complement of a standard neighborhood of 𝐿′
𝑘

contains a mixed torus𝑇
with dividing curves of slope −𝑘+1 and the associated tori have slopes −𝑘 and −𝑘+2. See
the first paragraph of Section 2.4. Recall 𝐾 (and hence 𝐿′

𝑘
) live in 0 surgery on the trefoil

and 𝐾 is the core of the surgery torus. Thus surgery on 𝐾 can be considered surgery
on the right handed trefoil (this is clear from the proof of the “slam dunk" operation on
Dehn surgery diagrams, see [24]), and considering 𝑇 as a torus bounding a solid torus
neighborhood of 𝐾, its slope is 1/(𝑘−1) and its associated tori have slope 1/𝑘 and 1/(𝑘−2).
Thus we see that the only exceptional slopes for 𝑇 is 0.

Now if (𝑋, 𝜔) is an exact filling of (−Σ(2, 3, 6𝑛+5), 𝜉𝑘
𝑙
) then Theorem 4.1 says that 𝑋 can

be split into 𝑋′, a filling of 𝑆3
𝐾
(0), and a lens space (since the complement of 𝑇 is a solid

torus and 𝑆3
𝐾

). Moreover, since there is an edge in the Farey graph from 1/(𝑘−1) to 0, there
is a unique contact structure on this solid torus, and we see that the contact structure
on 𝑆3

𝐾
(0) is 𝜉𝑘 . Recall that any symplectic filling of a lens space must have connected

boundary [7], and thus𝑋′ is disconnected and one component of𝑋′ is a strong symplectic
filling of (𝑆3

𝐾
(0), 𝜉𝑘), but this contradicts the fact that only (𝑆3

𝐾
(0), 𝜉1) is strongly fillable,

thus 𝜉𝑘
𝑙

is not exactly fillable. □

Generalizing Min’s work we have the following result.

Theorem 4.4. Using the notation for tight contact structures on 𝑆3
𝐾
(𝑟) established before Lemma 3.3,

the contact structure 𝜉𝑘
𝑙,𝑃

is not exactly fillable if 𝑙 ≠ 0 or 𝑛 − 𝑘.

Considering contact structures arranged in a triangle with each vertex having Φ(𝑟) con-
tact structures, as discussed after Lemma 3.3, this theorem says that any contact structure
on the interior of the triangle is not exactly fillable.

Proof. The proof is identical to that of Theorem 4.3. □

5. SURGERIES ON THE TREFOIL AND STEIN FILLABLE CONTACT STRUCTURES

In this section we will prove Theorem 1.2 that says if 𝑛 > 3 and

𝑟 ∈
[

2𝑛 − 1
2𝑛2

,
2

2𝑛 + 1

)
then 𝑆3

𝑇
(𝑟) has

𝑛(𝑛 + 1)
2

Φ(𝑟)

tight contact structures,



SURGERIES ON THE TREFOIL AND SYMPLECTIC FILLINGS 15

• (2𝑛 − 1)Φ(𝑟) are Stein fillable (these are the contact structures at the base, top and
half the structures at along the vertical sides of the triangle),

• (𝑛−3)(𝑛−2)
2 Φ(𝑟) are strongly fillable, but not exact, or Stein, fillable (these are the

ones in the interior of the triangle), and
• (𝑛 − 2)Φ(𝑟) that are strongly fillable, but we don’t know if they are Stein fillable

(these are half of the structures along the vertical sides of the triangle). These later
contact structures are Stein fillable if and only if the contact structures at the same
place on the triangle for −Σ(2, 3, 6𝑛 + 5) are Stein fillable.

For 𝑛 = 2 or 3 all the contact structures are Stein fillable.

Proof of Theorem 1.2. Recall from Theorem 1.1 that there are (𝑛+1)𝑛
2 Φ(𝑟) contact structures

on 𝑆3
𝑇
(𝑟). From Theorem 4.4 we know that the ones on the interior of the triangle are not

exactly fillable. This establishes the second bullet point.
To establish the first bullet point we note that all of the contact structures in the base

of the triangle, which contains 𝑛Φ(𝑟) contact structures, are Stein fillable by Lemma 4.2.
We now show that all the contact structures at the peak are Stein fillable. Recall these

are 𝜉𝑛0,𝑃 . (Here and below we are using the notation for tight contact structures on 𝑆3
𝑇
(𝑟)

established before Lemma 3.3.) We begin by considering the surgery 𝑟 = 2𝑛−1
2𝑛2 . From

Lemma 2.1 and Remark 2.2 we know that one can achieve 2𝑛−1
2𝑛2 by performing surgery on

2 copies of the (𝑛, 1)-cable of 𝑇 with surgery coefficient one less than the framing coming
from the torus on which the cable sits. Now consider the solid torus 𝑆±𝑛 in (𝑆3 , 𝜉𝑠𝑡𝑑) from
Theorem 3.1. We know 𝜕𝑆± is a convex torus with two dividing curves of slope 1/𝑛. So
the contact structure on the solid torus is described by the path from ∞ clockwise to 0,
and then to 1/𝑛. There is no sign on the first jump from ∞ to 0, and all ± on the other
edge. Performing Legendrian surgery on the two Legendrian divides on 𝜕𝑆±𝑛 , we see by
Lemma 2.4 that we get 𝑆3

𝑇
(𝑟) given by gluing (𝑆3

𝑇
, 𝜉𝑘) to the solid torus 𝑆𝑟 with contact

structure described by a path from 𝑟 to 1/𝑛 with all edges (but the first) decorated with
a ±. In the case that we use the + sign, we see that this is the contact structure 𝜉𝑛0,𝑃+
where 𝑃+ is the path from 𝑟 = 2𝑛−1

2𝑛2 to 1/𝑛. In Firgure 3 we see that there are two edges
in the minimal path from 𝑟 to 1/𝑛 and the second edge will have a + sign on it. We have
a similar discussion for the − sign but get the contact structure 𝜉𝑛0,𝑃− where 𝑃− has a −
sign on the one edge with a sign. Thus, these two contact structures are Stein fillable.
This completes the proof that all the contact structures at the top of the triangle are Stein
fillable when 𝑟 = 2𝑛−1

2𝑛2 .
The only other two contact structures not accounted for by filling (𝑆3

𝐾
, 𝜉𝑘) are 𝜉𝑘0,𝑃− and

𝜉𝑘
𝑘,𝑃+

. Notice both of these contact structures have a mixed torus with dividing slope 1/𝑛.
Thus, just as in the proof of Theorem 4.3 we see that if one of these contact structures
were exactly fillable then 𝜉𝑘 on 𝐵 would also be exactly fillable, but we know that these
contact structures are not exactly fillable (see the paragraph after Theorem 4.1 for the
notation and facts about 𝜉𝑘). This completes the proof when 𝑟 = 2𝑛−1

2𝑛2 .
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We notice that 2𝑛−1
2𝑛2 is given in the Farey graph by 𝑠2⊕(𝑛−2)𝑠1 where 𝑠1 = 1

𝑛+1⊕ 1
𝑛 = 2

2𝑛+1
and 𝑠2 = 2 1

𝑛+1 ⊕ 1
𝑛 = 3

3𝑛+2 . See Figure 3. Thus, we see there is an edge in the Farey graph

1
𝑛+1

1
𝑛

1
𝑛−1

2
2𝑛+1

2𝑛−1
2𝑛2

3𝑛−1
3𝑛+2

FIGURE 3. Part of the path from 2𝑛−1
2𝑛2 to 1

𝑛 . Some of the distances are not
to scale.

from 2𝑛−1
2𝑛2 to 2

2𝑛+1 and so in any contact structure 𝜉𝑛0,𝑃 on 𝑆3
𝑇
(2𝑛−1

2𝑛2 ) there is a solid torus
𝑆(2𝑛−1)/2𝑛2 with dividing slope 2

2𝑛+1 . This is a standard neighborhood of a Legendrian

knot and any contact surgery 𝑟 ∈
(

2𝑛−1
2𝑛2 ,

2
2𝑛+1

)
can be done via Legendrian surgery on

a link in the solid torus. Thus any contact structure 𝜉𝑛0,𝑃 on 𝑆3
𝑇
(𝑟) is Stein fillable, see

Section 2.4, completing the proof that all contact structures at the top of the triangle are
Stein fillable. Note we have also completed the proof that all contact structures on 𝑆3

𝑇
(𝑟)

are Stein fillable when 𝑛 = 2.
To finish the case when 𝑛 = 3, we need to see that the contact structures 𝜉2

0,𝑃 and 𝜉2
1,𝑃

in the middle row of the triangle are Stein fillable. To this end, recall we mentioned in
the introduction that Min, Tosun, and the first author showed that the contact structures
in the middle row for −Σ(2, 3, 23) = 𝑆3

𝑇
(1/4) were Stein fillable. They showed this by

considering Legendrian surgery on the (2, 1) cable of 𝑇. In particular for the solid torus
𝑆±2 , there are Legendrian divides of slope 1/2 and Legendrian surgery on these gives
the desired contact structures. As above, we see that there is a solid torus 𝑆1/4 with
convex boundary of slope 1/3. Thus this is a neighborhood of a Legendrian knot and any
contact surgery 𝑟 ∈ (1/4, 1/3) will be Stein fillable. In particular the surgery slopes we are
considering in this theorem will give Stein fillable contact structures in the second row of
the triangle.

We are left to show that, when 𝑛 > 3, on the vertical edges of the triangle, half the
contact structures are Stein fillable and the other half will be if and only if so are the
corresponding contact structures on −Σ(2, 3, 6𝑛 + 5). These contact structures are of the
form 𝜉𝑘0,𝑃 and 𝜉𝑘

𝑛−𝑘,𝑃 for 𝑘 = 2, . . . , 𝑛−1. We begin by considering the case where 𝑟 = 2𝑛−1
2𝑛2 .

As above we know that one can achieve 2𝑛−1
2𝑛2 by performing surgery on two copies of the

(𝑛, 1)-cable of 𝑇 with surgery coefficient one less than the framing coming from the torus
on which the cable sits. Now consider the solid torus 𝑆±

𝑘
in (𝑆3 , 𝜉𝑠𝑡𝑑) from Theorem 3.1.

Inside this torus there is a convex torus 𝑇± with two dividing curves of slope 1/𝑛. So the
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contact structure on the solid torus is described by the path from ∞ clockwise to 0, then
to 1/𝑛 and finally to 1/𝑘. There is no sign on the first jump from ∞ to 0, and all ± are on
the other two parts of the path. Performing Legendrian surgery on 2 of the Legendrian
divides on 𝑇±, we see by Lemma 2.4 that we get 𝑆3

𝑇
(𝑟) given by gluing (𝑆3

𝑇
, 𝜉𝑘) to the solid

torus 𝑆𝑟 with contact structure described by a path from 𝑟 to 1/𝑘 with all edges (but the
first) decorated with a ±. In the case that we use the + sign, we see that this is the contact
structure 𝜉𝑘0,𝑃+ where 𝑃+ is the path from 𝑟 = 2𝑛−1

2𝑛2 to 1/𝑘. Above we saw that there are two
edges in the minimal path from 𝑟 to 1/𝑛 and the second edge will have a + sign on it. We
have a similar discussion for the − sign but get the contact structure 𝜉𝑘

𝑛−𝑘,𝑃− where 𝑃− has
a − sign on the one edge with a sign. Thus these two contact structures are Stein fillable.
The only other two contact structures not accounted for by filling (𝑆3

𝑇
, 𝜉𝑘) are 𝜉𝑘0,𝑃− and

𝜉𝑘
𝑛−𝑘,𝑃+ . Notice that both of these contact structures have a mixed torus with dividing

slope 1/𝑛. Thus, we see from Figure 3 that there is only one exceptional slope {1/(𝑛 + 1)}
for this torus and so just as in the proof of Theorem 4.3, we see that if one of these contact
structures were exactly fillable then 𝜉𝑘0 and 𝜉𝑘

𝑛−𝑘 on −Σ(2, 3, 6𝑛+5) = 𝑆3
𝑇
(1/(𝑛+1)) would

be strongly fillable (see the beginning of the introduction for the notation for these contact
structures). Moreover, if these structures were exactly or Stein fillable they would contain
a solid torus 𝑆1/(𝑛+1) with dividing slope 1/𝑛. These are neighborhoods of Legendrian
knots and hence any contact surgery in (1/(𝑛 + 1), 1/𝑛) would yield exact or Stein fillable
contact structures on 𝑆3

𝐾
(𝑟) for 𝑟 ∈ (1/(𝑛 + 2), 1/𝑛). This completes the proof when 𝑟 =

2𝑛−1
2𝑛2 .

The case for 𝑟 ∈
(

2𝑛−1
2𝑛2 ,

2
2𝑛+1

)
is handled through Legendrian surgery exactly like we

did when discussing the contact structures at the top of the triangle above. □

6. FILLABILITY OF OTHER SURGERIES ON THE TREFOIL

We are now ready to prove Theorem 1.3 which says that for

𝑟 ∈
[

9
25
,

4
11

)
the manifold 𝑆3

𝑇
(𝑟) has 3Φ(𝑟) tight contact structures of which (2Φ(𝑟)+2) are Stein fillable

and (Φ(𝑟) − 2) are strongly symplectically fillable, but not exactly symplectically fillable.

Proof of Theorem 1.3. An 𝑟 as in the theorem is in (1/3, 1/2) and so according to Theo-
rem 1.1 there are 3Φ(𝑟) contact structures and they organized in a triangle with base and
hight two. From Lemma 4.2 we know that the base of the triangle is Stein fillable. So we
are left to see what happens for the top of the triangle. These contact structures are all
of the form 𝜉2

0,𝑃 for some signed path from 𝑟 to 1/2, where we are using the notation for
tight contact structures on 𝑆3

𝑇
(𝑟) established before Lemma 3.3.

We begin by considering the surgery coefficient 𝑟 = 9
25 . We can see, using Lemma 2.1,

that this surgery can be effected by performing surgery on the (5, 2)-cable of 𝑇 with
surgery coefficient one less than the framing determined by the cable torus. Consider
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the torus 𝑆±2 inside (𝑆3 , 𝜉𝑠𝑡𝑑) from Theorem 3.1. Recall that the dividing curves on 𝜕𝑆±2
have slope 1/2. As discussed in Section 2.3, we know that inside of 𝑆±2 there is a convex
torus 𝑇± parallel to the boundary that has dividing slope 2/5. The contact structure on
𝑆±2 is given by a path in the Farey graph that starts at ∞ goes to 0, then 1/3, then 2/5 and
finally 1/2. All the edges (except the first which has no sign) have a ± sign. Now accord-
ing to Lemma 2.4 we see that performing Legendrian surgery on a Legendrian divide on
𝑇± will result in the solid torus 𝑆9/25 with boundary slope 1/2 and the contact structure is
described by a path 𝑃± from 9/25 to 1/2 with all edges (except the first which has no sign)
having a ± sign. That is the contact structure on 𝑆3

𝑇
(9/25) is obtained by gluing (𝑆3

𝑇
, 𝜉2)

to 𝑆9/25 with the contact structure given by 𝑃±. Namely, when we have a + sign we get
𝜉2

0,𝑃+
and when we have a negative sign we get 𝜉2

1,𝑃−
. In particular we see that these two

contact structures at the top of the triangle are Stein fillable.

1
3

5
14

9
25

4
11

3
8

2
5

1
2

FIGURE 4. The path in the Farey graph from 9
25 to 1

2 .

Now let 𝑃 be any signed path from 9/25 to 1/2 determining a contact structure on 𝑆9/25

that has both signs. Figure 4 shows the path form 9/25 to 1/2. Notice that the edges with
a sign are all in a continued fraction block. So if both signs are present, we can assume we
have a mixed torus with dividing slope 3/8 and the exceptional slopes are {1/3}. Thus,
if the contact structure 𝜉2

0,𝑃 is strongly fillable, then so is 𝜉2
0 on −Σ(2, 3, 17) = 𝑆3

𝑇
(1/3),

but Ghiggini’s result [13], see [15], says this is not the case. Thus, none of these contact
structures are Stein fillable. This completes the theorem in the case that 𝑟 = 9/25.

We now consider 𝑟 ∈ (9/25, 4/11). Notice that in the contact structures 𝜉2
0,𝑃+

and 𝜉2
1,𝑃−

on 𝑆3
𝑇
(9/25), there is a torus 𝑆9/25 with dividing slope 4/11. Since there is an edge between

9/25 and 4/11, this is the neighborhood of a Legendrian knot and any contact surgery
with slope in (9/25, 4/11) can be done via Legendrian surgery on a link in the solid torus.
Thus, all the contact structures 𝜉2

0,𝑃 where the last three edges in 𝑃 have a + sign or all
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have a − are Stein fillable. The argument at then end of the previous paragraph shows
that all the other contact structures 𝜉2

0,𝑃 are not Stein or exactly fillable. □

We now turn to the proof of Theorem 1.4 that says for

𝑟 ∈
[

13
49
,

4
15

)
the manifold 𝑆3

𝑇
(𝑟) has 6Φ(𝑟) tight contact structures of which (5Φ(𝑟)+2) are Stein fillable

and (Φ(𝑟) − 2) are strongly symplectically fillable, but not exactly symplectically fillable.

Proof of Theorem 1.4. Notice that such an 𝑟 is in (1/4, 1/3) and so according to Theorem 1.1
there are 6Φ(𝑟) contact structures and they organized in a triangle with base and hight
three. From Lemma 4.2, we know that the base of the triangle is Stein fillable.

We now consider the case when 𝑟 = 13
49 . For the top of the triangle we note that the

path in the Farey graph from 13/49 to 1/3 is shown in Figure 5. In particular there will

1
4

5
19

9
34

13
49

4
15

3
11

2
7

1
3

FIGURE 5. The path in the Farey graph from 13
49 to 1

3 . Some of the distances
are not to scale.

be edges from 13/49 to 4/15, from 4/15 to 3/11, from 3/11 to 2/7, and from 2/7 to 1/3,
and the last three are in a continued fraction block. Thus, noting that 13/49 surgery on 𝑇
is the same as surgery on the (7, 2)-cable of 𝑇 with surgery coefficient one less than the
cable torus framing, we see that the argument in the proof of Theorem 1.3 shows that
there are 2 Stein fillable contact structures at the top of the triangle and the rest are not
Stein fillable. Thus, we are left to show that the contact structures in the second row of
the triangle are Stein fillable, but this follows the same argument as the one given in the
sixth paragraph of the proof of Theorem 1.2.

The case of 𝑟 ∈ (13
49 ,

4
15 ) can be dealt with as we did in the last paragraph of the proof of

Theorem 1.3 □
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