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ABSTRACT. We define the contact homology for Legendrian submanifolds in standard con-
tact (2n + 1)-space using moduli spaces of holomorphic disks with Lagrangian boundary
conditions in complex n-space. This homology provides new invariants of Legendrian iso-
topy which indicate that the theory of Legendrian isotopy is very rich. Indeed, in [4] the
homology is used to detect infinite families of pairwise non-isotopic Legendrian submanifolds
which are indistinguishable using previously known invariants.

The motivating problem for this paper is the classification of Legendrian submanifolds up
to Legendrian isotopy. Here we restrict attention to the standard contact structure on R?*1,
For n = 1 the Legendrian isotopy problem has been extensively studied, [2, 6, 9, 10, 11], but
there have been few results for n > 1. In this paper we give a rigorous definition of contact
homology, a potent new invariant originally described in [5]. This new invariant was applied
in [4] to construct infinite families of non-Legendrian isotopic, Legendrian n-spheres, n-tori
and surfaces of arbitrary genus. These are the first such high-dimensional examples. They
also demonstrate that the analogues of rotation number and Thurston-Bennequin invariant
(and diffeomorphism type) of a Legendrian submanifold are far from complete invariants of
Legendrian isotopy. (See [4] for a definition of the high-dimensional analogues of the classical
invariants. )

The goal of this paper is to define contact homology and prove that it is a Legendrian
isotopy invariant.

Theorem. The contact homology of Legendrian submanifolds in R®*" " with the standard
contact form is well defined. (It is invariant under Legendrian isotopy.)

We define the contact homology using punctured holomorphic disks in C"* ~ R?*" with
boundary on the Lagrangian projection ll: C" x R — C" of the Legendrian submanifold,
and which limit to double points of the projection at the punctures. This is analogous to the
approach taken by Chekanov [2] in dimension 3 who was the first to prove that the classical
invariants are not enough to distinguish isotopy classes. In dimension 3, however, the entire
theory can be reduced to combinatorics. As discussed in [4] our contact homology also fits
into the over arching philosophy of Symplectic Field Theory outlined in [8]. There it goes by
the name of the “relative contact homology” of the standard contact (2n + 1)-space.

In Section 1, we define contact homology more concretely and outline its invariance under
Legendrian isotopy. If L ¢ R?"*! ~ C" x R is a Legendrian submanifold we associate to L
a differential graded algebra (DGA), denoted (A, d), freely generated by the double points
of Il (L) € C". Since L is embedded one may distinguish upper and lower branches of L at
double points of II(L) and using this structure we associate a sign to every puncture of a
holomorphic disk with boundary on I (L). We define the differential of the DGA by counting
punctured rigid holomorphic disks with boundary on II(L) and with exactly one positive
puncture. The contact homology of L is defined to be Ker d/Im 0. Thus, contact homology
is similar to Floer homology of Lagrangian intersections. The proof of its invariance is similar
in spirit to Floer’s original approach [13, 14]; we study bifurcations of moduli spaces of rigid
holomorphic disks under variations of the Legendrian submanifold in a generic 1-parameter
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family of Legendrian submanifolds. Similar bifurcation analysis is also done in [19, 21, 30, 31].
Our set-up does not seem well suited to the more popular proof of Floer theory invariance
which uses an elegant “homotopy of homotopies” argument (see, for example, [15, 29]).

In Section 5, the (formal) dimension of the moduli space of punctured holomorphic disks
with boundary on an exact Lagrangian immersion which is an instant in a generic 1-parameter
family is expressed in terms of its boundary data. We compute this dimension by relating the
linearization of the d-equation for punctured disks with boundary on the exact Lagrangian
to the standard vector Riemann-Hilbert problem on the closed disk (i.e. the disk without
punctures).

In Section 6 we show that for Legendrian submanifolds (and their 1-parameter families)
in an open dense set in the space of such, the moduli-spaces of holomorphic disks are being
transversely cut out. That is, we achieve transversality for the d-equation without perturbing
the complex structure on C". The fact that we can keep the standard complex structure on C"
is important for computations of contact homology, see [4]. Similar transversality results were
obtained by Oh [25] for closed holomorphic disks with Lagrangian boundary condition, under
the additional assumption that the disks have an injective point on the boundary. In general,
disks without such points cannot be excluded and we manage to prove transversality for disks
involved in contact homology using the fact that they have only one positive puncture, and a
technical result, established in Section 2, that all Legendrian submanifolds may be assumed
real analytic close to the preimages of double points of II.

In Section 8, we show that moduli-spaces of holomorphic disks have certain compactness
properties. We prove a version of Gromov compactness for punctured holomorphic disks with
boundary on an immersed exact Lagrangian submanifold in C™. In particular, it follows that
0-dimensional moduli-spaces are compact and that 1-dimensional moduli-spaces have natural
compactifications.

In Section 7 we establish gluing theorems. These are used to prove that the differential
0 of the DGA A satisfies 0 o d = 0, and that the homology of (A, ) is left unchanged by
the two basic bifurcations which occur in generic 1-parameter families: appearance of disks
of formal dimension —1 and self-tangency instances. The most technically difficult results
are the so-called degenerate gluing theorems which are necessary to control the changes of
the DGA under self-tangencies. Here holomorphic disks with punctures at the self-tangency
double point must be glued. To prove these gluing theorems we use results from Section
3 which give the blow up rate of the constant in the elliptic estimate for the linearized O-
equation, as the transverse double point at one puncture approaches a self-tangency double
point.
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1. CoNTACT HOMOLOGY AND DIFFERENTIAL GRADED ALGEBRAS

In this section we describe how to associate to a Legendrian submanifold L in standard
contact (2n+1)-space a differential graded algebra (DGA) (A, ). Up to a certain equivalence
relation this DGA is an invariant of the Legendrian isotopy class of L. In Section 1.1 we recall
the notion of Lagrangian projection and define the algebra A. The grading on A is described
in Section 1.2. Sections 1.3 and 1.4 are devoted to the definition of d and Section 1.5 proves
the invariance of the homology of (A, ), which we call the contact homology. The main
proofs of these three subsections rely on much analysis, which will be completed in the
subsequent sections. In a sense, these last three subsections can be viewed as an overview of
the remainder of the paper.
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1.1. The algebra A. Throughout this paper we consider the standard contact structure &
on R = C" x R which is the hyperplane field given as the kernel of the contact 1-form

n
(1.1) a:dz—Zyjd:cj,
j=1
where 21, Y1, . .., Zn, Yn, z are Euclidean coordinates on R*"*1. A Legendrian submanifold of

R?"*! is an n dimensional submanifold L € R?"*! everywhere tangent to £. We also recall
that the standard symplectic structure on C" is given by

n
w = Z dz; N\ dyj,
j=1
and that an immersion f: L — C" of an n-dimensional manifold is Lagrangian if f*w = 0.
The Lagrangian projection projects out the z coordinate:

(1.2) O R+ Cn, (T1, Y1y oo s Ty Yny 2) = (T1, Y1y -+ s Ty Yn)-

If L € C" xR is a Legendrian submanifold then Il: L — C" is a Lagrangian immersion.
Moreover, for L in an open dense subset of all Legendrian submanifolds (with C* topology),
the self intersection of Il (L) consists of a finite number of transverse double points. We call
Legendrian submanifolds with this property chord generic.

The Reeb vector field X of a contact form « is uniquely defined by the two equations
a(X) =1 and da(X,-) = 0. The Reeb chords of a Legendrian submanifold L are segments of
flow lines of X starting and ending at points of L. We see from (1.1) that in R*"*! X = %
and thus Il defines a bijection between Reeb chords of L and double points of II(L). If ¢
is a Reeb chord we write c* = I (c).

Let C = {c1,...,cn} be the set of Reeb chords of a chord generic Legendrian submanifold
L C R*™" To such an L we associate an algebra A = A(L) which is the free associative
unital algebra over the group ring Zs[H1(L)] generated by C. We write elements in A as

(1.3) Z e,
)

where the t;’s are formal variables corresponding to a basis for Hi(L) thought of multi-
plicatively and ¢; = ¢;, ...¢;, is a word in the generators. It is also useful to consider the
corresponding algebra Az over Zj. The natural map Zy[H;(L)] — Z induces a reduction
of Ato Ay (set t; =1, for all j).

1.2. The grading on A. Let A, be the Grassman manifold of Lagrangian subspaces in the
symplectic vector space (C",w) and recall that Hi(A,) = m1(Ay,) = Z. There is a standard
isomorphism
w: Hi(Ay) — Z,

given by intersecting a loop in A, with the Maslov cycle 3. To describe p more fully we follow
[26] and refer the reader to this paper for proofs of the statements below.

Fix a Lagrangian subspace A in C" and let ¥;(A) C A,, be the subset of Lagrangian spaces
that intersects A in a subspace of k dimensions. The Maslov cycle is

Y =%1(A)=31(A) UX(A)U---UX,(A).
This in an algebraic variety of codimension one in A,. If T" : [0,1] — A,, is a loop then
u(T) is the intersection number of I" and Y. The contribution of an intersection point ¢’ with
(') € 3 to p(T) is calculated as follows. Fix a Lagrangian complement W of A. Then for
each v € I'(t') N A there exists a vector w(t) € W such that v+w(t) € I'(t) for ¢ near . Define
the quadratic form Q(v) = %\t:t/w(v, w(t)) on T'(t') N A and observe that it is independent of
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the complement W chosen. Without loss of generality, () can be assumed non-singular and
the contribution of the intersection point to u(I') is the signature of Q. Given any loop I' in
A, we say p(T') is the Maslov index of the loop.

If f: L — C" is a Lagrangian immersion then the tangent planes of f(L) along any loop
v in L gives a loop I' in A,,. We define the Maslov index p(7v) of v as u(y) = u(I') and note
that we may view the Maslov index as a map u : Hi(L) — Z. Let m(f) be the smallest
non-negative number that is the Maslov index of some non-trivial loop in L. We call m(f)
the Maslov number of f. When L C C" x R is a Legendrian submanifold we write m(L) for
the Maslov number of IIx: L — C".

Let L € R?""! be a chord generic Legendrian submanifold and let ¢ be one of its Reeb
chords with end points a,b € L, z(a) > z(b). Choose a path ~ : [0,1] — L with v(0) = a
and (1) = b. (We call such path a capping path of c.) Then Ilg o~ is a loop in C" and
['(t) = dlig(Ty4) L), 0 <t < 1is a path of Lagrangian subspaces of C". Since ¢* = II(c) is
a transverse double point of Il (L), I' is not a closed loop.

We close T' in the following way. Let V5 = I'(0) and V; = I'(1). Choose any complex
structure I on C" which is compatible with w (w(v, Iv) > 0 for all v) and with I(V;) = Vp.
(Such an I exists since the Lagrangian planes are transverse.) Define the path A(Vp, V1)(t) =
eV, 0 <t < 5. The concatenation, I' x A(Vo, V1), of I and A(Vp, V1) forms a loop in A,
and we define the Conley—Zehnder index, v, (c), of ¢ to be the Maslov index p(I" * A(Vo, V1))
of this loop. It is easy to check that v, (c) is independent of the choice of I. However, v, (c)
might depend on the choice of homotopy class of the path . More precisely, if v; and v, are
two paths with properties as v above then

Uy (c) — Vryo (c) = pu(y * (—2)),

where (—72) is the path v, traversed in the opposite direction. Thus v, (c) is well defined
modulo the Maslov number m(L).

Let C = {c1,...,cm} be the set of Reeb chords of L. Choose a capping path v; for each ¢;
and define the grading of c¢; to be

lcjl = vy, () — 1,
and for any ¢ € Hy(L) define its grading to be |t| = —p(t). This makes A(L) into a graded
ring. Note that the grading depends on the choice of capping paths but, as we will see below,
this choice will be irrelevant.
The above grading on Reeb chords ¢; taken modulo m(L) makes AZ2 a graded algebra
with grading in Z,, ). (Note that this grading does not depend on the choice of capping
paths.) In addition the map from A to Az, preserves gradings modulo m(L).

1.3. The moduli spaces. As mentioned in the introduction, the differential of the algebra
associated to a Legendrian submanifold is defined using spaces of holomorphic disks. To
describe these spaces we need a few preliminary definitions.

Let Dy,4+1 be the unit disk in C with m + 1 punctures at the points pg,...p, on the
boundary. The orientation of the boundary of the unit disk induces a cyclic ordering of the
punctures. Let D41 = 0Dt \ {po,---sPm}-

Let L € C" x R be a Legendrian submanifold with isolated Reeb chords. If ¢ is a Reeb
chord of L with end points a,b € L, z(a) > z(b) then there are small neighborhoods S, C L
of a and Sy C L of b that are mapped injectively to C" by II. We call II(S,) the upper
sheet of (L) at ¢* and I (Sy) the lower sheet. If u: (Dpy1,0Dmq1) — (C" (L))
is a continuous map with u(p;) = ¢* then we say p; is positive (respectively negative) if
u maps points clockwise of p; on dD,,11 to the lower (upper) sheet of II(L) and points
anti-clockwise of p; on 0D, 11 to the upper (lower) sheet of II(L) (see Figure 1).



THE CONTACT HOMOLOGY OF LEGENDRIAN SUBMANIFOLDS IN R2n+!1 7

Sa

m A Ck
_

Sp

FIGURE 1. Positive puncture lifted to R?"*!. The gray region is the holomor-

phic disk and the arrows indicate the orientation on the disk and the Reeb
chord.

If a is a Reeb chord of L and if b = by...b,, is an ordered collection (a word) of Reeb
chords then let M 4(a;b) be the space, modulo conformal reparameterization, of maps u :
(Dmy1,0Dpmy1) — (C", I (L)) which are continuous on Dy, 1, holomorphic in the interior
of Dp,+1, and which have the following properties

e po is a positive puncture, u(pg) = a*,
pj are negative punctures for j > 0, u(p;) = b7,

the restriction u|8Dm+1 has a continuous lift @: 8ﬁm+1 — L CcC" xR, and
the homology class of @(0D};, ;) U (U;v;) equals A € Hi(L),

where ~; is the capping path chosen for ¢;, j = 1,...,m. Elements in M 4(a;b) will be called
holomorphic disks with boundary on L or sometimes simply holomorphic disks.

There is a useful fact relating heights of Reeb chords and the area of a holomorphic disk
with punctures mapping to the corresponding double points. The action (or height) Z(c) of
a Reeb chord c is simply its length and the action of a word of Reeb chords is the sum of the
actions of the chords making up the word.

Lemma 1.1. If u € M4(a;b) then

(1.4) Z(a) — Z(b) = / u*w = Area(u) > 0.

Proof. By Stokes theorem, [, w'w = [;, u*(=>;y;dx;) = [u*(—dz) = Z(a) — Z(b).
The second equality follows since u is holomorphic and w = Z?Zl dx; N dy;. g

Note that the proof of Lemma 1.1 implies that any holomorphic disk with boundary on L
must have at least one positive puncture. (In contact homology, only disks with exactly one
positive puncture are considered.)

We now proceed to describe the properties of moduli spaces M4(a;b) that are needed
to define the differential. We prove later that the moduli spaces of holomorphic disks with
boundary on a Legendrian submanifold L have these properties provided L is generic among
(belongs to a Baire subset of the space of) admissible Legendrian submanifolds (L is admissi-
ble if it is chord generic and it is real analytic in a neighborhood of all Reeb chord end points).
For more precise definitions of these concepts, see Section 2, where it is shown that admissible
Legendrian submanifolds are dense in the space of all Legendrian submanifolds. In Section 4,
we express moduli spaces M 4(a; b) as 0-sets of certain C'-maps between infinite-dimensional
Banach manifolds. We say a moduli space is transversely cut out if 0 is a regular value of the
corresponding map.
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Proposition 1.2. For a generic admissible Legendrian submanifold L C C™ x R the moduli
space My (a;b) is a transversely cut out manifold of dimension

(1.5) d = p(A) + la| = [b] — 1,
provided d < 1. (In particular, if d < 0 then the moduli space is empty.)

Proposition 1.2 is proved in Section 6.8. If u € M 4(a;b) we say that d = u(A) + |a| — |b|
is the formal dimension of u, and if v is a transversely cut out disk of formal dimension 0 we
say that v is a rigid disk.

The moduli spaces we consider might not be compact, but their lack of compactness can be
understood. It is analogous to “convergence to broken trajectories” in Morse/Floer homology
and gives rise to natural compactifications of the moduli spaces. This is also called Gromov
compactness, which we cover in more detail in Section 8.

A broken holomorphic curve, u = (ul,...,uN), is a union of holomorphic disks, u/ :
(D, 0Dp;) — (C", (L)), where each w has exactly one positive puncture p’, with the
following property. To each p/ with j > 2 is associated a negative puncture qé‘? € Dy, for
some k # j such that u/(p’) = uk‘(qf) and q;-“,/ # q;-“ if 5 # 4/, and such that the quotient
space obtained from Dy, U---U D,,, by identifying p/ and q}“ for each j > 2 is contractible.
The broken curve can be parameterized by a single smooth v : (Dy,,dD) — (C",II(L)).
A sequence u, of holomorphic disks converges to a broken curve u = (u',...,u") if the
following holds:

e For every j < N, there exists a sequence ¢} : D,, — Dy, of linear fractional transfor-
mations and a finite set X7 C D,, such that u, o ¢} converges to v/ uniformly with
all derivatives on compact subsets of D,, \ X/

e There exists a sequence of orientation-preserving diffeomorphisms fo : Dy, — Dy
such that u, o f, converges in the C%-topology to a parameterization of w.

Proposition 1.3. Any sequence uq in My(a;b) has a subsequence converging to a broken

holomorphic curve u = (u',...,uN). Moreover, u € My, (a/; b)) with A = Zjvzl A; and
N . .

(1.6) u(A) +la] = bl = Y (u(A)) + || — [b7]).
j=1

Heuristically this is the only type of non-compactness we expect to see in M 4(a;b): since
m2(C™) = 0, no holomorphic spheres can “bubble off” at an interior point of the sequence
Uq, and since HC(L) is exact no disks without positive puncture can form either. Moreover,
since I (L) is compact, and since C" has “finite geometry at infinity” (see Section 8), all
holomorphic curves with a uniform bound on area must map to a compact set.

Proof. The main step is to prove convergence to some broken curve, which we defer to Section
8. The statement about the homology classes follows easily from the definition of convergence.
Equation (1.6) follows from the definition of broken curves. O

We next show that a broken curve can be glued to form a family of non-broken curves.
For this we need a little notation. Let c',...,c” be an ordered collection of words of Reeb
chords. Let the length of (number of letters in) ¢/ be I(j) and let a = ay ... a; be a word of
Reeb-chords of length & > 0. Let S = {s1,...,s,} be r distinct integers in {1,...,k}. Define
the word ag(c!,...,c") of Reeb-chords of length k —r + > j=11(j) as follows. For each index

sj € S remove as; from the word a and insert at its place the word c.
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Proposition 1.4. Let L be a generic admissible Legendrian submanifold. Let M 4(a;b) and
Mp(c;d) be 0-dimensional transversely cut out moduli spaces and assume that the j-th Reeb
chord in b is c. Then there exist a p > 0 and an embedding

G: Ma(a;b) x Mp(c;d) x (p,00) — Mayp(a; by (d)).
Moreover, if u € Ma(a;b) and v’ € Mp(c;d) then G(u,u’, p) converges to the broken curve
(u,u) as p — oo, and any disk in Ma(a;by;y(d)) with image sufficiently close to the image
of (u,u’) is in the image of G.

This follows from Proposition 7.1 and the definition of convergence to a broken curve.

1.4. The differential and contact homology. Let L. C C" x R be a generic admissible
Legendrian submanifold, let C be its set of Reeb chords, and let A denote its algebra. For
any generator a € C of A we set

(1.7) da= > (#Mala;b))4b,
dim M (a;b)=0

where # M is the number of points in M modulo 2, and where the sum ranges over all words
b in the alphabet C and A € H;(L) for which the above moduli space has dimension 0. We
then extend 0 to a map 0 : A — A by linearity and the Leibniz rule.

Since L is generic admissible, it follows from Propositions 1.3 and 1.4 that the moduli
spaces considered in the definition of 0 are compact 0-manifolds and hence consist of a finite
number of points. Thus 0 is well defined. Moreover,

Lemma 1.5. The map 9 : A — A is a differential of degree —1. That is, 0 0 & = 0 and
|0(a)| = |a] — 1 for any generator a of A.
Proof. After Propositions 1.3 and 1.4 the standard proof in Morse (or Floer) homology [28]
applies. It follows from (1.5) that 0 lowers degree by 1. O
The contact homology of L is
HC,(R*™* L) = Ker 9/Im 0.

It is essential to notice that since 0 respects the grading on A the contact homology is a
graded algebra.
We note that 9 also defines a differential of degree —1 on Az (L).

1.5. The invariance of contact homology under Legendrian isotopy. In this section
we show

Proposition 1.6. If L, € R*"1 0 <t < 1 is a Legendrian isotopy between generic admissi-
ble Legendrian submanifolds then the contact homologies HC, (R**1 L), and HC, (R*"*1 L;)
are isomorphic.

In fact we show something, that at least appears to be, stronger. Given a graded algebra

A = 7Z5|G){ay,...,a,), where G is a finitely generated abelian group, a graded automorphism
¢: A— Ais called elementary if there is some 1 < j < n such that
A;a;, 17
plag) =4 " * .
:I:Ajaj—i—u, ueA(al,...,aj_l,aj+1,...,an), 1=,

where the A; are units in Zo[G]. The composition of elementary automorphisms is called a
tame automorphism. An isomorphism from A to A’ is tame if it is the composition of a tame
automorphism with an isomorphism sending the generators of A to the generators of A’. An
isomorphism of DGA’s is called tame if the isomorphism of the underlying algebras is tame.
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Let (£;,0;) be a DGA with generators {e},e5}, where |e¢t| = i,|e}| = i — 1 and J;e} =
eb, 0;¢5 = 0. Define the degree i stabilization S;(A,0) of (A,0) to be the graded algebra
generated by {ai,...,a,,et, eb} with grading and differential induced from A and &;. Two
differential graded algebras are called stable tame isomorphic if they become tame isomorphic
after each is stabilized a suitable number of times.

Proposition 1.7. If L; ¢ R**! 0 <t < 1 is a Legendrian isotopy between generic ad-
missible Legendrian submanifolds then the DGA’s (A(Lg),0) and (A(L1),0) are stable tame
isomorphic.

Note that Proposition 1.7 allows us to associate the stable tame isomorphism class of a
DGA to a Legendrian isotopy class of Legendrian submanifolds: any Legendrian isotopy class
has a generic admissible representative and by Proposition 1.7 the DGA’s of any two generic
admissible representatives agree.

It is straightforward to show that two stable tame isomorphic DGA’s have the same ho-
mology, see [2, 11]. Thus Proposition 1.6 follows from Proposition 1.7. The proof of the later
given below is, in outline, the same as the proof of invariance of the stable tame isomorphism
class of the DGA of a Legendrian 1-knot in [2]. However, the details in our case require
considerably more work. In particular we must substitute analytic arguments for the purely
combinatorial ones that suffice in dimension three.

In Section 2 we show that any two admissible Legendrian submanifolds of dimension n > 2
which are Legendrian isotopic are isotopic through a special kind of Legendrian isotopy: a
Legendrian isotopy ¢;: L — C" xR, 0 <t < 1, is admissible if ¢o(L) and ¢1 (L) are admissible
Legendrian submanifolds and if there exist a finite number of instants 0 < t; < to < -+ <
tm < 1 and a 6 > 0 such that the intervals [t; — 6,¢; + J] are disjoint subsets of (0,1) with
the following properties.

(A) For t € [0, — 6] U (U}i b+ 0t — 5]) U [tm + 6,1, ¢(L) is an isotopy through
admissible Legendrian submanifolds.

(B) For t € [t; —d,t; +9], j =1,...,m, ¢;(L) undergoes a standard self-tangency move.
That is, there exists a point ¢ € C" and neighborhoods N C N’ of ¢ with the
following properties. The intersection N N Il (¢¢(L)) equals Py U P(t) which, up
to biholomorphism looks like P, = 71 x P| and P, = 7,(t) x Pj. Here 7 and
y2(t) are subarcs around 0 of the curves y; = 0 and 22 + (y; — 1 £¢)2 = 1 in the
z1-plane, respectively, and P] and Pj are real analytic Lagrangian (n — 1)-disks in
ct = {z1 = 0} intersecting transversely at 0. Outside N’ x R the isotopy is
constant. See Figure 2. (The full definition of a standard self tangency move appears
in Section 2. For simplicity, one technical condition there has been omitted at this
point.)

t>0 t=0 t <0

FiGure 2. Type B double point move.

Note that two Legendrian isotopic admissible Legendrian submanifolds of dimension 1 are in
general not isotopic through an admissible Legendrian isotopy. In this case one must allow
also a “triple point move” see [2, 11].
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To prove Proposition 1.7 we need to check that the differential graded algebra changes
only by stable tame isomorphisms under Legendrian isotopies of type (A) and (B). We start
with type (A) isotopies.

Lemma 1.8. Let L, t € [0,1] be a type (A) isotopy between generic admissible Legendrian
submanifolds. Then the DGA’s associated to Ly and L1 are tame isomorphic.

To prove this we use a parameterized version of Proposition 1.2. If L;,t € I = [0,1] is a
type (A) isotopy then the double points of II~(L;) trace out continuous curves. Thus, when
we refer to a Reeb chord ¢ of Ly for some t' € [0, 1] this unambiguously specifies a Reeb chord
for all L;. For any ¢ we let MY (a;b) denote the moduli space M 4(a;b) for L; and define

(1.8) Miy(a;b) = {(u,t)|u € Miy(a;b)}.

As above “generic” refers to a member of a Baire subset, see Section 6.2 for a more precise
formulation of this term for 1-parameter families.

Proposition 1.9. For a generic type (A) isotopy Ly, t € I = [0,1] the following holds. If
a,b, A are such that 1(A)+|a| —|b| = d < 1 then the moduli space MY (a;b) is a transversely
cut out d-manifold. If X is the union of all these transversely cut out manifolds which are 0-
dimensional then the components of X are of the form Mi{j(aj, b;), where i(Aj)+laj|—|bj| =
0, for a finite number of distinct instances t1,...,t, € [0,1]. Furthermore, t1,...,t, are such
that ME(C; d) is a transversely cut out 0-manifold for every c,d, B with u(B)+ |c|—|d| = 1.

Proposition 1.9 is proved in Section 6.9. At an instant ¢ = ¢; in the above proposition we
say a handle slide occurs, and an element in /\/li{j (a;,bj) will be called a handle slide disk.

(The term handle slide comes form the analogous situation in Morse theory.)
The proof of Lemma 1.8 depends, just as the proof of Lemma 1.5, on one compactness-
and one gluing result; the following.

Proposition 1.10. Any sequence u, in Mﬁ(a; b) has a subsequence that converges to a
broken holomorphic curve with the same properties as in Proposition 1.5.

The proof of this proposition is identical to that of Proposition 1.3, see Section 8.

Proposition 1.11. Let § > 0 and let Ly, t € I = [-6,6] be a small neighborhood of a handle
slide att = 0 in a generic type (A) isotopy. Then for § sufficiently small, Lis are generic
admissible and, with u € M%(a; b) denoting the handle slide disk, the following holds.

(1) Assume that c is the j-th letter in b. Let M%(c;d) be a moduli space of rigid holo-
morphic disks. Then there exist pg > 0 and an embedding

G: My (c;d) x [pg, 00) — My, p(a; by (d)).

Given v € M%(c;d), G(v, p) converges to the broken curve (v,u) as p — oo. More-
over, any curve in Mf4+B(a; by;y(d)) with image sufficiently close to the image of
(v,u) is in the image of G.

(2) Let M%(c;d) be a moduli space of rigid holomorphic disks, where S = {s1,..., s},
and d has a at every position of an element in S. Then there exist pg > 0, and an

embedding

G- MYy (c;d) X [pp, 00) — My, 4(c;ds(b, ..., b))
Given v € MY (c;d), G'(v,p) converges to the broken curve (v,u,...,u). Moreover,
any curve in Mngr_A(c; ds(b,...,b)) with image sufficiently close to the image of

(v,u,...,u) is in the image of G'.
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Proof. This proposition follows from Theorem 7.2 and Theorem 7.3. We show here why
the above are the only kind of broken curves to consider gluing. If the broken curve lives
in the compactification of the one-dimensional M%(cp;c), then by (1.6) at least one of its
pieces must have negative formal dimension. Since the handle slide disk u is the only disk
with negative formal dimension, all but one of the pieces of the broken disk must be u. The
requirement that our disks have just one positive puncture and Lemma 1.1 reduce all possible
configurations of the broken curve to the ones considered above. O

We now prove Lemma 1.8 in two steps. First consider type (A) isotopies without handle
slides.

Lemma 1.12. Let Ly, t € [0,1] be a generic type (A) isotopy of Legendrian submanifolds for
which no handle slides occur. Then the boundary maps Jy and &1 on A = A(Lg) = A(L1)
satisfies 9y = 0.

Proof. Propositions 1.10 and 1.11 imply that MY (a;B) is compact when its dimension is
one. Since if a sequence in this space converged to a broken curve (ul,...,uN ) then at
least one u/ would have negative formal dimension. This contradicts the assumptions that
no handle slide occurs and that the type (A) isotopy is generic. Thus the corresponding 0
dimensional moduli spaces MY and MY, used in the definitions of dy and 9, respectively,
form the boundary of a compact 1-manifold. Hence their modulo 2 counts are equal. (|

We consider what happens around a handle slide instant. Let Ly, t € [—6, 6] and MY (a; b)
be as in Lemma 1.11. Let J_ denote the differential on A = A(L_s), and d; the one on
A = A(Ls). For generators ¢ in A define

c if ¢ # a,
$a(c) = {a—l—Ab if c=a.

and extend ¢, to a tame algebra automorphism of A.

Lemma 1.13. Let ¢ be a generator of A then

oo [0al0-0) ifcta,
+C = .

0_(da(0)) ifc=a.
Proof. Any a € A can be expressed in a unique way as a Zs-linear combination of elements
Cw, where C' € H(L) and w is a word in the generators of A, see (1.3). Let (o, Cw) denote
the coefficient (0 or 1) in such an expansion. It follows from Proposition 1.11 that for any
generator ¢ # a

(04 — 0_)c, Bwibws) = (0_c, (BA ! )wiaws).

From this, the formula for d;.c follows when ¢ # a. The formula when ¢ = a follows similarly.
O

Lemma 1.14. The map ¢, : A — A is a tame isomorphism from (A,0_) to (A, 04).

Proof. As ¢, is clearly a tame isomorphism of algebras we only need to check that it is also
a chain map. If ¢ # a is a generator then ¢,0_c = 0;.¢c = 01 ¢qc. It follows from Lemma 1.1
that 0;a contains no terms which contain an a and that the word b does not contain the
letter a. Thus 0. Ab = J_ Ab and hence

Pa0-a = ¢a0- (¢a(a + Ab)) = ¢a(a+a + 8+Ab) = 64—(@ + Ab) = a-|—¢aa-

Proof of Lemma 1.8. The lemma follows from Lemmas 1.12, 1.13, and 1.14. O
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We consider elementary isotopies of type (B). Let L;,t € I = [—4,J] be an isotopy of type
(B) where two Reeb chords {a, b} are born as t passes through 0. Let o be the degenerate
Reeb chord (double point) at ¢ = 0 and let C' = {aq,...,a;,b1,...,bn} be the other Reeb
chords. Again we note that ¢; € C' unambiguously defines a Reeb chord for all L; and a and
b unambiguously define two Reeb chords for all L; when ¢ > 0. It is easy to see that (with
the appropriate choice of capping paths) the grading on a and b differ by 1 so let |a| = j and
|b| =j—1. Let (A_,0_) and (A4, 0+) be the DGA’s associated to L_s and Ls, respectively.

Lemma 1.15. The stabilized algebra Sj(A_,0_) is tame isomorphic to (A4, 04).

Proof of Proposition 1.7 and 1.6 . The first proposition follows from Lemmas 1.8 and 1.15
and implies in its turn the second. O

We prove Lemma 1.15 in several steps below. Label the Reeb chords of L; so that
Zby) <...<Z2Zb) <Z0b)< Z(a) < Z(a1) < ... < Z(a),
let B =Zs[H1(L)](b1,...,bn) and note that B is a subalgebra of both .A_ and A;. Then

Lemma 1.16. For § > 0 small enough
Ora=>b+w,
where v € B.

Proof. Let 0 € Hy(L) denote the zero element. In the model for the type (B) isotopy there
is an obvious disk in M} (a;b) for ¢ > 0 small which is contained in the z;-plane. We argue
that this is the only point in the moduli space. We restrict attention to the neighborhood N
of 0* that is biholomorphic to the origin in C" as in the description of a type (B) move. Let
7; : C" — C be the projection onto the i** coordinate. If u : D — C™ is a holomorphic map in
M (a;b) then m; ou will either be constant or not. If 7; o is non-constant for ¢ > 1 then the
image of w1 ou intersected with N has boundary on two transverse Lagrangian submanifolds.
As such it will have a certain area A;. Since Z(a) — Z(b) — 0 as t — 0+ we can choose ¢ small
enough so that Z(a) — Z(b) < A, for all i > 1. Then m; o w must be a point for all ¢ > 1 and
for i = 1, it can only be the obvious disk. Lemma 6.24 shows that M} (a;b) is transversely
cut out and thus contributes to d,a. If u € M?(a;b), where A # 0 then the image of u must
leave N. Thus, the above argument shows that M (a;b) = 0 for ¢ small enough. Also, for

t > 0 sufficiently small Z(a) — Z(b) < Z(by,). Hence by Lemma 1.1, v € B. O
Define the elementary isomorphism ®¢ : Ay — S;(A-) (on generators) by
e{ if c=a,
Po(c) = el +v ife=b
c otherwise.

The map P fails to be a tame isomorphism since it is not a chain map. However, we use it as
the first step in an inductive construction of a tame isomorphism ®;: Ay — S;(A_). To this
end, for 0 < ¢ <, let A; be the subalgebra of A, generated by {ai,...,a;,a,b,b1,...,bm}
(note that A4; = A4). Then, with 7 : S;(A-) — A_ denoting the natural projection and
with 0° denoting the differential induced on Sj(A_), we have

Lemma 1.17.

(1.9) Qg o diw =07 o dyw
for w e Ay and

(1.10) To®yody =700% o dy.
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Before proving this lemma, we show how to use it in the inductive construction which
completes the proof of Lemma 1.15.

Proof of Lemma 1.15. The proof is similar to the proof of Lemmas 6.3 and 6.4 in [11] (¢f [2]).
Define the map H : Sj(A_) — S;(AA-) on words w in the generators by

0 ifweAd_,
H(w)=<X0 ifw=ae]fand ae A_
aelf ifw=aelfand a e A_,
and extend it linearly. Assume inductively that we have defined a graded isomorphism ®;_1 :
Ay — Sj(A-) so that it is a chain map when restricted to A;—; and so that ®;_;(ay) = ag,

for k > i — 1. (Note that ®( has these properties by Lemma 1.17.)
Define the elementary isomorphism g; : S;(A-) — S;(A_) on generators by

c if ¢ # a;,
gi(c) = .
a;+Ho®;,_100(a;) if c=uaqy

and set ®;, = g;0®;_1. Then ®; is a graded isomorphism. To see that ®; is a chain map when

restricted to A; observe the following facts: To H =0,70¢g; = 7, and 7 0 ®; = 7 0 & for all

i. Moreover, 0ya; € Aj—1 and 7 —idg,4_) = 02 o H + H 0 9%, where in the last equation we

think of 7: S;(A-) — S;(A-) as 7: S;(A-) — A_ composed with the natural inclusion.
Using these facts we compute

aigi(ai) zﬁi(al) + (8iH)<I>Z,18+(aZ) = 8i(al) + (Hﬁi + 7+ 1d)¢z,18+(al)
=0° (al) + T@o&r(ai) + <I>Z-,18+(ai) = q)i,18+(ai).
Thus ®; 0 04 (a;) = 0% o g;(a;) = 0% o ®;(a;). Since ®; and P,_; agree on A;_; it follows
that ®; is a chain map on A;. Continuing we eventually get a tame chain isomorphism
(I>l :AJr —>S](.A7) O
The proof of Lemma 1.17 depends on the following two propositions.

Proposition 1.18. Let Li,t € I = [—0,0] be a generic Legendrian isotopy of type (B) with
notation as above (that is, o is the degenerate Reeb chord of Lo and the Reeb chords a and b
are born as t increases past 0).

(1) Let MY(o,¢) be a moduli space of rigid holomorphic disks. Then there exist p > 0
and a local homeomorphism

S: M(05¢) x [p,00) — MPV(a; ),

with the following property. If u € M%(o0;c) then any disk in Mf’é](a; c) sufficiently
close to the image of u is in the image of S.

(2) Let MY%(c,d) be a moduli space of rigid holomorphic disks. Let S C {1,...,m} be the
subset of positions of d where the Reeb chord o appears (to avoid trivialities, assume

S #0). Then there exists p > 0 and a local homeomorphism

S': MY(c,d) x [p,00) — M (e, dg (b)),
with the following property. If u € Mq(c;d) then any disk in Mg)’(ﬂ (c;ds(b)) suffi-
ciently close to the image of u is in the image of S’.

This is a rephrasing of Theorem 7.4 and the following proposition is a restatement of
Theorem 7.5
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Proposition 1.19. Let Lyt € I = [—0,0] be a generic isotopy of type (B). Let M%l(o; cl),
e ./\/l%r(o; c”), and M%(c; d) be moduli spaces of rigid holomorphic disks. Let S C {1,...,m}
be the subset of positions in d where the Reeb chord o appears and assume that S contains r
elements. Then there exists p > 0 and an embedding

T ] -4, r
G: Mi(e;d) x I MY (0;d7) x [p,00) = M, (erds(e,. . @),

with the following property. If v € Mo(c;d) and uj € Mo(o;¢?), j = 1,...,r then any disk

. [—4,0)
m MB+Z A,
of G.

(c;dg(ct,...,c")) sufficiently close to the image of (v,u1,...,u,) is in the image
Proof of Lemma 1.17. Equation (1.9) follows from arguments similar to those in Lemma 1.8.
Specifically, one can use these arguments to show that 0;b; = 0_b;. Then since 0, b; € B and
since ®q is the identity on B,

DD b; = Opb; = O_b; = 0% Bob;.

We also compute ' '
Ppdra = Po(b+v) =€) +v+v=e)=0°Dga,
and, since d4+b and J;v both lie in B,

Dodyb = Db, 85 Dob = 0 (¢] +v) = d_v = d4v.

Since 0 = 0;04a = 04+b + 0+v, we conclude that (1.9) holds.

To check (1.10), we write 0ya; = Wi+ Wy + W3, where Wi lies in the subalgebra generated
by {a1,...,a;,b1,...,bn}, where Wo lies in the ideal generated by a and where W3 lies in the
ideal generated by b in the subalgebra generated by {ai,...,a;,b,b1,...,bn}.

Let u;, be a family of holomorphic disks with boundary on L;. Ast — 0, u; converges to
a broken disk (u!,...,u") with boundary on Lg. This together with the genericity of the
type (B) isotopy implies that for ¢ # 0 small enough there are no disks of negative formal
dimension with boundary on L; since a broken curve which is a limit of a sequence of such
disks would have at least one component 1/ with negative formal dimension.

Let ug: D — C", s # 0 be rigid disks with boundary on L. If, the image u_;(0D) stays a
positive distance away from o* as t — 0+ then the argument above implies that u_; converges
to a non-broken curve. Hence d_a; = W7 + Wy where for each rigid disk u_;: D — C"
contributing to a word in Wy there exists points ¢_; € 9D such that u_s(q—¢) — 0* as
t — 0+4. The genericity assumption on the type (B) isotopy implies that no rigid disk with
boundary on Ly maps any boundary point to o*, see Corollary 6.22. Hence u_; must converge
to a broken curve (u',...,u") which brakes at o*. Moreover, by genericity and (1.6), every
component v’ of the broken curve must be a rigid disk with boundary on Lg. Proposition 1.19
shows that any such broken curve may be glued and Proposition 1.18 determines the pieces
which we may glue. It follows that W, = Ws where W, is obtained from Ws by replacing
each occurrence of b with v. Therefore,

T(I>08+(ai) = T@Q(Wl + Wy + Wg) =W+ WQ = éL(ai) = T@i@o(ai).

2. ADMISSIBLE LEGENDRIAN SUBMANIFOLDS AND ISOTOPIES

2.1. Chord genericity. Recall that a Legendrian submanifold I ¢ R?"*! is chord generic
if all its Reeb chords correspond to transverse double points of the Lagrangian projection
[I. For a dense open set in the space of paths of Legendrian embeddings, the corresponding
1-parameter families Ly, 0 < t < 1, are chord generic except for a finite number of parameter
values t1,...,t, where Il (Ly;) has one double point with self-tangency, and where for some
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6 > 0 Il (Ly), (t; — 6,t5 + 0), is a versal deformation of II(Ly;), for j =1,..., k. We call
1-parameter families L; with this property chord generic 1-parameter families.

2.2. Local real analyticity. For technical reasons, we require our Legendrian submanifolds
to be real analytic in a neighborhood of the endpoints of their Reeb chords and that self-
tangency instants in 1-parameter families have a very special form.

Definition 2.1. A chord generic Legendrian submanifold L C C" x R is admissible if for any
Reeb chord ¢ of L with endpoints ¢; and ¢ there are neighborhoods U; C L and Us C L of
q1 and qa, respectively, such that Il (Uy) and Il (Us) are real analytic submanifolds of C™.

We will require that self-tangency instants in 1-parameter families have the following spe-
cial form. Consider 0 € C" and coordinates (z1,...,z2,) on C". Let P; and P, be Lagrangian
submanifolds of C" passing through 0. Let z = (z1,...,2,) € R" and y = (y1,...,yn) € R”
be coordinates on P; and Ps, respectively. Let Ry C P; and Ry C P» be the boxes \x]] <1
and |y;| <1, j=1,...,n. Let B;(2) and B;(2 + €) for some small € > 0 be the balls of radii
2 and 2+ € around 0 € P;, j = 1,2. We require that in Ry, P, has the form

(21) Y1 X ]51

where 7 is an arc around 0 in the real line in the z-plane and where P, is a Lagrangian
submanifold of C"~! &~ {z; = 0}. We require that in Ry, P, has the form

(2.2) Y(t) x Py,

where 77 is an arc around 0 in the unit-radius circle centered at i in z;-plane and where b,
is a Lagrangian submanifold of C"~! & {z; = 0}, which meets P| transversally at 0.

If ¢ € C" let \; denote the complex line in 7;C" parallel to the zi-line. We also require
that for every point p € B;(2 +€) \ B;(2) the tangent plane T),P; satisfies

(2.3) T,PiNX, =0, j=1,2.

Definition 2.2. Let L; be a chord generic 1-parameter family of Legendrian submanifolds
such that L has a self-tangency. We say that the self-tangency instant Lg is standard if there
is some neighborhood U of the self-tangency point and a biholomorphism ¢: U — V c C"
such that

(2.4) o(Ls N U) =P U PQ(t) NN,

where N is some neighborhood of 0 € C", and where P5(t) is P transalted ¢ units in the
y1-direction.

Definition 2.3. Let L;, 0 < t < 1 be a chord generic 1-parameter family of Legendrian
submanifolds. Let t1,...,%, be its self tangency instants. We say that L; is an admissible
1-parameter family if L; is admissible for all ¢ # ¢, if there exists small disjoint intervals
(tj —6,t; +6) where the 1-parameter family is constant outside some small neighborhood W
of the self-tangency point, and if all self-tangency instants are standard.

Definition 2.4. A Legendrian submanifold L. C R x C™ which is a self-tangency instant of
an admissible 1-parameter family will be called semi-admissible.

2.3. Reducing the Legendrian isotopy problem. We prove a sequence of lemmas which
reduce the classification of Legendrian submanifolds up to Legendrian isotopy to the classi-
fication of admissible Legendrian submanifolds up to admissible Legendrian isotopy.

We start with a general remark concerning lifts of Hamiltonian isotopies in C™. If h is a
smooth function with compact support in C™ then the Hamiltonian vector field

oh oh
Xy, =——0, + —0,
h 8yi &EZ + 890@ ayz
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associated to h generates a l-parameter family of diffeomorphisms ®¢ of C"™. Moreover, the
vector field X} lifts to a contact vector field

oh oh oh

a_yiaxi + 8—331‘8% + <h yzayi> 0,

on C" x R, which generates a l-parameter family éz of contact diffeomorphisms of C" x R
which is a lift of ®}. We write &), = ®} and similarly &), = &}.

We note for future reference that in case the preimage of the support of h in L has more
than one connected component we may define a Legendrian isotopy of L by moving only one
of these components (for a short time) using X, and keeping the rest of them fixed.

An e-isotopy is an isotopy during which no point moves a distance larger than € > 0.

K=

Lemma 2.5. Let L be a Legendrian submanifold. Then, for any € > 0, there is an admissible
Legendrian submanifold Le which is Legendrian e-isotopic to L.

Proof. As mentioned, we may after arbitrarily small Legendrian isotopy assume that L is
chord generic. Thus, it is enough to consider one transverse double point. We may assume
that one of the sheets of L close to this double point is given by x — (x,df(x), f(z)) for
some smooth function f. Let g be a real analytic function approximating f (e.g. its Taylor
polynomial of some degree). Consider a Hamiltonian h which is h(z,y) = g(x) — f(z) in
this neighborhood and 0 outside some slightly larger neighborhood. It is clear that the
corresponding Hamiltonian vector field can be made arbitrarily small. Its flow map at time
1 is given by ®}(z,y) = (z,y + dg(x) — df (z)). Using this and suitable cut-off functions for
the lifted Legendrian isotopies the lemma follows. O

Lemma 2.6. Let L; be any chord generic Legendrian isotopy from an admissible Legendrian
submanifold Lo to another one Li. Then for any € > 0, there is an admissible Legendrian
1sotopy e-close to Ly connecting Ly to L.

Proof. Let t1,...,t; be the self tangency instants of the isotopy. First change the isotopy
so that there exists small disjoint intervals (t; — d,t; + ) where the 1-parameter family
is constant outside some small neighborhood W of the self-tangency point. Consider the
restriction of the isotopy to the self-tangency free regions. The 1-parametric version of the
proof of Lemma 2.5 clearly applies to transform this part of the isotopy into one consisting
of admissible Legendrian submanifolds. Then change the isotopy in the neighborhoods of the
self tangency instants, using essentially the same argument as above, to a self-tangency of
the from given in (2.1) and (2.2).

It remains to show how to fulfill the condition (2.3). To this end, consider a Lagrangian
submanifold of the form (2.1). Locally it is given by (z,df(£)), where & = (zo,...,x,). Let

¢(z) be a function which equals 0 in B(2 — %¢) and outside B(2 + 2¢) and has <Z> # 0

Oxix;

for some j at all points in B(2+¢€) \ B(2). (For example if K is a small constant a suitable
cut-off of the function Kx(z2+...x,) has this property). We see as above that our original
Legendrian is Legendrian isotopic to (x,df(x) + d¢(x)). The tangent space of the latter
submanifold is spanned by the vectors

a?¢
(2.5) Oy, + Z o) 8961
a2¢ 0% f
. . < r<n.
(26) axr+za a a 8%, 2_T_n

Any non-trivial linear combmatlon of the last n — 1 vectors projects non-trivially to the
subspace dr; = dy; = dys = - -+ = dy, = 0. The first vector lies in the subspace dzo = --- =
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dx, = 0; thus, since the first vector does not lie in the z;-line because &iﬁj # 0 for some
j # 1, no linear combination of the vectors does either. P, can be deformed in a similar
manner.

After the self-tangency moment is passed it is easy to Legendrian isotope back to the

original family through admissible Legendrian submanifolds. O

3. HOLOMORPHIC DISKS

In this section we establish notation and ideas that will be used throughout the rest of the
paper.

3.1. Reeb chord notation. Let L C C" x R be a Legendrian submanifold and let ¢ be a
Reeb chord of L. The z-coordinate of the upper and lower end points of ¢ will be denoted by
¢ and ¢, respectively. See Figure 3. So as a point set ¢ = ¢* x [¢™,¢"] and the action of ¢
is simply Z(c) = ¢t —¢™.

FIGURE 3. A Reeb chord in R3.

If » > 0 is small enough so that HE(B(C*, 7)) intersects L is exactly two disk about the up-

per and lower end points of ¢, then we define U(c*, r) to be the component of Hél(B(C*, r))NL
+

containing ¢* x ¢*.
3.2. Definition of holomorphic disks. If M is a smooth manifold then let Hi°¢(M,C")
denote the Frechet space of all functions which agree locally with a function with £ derivatives
in L2. Let A,, C C denote the unit disk with m punctures on the boundary, let L C C" x R
be a (semi-)admissible Legendrian submanifold.

Definition 3.1. A holomorphic disk with boundary on L consists of two functions u €
HE(A,,,C") and h € H3z(0A,,,R) such that
2

(3.1) ou(¢) = 0, for ¢ € int(A,),

(3.2) (u(¢),h(C)) € L, for ¢ € 0A,,,

and such that for every puncture p on 0A,, there exists a Reeb chord ¢ of L such that
(3.3) %Erjlou(é) =c".

When (3.3) holds we say that (u, h) maps the puncture p to the Reeb chord c.
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Remark 3.2. Since u € HY¢(A,,, C"), the restriction of u to the boundary lies in H¥(9A,,, C™).

2
Therefore both u and its restriction to the boundary are continuous. Hence (3.2) and (3.3)
make sense.

Remark 3.3. If u € HY(A,,, C") then Ou € HYC(A,,, T D,, ® C") and hence the trace
of Qu (its restriction to the boundary dA,) lies in HY(OA,, T**'D,, ® C"). If u is a
2

holomorphic disk then du = 0 and hence its trace du|dA,, is also 0.

Remark 3.4. It turns out, see Section 8.5, that if (u, f) is a holomorphic disk with boundary
on a smooth L, then the function w is in fact smooth up to and including the boundary and
thus f is also smooth. Hence, it is possible to rephrase Definition 3.1 in terms of smooth
functions. (Also, it follows that the definition above agrees with that given in Section 1.3.)
The advantage of the present definition is that it allows for Legendrian submanifolds of
lower regularity. (The Legendrian condition applies to submanifolds L which are merely
Cl-smooth.)

3.3. Conformal structures. We describe the space of conformal structures on A,, as fol-
lows. If m < 3, then the conformal structure is unique. Let m > 4 and let the punctures of
A, be p1,...,pm. Then fixing the positions of the punctures p1, po2, p3 the conformal struc-
ture on A,, is determined by the position of the remaining m — 3 punctures. In this way
we identify the space of conformal structures C,, on A, with an open simplex of dimension
m — 3.

3.4. A family of metrics. Let A denote the unit disk in the complex plane. Consider
A,, with m punctures pq,...,pm» on the boundary and conformal structure . Let d be the
smallest distance along A between two punctures and take

s—mind L T
— M 7007 100 [

Define D(p,d) to be a disk such that OA(p,d) intersects DA orthogonally at two points a
and a_ of distance 0 (in 0A) from p.

Let L, be the oriented tangent-line of OA at p and let g, be the unique Mobius trans-
formation which fixes p, maps ay to the point of distance d from p along L,, maps a_ to
the point of distance —d from p along L, and such that the image of g,(A) intersects the
component of C — L, which intersects A.

The function hy: D(p,0) N Ay, — [0,00) x [0,1] defined by

(€)= —— (1o (~iplgy(C) — p) ~ Tog(3)),

is a conformal equivalence. Let gg denote the Euclidean metric on C. Then there exists a
function s: [0, 3] x [0, 1] — R such that h;l*go = 5(¢)go on [0, 3] x [0, 1]. Let ¢: [0,00) — [0,1]
be a smooth function which is 0 in a neighborhood of 0 and 1 in a neighborhood of % for
T > % Let g, be the metric

golr +it) = (8(7) + (1= 9(r))s(t +it) ) 9o,

on [0,00) x [0,1].

Now consider A, with the metric g(x) which agrees with A} g, on h;jl([%, o0) % [0,1])
for each puncture p;, and with go on Ay, — (D(p1,9) U ..., D(pm,d)). Then (A, g(k)) is
conformally equivalent to (A, go)-

We denote by D,, (k) the disk A,, with the metric g(x). If the specific k£ is unimportant

or clear from context we will simply write D,,. Also E,, C Dy, will denote the Euclidean
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neighborhood [1, 00) x [0, 1] of the j* puncture p; of Dy,. We use coordinates ( = 7 + it on
E,, and let Ej, [M] denote the subset of 7 + it € E,, with |r| > M.

3.5. Sobolev spaces. Consider D,, with metric g(x) for some k € Cp,. Let D,, denote the
open Riemannian manifold which is obtained by adding an open collar to dD,, and extending
the metric in a smooth and bounded way to g(c).

The Sobolev spaces H}coc(ﬁm, C™) are now defined in the standard way as the space of C"-
valued functions (distributions) the restrictions of which to any open ball B in any relatively
compact coordinate chart ~ R? lies in the usual Sobolev space Hi(B,C").

Using the metric g(x) and the finite cover

U int(Epj [1))u (f)m - UjEpj [2]),
j
where Epj is the union of £, and the corresponding part of the collar of D,,,, we define, for
each integer k, the space Hy,(Dj,, C") as the subspace of all f € HI°®(D,y,, C*) with || f|| < oo.
We consider Hy(D,,, C") as a space of distributions acting on C§°(D,,,C"). We write
e Hj.(D,,, C") for the space of restrictions to int(D,,) C D,,, of elements in Hy (D, C"),

and
. ’Hk(A, C™) for the set of distributions in Hk(f?m, C™) supported in A C D,,.

Then Hy (D, C") is a closed subspace of Hy(Dy,, C") and if K,, = D,, — int(D,,) then
Hi(Dim, C") = Hi(Din, C") /Hi (K, C").

We endow Hy(D,,,C") and Hi (D, C") with the quotient- and induced topology, respec-
tively. Let C§°(D,,,C") denote the space of restrictions of elements in C§°(Dy,, C") to Dy,.

Lemma 3.5. C°(D,,,C") is dense in Hy(Dy,, C"), C§°(int(D,y,), C") is dense in Hy(Dy,, C"),
and the spaces Hy(Dupm, C") and H_g(Dy, C") are dual with respect to the extension of the

bilinear form
/ (u,vydA
Dy,

where u € C3°(Dp,, C™),v € C§°(int(Dyy,),C") and (, ) denotes the standard Riemannian
inner product on C" ~ R?".

This is essentially Theorem B.2.1 p. 479 in [20].

We will also use weighted Sobolev spaces: for a € R, let el: D,, — R be a smooth function
such that (7 + it) = e for 7 + it € Ep.[3] and e,(¢) = 1 for ¢ € Dy, — Ep;[2]. For
= (1, tm) €ER™ let e,: Dy, — R®id C GL(C") be

e, (¢) = H}’”;lei;j(c) id,

Note that e, (¢) preserves Lagrangian subspaces. We can now define Hy, (D, C") = {u €
HIOC (D, C") = €yu € Hi( Dy, C™)}, with norm |jullg,, = |le,ulx-

3.6. Asymptotics. Let Ag and A; be (ordered) Lagrangian subspaces of C". Define the
complex angle 0(Ag, A1) € [0, 7)™ inductively as follows:

If dim(AgNAy) =r >01let 6 = --- = 6. = 0 and let C"" denote the Hermitian
complement of C® Ag N Ay and let A, = A; NC"™" for ¢ = 0,1. If dim(Ag N A1) = 0 then
let A = A;, i =0,1 and let » = 0. Then A}, and A} are Lagrangian subspaces. Let a be
smallest angle such that dim(e’*Ag N A;) =7' > 0. Let 0,1 = --- = 0,,,» = a. Now repeat
the construction until #,, has been defined. Note that 0(AAg, AA1) = 0(Ao, A1) for every
A € U(n) since multiplication with ¢® commutes with everything in U(n).
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Proposition 3.6. Let (u,h) be a holomorphic disk with boundary on a (semi-)admissible
Legendrian submanifold L. Let p be a puncture on D, such that p maps to the Reeb chord
c. For M > 0 sufficiently large the following is true:

If I (L) self-intersects transversely at c* then

(3.4) lu(r +it)] = O(e™), 71 +it € E,[M],

where 8 > 0 is the smallest complex angle of c.
If I (L) has a self-tangency at c* then either there exists a real number co such that

. +2 _9 .
(3.5) u(r +it) = (moo) + O™ r+it € By[M],
or
(3.6) lu(r +it)] = O(e™ ), 71 +it € E,[M],
where 0 is the smallest non-zero complex angle of L at p.
In particular, if the punctures p1,...,pm on Dy, map to Reeb chords ci,...,cm and if
f1 Dy — C" is any smooth function which is constantly equal to cj, ..., cy, in neighborhoods

Ofplu"' y Pm, then u — f € H?(Dﬂ’ch)

Proof. Equation (3.4) is a consequence of Theorem B in [27]. To prove the corresponding
statement for a self-tangency double point we may assume that the self-tangency point is
0 € C" and that around 0, II(L) agrees with the local model in Definition 2.3. Elementary
complex analysis (see Lemma 5.2 below) shows that for a standard self tangency the first
component uy of a holomorphic disk is given by

+2
C—co+D.,e7Cn exp(nm()’

3.7) u1(¢) =

where c; are real constants, in E,[M]. Applying [27] again to the remaining components
u' of u gives the claim. The last statement follows immediately from the asymptotics at
punctures. O

4. FUNCTIONAL ANALYTIC SETUP

As explained in Section 1, contact homology is built using moduli-spaces of holomorphic
disks. In this section we construct Banach manifolds of maps of punctured disks into C™
which satisfy certain boundary conditions. In this setting, moduli-spaces will appear as the
zero-sets of bundle maps.

In Section 4.1 we define our Banach manifolds as submanifolds in a natural bundle of
Banach spaces. To find atlases for our Banach manifolds we proceed in the standard way:
construct an “exponential map” from the proposed tangent space and show it is a diffeomor-
phism near the origin. To do this, in Section 4.2, we turn our attention to a special metric
on the tangent bundle of the Legendrian submanifold. From this we construct a family of
metrics on C" in Section 4.3 and use it to define a preliminary version of the “exponential
map” for the Banach manifold. Section 4.4 contains some technical results needed to deal
with families of Legendrian submanifolds. In Section 4.5 we show how to construct the atlas.
Section 4.6 discusses how to invoke variations of the conformal structure of the source space
into the present setup. In Section 4.7 we linearize the bundle map, the zero set of which is
the moduli-space. Section 4.8 discusses some issues involving the semi-admissible case.
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4.1. Bundles of affine Banach spaces. Let Ly C C" xR, A € A, where A is an open subset
of a Banach space, denote a smooth family of chord generic admissible Legendrian submani-
folds. That is, A is smoothly mapped into the space of admissible Legendrian embeddings of
L endowed with the C°°-topology.

We also study the semi-admissible case. To this end we also let Ly, A € A, be a smooth
family of semi-admissible Legendrian submanifolds. For simplicity, and since it will suffice
for our applications, we assume that in this case, the self tangency point of II(Ly) remain
fixed as A varies and that in a neighborhood of this point the product structure of I (Ly)
is preserved and the first components v; and 9, shown in Figure 2 remain fixed as A\ varies.

Let a(A) = (a1(A), ..., am(N)), A € A be an ordered collection of Reeb chords of L) depend-
ing continuously on A. Consider D,, with punctures pi,...,pn, and a conformal structure

Kk € Cp,.
Fix families, smoothly depending on (A, k) € A x C,,, of smooth reference functions

Upet[@(A), K] : Dy — C"
such that uef[a(M), ] is constantly equal to aj in E,, , and

hret[a(A), k] 0Dy, — R
such that h,e[a()), #] is constantly equal to a (\) and af (A) on [1,00) C E,,, and [1,00)+i C
E,,, respectively, and, for k > 2, constantly equal to a,j()\) and a; (A) on [1,00) C K, , and

[1,00) + i C E,,, respectively.
Let € = (€1,...,€p) € [0,00)™. For u: D,, — C" and h: dD,;, — R consider the conditions

(4.1) u — Uref[a(N), K] € Ha,e(Dyp, C"),
(4.2) h — hyet[a(N), K] € H%e(@DmH,R).
(Note that the k-dependence of the right hand sides in (4.1) and (4.2) has been dropped from
the notation.) Define the affine Banach space
Foe(a(r), k) = {(u, h): Dy — C" x R : u satisfies (4.1), h satisfies (4.2)},

endowed with the norm which is the sum of the norms of the components. Let

Foenla, k) = | Foclaln), n)
AEA

be the metric space with distance function

d((v, f, A), (w.g, ) =[l(v = urer[a(A), £]) — (w — urer[a(p), 5])l2.e
I = hret[a(A), £]) = (g = Prer[alp), 51|

(4.3) +|A — pl.
We give F . a(a, k) the structure of a Banach manifold by producing an atlas as follows.

Let (w, f,\) € Faen(a, k). Let (wy, fu, ) be any family such that (wy, fa, A) = (w, f,A) and
such that

€

(SIS

H—= (wu - uref[a(;u)a K‘]a fu - href[a(u)v H])
is a smooth map into Hg ¢(Dp,, C™) x H%,e(aDm, R). Then a chart is given by

Ha,e(Dy,, C™) % H%G(@Dm,R) X A — Fyen(a, k);
(4.4) (g,r 1) = (wp + g, fu+ 1, 1)

If (u,h, \) € Farn(a(\),s) then du € Hy (Dp,, T D™ @ C") and its trace du|dDy, lies
in H1(Dy,, T*' D, ® C")).
2
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Definition 4.1. Let Wy p(a, k) C Faa(a, k) denote the subset of elements (u, h, A) which
satisfy

(4.5) (u,h)(¢) € Ly for all ¢ € ID,,,

(4.6) / (Bu,v) ds = 0, for every v € C°(dD,,, T**' D,, ® C"),
ODm,

where (,) denotes the inner product on 7*%! @ C" induced from the standard (Riemannian)
inner product on C".

Lemma 4.2. W) . r(a, k) is a closed subset.

Proof. If (ug, hi, M) is a sequence in Wh ¢ a(a, k) which converges in Fo . a(a, k) then A\ — A
and the sequence (ug|0Dp,hy) converges in sup-norm. Hence (4.5) is a closed condition.
Also, 0 is continuous as is the trace map. It follows that (4.6) is a closed condition as
well. O

4.2. The normal bundle of a Lagrangian immersion with a special metric. Let
L C C" xR be a an instant of a chord generic 1-parameter family of Legendrian submanifolds.
Then II: L — C" is a Lagrangian immersion and the normal bundle of Il is isomorphic
to the tangent bundle T'L of L. On the restriction 77,(T'L) of the tangent bundle T'(T'L) of
TL to the zero-section L there is a natural endomorphism J: T7,(T'L) — Tp(T'L) such that
J? = —1. It is defined as follows. If p € L then T}, ) (T'L) is a direct sum of the space of
horizontal vectors tangent to L at p and the space of vertical vectors tangent to the fiber of
m: TL — L at p. If v € T(TL) is tangent to L at p € L then Jv is the vector v viewed
as a tangent vector to the fiber T,L of 7: TL — L at (p,0), and if w is a vector tangent to
the fiber of m at (p,0) then Jw = —w, where —w is viewed as a tangent vector in 7}, L. This
defines J on the two direct summands. Extend it linearly.

The immersion II: L — C" extends to an immersion P of a neighborhood of the zero-
section in T'L and P can be chosen so that along L, io0dP =dP o J.

From a Riemannian metric g on L, we construct a metric § on a neighborhood of the zero
section in T'L in the following way. Let v € T'L with m(v) = p. Let X be a tangent vector
of TL at v. The Levi-Civita connection of g gives the decomposition X = X + XV where
XV is a vertical vector, tangent to the fiber, and X lies in the horizontal subspace at v
determined by the connection. Thus XV is a vector in T pL with its endpoint at v. It can
be translated linearly to the origin 0 € T,L. We use the same symbol X V' to denote this
vector translated to 0 € T,,L. Write 71X € T, L for the image of X under the differential of
the projection m and let R denote the curvature tensor of g.

Define the field of quadratic forms g on T'L as

(4.7) §(0)(X,Y) = g(0)(7 X, 7Y) + 9(p)(XV, YY) + g(p)(R(m X, v)7Y, ),

where v € TL, m(v) = p, and X,Y € T,(TL).

Proposition 4.3. There exists p > 0 such that g is a Riemannian metric on
{veTL: g(v,v) < p}.

In this metric, the zero section L is totally geodesic and the geodesics in L are exactly those
in the metric g. Moreover, if v is a geodesic in L and X is a vector field in T(TL) along
then X satisfies the Jacobi equation if and only if JX does.

Proof. Since g(R(rX,v)nY,v) = g(R(nY,v)nX,v), ¢ is symmetric. When restricted to the
0-section ¢ is non-degenerate. The first statement follows from the compactness of L.

In Lemmas 4.5 and 4.6 below we show L is totally geodesic and the statement about
Jacobi-fields, respectively. O
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Let z = (@1,...,2,) be local coordinates around p € L and let (z,£) € R*" be the
corresponding coordinates on T'M, where £ = £,05 (here, and in the rest of this section, we
use the Einstein summation convention, repeated indices are summed over) where 0; is the
tangent vector of T'L in the z;-direction. We write J;+ for the tangent vector of T'L in the ;-
direction. Let V, V denote the Levi-Civita connections of g and g, respectively. Let Roman
and Greek indices run over the sets {1,...,n} and {1,1%,2,2* ... n,n*}, respectively and
recall the following standard notation:

Gij :g(a’ua])a ga,@ :g(aomaﬂ)a
Vo0 =T50k,  Vo,03 =17040,
R(8;,0;)0, = Rij01,  g(R(4,07))0k, ) = Rijr.

Lemma 4.4. The components of the metric § satisfies

(4'8) gij (x7 5) = Jij (x) + &6 (gkr(x)rfs(x)rgt(x) + Risjt(x)) )
(4.9) =5+ (2, ) = gi5(w),
(4.10) Gije (,€) = &sggi(@)Th(2).

Proof. Since 0;« is vertical, (4.9) holds. Note that the horizontal space at (z,§) is spanned
by the velocity vectors of the curves obtained by parallel translating & along the coordinate
directions through x. Let V(t) be a parallel vector field through z in the 0;-direction with
V(0) = ¢ and V(0) = 0. Then

V(t) = (& + tay + O())0y
and applying Vj, to V (t) we get
0= VajV(t) = fSVQjag + a0 + O(t).

Taking the limit as t — 0 we find a;0 = —£SF§S(:1:)8;€. Hence the horizontal space at (z,€)
is spanned by the vectors 9; — §SF§-‘881€*, j=1,...,n and therefore,

| k

Straightforward calculation gives (4.8) and (4.10). O
Lemma 4.5. The Christofel symbols of the metric g at (x,0) satisfies

(4.11) I (2,0) = IF.(2,0) =¥ (2),

(4.12) I8 (2,0) = T%.(2,0) = Tk, (2,0) = 0.

Hence if v is a geodesic in (L, g) then it is also a geodesic in (T'L,§).
Proof. The equations
A 1. ~ ~ ~
L= §gvé(ga5,ﬁ + 985,00 — JaB,5)
where §*° denotes the components of the inverse matrix of § and Lemma 4.4 together imply
(4.11) and (4.12).
Let x(t) be a geodesic in (L, g). Then (x,z*) = (x(t),0) satisfies

e + D dady + T

. ol SN ‘- o . ko« .
Z + iz + 1 <X je = Zp + L2205 = 0,
ek + Diedidye + D jediedje = 0,

This proves the second statement. O
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Lemma 4.6. If v is a geodesic in (T'L, ) which lies in L then X is a Jacobi-field along v if
and only if JX is.

Proof. We establish the following two properties of the metric § and the endomorphism J. If
7 is a curve in L with tangent vector 7" and X is any vector field in T'(T'L) along v then

(4.13) VrJX = JVrX.

If X, Y, and Z are tangent vectors to T'L at (p,0) € L such that Y and Z are horizontal (i.e.
tangent to L) and if R denotes the curvature tensor of g at (p,0) then

(4.14) R(JX,Y)Z = JR(X,Y)Z.

For (4.13), use local coordinates and write, for v(t) = z(t), T(x) = ap(x)0k, X(x) =
bj(x)0; + bj=(x)0;+. By Lemma 4.5,

VrJX = apVa, (—bj=0; + b;j0;+)
— ay |~ (Obj); + (4b;)0;-
— by (D50 + T30 ) + b (07,00 + fz}*ar*)]
= a [—(akbj*)aj + (Okby)0y- — by TT,0, + bjf;}*ar*}
= Jay [(akbj*)aj* + (Okby); + by T 0 + bjf;;jaT] — JVrX.
For (4.14), introduce normal coordinates x around p. Then
(4.15) 9:j(0) =65, T5;(0) =0
for all ¢, j, k, and hence Lemma 4.4 implies,

Therefore,

(4.16) §9(0,6) =69 +0(¢%), §77(0,6) =0, §77(0,8) =Y.
We show that, in these normal coordinates,

(4.17) R(8;+,0;)0 = JR(0;, ;)0

at (0,0). Since R is a tensor field, (4.17) implies (4.14).
Lemma 4.5 implies that all Christofel symbols of § vanishes at (x,£) = (0,0) and also that
8Z~F§,*€(x,0) =0 all ¢, 4, k,r*. Hence,

R(8;,0;)0r = V,V,0r — Vo,V,0k
= (D50, + (O17) 0y — (9;T5)0r — (0,17 ) Oy
= (&T;k)ar - (8jrgk)arv
and thus
(4.18) JR(0;,0;)0k = (0:T74)0p+ — (0;T51,)Ore.
We compute the left hand side of (4.17):
(4.19) = V.. (f;kar + f;;aﬂ) ~ Vs, (f;; O + f;:kar*) .
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Lemma 4.5 gives @-fgk = 0, and Lemma 4.4 in combination with (4.16) give (%fgk = 0.
Hence,

(4.20) R(03+,0;)0k = (0pT51)0p+ — (05155 )0pe = (03=T%)Ope — (93T )Ope.
It thus remains to compute 0;« f;;
0Ly, = %&'* (?]r*l*(@jz*,k + Grej — Gikar) + 97 Gtk + Grig — ?ij,l))
= %grlai*(gjl*,k + grie 5 — Gjka+)  [by (4.16)]

1
— 50" (O3 gt + (O T gmt — (Ryiwt + Ryugi))  [Lemma 4.4, (4.15)]

2
(4.21) = %(&gf}fi + 0T — (Rjikr + Rjrri))  [(4.15)].
But
Rjikr = 9(Vo;V,0k — Vg,V 0k, 0r) = 0;T5, — 0,1, = 0;'y,; — 0;1,
and
Rjrki = Rpijr = Okl — O;1); = Okl — O;1'.
Hence

01, = 0T,
which together with (4.19) and (4.20) imply (4.17).
Consider a geodesic of (T'L, §) in L with tangent vector 7'. By (4.13) and (4.14),

(4.22) VrVrJX + R(JX,T)T = J(VyVrX + R(X,T)T).
Thus X is a Jacobi field if and only if JX is. O

4.3. A family of metrics on C". Let L C C" x R be an instant of a chord generic 1-
parameter family of Legendrian submanifolds and fix a Riemannian metric g on L. Using
the metric § on T'L (see Section 4.2), we construct a l-parameter family of metrics g(L, o),
0 <o <1, on C" with good properties with respect to Il (L).

Let ¢1,..., ¢y be the Reeb chords of L. Fix § > 0 such that all the 65-balls B(cj», 60) are
disjoint and such that the intersections B(cj,6d) NIl (L) are homeomorphic to two n-disks
intersecting at a point.

Identify the normal bundle of the immersion IIx with the tangent bundle T'L. Consider
the metric § on a p-neighborhood of the 0-section in T'L (p > 0 as in Proposition 4.3). Let
P: W — C" be an immersion of a p’-neighborhood N(p') of the 0-section p’ < p such that
1odP = dP o J along the 0-section.

Consider the P-push-forward of the metric g to the image of N(p') restricted to L \
U; Ulej,0). Note that if p’ > 0 is small enough this restriction of P is an embedding and

the push-forward metric is defined in a neighborhood of (L \ U; U(c; ,26)). Extended it
to a metric g! on all of C", which agrees with the standard metric outside a neighborhood

of Il (L).
Consider the P-push-forward of the metric § to the image of the p’-neighborhood of the
O-section restricted to L\ J; U (c;r, d). This metric is defined in a neighborhood of (L \

U U (cj, 26)) and can be extended to a metric g° on all of C™, which agrees with the standard
metric outside a neighborhood of I (L).

Choose the metrics ¢° and ¢! so that they agree outside UjB(c;f, 30) and let g7, 0 <o <1
be a smooth 1-parameter family of metrics on C" with the following properties:

e ¢° = ¢° in a neighborhood of o = 0,
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e ¢° = g' in a neighborhood of o = 1,
e g7 is constant in o outside U;B(cj, 49).

We take g(L,0) = ¢°.

Remark 4.7. If Ly, A € A is a smooth family of chord generic Legendrian submanifolds
then, as is easily seen, the above construction can be carried out in such a way that the
family of 1-parameter families of metrics g(Ly, o) becomes smooth in A.

Given a vector field v along a disk u: D,, — C™ with boundary on L, we would like to be
able to exponentiate v to get a variation of v among disks with boundaries on L. We will
not be able to use a fixed metric g% to do this. To solve this problem let o: C" x R — [0, 1]
be a smooth function which equals 0 on

" xR UBc 50) [ —QZ(cj)cj—l—l}

and equals 1 on
UBC 40) [ —ZZ(CJ)C —|—2}

Let expj denote the exponentlal map of the metric g at the point p. If p € Ly and v is
tangent to Ly at p, then write z(p) = ¢ (p) and {(v) = Il (v). One may now easily prove
the following lemma.

Lemma 4.8. Let Ly, A € A be a family of (semi-)admissible Legendrian submanifolds. Let
0€ A and let o: C" x R — [0,1] be the function constructed from Lo as above. There ezists
p > 0 and a neighborhood W C A of 0 such that if p is any point in Ly, A € W and v any
vector tangent to Ly at p with |{(v)| < p then

expdIro ) 4¢ € T (Ly) for 0 <t < 1.

4.4. Extending families of Legendrian embeddings and their differentials. In the
next subsection we will need to exponentiate vector fields along a disk whose boundary is in
Lo (0 € A) to get a disk with boundary in Ly for A near 0. To accomplish this we construct
diffeomorphisms of C™.

Consider Ly C C" x R, A € A and let 0 € A. There exists a smooth family of Legendrian
embeddings

ky: Lo — C" xR,
such that ko is the inclusion, kx(Lo) = Ly, and ky(c i(0)) = c]i()\) for each j.

As in Section 4.3, fix § > 0 such that all the 64- balls B(c;(0),60) are disjoint and such
that the intersections B(cj(0),60) NIl (Lo) are homeomorphlc to two n-disks intersecting at
a point.

Let W C A be a neighborhood of 0 such that cj(A) € B(c}(0),0) for A € W. We construct
a smooth A-family (A € W) of l-parameter families of diffeomorphisms #§: C" — C",
0<o<1, e W. Note that

Ky=Tgoky: L = LO\UU(cj,sé) — C",
J
(4.23) K§ =Tgoky: L) =Lo\ | JU(c; ,30) — C”
J
are Lagrangian embeddings and that K)l\(c;‘(O)) = Kg(c;‘(())) = cj(A), for each Reeb chord
¢;(0) of Lo.
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Identify tubular neighborhoods of L(l) and L8 with their respective tangent bundles so that
J along the 0-section of the tangent bundles corresponds to i in C™ (see Section 4.3). Define
for (p,v) e TL C C", « =0,1,

(4.24) K§:(p,v) = K5 (p) + idKS (v).

Then K { is a diffeomorphism on some neighborhood of L{ C C", a = 0,1. Note that the
diffeomorphisms Kg and K 1 agree outside |J ; B(c}, 49).

Extend Kg and K}\ to diffeomorphisms on all of C" in such a way that their extensions
agree outside [ J; B(cj,46). Call these extensions 9§, a =0, 1.

Let ¢, 0 < 0 < 1 be a A-family of 1-parameter families of diffeomorphisms which are
constant in o near 0 = 0 and o = 1 and with the following properties. First, 3,0 <o <1
connects 1 to ). Second, ¥ is constant in o outside UjB(cj-,55) and in Uj(B(cj-,55) \
B(c},46)) N Lo. Third ¢5(cj(0)) = cj(A), 0 <o < 1.

J
For future reference we let Yy denote the 1-parameter family of 1-forms on A with coeffi-

cients in smooth vector fields on C" defined by
(4.25) YV (2, 1) = DaS(x) -y, A€ A peThAzeCtoel01].

By (4.24), dy, o = 0,1 are complex linear maps when restricted to the restriction of the
tangent bundle of C" to L{. Moreover, these maps fit together to a smooth A-family of maps
Ay: Ly — GL(C") which is obtained as follows. Pick a smooth function 5 on Ly with values
in [0,1] which is 0 outside U(c;",56) and 1 inside U(c] ,49) define

Ax(p) = Ay (dlI (T, L)).

Let A: C" — GL(C") be an s-parameter family of 1-parameter families of maps with the
following properties.

o A = {h on I (Lo) \ Mg (U(c;, 59))
A} = Ay on T (Ul(c;, 49))
AS is constant in o on B(c},50) \ B(cj,46) N Lo
0AS = 0 along HC(PO) \T¢(U(c],46)) and JA} = 0 along I (Lo) \ ¢ (U(cj , 49)).
HAK —id HCoo < 2HA>\ —id HCoo.

4.5. Local coordinates. We consider first the chord generic case. Let Ly CC" xR, A € A
be a family of chord generic Legendrian submanifolds. We construct local coordinates on
W2,6,A(a7 H)‘

Let 0: C" x R — [0,1] be the function constructed from Ly, 0 € A. For p € Ly and v a
tangent vector of Il (Ly) at ¢ = Il (p), write

expg(Lx\va(p)) v = eng’U .

Moreover, if p > 0 is as in Lemma 4.8 and |v| < p we write z(p,v) for the z-coordinate of the

endpoint of the unique continuous lift of the path expé"a(p) tv, 0 <t<1,to LCC"xR.

Let (w, f) € Waea(a, k). Let F': D, — R be an extension of f such that F' € Ha (D, R)
(in particular F' is continuous) and such that F' is smooth with all derivatives uniformly
bounded outside a small neighborhood of 0D,,,. Then w x F: D,, — C" x R. In the case
that w and f are smooth we take F' to be smooth. Furthermore, in the case that w and
f are constant close to each puncture we take F' to be an affine parameterization of the
corresponding Reeb-chord in a neighborhood of each puncture where w and f are constant.
The purpose of this choice of F' is that when we exponentiate a vector field at the disk (w, f),
we need (w, F') to determine the metric.
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For r > 0, define
6275((’[1), f)7 T) - H2,€(Dm7 Cn)
as the intersection of the closed subspace of v € Ha (D, C") which satisfies

(4.26) U(C) S HC (T(f(C)vw(C))L>’ for ( € 0Dy,
(4.27) / (Ov,a) ds = 0, for every a € C§°(0D,,,C")
0D,

and the ball {u: |lulj2, < 7}
When the parameter space A is 0-dimensional we can define a coordinate chart around
(f,w,0) € Waen(a, k) (0 € A) by

Pl(w, f,0)]: Bac((w, f),r) x A — Focala, k);
(I)[(wv fa 0)](”7 )‘) = (uv [ )‘)
where

u(¢) = exo 7 (v(0))),
Q) = 2((w(0), F(©):v(0), ¢ € D,

When A is not 0-dimensional we will need to use the maps A to move the “vector field” v
from Lg to L). Moreover, to ensure our new maps are in the appropriate space of functions
we will also need to cut off the original map w. To this end let (w, f,A) € Wa c a(a, k). Then
there exists M > 0 and vector-valued functions §;, j = 1,...,m such that

w(T +it) = exp()l‘;_w(t) §i(r +it), for 7 +it € By [M],
J

where w: [0,1] — [0,1] is a smooth approximation of the identity, which is constant in
neighborhoods of the endpoints of the interval. Define (w[M], f[M]) as follows. Let

w(C), for ¢ ¢ U; By, (M),
w[M](C) = {expi%w(t) (Oégj)a for(=1+1it e Epj [M]v

where a: E,. — C is a smooth function which is 1 on E,; \ E,,[M + 1], 0 on Ej, [2M], and
holomorphic on the boundary. Let f[M] be the natural lift of the boundary values of w[M].
It is clear that (w[M], f[M]) — (w,f) as M — oco. For convenience we use the notation
(w[oo], floo]) to denote this limit. We write F[M] for the extension of f[M] to Dy,.

Let (w, f,0) € Waa(a, k) (0 € A). For large M > 0 consider (w[M], F[M]). To simplify
notation, write o[M](¢) = o/(w[M](¢), F[M](¢)) and w[M](¢) = 7™M (w[M](()). Define
O[(w, f,0); M]: By e((w[M], f[M]),7) x A = Faen(a, r);

®(w, £,0); M](0, \) = (u,1, A

where

w[M]x(C)
1) = =@M, SIMIN), A w(0)), - ¢ € oD,

In the semi-admissible case we use the above construction close to all Reeb chords except
the chord ¢y at the self-tangency point. At ¢jj we utilize the fact that we have a local product
structure of Il (Ly) which is assumed to be preserved in a rather strong sense under A € A,
see Section 4.1. This allows us to construct the family of metrics g§ as product metrics close
to ci. Once we have metrics with this property, we can apply the cut-off procedure above to
the last (n — 1) coordinates of an element (w, f,0) € W5 ¢ A and just keep the first coordinate

w(¢) = eXpA’U[M](O (A;[M](OU(C)>7
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of w in a neighborhood of ¢ as it is. We use the same notation (w[M], f[M]) for the map
which results from this modified cut-off procedure from (w, f) in the semi-admissible case.

Proposition 4.9. Let € € [0,00)™. Then there exists r > 0, M > 0, and a neighborhood
W C A of 0 such that the map

O[(w, f,0)]: Bae((w[M], fF[M]),r) x W — Faca(a, k)

is C1 and gives local coordinates on some open subset of Wa e (a, k) containing (w, f,0).
Moreover, if A is 0-dimensional then we may take M = oc.

Proof. Fix some small r» > 0. Consider the auxiliary map
U: By ((w[M], f[M]),r) x H%e(@Dm,R) XA — Foen(a),
U (v, 7, A) = @[(w[M], f[M]),0](v,A) + (0,0,7)

where (’U,, h, M) + (07 0, T) = (u7 h, p+ T)'

We show in Lemma 4.11 that ¥ is C'! with differential in a neighborhood of (0,0, 0) which
maps injectively into the tangent space of the target and has closed images. These closed
images have direct complements and hence the implicit function theorem applies and shows
that the image is a submanifold. Moreover, for M large enough (w, f,0) is in the image.

We finally prove in Lemma 4.13 that Wh ((a, k) lies inside the image and that it corresponds
exactly to r = 0 in the given coordinates. O

Lemma 4.11 is a consequence of the following technical lemma.
Lemma 4.10. Let A be an open neighborhood of 0 in a Banach space. Let (w, f,\) €
Foen(a, k), and v,u,q € By c((w, f),r). Let ¢ be a coordinate on Dy, and let € € [0,00)™.
(a) Let
G:C"xC"xC"xC"x[0,1] x A —=C"

be a smooth function with all derivatives uniformly bounded and let o: C" xR — [0, 1]
be a smooth function with the same property. If

(4.28) G(x,0,0,0,0,)) = 0,
(4.29) G(x,£,0,0,0,0) =0,
then there exists a constant C (depending on ||Dwl||1c, ||[DF|1,e and r) such that
G(C,A) = G(w(0), v(C), u(0), 4(C), o (F(C), w(C)), A) satisfies
(4.30) G N e < Clllulle + ol + A
(b) Let
G:C"xC'"xC"x[0,]] x A —C"
be a smooth function with all derivatives uniformly bounded. If
G(z,0,0,0,)) =0,
G(x,£,0,0,0) =0,
D3G(x,£,0,0,0) =0, and
D5G(x,£,0,0,0) =0
then there exists a constant C (depending on ||Dwl||1,e, ||DF|1,e and r) such that
G(C, A) = G(w(Q), v(C), u(0), o(F(C), w(C)), \) satisfies
IG(¢ M2 < C(llull3 e + [AP).
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Proof. For simplicity, we suppress intermediate functions in the notation, e.g., we write o(()
for o(w(¢), F'(¢)). Consider (a). Assume that w,v,u,q, F' are smooth functions. By (4.28)

(4.35) G(C A < C(Jo] + [ul),

since the derivatives of G are uniformly bounded.
(For simplicity, we will use the letter C' to denote many different constants in this proof.
This (constant!) change of notation will not be pointed out each time.)
Let G(C) = G(¢,\). We write (w,v,u,q,0) = (x1,22,23,24,25) and use the Einstein
summation convention. The derivative of G(¢) is
DG(C) = Djé . D.’/Uj,

where D without subscript refers to derivatives with respect to ¢, and Djé refers to the
derivative of G with respect to its j-th argument. We use the following notation for functions
(y17 cee 73/1)7
(D[ DTl = 3 TG DR g DT
acA
where A = {a € (Z>0)™: o[+ -+ af =k, }.
Let (w, F,q) = (y1,Yy2,y3) and (v,u) = (z1, 22) then, by (4.28)

ID;G| < Clz|, je{1,4,5}

ID;Gl < C, je{2.3}

Do = Dyo - DF + Dso - Dw, hence |Do| < C|Dy|.
Then

(4.36) DGO < C(1221Dyl + |2I|D=I [ Dy| + | D=I?).

The second derivative of G’(( ) is
D2G(C) = DiDjé Dz - Dxj + Dj(; . D2xj

By (4.28),

|D;D;G| < Cz|, i,j€{1,4,5}

|D;D;G| < C, je€{2,3}

D?0 = D}o - DF - DF 4+ 2DsD10 - Dw - DF
+ D20 Dw - Dw + Dyo - D*F + Doo - D*w,
hence |D?a| < C(|Dy|* + |D?y)).
Thus
ID*’G(QP < C(\ZQ\(\Dy!‘l +[Dyl*|D%y|) + |2|| D=|| Dyl D?y]

(4.37) +|Dz|* + | Dz||D?z||Dy| + |Dz|*|D?2| + |D2z|2>.

Note that by (4.31) and (4.33), r, which the constant C' absorbs, controls the ¢ (or ys3)
norms. Moreover, the remaining y; and y2 norms are also absorbed by C. Thus, using (4.35),
(4.36), and (4.37) we derive the estimate

(4.38) IG()ll2.e < Clllullze + Ilvll2.e)

as follows. The Sobolev-Gagliardo-Nirenberg theorem implies | Dy| pa < C||Dyll1,2 (and the
corresponding statement for w and v). Morrey’s theorem implies that ||u|2. controls the
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sup-norm of u (and the corresponding statement for v). These facts together with Holder’s
inequality gives (4.38).
It is now straightforward to prove (a). Let Q = (x,&,n,0,0) then

(4.39) G(Q,A) = G(,0) + DgG(2,0) - A+ R(Q,A) - A= .

Differentiating (4.39) twice with respect to A of and applying (4.28) we find R(x,0,0,0,0,\) =
0. Applying the argument above to DgG and R, and to G(£2,0) but using (4.29) and u instead
of (4.28) and (u,v), (4.30) follows.

The proof of (b) is similar. We first use (4.32) and (4.33) to conclude

(4.40) G = G(w,v,u,0,0) < Clul®.
The derivative of G(¢) is
DG(C) = D]é . D.’Ej,
and with (QU,F,U) = (y17y27y3)
ID;G| < Cluf?, je{1,2,4}
|D3G| < Clul,
Do = Dyo - DF + Dso - Dw, hence |Do| < C|Dy|.

Thus
(4.41) DGR < C(Jul*|DyP? + luf* | Dul[Dy| + [ul*| Dul?).

The second derivative of G(¢) is
D*G(¢) = D;D;G - Dx; - Dzj + D;G - D*x;
We have
|D;D;G| < Clul?, i,j€{1,2,4}
|D;D3G| < Clul, i€ {1,2,4},
|D2G| < C.
This implies
ID*G(Q))? < C(\U!4(!Dy\4 +[Dy[*| D?y| + | D?y?)
+ [ul*(| Dul| Dy|* + |Dul | Dy|| D*y]) + |uf*| Dul*| Dy|?
(4.42) + [uf*| Dul* + | Dul[Dy|| D?y| + | D*ul[ D?y| + IUIQIDQUIQ)
In the same way as above we derive from (4.40), (4.41), and (4.42) the estimate
(4.43) 1G(O)llae < Clull3.
The proof of (b) can now be completed as follows. Write Q = (x,£,n,0) then
G(Q, ) = G(Q,0) + D5G(,0) - A+ D2G(2,0) - A - A+ R(2,0) - A= X -\,

and differentiation gives R(x,0,0,0,A) = 0. For G(£2,0), we use (4.43). The term D5@(C)
can be estimated as in (a) by C||u||2.. The two remaining terms are also estimated as in (a)
by C([[ullze + [lvll2.e)- -



THE CONTACT HOMOLOGY OF LEGENDRIAN SUBMANIFOLDS IN R2n+!1 33

In order to express the derivative of ¥ we will use the function K : C"xC" x[0,1]x A — C"
defined by

(4.44) K(x,6,0,)) = expjg,,) ASE — 5 ().

We will need to lift K (at least on part of its domain) so that it maps to C" x R. We describe
this lift.

Consider Ly € C" xR, A € A. Let Ky: TLy — C" x R be an embedding extension of
ky (see Section 4.4). Consider the immersion Py: V' C T'Lg — C" which extends Il o kj,
where V' is a neighborhood of the 0-section in T'Ly. Choose V and a neighborhood W C A of
0, so small that the self-intersection of Py is contained inside |J; B(c}(0),24). Consider the
following subset N of the product C" x [0, 1].

N =P(V)\|JB(c;(0),35) x [0,1] U | JP(VILAxNT(c],40)) x [1 — ¢,1]
J J
U [JP(VILANU(c},46)) x [0,€].
J
We define a map 1): N — C" x R in the natural way, ¥(q,0) = Kx\(ps,vs) where (ps, vg)
is the preimage of ¢ under P with p € U (c;-t, 40) where the sign is determined by o.

Using this construction we may do the following. If W C C" x C" x [0,1] x A and
G: W — C" is a function such that (G,o)(W) € N then we may define a lift G: W — C" xR.
We now use this construction to lift the function K defined in (4.44). For z sufficiently

close to Lo, £ sufficiently small and o sufficiently close to 0 or 1 when z is close to double
points of II(Lg) the lift K of K can be defined. Let K denote the R-coordinate of K.

Lemma 4.11. IfdimA > 0, let M < oco. Ifdim A =0, let M = co. The map
U: By ((w[M], f[M]),r) x H%e(aDm,R) XA — Fyen(a, k)

is C1. Its derivative at (v, h,p) is the map
(u, 1, \) — (DQK-U+D4K-)\, (DyKp v+ DyKp - \) +l,)\>,

where all derwatives of K and K are evaluated at (w[M]y,v,c[M],\) and where (u) denotes
restriction of u: D,, — R to the boundary.

Proof. Using local coordinates on F; ¢ A as described in Section 4.1, we write ¥ = (¥, Uy, U3)
Statements concerning W3 are trivial. Note that ¥; = K + ¥{(z). So to see that ¥, is
continuous we note that K (z,0,0,A) = 0 and apply Lemma 4.10 (a) to get that K is Lipschitz
in v and X\ and hence continuous. To see that ¥y is differentiable we note that if

G(x,ﬁ,n,a,)\) :K(9375+?7707M+>\) —K(x,f,a,u)
- (DQK('T7570-7:U’) '77+D4K(:C7§70-7H) A)a

then the conditions (4.31)—(4.34) are fulfilled and Lemma 4.10 (b) implies ¥; is differentiable
and has differential as claimed. Finally, applying Lemma 4.10 (a) to the map

G(z,&,n,0,\) = DoK(x,&,0,1) - n+ DyK(x,&,0,p1) - A

shows Uy is CL.

Using K, we can extend the R-valued function z((w[M]y, f[M]y), ASv) to a small neigh-
borhood of 9D, in D,,. With this done the (non-trivial part) of the derivative of ¥y can be
handled exactly as above. 0
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Let ¢ = xy + ix2 be a complex local coordinate in D,,. Then, if u: Dy, — C™, we may
view Ou as O1u +i02u. As in the proof of Lemma 4.11 we use local coordinates on F . A and
write W = (\IJl, ‘1’2, \113)

Lemma 4.12. Assume that w: Dy, — C" and v: D,, — C" are smooth functions and let g
be any metric on C". If u(() = exp, ) (v(C)) then ou = X1(1) +iXo(1), where X;, j = 1,2
are the Jacobi-fields along the geodesic exp,,(tv(¢)), 0 <t < 1, with X(0) = 9;w(() and
X'(0) = 9jv(C).

In particular, there exists v > 0 such that if (v(¢),\) € Ha,(Drm, C") x A, ||v||l2,e <1 then
the restriction of OV (v, \) to OD,, equals 0 if and only if the restriction of v = 0.

Proof. Consider
a(s,t) = expycis)(tv((+5), 0<t<1,—-e<s<e

Since for fixed s, t — af(s,t) is a geodesic we find that J;(0,t) = X;1(¢) is a Jacobi field
along the geodesic ¢ — exp,, (¢ (tv(¢)) with initial conditions

X1(0) = 95 expyy (¢ 46)(0 - v) = Drw(C),
X1(0) = 8;05a(0,0) = 950;(0,0) = d1v(¢).
Moreover,
expy, 15 (V(C + 5)) = als, 1)
and hence
O1 expy ¢y (v(€)) = 05a(0,1) = X;(1).
A similar analysis shows that

92 expy () (v(¢)) = Xa(1).

This proves the first statement.

Consider the second statement. Note that the metrics g(Ly,o(w[M](C), F[M](C))) are
constant in ¢ for ¢ in a neighborhood of dD,,. Consider first the case that w[M] and v
are smooth. Then the above result together with the Jacobi-field property of the metric g
(see Lemma 4.6), from which g(Ly, o) is constructed implies that for ¢ € dD,,, d(¥1(v,\)) =
X1(1)+iX2(1) equals the value of the Jacobi-field X;+.JX5 =Y with initial condition Y (0) =
0, Y'(0) = 9A3v. (Note Y(0) = 0 since along the boundary dw = 0.) Hence 9(¥;(v,\)) = 0
for ¢ € 0D,, if and only if the same is true for v provided v is shorter than the minimum of
injectivity radii of g(Ly, o). An approximation argument together with the continuity of ¥,
(also in w[M], see the proof of Lemma 4.10 (a)), 0, and of restriction to the boundary gives
the second statement in full generality. O

Lemma 4.13. For r > 0 small enough the image of ¥ is a submanifold of F2 . . Moreover,
there exists M > 0, r > 0, and a neighborhood U of (w[M], f[M],0) in Faen such that
(w, f) € U and UNWy ¢ is contained in the image of ¥ and corresponds to the subset h =0
in the coordinates

(0,1, A) € Ba(w[M], f[M]),r) X Hs (9D, R) x A.

Proof. Let (w, f) € Wa(a, k). Let K be as in Lemma 4.11. Then DyK (z,0,0,0)-n =n and
DyK(z,0,0,0) = 0. Hence the differential of ¥ at (0,0,0) is

L 0 O
dv(0,0,0) = <LR> id 0|,
0 0 id
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where ¢ denotes the inclusion of the tangent space of By ((f,w),r) into Ha ¢(Dy,, C") and
(tp)v denotes the R-component of the vector field © which maps to v under Il and is tangent
to Lo. Note that the tangent space of By ((w, f),r) is a closed subspace of Hs ((D,,, C").

Thus, d¥(0,0,0) is an injective map with closed image. Since the first component of F
is modeled on a Banach space which allow a Hilbert-space structure we see that the image of
the differential admits a direct complement. Moreover, applying Lemma 4.10 to the explicit
differential in Lemma 4.11 we conclude that the norm of the differential of W is Lipschitz in
v and A\ with Lipschitz constant depending only on |[Dw[M]|; ¢ and |DF[M]||; . Hence the
the implicit function theorem shows that there exists » > 0 and W C A (independent of M)
such that the image of B((w[M], f[M]),r) x W is a submanifold. From the norm-estimates
on the differential it follows that for M large enough (w, f) lies in this image.

The statement about surjectivity onto U N Wa a follows from the fact that I (Ly) is
totally geodesic in the metric g(Ly,0) and Lemma 4.12. The statement on coordinates is
trivial. g

4.6. Bundle over conformal structures. The constructions above all depend on the con-
formal structure x on D,,. This conformal structure is unique if m < 3. Assume that m > 3
and recall that we identified the space of conformal structures C,, on D,,, with an open simplex
of dimension m — 3.

The space

W2 ,€, A U W2 J€, A a, H)
KECm
has a natural structure of a locally trivial Banach manifold bundle over C,,. To see this we
must present local trivializations.

Let A denote the unit disk in the complex plane and let A,, denote the same disk with
m punctures pi, ..., pmn on the boundary and conformal structure . Fixing the positions of
P1, P2, P3, this structure is determined by the positions of the remaining m — 3 punctures. We
coordinatize a neighborhood of the conformal structure x in C,, as follows. Pick m — 3 vector
fields v, ..., vm—3, with v; supported in a neighborhood of pk+3, k=1,...,m—3in such a
way that vy generate a l-parameter family of diffeomorphism pk 5 A — A Tt € R which
is a rigid rotation around pg43 and which is holomorphic on the boundary. Let the supports
of v be sufficiently small so that the supports of ¢pk+3’ =1,...,m — 3 are disjoint. Then

T1 Tm—3
P39ttt ¥ Pm

T =gyt o- o ¢pr~? and a local coordinate system around « in Cp, by

the dlffeomorphlsms all commute. Define, for 7 = (71,...,7p_3) € R™™3,

-1
= (do7) oo de”.
These local coordinate systems give an atlas on C,,

Using this family we define the trivialization over R™ ™3 ~ U C C,, by composition with
¢~ 7. That is, a local trivialization over U is given by

P: Wocn(a, k) x U — Waa(a);
(I)(wv f7 )‘7 7—) = (w © ¢_T7 f © ¢_7—7 )\7 0)

In a similar way we endow the space
M1,e(Din, T* D) = | Ha,e(Din, T* D, 9(k)),
KGCm

with its natural structure as a locally trivial Banach space bundle over C,,
Representing the space of conformal structures Cy, in this way we are led to consider its
tangent space T,C,, as generated by 71, ...,Vm—3, where v = i - Qug, in the following sense.
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If ~ is any section of End(7'D,,) which anti-commutes with j, and which vanishes on the

boundary then there exists unique numbers a1, ..., a,,_3 and a unique vector field v on A,,
which is holomorphic on the boundary and which vanish at pg, k = 1,...,m such that
(4.45) v = Z akyk + i0v.

k

The existence of such v is a consequence of the fact that the classical Riemann-Hilbert problem
for the d-operator on the unit disk with tangential boundary conditions has index 3 and is
surjective (the kernel being spanned by the vector fields z +— iz, z + (2% + 1), 2 + 22 — 1).

Going from the punctured disk A,, to D,, with our standard metric, the behavior of the
vector fields v; close to punctures where they are supported is easily described. In fact the
vector fields can be taken as 0, in coordinates z = x+iy € (C4+,R,0) in a neighborhood of the
puncture p on 9A,,. The change of coordinates taking us to the standard end [0, 00) x [0, 1] is
T+it = ( = —1 log z and we see the corresponding vector field on [0, 00) x [0, 1] is 1™ (where
we identify vector fields with complex valued functions). As in Proposition 5.13, we see that
equation (4.45) holds on D,, with v in a Sobolev space with (small) negative exponential
weights at the punctures.

4.7. The O-map and its linearization. Consider the space H1,€(Dm,T*O’1Dm ® C") and

the closed subspace Hi ([0]( Dy, T*"! D,,, @ C™) consisting of elements whose trace (restriction

to the boundary) is 0. Note that this space depends on the metric on D,,. In our case it

thus depends on the conformal structure. For simplicity we keep the notation and consider

H1,[0](Dp, T*%'D,, ® C") as a bundle over C,,. We extend this bundle to a bundle over A

making it trivial in the A directions and denote the result Hy ( A[0](Dp, T**' Dy, @ C™).
The O-map is the map

f: WQ@A(a) — HlyeﬁA[O](Dm, T*O’le (024 Cn);
f(w,f,/@',)\) = (dw +iodw Ojn,/ﬁ,)\).

We will denote the first component of this map simply I'. An element (w, f,x,\) is thus
holomorphic with respect to the complex structure j, if and only if f‘(w, fir,A) = (0,Kk, A).
Hence, if Ly, A € A is a family of chord generic Legendrian submanifolds then the (param-
eterized) moduli-space of holomorphic disks with boundary on L), positive puncture at ay,
and negative punctures at as, ..., a,, is naturally identified with the preimage under I of the
0-section in Hy ¢ A[0](Dyn, T*%1 D, @ C™) for sufficiently small € € [0, c0).

We compute the linearization of the d-map. As in Section 4.6 we think of tangent vectors
to C,, at & as sections of End(T'D,,). For x € Cp, and u: D,, — C", let O,u = du+ioduo jj.

Let (w, f,K,0) € Waa(a). Identify the tangent space of Wy x(a) at (w, f,x,0) with
TBac((w, f),1) X TiCpy x ToA.

Lemma 4.14. The differential of ' at (w, f, k,0) is the map
(4.46) dl(v,7, A) = 0k + Ok (Yy (w, N)) +iodwon.
Recall Y§ was defined in (4.25).

Proof. Assume first w and f are constant close to punctures. Let By (((w, f),r) X Cp X A be
a local coordinates around (w, f, ,0).
Let K(z,&,0,A) =4¢5(x) 4+ & Then

R(Qﬁ', 57 g, )‘) = expf;’,;(x) K& - K(xa 57 g, >\)

satisfies
R(z,0,0,A) =0, DyR(z,0,0,0) =0, DyR(x,0,0,0)=0;
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thus, Lemma 4.10 (b) implies that
IR(w,v,0, M2 < Cl[v]3c + [AP).
Continuity of the linear operators
5&-‘,—72 H?,E(Dma Cn) - Hl,e(Dma T*Dp, ® Cn)a
where we use local coordinates R 2 on C,, and x + v E R™3 ¢ Cp, shows that
(4.47) 10k R(w, v, 0, M)l < C([oll3c + M%)
It is straightforward to check that

‘ Oy K (w0, K + p, N) — Ogw — (5,#1 + 0k (Yo(w, A)) + i o dw O’Y)‘

(4.48) < C(lvllz e+ AP+ )

Equations (4.48) and (4.47) imply the lemma in the special case when (w, f) is constant close
to punctures (and in the general case if dim(A) = 0).

If (w, f) is not constant close to punctures consider the maps (w[M], f[M]) which are
constant close to punctures. We have (w[M], f[M]) — (w, f) as M — oo. Since the local
coordinates are C'! a limiting argument proves (4.46) in the general case. n

l,e

4.8. Auxiliary spaces in the semi-admissible case. In Section 6.9 we show that for a
dense open set of semi-admissible Legendrian submanifolds L no rigid holomorphic disks with
boundary on L have exponential decay at their degenerate corners. Once this has been shown
we know that if 0 is the degenerate corner and L has the form (2.4) around 0 then for any
rigid holomorphic disk u: D,, — C" with puncture p mapping to 0 there exists M > 0 and
¢ € R such that

u(() = (—2(< +¢)740,... ,o) + O(e™%), for ¢ € E,[+M)],

where 6 > 0 is the smallest non-zero complex angle of the Reeb chord at 0. (Here we
implicitly assume that P, in our standard self tangency model lies above P} in the z-direction,
and that neighborhoods of positive (negative) punctures are parameterized by [1,00) X [0, 1]
((—o0, —1] x [0,1]).) To study disks of this type we use the following construction.

Let ag denote the Reeb-chord at 0. Assume that a has the Reeb-chord ag in &k positions.
For C = (c1,...,¢c) € R” fix a smooth reference function which equals

uGe(€) = (~2(¢ +¢)70,....0),

in a neighborhood of the j® puncture mapping to ag.

Let Ly, A € A be a family of semi-admissible Legendrian submanifolds. We construct for
€ € [0,00)™, with those components ¢; of e which correspond to punctures mapping to the
degenerate corner satisfying 0 < ¢; < 6 and for fixed C € R*, the spaces

F5.(a)

by using reference functions looking like urcef for C € R* in neighborhoods of punctures

mapping to aj = 0 € C". We construct local coordinates as in Section 4.1 taking advantage
of the fact that A € A fixes a(. Also we consider the space

Wge,A(a)v

which is defined in the same way as before. We note that the construction giving local
coordinates on this space in Section 4.5 can still be used since in the semi-admissible case we
need not cut-off the first component of w in (w, f) close to punctures mapping to ¢y since
A € A are assumed to preserve the product structure and ~; and ~,.
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With this done we consider the bundle

(4.49) Waen= |J WSia(a),
ceR”

which we present as a locally trivial bundle over R* as follows.

In the case that a has > 3 elements we fix for C' € R” the diffeomorphism ¢¢: D,, — D,,
which equals to ¢ — ¢ +¢; in Ej,,[M] for any puncture p; mapping to cop, equals the identity
on Dy, \ U; Ep,[M — 2], and is holomorphic on the boundary.

(Since we often reduce the few punctured cases to the many punctured case, see Sec-
tion 7.7, the following two constructions will not be used in the sequel, we add them here
for completeness.) In case a has length 1 we think of D; as of the upper half-plane C; with
the puncture at co. The map z — —21logz identifies the region {z € C;: |z| > R} with
the strip [% log R, 00) x [0,1] where we think of the latter space as a part of E,, where p
is the puncture of D;. Also, this map takes the conformal reparameterization z — ez
to ¢¢: ¢ — ¢+ C in E, and we identify R with this set of conformal reparameterizations
{¢“}cr- In case a has length 2 we think of Dy as the strip R x [0,1] and identify R with
the conformal reparameterizations ¢¢(¢) = ¢ +— ¢ + C.

Using composition with the maps ¢ we construct local trivializations of the bundle in
(4.49). We then find local coordinates Ba ((0,7) x Cp, X RF x A on W . a and the linearization
of the 9-map T at (w, f, x,0,0) is

dl'(v,7,¢,A) = 9xv + Ok (Yo(w, N)))

‘ = 0¢¢
(4.50) +iodwoy+ 0k |dw- | ==]c=0 ) -] .
oC
Here ¢ = (c1,...,c;) is a tangent vector to RF written in the basis {C1,...,C)} where C’j is

a unit vector in the tangent space to C; € R. We notice that the second term in (4.50) lies in
Hy. [0]( Dy, T**' D,,) because of the special assumptions on Ly in a neighborhood of ¢ and
that the last term does as well since the difference of w and the holomorphic function ugf
lies in a Sobolev space weighted by e“” in Ej. and for a holomorphic function the last term
vanishes in the region where ¢ is just a translation.

4.9. Homology decomposition. Let L C C" x R be a (semi-)admissible Legendrian sub-
manifold. Let ¢ = ¢gcy...cp be a word of Reeb chords of L. If (u, f) € Wa(c) then
the homotopy classes of the paths induced by (u|0D,,, f) in L connecting the Reeb chord
endpoints determines the path component of (u, f) € Wa ((c).

Let A € Hi(L) and let W5 (c; A) C Wh(c) be the union of those path components of
Wae(c) such that the homology class of the loop f(0Dy) U (U, 7;) equals A, where v; is
the capping path chosen for the Reeb chord ¢; endowed with the appropriate orientation,
see Section 1.3. For fixed conformal structure x we write Ws ((c, k; A) and in the chord semi

generic case W ¢(c; A) and interpret these notions in a similar way.

5. FREDHOLM PROPERTIES OF THE LINEARIZED EQUATION

In this section we study properties of the linearized d-equation. In particular we determine
the index of the d-operator with Legendrian boundary conditions. It will be essential for our
geometric applications to use weighted Sobolev spaces and to understand how constants in
certain elliptic estimates depend on the weights.

Our presentation has two parts: the “model” case where the domain is a strip or half-plane;
and the harder case where the domain is D,,.
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In Section 5.1, we show that an element of the cokernel has a smooth representative. In
Section 5.2, we derive expansions for the kernel and cokernel elements. We use these two
subsections in Sections 5.3 through 5.5, to prove the elliptic estimate for the model problem,
as well as derive a formula for the index. In Sections 5.6, we set up the boundary conditions for
the linearized problem with domain D,,. In Sections 5.7 through 5.10, we prove the Fredholm
properties for the D, case. In Sections 5.10 and 5.11, we connect the index formula to the
Conley-Zehnder index of Section 1.

5.1. Cokernel regularity. To control the cokernels of the operators studied below we use
the following regularity lemma.

For this subsection only, we use coordinates (z,y) for the half-plane R% = {(z,y): y > 0}.
Let A: R — GL(C") be a smooth map with det(A) uniformly bounded away from 0 and all
derivatives uniformly bounded. We also simplify notation for this subsection only and define
the following Sobolev spaces: let Hy = ’Hk(RQ,(C"); let H;, denote the space of restrictions
of elements in H}, to int(]Ri); let Hj, denote the subspace of elements in Hj, with support in
Ri; let H1[0] denote the subspace of all elements in H; which vanish on the boundary; and
let Hs[A] denote the subspace of elements u in Hs such that u(z,0) € A(z)R™ and such that
the trace of du (its restriction to the boundary) equals 0 in H 3 (R,C"™).

An element ¢ in the cokernel of 9 will be in the dual space of H;[0]. The dual of H; is
H_1 and thus the dual of H;[0] is the quotient space

(5.1) H_1/Ha[0]*,

where H1[0]* denotes the annihilator of H;[0] in H_;. As usual, let {, ) denote the standard
Riemannian inner product on C" ~ R".

Lemma 5.1. Fiz h > 0 and assume that v € H_; satisfies
(5.2) / (Ou,v)dz A dy =0,
Rx[0,h)

for all u € Ha[A] with compact support in R x [0,h). Then, for every e with 0 < e < h and
every k > 0, the class [v] € H_1/H1[0]* of v contains an element vo which is C* in R x [0, ¢),
up to and including the boundary.

Proof. Let m > 2 be such that H,,, C C* and € < h be given. Extend A to a smooth map A

€

on Ri with uniformly bounded derivatives as follows. Let 0 < ¢ < § and let n: Ry — R, be

a smooth non-decreasing function such that n(y) =y for 0 <y < g and n(y) = ¢ for y > 4.

Define
m+1 .k (y)k

Aa,y) = A@w) + Y - OhAG),
k=1

and choose § > 0 so small that | det(A(z,y))| > p > 0. Note that dA(z,0) vanishes to order
m. Therefore multiplication with A and A~!
horizontal arrows are isomorphisms:

gives the following commutative diagram where

Holid] —4 (4]
5+im104 | |5

7:[1[0] ? 7:(1 [O]

The lemma follows once its analogue with the vertical operator on the left in the diagram
replacing 0 is proved. Let B = A710A.
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Consider smooth functions u with compact support in R x (0,h). For such u we have
(recall Hy, C Hy, all k)

(5.3) 0= /((8+B)u,v> dz N dy = /(u, (0 + B*)v) dx A dy.

Hence (0 + B*)v = 0 in R x (0,h). Let @ and & be smooth functions with all derivatives
uniformly bounded, with support in R x (0, %), and such that & = 1 on the support of a.
Then the elliptic estimate for 8 on R? implies (with K > 0 a sufficiently large constant and
k any integer)
lowllr < Clav|e—1 + 10(av)|[k-1)

< C(llav]lg-1 + 110 + BY)awllk—1 + | B av|[k-1)

< C'(llawllk-1 + (0 + B*)aw|[-1)

< C'(llawllk-1 + (0 + B*)e)vllp—1 + [[e(d + B)vl|)-1)
(5.4) < OG-y
since (0 + B*)v =01in R x (0, h). It follows from (5.4) that v is smooth in R x (0, k). Thus,
(0+ B*)v € H_3 is a distribution such that supp((0+ B*)v) NR x [0,h) C R x {0} and hence
there exist distributions f and g on R such that
(5.5) 0+ B =14(y) @ f(z) +(y) ® g(x)

in R x [0, k), where § denotes the Dirac distribution and ¢’ its derivative. Since any function
¢ € H2(R,C") can be extended constantly in the y-direction in a neighborhood of the real
axis so that it lies in Hy we find that f(z) € H_o(R,C"). Thus, 6(y) ® f(z) lies in H_5 and
therefore so does §'(y) ® g(x).

Let u € Ha[id] have support in R x [0,/) and let 4@ be an extension of u to some neigh-
borhood of R%r in R?. Let B and B* denote the extensions of B and B* to R? by defining
them to be 0 on int(R2). Note that by the definition of A, B and B* are C"™-functions with
uniformly bounded derivatives. Let v be a smooth function which equals 1 on Ri and equals
0 outside a neighborhood of Ri in R2. Then

/(u, (84 B*)v)dx Ady = /(’yﬂ,, (84 B*)v) dz A dy

(5.6) = /((8’}/)@, vydx Ady + /((7)(8 + B)i,v)dz Ady =0+0.

Let ¢: R — R"™ be any smooth compactly supported function. Let 8 be a function with
B(0) =0 and #'(0) =1 and 3 = 0 outside a small neighborhood of 0. Then

u(z,y) = ¢(z) +iB(y)¢' (z),
lies in Hz[id] and by (5.6)

0= /(u, (84 B*)v)dx A dy = /(Ref—Img') - pdx.
Hence Re f = Img’. Since Re f € H_o(R,C") we find that if v! = §(y) ® Im g then
o' =5(y) @Re f +id' (y) @ Img € H_»

and hence

lot|-1 < C(llv!|-2 + ||5UIH 2) <00
Let a; € C3°(R%) be a sequence such that a; — v' in H_1 as j — oo. Define a; (z,y) =
a;j(z,—y). Then a; are supported in the lower half plane and daj(z,—y) = Oa i (z,y).
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Hence a; approaches a distribution v with support on the boundary, dv'! = 9v', and since
vl € H_1[0] also v € H;[0]*. Let v; = v — o' then
(0 + B*)ur = id(y) © Im f(z) + &' (y) ® Re g(x),

in R x [0, h).
Let b; € C5°(R%) be a sequence such that b; — vy as j — oo and define b (z,y) = bj(z, —y).
Then 9b*(,y) = 0b;(x,y). Define

Bd(x )_ B({L‘,y), if:l/ZO
B —y), ify<o

Then B? is a C™ function. If bd %(b + b*) then bd approaches a distribution vI with

(0 + (BY)")of = 8'(y) @ Reg(z),

in R x [0,h). Again, let ¢: R — R be any smooth function with compact support. Let
6: R — R be an odd smooth function with (0) = 0, ¢’(0) = 1 and § = 0 outside a small
neighborhood of 0. Then with u(z,y) = ¢(x)0(y)

/((5 + BYu, v dx A dy = — /(u, (0 + (BY* )iy de A dy = /R o(z)Reg(z) dx.

But, writing BY = Bg_ + iB{

Im>

/((8 + BYu, vy dz A dy =
[ (Revit (Bt) + &/ @)610) ~ B (2.9) — 66 w)
+Imof - (Bha(e,y) + 6(@)0' () + Biw(2.9) + ¢/ (2)0(y)) ) do A dy =

im [ (Redf(z,y) - (Bfe(w,9) + ¢/ (2)0(y) — Biby(w,y) — 6()0' (1))

(5.7) +Imb(z,y) - (Bfte(x,y) + 6(2)0' (y) + Bioy (x,y) + ¢’(x)9(y))) dz Ndy =0,

since both summands in the last integral are odd in y. Hence Re g(x) = 0 and (9+(B4)*)vd

0 in R x [0, k) and therefore by the elliptic estimate for 9, v{ lies in Hp,+1 in R x [0, h). Let
n: R? — [0,1] be a smooth function which is 1 on R x [0,¢) and 0 outside [0,%). Let
vIr = Ny |R2 Then vy € Ho CH_ 1 and o™ = oy —nur € H_ 1 is a distribution with support
on the boundary. Hence v"'! = §(y) ® h(x) and thus v'! € H;[0]*. Since

(5.8) v=uv + ol = nur + (1 — n)vy + o = o + (1 —n)ur — o4 UH,

where v + 0! € H;[0]* we find that vy = vy + (1 — n)vy is a representative of [v] which is
as smooth as required in R x [0, €). O

5.2. Kernel and cokernel elements. Consider the strip R x [0,1] C C endowed with the

standard flat metric, the corresponding complex structure and coordinates { = 7 + it. For
k>0, let

Hy, = He(R x [0,1],C"),

and for k < 0, let Hj, denote the L2-dual of H_j. We also use the notions Hloc which are to
be understood in the corresponding way.
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If u € H°° then the restriction of u to A(R x [0,1]) = RUR+ lies in H}c"fl (RUR+14,C").
2

For u € H°® consider the boundary conditions

(5.9) /R<u,v> dr =0 for all v € C§°(R,iR"),
(5.10) /]R (u,v)ydr =0 for all v € Cj°(R + i, R"™),
+i

Let f: Rx[0,1] — C" be a smooth function satisfying (5.9) and (5.10). Define the function
f4 R x[0,2] — C" as

d ) +it) for 0 <t <1,
f(T+Zt)_{—7(T+i(2—t)) for 1 < ¢ <2,

where W denotes the complex conjugate of w € C". Then f¢ and 9,f? are continuous,
Orf% may have a jump discontinuity over the line R + i, f4(r + 0i) = —f%(r + 2i), and
/%1 = 2||f|l:. Hence we can define the double u? € HI°°(R x [0,2]) of any u € H°® which
satisfies (5.9) and (5.10). For u € HI°, let Ou = (9; + i0;)u and Ou = (9, — i0;)u.

Lemma 5.2. If u € HY° satisfies (5.9) and (5.10) and
(a) Ou = 0 in the interior of R x [0,1] then

u(Q)= 3 Coexp (5 +nm)C)
nel

where C,, € R.
(b) Ou = 0 in the interior of R x [0, 1] then

u(¢) =Y Crexp (3 +nm))
ne,

where C,, € R.
Moreover, if u satisfies (a) or (b) and u € Hy, for some k € Z then u = 0.

Proof. We prove (a), (b) is proved in the same way. Clearly it is enough to consider one
coordinate at a time. So assume the target is C and let u be as in the statement.

Consider u?, then du? is an element of H{P¢(R x [0, 2], C) with support on R+iUd(Rx [0, 2]).
Such a distribution is a three-term linear combination of tensor products of a Dirac-delta in
the t-variable and a distribution on R and hence lies in Ho(R x [0,2],C) only if it is zero.
Thus Ou = 0 and we may use elliptic regularity to conclude that u is smooth in the interior
of R x [0,2]. (In fact, doubling again and using the same argument, we find that u is smooth
also on the boundary.)

We may now Fourier expand u?(7,-) in the eigenfunctions ¢ of the operator i9; which
satisfy the boundary condition ¢(0) = —¢(2). These eigenfunctions are

t— exp (i(5 +nm)t), forn € Z.
We find
ut =" cn(r) exp (i(§ + nm)t)

where, by the definition of u?, ¢, () are real valued functions and

du = Z (ch (1) = (5 +nm)en(r)) exp (i(5 + nm)t) .

n
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Hence,

u(C) = ZC” exp (3 + nm)() .

Assume that u € Hj for some k € Z. Then, since for j > 0 the restriction of any
v e H;(R x[0,2],C) to R x [0, 1] lies in H;,

Au(v) = / (w,u) dr A dt,
Rx[0,2]

is a continuous linear functional on H;(R x [0,2],C) for j =k if k> 0or j = -k if £ <O0.

Let ¢: R — [0,1] be a smooth function equal to 1 on [0,1] and 0 outside [—1,2]. For
n,r € 7 let

(T +1it) = (7 + 1) exp(i(5 + nm)t).
Then a,, € H;j(R x [0,2],C) and ||ayr||; = K(n) for some constant K(n) and all r. It is
straightforward to see that
r+2
Au(an,r) = 2Ch (T + 1) exp((5 +nm)7) dr =l r.
r—1

The set {lnyr}reZ is unbounded unless C,, = 0. Hence )\, is continuous only if each C,, =
0. O

5.3. The right angle model problem. As mentioned we will use weighted Sobolev spaces.
The weight functions are functions on R x [0,1] which are independent of ¢ and have the
following properties.

For a = (a*,a™) € R? and 6 € [0,7), let

(5.11) m(G,a):min{|n7r+9+a+|,|n7r+¢9+a_|} .
nel
For a € R? with m(g,a) > 0, let e,: R — R be a smooth positive function with the
following properties:

P1 There exists M > 0 such that eq(7) = e* 7 for 7 > M and eq(7) = e* 7 for 7 < —M.

P2 The logarithmic derivative of ey, a(7) = Eég:;,

and only if a(7) equals the global maximum or minimum of «.

P3 The derivative of a satisfies |o/(7)| < +m(5,a)? for all 7 € R.

is (weakly) monotone and /(1) = 0 if

Let

n= (:U'lv"' 7“71) = (Mi—aul_vmu:{mu;) € R2n7
be such that m(%, u;) > 0, for j = 1,...,n. Define the (n x n)-matrix valued function e, on
R as

eN(T) = Diag(em (7_)7 LR eun (T))
Define the weighted Sobolev spaces

My = {u € Hi“s eyu € .}, with norm Julle = lleyull

To make the doubling operation used in Section 5.2 work on Hs, we impose further boundary
conditions. If u € HC then its trace lies in H(R UR + i,C™). We say that u vanishes on
2

the boundary if

(5.12) / (u,v)dr = 0 for every v € C3°(RUR +¢,C").
RuR+:
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Define
Hopu(3,.... %) = {u € Hay: u satisfies (5.9), (5.10), and Ou satisfies (5.12) },
———

n

H1,,[0] = {u € Hyp: usatisfies (5.12)} .
Proposition 5.3. If m(5,p;) >0 for j =1,...,n then the operator
52 Hg,u(%, NN %) — Hl,u[o]

1s Fredholm with index
n _ _
St TN N SO B Y TN T S
T 27 T 2 T 2" w 2
i=1

where §(a,b) denotes the number of integers in the interval (a,b).
Moreover, if ,u;r = p; for all j and M(p) = min{m(gF, p1),...,m(3,pn)} then u €
Hou(5, ..., 5) satisfies

(5.13) [ull2 < C()]|0ull1,p
where C'(p) < ﬁ, for some constant K.

Proof. The problem studied is split and it is clearly sufficient to consider the case n = 1.
We first determine the dimensions of the kernel and cokernel. It is immediate from Lemma

5.2 that the kernel of 0 is finite dimensional on H2,(5) and that the number of linearly
independent solutions is exactly (—% — %, —% — %)

Recall that an element in the cokernel of J is an element ¢ in the dual space of Hi ,[0].
The dual of H; j, is H_1,—, and thus, as in (5.1), the dual of H; ,[0] is the quotient space

H1,—u/ 0]

Lemma 5.1 implies that any element in the cokernel has a smooth representative. Let v be a
smooth representative. Then

/ (Ou,v)ydr Adt =0,
Rx[o0,1]

for any smooth compactly supported function u which meets the boundary conditions (5.9),
(5.10), and (5.12). Using partial integration we conclude

(5.14) / (u,0v)ydr Ndt = 0.
Rx[o0,1]

Thus dv = 0 in the interior. Noting that for any two functions ¢o € C§°(R,R) and ¢1 €
C3°(R,R) there exists a function v € Cg°(R x [0,1],C) such that Ju|O(R x [0,1]) = 0,
u|R = ¢p, and u|R +i = ¢ we find that v satisfies (5.9) and (5.10). Lemma 5.2 then implies

- +
that the cokernel has dimension (/% S S M

We now prove that the image of 9 is closed, and in doing so also establish (5.13). Let

A(7) = exp ( /0 " (o) da> .

Then multiplication with A defines a Banach space isomorphism A: H;, , — Hy. The inverse
A~! of A is multiplication with A(7)~!. These isomorphisms gives the following commutative
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diagram

where H3(Z*) is defined as Ha(%) except that instead of requiring that du vanishes on the
boundary we require that (0 —a)u does. We prove that the operator d —a on the right in the
above diagram has closed range and conclude the corresponding statement for the operator
on the left. Note that if u € Hy(5") then both d-u and dyu satisfy (5.9) and (5.10). Hence
the doubling operation described in Section 5.2 induces a map Ha(5*) — Ha(R x [0,2]) with
2 = 2lull.

Let
(5.15) Sy ={neZ: -t —Llapn<_t_1y
(Note that S(u) =0 if pt > p~.) The map v,: Ha(5") — Ha2(R,R),
2
(5.16) U cp(7) = / u?(7,t) exp (—i(% +nm)t) dt
0
is continuous. Let Wy C H2(5™) be the closed subspace
(5.17) Wo= [ ker(yn).
nes(u)

Using the Fourier expansion of u¢ we see that W5 has a direct complement

(5.18) Vo= () ker(m).
n¢S(p)
(Note that if ™ > p~ then Wi = Ha(5™) and Vo = 0.)

Similarly, we view the maps 7, defined by (5.16) as maps H;[0] — H1(R,R) and get the
corresponding direct sum decomposition H;[0] = W1 @ V. If u € Ha(5") then the Fourier
expansion of u? is

ud(T + it) _ ch(T)ei(§+n7r)t~

n
Hence

(5.19) (0 - a)u(r +it) = > () = (alr) + F + el 2T,

n

It follows that 9(Ws) C Wy and 9(Va) C V4.
Let w € Wy. Fourier expansion of w? gives

2/|(9 — eywl|g =

= Z / (|C;1|2 + ((% +nm+ a(r))? + 0/) |cn|2) dr
ngS() "R
(5.20) > 2C|wl|1,

where the constant C' is obtained as follows. If y* > p~ then P2 implies that the coefficients
of |c,|? are strictly positive, and if u* < p~ then P3 implies that the coefficients in front
of |c,|? are larger than %m(%,u)Q since n ¢ S(u). Finally, if 4~ = pT then o/ = 0 and the
coefficients in front of |¢,|? are larger than m(%, u)* for all n.
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If w € Ha(5"), then 0w and idyw satisfies (5.9) and (5.10) and the Fourier coefficients
¢n(7) of their doubles vanish for n € S(u). Thus, the same argument applies to these functions
and the following estimates are obtained

10 — a)drwllo = Cllo-w]s,
1(0 = e)drwllo > Cllopwl1.-
If 4y = p_ then o/ =0 and 0 — a commutes with both ; and 9,. Hence

_ 1 _ _
10 = eJwlly 2 (0 — a)wllo + [[07(0 — a)wllo + [[8:(0 — a)wllo)
2 C([lwlh + [0rwlly + [|Oswll1) = Cllw][2,

where C' = Km(u, 5). This proves (5.13).
If iy # p— then 9-(0 — a)w = (0 — a)0w — o’w, and with K > 0 we conclude from the
triangle inequality
K9 — a)wllo +[10-(0 — a)wllo + [|8:(9 — a)wllo
> KClwlly + Cl|o-wlly — [l wllo + Clluw]x

m(%, p)?
> (w0 =B s+ Clou + Clowh,
. / m(%vﬂ)Q . . .
since |a'| < —&=—. Thus choosing K sufficiently large we find that there exist a constant
K7 such that for w € W
(5.21) lwll2 < Kall(@ = a)wls.

Thus, if 4= > p~ we conclude that the range of 9 — « is closed. If u™ < p~ we need to
consider also V5.
For v € V5 we have

vi(r,t) = Z cn (1) exp (i(5 + nm)t) .
nesS(p)
Let V- be the space of functions in V5 which, under doubling, map to the orthogonal com-
plement of the doubles ¢¢ of the functions ¢,(¢) = exp((3 + nm)¢ + [adr), n € S(p)
with respect to the L2-pairing on Ha(R x [0,2],C). Then Vi' is a closed subspace of finite
codimension in V5.
We claim there exists a constant Ko such that for all v+ € V-

(5.22) [t ||z < Kal|(@ = a)ot 1.

Assume that this is not the case. Then there exists a sequence vjl of elements in V- such
that

(5.23) v |2 =1,

(5.24) (0 — a)vji||1 — 0.

Let P > M be an integer (see condition P1) and let vt € V+. Consider the restriction
of v+ and dvt to ©p = {r +it: |7| > P}. Using Fourier expansion as in (5.20), partial
integration, and the fact that o/(7) = 0 for |7| > M we find

2/|(9 — a)v-|Op1 =

(525)  C (v Opla+ D #t(ealP)P + | (P)?) = 1™ (len(=P)] + [ (=P)I?)
neS(u)
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By a compact Sobolev embedding we find for each positive integer P a subsequence {U]L( P)}
which converges in H;([—P, P] x [0, 1], C). Moreover, we may assume that these subsequences

. 1 1 .
satisfies {vjp)} D {vjio)} If P < Q.

Let (c,); be the sequence of Fourier coefficient functions associated to the sequence v
The estimates

(5.26) llelle < Cliellr—1 + i€

L
i

d
7 — (5 +nm+a))llk-1),

and (5.24) implies that (c,);(p) converges to a smooth solution of the equation (% - (5 +
nm + a))c = 0 on [—P, P|. Hence, ij(P) converges to a smooth solution of (9 — a)u = 0 on

©p satisfying the boundary conditions (5.9) and (5.10). Such a solution has the form
D knn(0),
nes(u)

where k,, are real constants.
We next show that in fact all k, must be zero. Note that by Morrey’s theorem and (5.23)
we get a uniform C%-bound \v]l] < K. Therefore, |(¢;);] < 2K and hence

/((Ujl)da () dr A dt =

/R(cn)j exp ((g —i—mr)T—l—/adT) dr = /i(cn)j exp ((g —i—mr)T—i—/adT) dr

) —P
T /P (en)y expl(§ +nm + 7 dr + [ (en)yexp((F 4+ u)r)dr.

— 00

But

<

o0 -P
/ (cn); exp((% + 1 + u)7) dr +'/ (cn); exp((% + nm + u™)7) dr

P
2K

m(5, p)

(exp((5 + nm+ pu*)P) + exp(—(5 + nm+ p~)P)) — 0 as P — oo.

We conclude from this that unless k,, = 0, vjl( P) violates the orthogonality conditions for P
and j(P) sufficiently large.

Consider (5.25) applied to elements in the sequence {v]l} As j — oo the term on the left
hand side and the sum in the right hand side tends to 0. Hence ij-]@ pll2 — 0. Applying
(5.26) to (c,); and noting that both terms on the right hand side goes to 0 we conclude that
also ||v]l [—P x P] x [0,1]||2 — 0. This contradicts (5.23) and hence (5.22) holds.

The estimates (5.21) and (5.22) together with the direct sum decompositions Ha(5*) =
Wy & Vo and Hl[O]_ = W7 @ Vi, and the fact that 0 — « respects this decomposition shows
that the image of O — « is closed also in the case u™ < pu™. O

Remark 5.4. In many cases, the first statement in Proposition 5.3 still holds with weaker
assumptions on the weight function than P1-P3. For example, if py < p— then we need
only know that max{c/,0} is sufficiently small compared to (% + nm + ) for n ¢ S(u) to
derive (5.21) and the derivation of (5.22) is quite independent of o/ as long as a eventually
becomes constant.

5.4. The model problem with angles. We study more general boundary conditions than
those in Section 5.3. Recall (z1 +4y1,. .., 2, + iyp) are coordinates on C". Let 0; denote the
unit tangent vector in the xj-direction, for j = 1,...,n. For 0 = (01,...,6,) € [0,7)", let
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A(6) be the Lagrangian subspace of C" spanned by the vectors €19y, .., e 9,. Consider
the following boundary conditions for u € H°°.

(5.27) /R(u,v> dr =0 for all v € Cj°(R,iR"),

(5.28) /R (u,v)dr =0 for all v € C§°(R +14,iA(0)).
+1

If m(0j,p5) > 0 (see (5.11)) for all j then define
Hopu(0) = {u € Ha: usatisfies (5.27), (5.28), and Ju satisfies (5.12)},
H1,,[0] = {u € Hyu: u satisfies (5.12)} .
Proposition 5.5. If m(6;,p;) >0 for j =1,...,n then the operator
0: Ma,,(0) — Hi,[0]
1s Fredholm of index

n
T4, 10, Y T,
(5.29) Zﬁ(_%’_”ﬂ_:]> _ﬂ(u]:J g, _1)'
i=1

Moreover, zf,uj' = p; for allj and M(p) = min{m(u1,61),...,m(pn,0n)} thenu € Ho (01, ..., 0,)
satisfies

(5.30) lull2ye < C(1)|0ullr.p

where C'(p) < ﬁ, for some constant K.

Proof. Consider the holomorphic (n X n)-matrix

gG(C) = Diag ((exp(% - Hl)C)v cee (exp(% - Hn)C)) :

Multiplication with gy defines isomorphisms
Hau(0) = Haon(5,...,5) and
H1,u[0] — H1x[0]

where A = (A1,...,\,) and )\ji = uj[ — 5 +0;. Since gy is holomorphic it commutes with 0.
The proposition now follows from Proposition 5.3. g

5.5. Smooth perturbations of the model problem with angles. Let B: R x [0,1] —
U(n) be a smooth map such that

(5.31) OB|OR x [0,1] = 0.

Let 6 € [0,7) and consider the following boundary conditions for u € H¢:

/ (u,v)dr Ndt =0,
R

(5.32) for all v € C§°(R,C") such that v(r) € iB(7)R",
/ (u,v)dr Ndt =0,
R+i
(5.33) for all v € C§°(R + 4, C"™) such that v(r +4) € iB(7)A(0).
For = (pt,p7) € R? let A(p) = (uF, =, put,p, ... pwF, n™) € R* define

Ha,(0, B) = {u € HY®: u satisfies (5.32) and (5.33),0u satisfies (5.12) and eyt € Ha}.
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Proposition 5.6. If m(6;,p) > 0 for j = 1,...,n then there exists § > 0 such that for all
B satisfying (5.31) with ||B —id ||g2 < d, the operator

9: Ha (0, B) — H1,[0]

is Fredholm of index

(5.3 iﬁ( s ) (g )

Proof. Multiplication with B and B~! defines Banach space isomorphisms

Ho,(6) =5 Ha,(0, B),
and
Hyu[0] 2 Hy (0],
Thus up to conjugation the operator considered is the same as
0+ B7'0B: Ha,(0) — Ha,[0].

The theorem now follows from Proposition 5.5, and the fact that the subspace of Fredholm
operators is open and that the index is constant on path components of this subspace. [

5.6. Boundary conditions. In the upcoming subsections we study the linearized 0-problem
on a disk D,, with m punctures. Refer back to Section 3.4 for notation concerning D,,.

Definition 5.7. A smooth map A: 9D,, — U(n) will be called small at infinity if there

exists M > 1 such that for each j = 1,...,m the restriction of A to OE, [M] approaches a
constant map in the C2-norm on each component of 0E, [M'] as M’ — oo. It will be called
constant at infinity if there exists M > 1 such that for each j=1,...,m the restriction of A

to each component component of JE, [M] is constant.

Let A: D, — U(n) be small at infinity. For u € H°°(D,,,C"), consider the boundary

condition:
/ (u,v)ds =0,
0D,

(5.35) for all v € CJ(OD,,,C") such that v(¢) € iA(C)R™ for all ¢ € D,,.

In previous subsections coordinates ¢ = 7 + it on R x [0, 1] were used and we implicitly
considered the bundle T**'R x [0, 1] as trivialized by the form d¢, and sections in this bundle
as C"-valued functions. We do not want to specify any trivialization of 7*%!D,, and so we
view the d-operator as a map from Hs-functions into H;-sections of 7*%' D,,, ® C*. Consider,
for u € H®(Dy,, T*%1 D,,, ® C™), the boundary condition

(5.36) / (u,v)ds = 0, for all v € C§(dD,,, T"'D,, ® C").
0D,
Henceforth, to simplify notation, if the source space X in a Sobolev space Hi(X,Y) is Dy,
we will drop it from the notation. If u € HY(C™) then du € HX(T**' D,,, ® C"). Define
Ho(C™; A) = {u € Ha(C"): u satisfies (5.35) and Ou satisfies (5.36) },

and
Hi(T*"' D, ® C; [0]) = {u € Hy(T*' Dy, © CM): u satisfies (5.36)} ,
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Define

Ha,(CHA) =
{u € HY°(C"): u satisfies (5.35), Ju satisfies (5.36), and e,u € HQ(C”)} .

and

Hiw(T*"' Dy @ € [0]) =
{u € H(T*"' D,,, ® C"): u satisfies (5.36) and e,u € Hy(T*™ D, ® C”)} )

Let p; be a puncture of D,,. The orientation of D,, induces an orientation of dD,,. Let
A? and Ajl- denote the constant maps to which A converges on the component of JE,; close
to p; corresponding to R and R + ¢, respectively. Define

0(j) = 6(AJR™, AJR™).
Then there are unique unitary complex coordinates

2(j) = ()1 + iy, - 2(F)n + iy (F)n)
in C" such that

A?]R" = Span (0(j)1,---,90()n),
AR = Span (D). 0D ()

Proposition 5.8. Let A: 0D,, — U(n) be small at infinity. If p satisfies pj # —0(j), + km
forg=1,....m,r=1,...,n, and every k € Z, then the operator

(5.37) 9t Hau(C"5 A) = Hy (T Dy @ C™;[0))
1s Fredholm.

Proof. Assume that for M > 0, A|0E,;[M — 1] is sufficiently close to a constant map (see
Proposition 5.6). Choose smooth complex-valued functions oy, a1, ..., a;,, with the following
properties: «; is constantly 1 on E, [M +2]; the sum } ; @ s close to the constant function
1, Oa; = 0 on D,y,; and o is constantly equal to 0 on D, — E,.[M + 1], for j =1,...,m

Glue to each £, [M] a half-infinite strip (—oo, M]x [0, 1] and denote the result F,. . Extend
the boundary conditions from F, [M] to Ep]. keeping them close to constant. Let the weight
in the weight function remain constant. Glue to Dy, —J; Ep,[M +2], m half disks and extend
the boundary conditions smoothly. Denote the result D,,. Note that the boundary value
problem on D,, is the vector-Riemann-Hilbert problem, which is known to be Fredholm, and
that the weighted norm on this compact disk is equivalent to the standard norm.

Now let u € Ha,(C"; A). Then oju is in the appropriate Sobolev space for the extended
boundary value problem on E,. (D, if j = 0) and because the elliptic estimate holds for all
of these problems and since all of them except possibly the one on D,,, has no kernel, there
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exists a constant C such that

n
lullz <llooula, + ) lajullz,,
j=1

n
<C | llooullie + D 19 1,
5=0

n n
(5.38) <C [ > 0agull1 . + llooull, + > llodully,
=0 j=0

We shall show that (5.38) implies that every bounded sequence u, such that du, converges
has a convergent subsequence. This implies that 0 has a closed image and a finite dimensional
kernel ([20] Proposition 19.1.3). Clearly it is sufficient to consider the case du,, — 0. Consider
the restrictions of u, to a compact subset K of D,, such that

supp(ag) U supp(dag) U - - - U supp(dayy,) C K.

A compact Sobolev embedding argument gives a subsequence {uw, } which converges in
H1(K,C"). Thus, (5.38) implies that {u,/} is a Cauchy sequence in Hs ,(A;C") and hence
it converges.

It remains to prove that the cokernel is finite dimensional. Lemma 5.1 shows that any
element in the cokernel of @ can be represented by a smooth function v on D,,. Partial
integration implies this function satisfies dv = 0 with boundary conditions given by the
matrix function 7A. Assume first that A is constant at infinity. Then, Lemma 5.2 and
conjugation with the holomorphic (n x n)-matrix gy as in the proof of Proposition 5.5 gives
explicit formulas for the restrictions of these smooth functions to E, [M], for each j. Tt
is straightforward to check from these local formulas that v lies in Hy _,(C",iA). Thus,
repeating the argument above with 0 replacing 0 shows that the cokernel is finite dimensional.
The lemma follows in the case when A is constant at infinity. The general case then follows
by an approximation argument as in the proof of Proposition 5.6. O

5.7. Index-preserving deformations. We compute the index of the operator in (5.37).
Using approximations it is easy to see that it is sufficient to consider the case when A: 0D,,, —
U(n) is constant at infinity. Thus, let A be such a map which is constant on JE, [M] for
every j and consider the Fredholm operator

(5.39) d: Ha,(C™ A) — Hy (T D, @ C™;[0)),
where p = (p1,. .., m) € R™ satisfies
(5.40) pj # —0(j), + nr for every j,r,n.

Lemma 5.9. Let Bs: D, — U(n), s € [0,1], be a continuous family of smooth maps such
that

By is bounded in the C*-norm,
Bs|OE, [M] is constant in T + it,
0Bs|0D,, =0, and

(5.41) By =id.

Let X: [0,1] — R™ be a continuous map such that \(0) = p and A(s) satisfies (5.40) for every
s €[0,1]. Then the operator

0 Han1)(C"; B1A) — Hyzay(T*"' Dy @ €™ [0])
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has the same Fredholm index as the operator in (5.39).
Proof. The Fredholm operator
0: My n(5)(C"5 BeA) = Hy o) (T D @ C; [0))
is conjugate to
0 — BsOB; "t Hyu(C"y A) — Hy W (T Dy, @ C [0]).
The family 0 — B;0B; ! is then a continuous family of Fredholm operators. O

In order to apply Lemma 5.9 we shall show how to deform given weights and boundary
conditions into other boundary conditions and weights keeping the Fredholm index constant
using the conditions in Lemma 5.9. We accomplish this in two steps: first deform the problem
so that the boundary value matrix is diagonal; then change the weights and angles at the
ends into a special form where compactification is possible.

Lemma 5.10. Let A: 0D,, — U(n) be constant at infinity. Then there exists a continuous
family Bs: Dy, — U(n), 0 < s <1, of maps satisfying (5.41) such that

Bi1(¢)A(¢) = Diag(b1(¢), .-, bn(¢)),¢ € ODp,.

Proof. We first make A diagonal on the ends where it is constant. Note that in canonical
coordinates z(j) on the end Ej, [M] the matrix A is diagonal. Let B; € U(n) be the matrix
which transforms the complex basis 9(j)1,...,09(j)n to the standard basis. Let Bj(s) be a
smooth path in U(n), starting at id and ending at B;. Define Bs = Bj(s) on E, [M] for each
j-

We need to extend this map to all of D,,. To this end consider the loop on the boundary
of S = Dy, — E,.[M]. There exists a 1-parameter family of functions Bs: S — U(n) such
that By = id and B; A is diagonal, since any loop is homotopic to a loop of diagonal matrices.
The loops B can be smoothly extended to all of D,

Finally, we need that 0B, = 0 on the boundary. We get this as follows: let C' be a collar
on the boundary with coordinates 7 along the boundary and ¢ orthogonal to the boundary,
0<t<eandlet ¢: [0,e] — R be a smooth function which equals the identity on [0, ] and
0 for t > 5. Redefine B, on the collar as

By = By(¢) exp(i(t) By (¢)IBs(())-

Then Bj satisfies the boundary conditions and equals Bs on the boundary and in the com-
plement of the collar.

Consider the loop on the boundary of S = Dy, — OE,,[M]. There exists a 1-parameter
family of functions Bs: S — U(n) such that By = id and Bj A is diagonal, since any loop is
homotopic to a loop of diagonal matrices. The loops By can be smoothly extended to all of
D,, and the above trick makes B; satisfy the boundary conditions. O

Now let A: D,, — U(n) take values in diagonal matrices. Assume that A is constant near
the punctures and that p = (u1,. .., un) € R™ satisfies (5.40).

Lemma 5.11. There are continuous families of smooth maps Bs: D,, — Diag C U(n)
and X: [0,1] — R which satisfy (5.41) and (5.40) (where the 6(j) are computed w.r.t. Bs)
respectively such that

B1A=id

in a neighborhood of each puncture.
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Proof. Let M > 0 be such that A is constant in E, [M] for each j. Let ¢: [0,1] — [0,1] be
an approximation of the identity which is constant near the endpoints of the interval. Let
P: [M,00) — [0,1] be a smooth increasing function which is identically 0 on [M, M + 1] and
identically 1 on [M + 2,00). For a = (o, ..., q) € (—m, 7)™ let

Go (C) = 1 for ¢ € D —U; By, [M],
9al\G) = (M) for (=rT1+it € Ep, [M],

and let g, be a function which agrees with g, except on E, [M] — E, [M + 2] and which
satisfies 0gq|0D,, = 0.

Consider the complex angle 6(j) € [0, 7)™ and the weight ;. Assume first that p; # kn for
allk € Zand j =1,...,m. Let m; be the unique number 0 < m; < 7 such that m; = k7 —p;
for some k € Z. By (5.40) 6(j), # m; for all r. If 6(j), > m; define o, = 7 — 6(j),, and if
0(j)r <mj define a(j)r = —6(j),. Define

Bs = Diag (gsoqa <. 7gsan)

and let A(s) = p.
Assume now that p; = km for some j. For 0 < s < %, let By = id and take \; = p; —es

for some sufficiently small € > 0. Repeat the above construction to construct B, for s < % <
1. O

5.8. The Fredholm index of the standardized problem. Consider D,, with m punc-
tures on the boundary, conformal structure x and metric g(x) as above and neighborhoods
E,, of the punctures py, ..., pnm.

Let A,, denote the representative of the conformal structure x on D,, which is the unit
disk in C with m punctures at 1,7,—1,4qs3, ..., gn with the flat metric. Then there exists a
conformal and therefore holomorphic map I': D, — A,. We study the behavior of " on E,. .
Let p = p; and let ¢ be the puncture on A,, to which p maps. After translation and rotation
in C we may assume that the point ¢ = 0 and that A,, is the disk of radius 1 centered at i.
We may then find a holomorphic function on a neighborhood U C A, of ¢ = 0 which fixes 0
and maps A, NU to the real line. Composing with this map we find that I' maps oo to 0,
7+ 0 to the negative real axis and 7+ to the positive real axis for 7 > M for some M. Thus
this composition equals C exp(—n() where C' < 0 is some negative real constant. Thus, up to
a bounded holomorphic change of coordinates on a neighborhood of ¢ the map I' on £, looks
like T'(¢) = exp(—n() and its inverse I'"! in these coordinates satisfies I'~1(2) = —1 log(z).

Let A: 0D,,, — Diag C U(n) be a smooth function which is constantly equal to id close
to each puncture. We may now think of A as being defined on 9A,,. We extend A smoothly
to A by defining its extension A at the punctures as fl(pj) = id for each j.

Consider the following boundary condition for u € Ha(A,C"):

(5.42) / (u,v)ds = 0 for all v e C°(AA,C") with v(z) € iA(z)R" for all z € HA.
OA
For u € Hy(A, T**' A ® C") consider the boundary conditions
(5.43) / (u,v)ds = 0 for all v € C°(OA, T A @ C™).
0A

Define
Ha(A,C A) = {u € Ha(A,C): u satisfies (5.42) and Ou satisfies (5.43) }
Hi(A, T A [0]) = {u € Ha(A, C): u satisfies (5.43)} .
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Lemma 5.12. The operator

9: Ha(A,C™; A) — Hi(A, T A; [0])

is Fredholm of index n+ u(A), where u(A) denotes the Maslov index of the loop z — A(z)R",
z € 0A, of Lagrangian subspaces in C™.

Proof. This is (a direct sum of) classical Riemann-Hilbert problems. O
Let A(a) = (a,...,a) € R™.
Proposition 5.13. For —m < a < 0 the Fredholm index of the operator
0: Hax(a)(C"; A) = Hy @) (T Dy @ C™5 [0])
equals n + p1(A).

Proof. The holomorphic map I': D,, — A,, and its holomorphic inverse commute with the
d operator. Any solution on D,, must look like > -, €™ (the negative weights allows for
¢p # 0) in canonical coordinates close to each pungture. Thus I'"! pulls back solutions on
D, to solutions on A,,. Using also I' we see that the kernels are isomorphic.

Elements in the cokernel on D, are of the form (3}, _,c,e"™)d( (the positive weight
implies ¢y = 0). Pulling back with I'"! gives elements of the form (3, . Z”)% which are in
the cokernel of the  on A. So the cokernels are also isomorphic. O

5.9. The index of the linearized problem. In this subsection we determine the Fredholm
indices of the problems which are important in our applications to contact geometry.

Let A: D,, — U(n)) be a map which is small at infinity. Assume that A?R” and A}R”
are transverse for all j. For 0 < s <1, let fj(s) € U(n) be the matrix which in the canonical
coordinates z(j) is represented by the matrix

Diag(efi(fr%(j)l)s’ o efi(ﬂfé(j)n)S)'
If p and ¢ are consecutive punctures on 0D, then let I(a,b) denote the (oriented) path in

0D, which connects them. Define the loop I'4 of Lagrangian subspaces in C" by letting the
loop

(AlL(p1,p2)) * f2 % (AlI(p2,p3)) * £5 % - - % (AL (pm, p1)) * £1
of elements of U(n) act on R" C C".

Proposition 5.14. For A as above the index of the operator
0: Ho(C™; A) — H1(T*O’1Dm ® C";[0])
equals n + (T 4) where p is the Maslov index.

Proof. Using Lemmas 5.10 and 5.11 we deform A to put the problem into standardized form
with weight —e at each corner, without changing the index. Call the new matrix B. We need
to consider how B is constructed from A. The key step to understand is the point where we
make B equal the identity on the ends. This is achieved by first introducing a small negative
weight and then rotating the space

A}]R” = Span <ei6(j)181, . ,eie(j)"8n>
to Ag-) according to
(5.44) Span <ez‘<eu)1+s¢(T>(w—e<j>1>8l, o ei(emn+s¢(T>(w—e<j>n>an> ,

where 0 < s <1 and ¢: [M,00) — [0,1] equals 1 on [M + 2,00) and 0 on [M, M + 1].
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We now calculate the Maslov-index p(B). Since as we follow R + 4 along the negative 7-
direction from M + 1 to M, B experiences the inverse of the rotation (5.44), the proposition
follows. g

We now consider the simplest degeneration at a corner. Compare this with Theorem 4.A
of [13] or the appendix of [30]. Let € > 0 be a small number. Let As: D,, — U(n),0<s<1
be a family matrices which are small at infinity and constant in s near each puncture in
S C {1,...,m}, where each component of the complex angle is assumed to be positive. At
pr, T € S, assume that 0(r)s = (7 — 5,02(r),...,0,(r)), where 0;(r) #0, j = 2,...,n.. Let
B(e) € R™ satisfy G(e), =0if r € S and [(e), = —eif r ¢ S.

Proposition 5.15. The index of the operators
9: H2(C"; As) — Hi(T* Diy; [0])
for s > 0 and of the operator
0: HQ,ﬁ(e)(Cn; Ap) — Hi,(—e0,....0) (To’le [0]),
are the same.
Proof. This is a consequence of Lemma 5.9. g
Finally, we show how the index is affected if the weight is changed.

Proposition 5.16. Let A: D,, — U(n) be constant at infinity and suppose that the complex
angle at each puncture except possibly p1 has positive components. Assume that 0 < m —
011 <m—6(1)2 < --- <7 —06(1),. Let € > 0 be smaller than min,(m — 6(r),), and let
m—60(1); <0 <m—6(1)j—1 Then the index of the problem

----------

----------

Proof. First deform the matrix into diagonal form without changing the weights. If n > 1 this
can be done in such a way that the index corresponding to the first component is positive.
Then put the first component in standardized form. We must consider the index difference
arising from the first component as the weight changes from negative to positive. The con-
dition that a solution lies in Hy s means that the corresponding solution on A vanishes at
p1. Thus the dimension of the kernel increases by 1. The cokernel remains zero-dimensional.
This argument can then be repeated for other components. To handle the 1-dimensional case
one may either use similar arguments for cokernels or reduce to the higher dimensional case
by adding extra dimensions. O

5.10. The index and the Conley-Zehnder index. We translate Proposition 5.14 into a
more invariant language. Recall from Section 1.2 that we denote by v, (c) the Conley-Zehnder
index of Reeb chord ¢ with capping path ~. In the following proposition we suppress v from
the notation.

Proposition 5.17. Let (u, f) € Wal(c,k; B) be a holomorphic disk with boundary on an
admissible L, and with j positive punctures at Reeb chords a1, ...,a; and k negative punctures
at Reeb chords by, ...,bg. Then the index of dU'(, ;) equals

k

J
(5.45) W(B)+ (1= n+ > via) =S v(by).
r=1

r=1

Remark 5.18. Note that (5.45) is independent of the choices of capping paths.
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Proof. We simply translate the result of Proposition 5.14. At a positive puncture p, the
tangent space corresponding to R + 0i (R + ¢) in JF), is the lower (upper) one and at a
negative puncture the situation is reversed. We must compare the rotation path A(V7, Vp)
used in the definition of the Conley—Zehnder index with the rotation used in the construction
of the arcs f; in Proposition 5.14. At a negative puncture, the path f; is the inverse path
of A(V1,Vy). Hence the contribution to the Maslov index of f; at a negative corner equals
minus the contribution from A. Consider the situation at positive puncture mapping to a*.
Let A(V1, V) be the path used in the definition of the Conley—Zehnder index. Then A(V1, Vp)
rotates the lower tangent space V; of HC(L) at a* to the upper Vj according to e*/, 0 < s < 5
where I is a complex structure compatible with w. Let A(Vp, V1) be the path which rotates
Vb to Vi in the same fashion. Then the path f; is the inverse path of A(Vp, V1) and hence the
contribution to the Maslov index of f; equals the contribution from A(Vi, Vj) minus n.

To get the loop B from I' 4 (see Proposition 5.14) the arcs f;, must be removed and replaced
by the arcs I';, induced from the capping paths of the Reeb chords. A straightforward
calculation gives

J k
p(Ca) = p(B) + " wlar) = nj =" w(by)
r=1 s=1
Hence,
J k
n+u(Ta) = p(B) + (1= jn+ > via) = _ v(bs).
r=1 s=1

O

5.11. The index and the Conley—Zehnder index at a self tangency. In this section
we prove the analog of Proposition 5.17 for semi-admissible submanifolds. First we need a
definition of the Conley-Zehnder index of a degenerate Reeb chord. Let L C R x C" be a
chord semi generic Legendrian submanifold. Let ¢ be the Reeb chord of L such that T (L)
has a double point with self tangency along one direction at ¢*. Let a and b be the end points
of ¢, z(a) > z(b). Let Vo = dlip(T,L) and V; = dli(TpL). Then Vy and Vi are Lagrangian
subspaces of C" such that dimp (Vo NV1) = 1. Let W C C" be the 1-dimensional complex
linear subspace containing Vo N V; and let C*~! be the Hermitian orthogonal complement of
W. Then VJ = VoNnC" ! and V{ = V; NC"! are transverse Lagrangian subspaces in C" .
Pick a complex structure I’ on C"~! compatible with w|C""! such that I'V; = V. Define
A(V1, W) to be the path of Lagrangian planes s — VNV x eSI/V{. Also pick a capping path
~v:10,1] — L with 4(0) = a and (1) = b. Then 7 induces a path I" of Lagrangian subspaces
of C™. Define the Conley—Zehnder index of ¢ as

vy (€) = (T * A(V2, Vo).

Let 0 < € < 6, where 6 is the smallest non-zero complex angle of L at c. Let Wh ((c; k)
denote the space of maps with boundary conditions constructed from the Sobolev space with
weight € at each puncture mapping to ¢ and define W5 ((c; k) as in Section 4.8. If a is a Reeb
chord of L then let d(a,c) = 0 if a # ¢ and d(c,c¢) = 1. Again we suppress capping paths
from the notation.

Proposition 5.19. Let (u, f) € Wh (¢, k; B) and (v, g) € VNVZE(C, k; B) be holomorphic disks.
If ¢ = (a;b1,...,by) where a # c then the index of dU', 5y equals

k
w(B) +v(a) =Y (v(by) + (). ),

r=1



THE CONTACT HOMOLOGY OF LEGENDRIAN SUBMANIFOLDS IN R2n+!1 57

and the index of dI'(, 4) equals

u(B) + v(a) = 3 v(b).

r=1
If ¢ = (c;b1,...,bp) then the index of dT'(, 5y equals
k
p(B) +v(c) =D (v(by) +6(bj,c)),
r=1

and the index of dU'(, 4) equals

u(B) + (v(c) +1) = Y _w(by).
r=1
Remark 5.20. Note again that the index computations are independent of the choices of
capping paths.

Proof. The proof is similar to the proof of Proposition 5.17. Consider first the d-operator
with boundary conditions determined by (u, f) and acting on a Sobolev space with small
negative weight. Again we need to compute the Maslov index contributions from the paths f;
in the loop I'4, where f; fixes the common direction in the tangent spaces at a self tangency
double point. Note that at a positive puncture ¢ the contribution is now the contribution of
A(V1,Vp) minus (n—1). At a negative puncture it is again minus the contribution of A(V1, Vp).
Applying Proposition 5.16 the first and third index calculations above follow. Noting that the
tangent space of W (c, k, B) is obtained from that of W, ((c, x; B) by adding one R-direction
for each puncture mapping to ¢ the other index formulas follow as well. O

6. TRANSVERSALITY

In this section we show how to achieve transversality (or “surjectivity”) for the linearized 0
equation by perturbing the Lagrangian boundary condition. When proving transversality for
some Floer-type theory, it is customary to show that solution-maps are “somewhere injective”
(see [22, 16], for example). One then constructs a small perturbation, usually of the almost
complex structure or the Hamiltonian term, which is supported near points where the map
is injective. With a partial integration argument, these perturbations eliminate non-zero
elements of the cokernel of 0.

For our set-up, we perturb the Lagrangian boundary condition. In Sections 6.1 through
6.4, we describe the space of perturbations for the chord generic, one-parameter chord generic,
and chord semi-generic cases. Although we do not have an injective (boundary) point, we
exploit the fact that there is only one positive puncture, and hence, by Lemma 1.1, the
corresponding double point can represent a corner only once. Of course other parts of the
boundary can map to this corner elsewhere, but not at other boundary punctures. With
this observation, we prove transversality in Sections 6.7 and 6.9 first for the open set of non-
exceptional maps, defined in Section 6.6 and from this for all maps provided the expected
kernel has sufficiently low dimension. We also prove some results in Sections 6.10 and 6.12
which will be useful later for the degenerate gluing of Section 7.

6.1. Perturbations of admissible Legendrian submanifolds. Let L C C" xR be an ad-
missible Legendrian submanifold. Let a(L) denote the minimal distance between the images
under I of two distinct Reeb chords of L and let A(L) be such that I (L) is contained in
the ball B(0, A(L)) C C". Fix § > 0 and R > 0 such that § < a(L) and such that R > A(L).
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Definition 6.1. Let Ham(L, d, R) be the linear space of smooth functions h: C* — R with
support in B(0, R) and satisfying the following two conditions for any Reeb chord c.

(i) The restriction of h to B(c*,J) is real analytic,
(ii) The differential of h satisfies Dh(c*) = 0 and also h(c*) = 0.

We are going to use Hamiltonian vector fields of elements in Ham(L,d, R) to perturb L.
Condition (i) ensures that L stays admissible, and (ii) that the set of Reeb chords {co, ..., cm}
of L remains fixed.

Lemma 6.2. The space Ham(L, d, R) with the C°°-norm is a Banach space.

Proof. Using the characterization of real analytic functions as smooth functions the deriva-
tives of which satisfy certain uniform growth restrictions one sees that the limit of a C'*°-
convergent sequence of real analytic functions on an open set is real analytic. O

Lemma 6.3. If L is admissible and h € Ham(L, 8, R) then ®,(L) (see Section 2) is admis-
sible.

Proof. For each Reeb chord ¢, the Hamiltonian vector field is real analytic in B(c*,d). Also,
®y,(c*) = ¢* and hence there exists a neighborhood W of ¢* such that @} (W) C B(c*,d) for
0 <t < 1. A well-known ODE-result implies that the flow of a real analytic vector field
depends in a real analytic way on its initial data. This shows that ® (L) is admissible. [

6.2. Perturbations of 1-parameter families of admissible submanifolds. Let L;, t €
[0, 1] be an admissible 1-parameter family of Legendrian submanifolds without self-tangencies.
Let a = minp<;<; a(L:) and A = maxo<i<1 A(L¢). Fix § > 0 and R > 0 such that 6 < a and
R> A.

We define a continuous family of isomorphisms Ham(d, R, Ly) — Ham(d, R, L;), 0 <t < 1.
Let (ci(t),...,cm(t)) be the Reeb chords of L;. Then (c¢i(t),...,ch(t), 0 <t < 1lisa
continuous curve in (C")™. Let ¢': B(0,R) — B(0, R) be a continuous family of compactly
supported diffeomorphisms which when restricted to B(cj(0),0), j =1,...,m agree with the
map

z 2+ (cj(t) — ¢;(0)).
Composition with 1! can be used to give the space

pHam(L¢, 6, R) = | ) Ham(Ly,d,R)
0<t<1
the structure of a Banach manifold which is a trivial bundle over [0, 1]. We note that if (h,?)
in pHam(Ly, §, R) then Lemma 6.3 implies that ®,(L;) is admissible.

6.3. Bundles over perturbations. Let L C C" x R be an admissible chord generic Legen-
drian submanifold. Above we constructed a smooth map of the Banach space Ham(L, o, R)
into the space of admissible chord generic Legendrian embeddings of L into C™ x R.

Let ¢ = (cp,c1,...,¢m) be Reeb chords of L and let € € [0,00)™ and consider as in Section
4.1 the space
(61) WQ,E,Ham(L,é,R) (C)
and its tangent space
(62) T(w,f,n,a)WQ,E,Ham(L,é,R) ~ T(w7f)W275 D TKCm D Ham(L, (5, R)
In a similar way we consider for a 1-parameter family L; the space
(63) WQ,G,pHam(Lt,é,R) (C)

and its tangent space.
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For A = Ham(L, §, R) or A = pHam(L,, 6, R), consider also the bundle map I': Ws  a(c) —
Hy e A[0)(T**! D, ® C™) here we are thinking of the spaces as bundles over Ham(L, §, R) and
we denote projection onto this space by pr. To emphasize this we will be write (I", pr) instead
of just I' in the sequel. The differential dI" was calculated in Lemma 4.14.

6.4. Perturbations in the semi-admissible case. Let L C C" x R be a semi-admissible
Legendrian submanifold. Let (co,...,c¢y) be the Reeb chords of L. Assume that the self
tangency Reeb chord is cp, that ¢ = 0, and that L has standard form in a neighborhood of
0, see Definition 2.3.

Let a(L) denote the minimal distance between the images under Il of two distinct Reeb
chords of L. Fix ¢ > 0 such that § < a(L). For r > 0 let C(r) = C x B'(0,r) C C", where
B'(0,7) is the r-ball in C" ™' ~ {z; = 0}, where as always (21, ..., 2,) = (x1+iy1, . .., Tn+iyn)
are coordinates on C".

Definition 6.4. Let Hamg(L,d) be the linear space of smooth functions h: C* — R with
support in C'(106) U J;51 B(cj,100) and satisfying the following conditions.
(i) The restriction of h to B(cj,d) 1 < j < m is real analytic,
(ii) In C(100), aa—;‘l =0= g_zﬁ and the restriction of h to C(9) is real analytic.
(iii) The differential of h satisfies Dh(c}) = 0 and also h(c}) = 0, for all j.

Lemma 6.5. The space Hamg(L, ) with the C*°-norm is a Banach space.

Proof. See Lemma 6.2 and note that the restriction of h to C(104) can be identified with a
function of (n — 1)-complex variables supported in B’(0, 104). O

Let @), be the Legendrian isotopy which is defined by using the flow of h locally around
the Reeb chords of L. This is well-defined for h sufficiently small. Let Hamg(L, 6, s) denote
the s-ball around 0 in Hamg (L, d).

Lemma 6.6. There exists s > 0 such that for h € Hamg(L,¥,s), ®,(L) is an admissible
chord semi-generic Legendrian submanifold.

Proof. Note that the product structure in C'(106) is preserved since h does not depend on
(1,y1). Moreover, the isotopy is fixed in the region B(0,2+¢)\ B(0,2) for s and ¢ sufficiently
small. g

We have defined a smooth map of Hamg(L, d, s) into the space of admissible chord semi-
generic Legendrian submanifolds and this maps fulfills the conditions on A in Section 4.8.
We can therefore construct the spaces

(64) W2,6,Ham0(L,5,s)7 and W2,e,Ham0(L,5)a

see Sections 4.1 and 4.8, respectively. Moreover, as there we will consider the 9-map and its
linearization.

6.5. Consequences of real analytic boundary conditions. For r > 0, let £y = {2z €
C: |z] <7 Im(z) > 0}. If w: (E4,0E;) — (C", M) where M is a real analytic Lagrangian
submanifold and w is holomorphic in the interior and continuous on the boundary, then by
Schwartz-reflection principle, w extends in a unique way to a holomorphic map w®: E — C"
mapping Im(z) = 0 to M, where E = {2 € C: |¢| < r}. We call w? the double of w.

Let L € C" x R be a chord (semi-)generic Legendrian submanifold.

Lemma 6.7. Let p be a point in U C L such that Ilp(U) is real analytic, where U C L is a
neighborhood of p on which Tl is injective. Assume that

w: (Ey,0F,0) — (Cn,Hc(U),p),
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is holomorphic. Then there is a holomorphic function u with Taylor expansion at 0,
u(z) =ap+arz+...,a0 #0
such that w(z) = p + 2*u(z) for some integer k > 0.
Proof. The double w® has a Taylor expansion. O

Lemma 6.8. Let p, U and L satisfy the conditions of Lemma 6.7. Assume that w: D, — C"
is holomorphic with boundary on Il(L). Then w™'(p) N ODy, is a finite set.

Proof. Using Lemma 3.6, we may find M > 0 such that there are no preimages of p in
U;jEp,[M]. Since the complement of U;E, [M] is compact, the lemma now follows from
Lemma 6.7. O

Lemma 6.9. Let p € L satisfy the conditions of Lemma 6.7, and let
(6.5) wy,we: (B, 0E,0) — (C", Il (L), p),

be holomorphic maps such that we maps one of the components I of OEL \ {0} to wi(I)
Then there exists a map w: E — C" and integers kj > 1 such that w?(z) =w(zM), j=1,2

Proof. As above we may reduce to the case when II(L) = R™ C C". The images C; =

w?(E), j = 1,2 are analytic subvarieties of complex dimension 1 which intersects in a set of
real dimension 1. Hence they agree. Projection of C'= (1 = C5 onto a generic complex line
through p identifies C' (locally) with the standard cover of the disk possibly branched at 0.

This gives the map w. i

6.6. Exceptional holomorphic maps. Let A be one of the spaces Ham(L, é, R), pHam(L, 6, R),
or Hamg(L,d,s). Let (w, f,\) € Waa(c) (or Waa(c)) be a holomorphic disk and let ¢ be

a point on 9Dy, such that w(q) lies in a region where II-(Ly) is real analytic. Assume that
dw(q) = 0. Since w has a Taylor expansion around ¢ in this case we know there exists a half-
disk neighborhood E of ¢ in D,,, such that q is the only critical point of w in E. The boundary
OF is subdivided by ¢ into two arcs OF \ {q} = I+ U I_. We say that ¢ is an exceptional
point of (w, f) if there exists a neighborhood FE as above such that w(ly) = w(I-).

Definition 6.10. Let (w, f,A\) € Waa(c), where ¢ = (co(A), c1(A),...,cm(N)) and co(N)
is the Reeb chord on Ly of the positive puncture of D,,t;. Let Bi(A) and Ba(\) be the
two local branches of II(Ly) at c5(A). Then (w, f) is exceptional holomorphic if it has two
exceptional points ¢; and gz with w(q1) = w(g2) = ¢i()) and if a neighborhood in 9D,, of ¢;
maps to Bj(A), j =1,2.

Definition 6.11. Let Wé ealc) (Wée A(c)) denote the complement of the closure of the set
of all exceptional holomorphic maps in Ws ¢ A(c) (WQ’Q A(c)).

We note that W, cal(c) is an open subspace of a Banach manifold and hence a Banach
manifold itself.

6.7. Transversality on the complement of exceptional holomorphic maps in the
admissible case.

Lemma 6.12. For L admissible (respectively Ly a 1-parameter family of admissible subman-
ifolds) the bundle map, see Section 4.7

(T, pr): Wi ale) = Hieal0/(Dim, T*Din @ C™),
where A = Ham(L, d, R) (respectively A = pHam(Ly,d, R)) is transverse to the 0-section.
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Proof. The proof for 1-parameter families L; is only notationally more difficult. We give
the proof in the stationary case. We must show that if w: D,, — C" is a (non-exceptional)
holomorphic map (in the conformal structure £ on D,,) which represents a holomorphic disk
(w, f) with boundary on L = L) (without loss of generality we take A = 0 below) then

A (T 1).5.0Wa.cA(€) ) = Ha.o( Dy, T Dy @ ),

i.e., dI' is surjective. To show this it is enough to show that

{dF (T((wj),f@,O)WQ,E,A(C)) }L = {0},

where V+ denotes the annihilator with respect to the L2-pairing of V' C H1,e[0]( Dy, T* Dy, &
C™) in its dual space.
An element v in this annihilator satisfies

(6.6) / (B, u) dA =0,
for all v € T,,B2(0,7). Here dA is the area form on D,,. Lemma 5.1 implies that u can be
represented by a C2-function which is anti-holomorphic.

We note that integrals of the form

6.7) /D (6,6} dA,

where (,) is the inner product on 7%D,,, and where ¢ and v are sections, are conformally
invariant. We may therefore compute integrals of this form in any conformal coordinate
system on the disk D,,.

Restrict attention to a small neighborhood of the image of the positive corner at cjj. Recall
that w is assumed non-exceptional and consider a branch B of II(L) at ¢j such that w
does not have an exceptional point mapping to ¢; € B. Since B is real analytic we may
biholomorphically identify (C", B, ¢;) with (C",R",0).

Let p be the positive puncture on D,,. For M large enough, by Lemma 3.6, the image of
the component of 0E,[M] which lies in B is a regular oriented curve. Denote it by . For
simplicity we assume that the component mapping to v is [M,00) x {0} C E,,[M] and we
let Ey = [M,00) x [0, 3).

Let p1,...,p, be the preimages under w of ¢; with the property that one of the components
of a punctured neighborhood of p; in dD,, maps to . Note that » < co by Lemma 6.8 and
that by shrinking v we may assume that all these images are exactly ~.

We say that a point p; is positive if close to pj, w and the natural orientation on the
boundary of dD,, induce the positive orientation on v otherwise we say it is negative.

The image of the other half of the punctured neighborhood of p; in dD,,, maps to a curve
7' under w. Our assumption that w is non-exceptional guarantees that v and 4/ are distinct.

Let w; denote the restriction of w to a small neighborhood of p;. Let E = {z € C: |2] < r},
let Ef ={z € E: Im(z) >0}, and let E_ = {z € E: Im(z) < 0}. Lemma 6.9 implies that
we can find a map w: £ — C" and coordinate neighborhoods (E+(j),0FE+(j)) of p; (where
the sign =+ is that of p;) such that w;l(z) = w(2*) for each j. Note that w non-exceptional
implies all k; are odd.

Let k = kiky ...k, and let k; = i Let ¢;: E — E(j) be the map z — 2. Consider
the restrictions u; of the anti-holomorphic map w to the neighborhoods (E4(j),0E+(j)).
Because of the real analytic boundary conditions (recall that (B,C") is biholomorphically
identified with (R™,C")), these maps can be doubled using Schwartz reflection principle. Use

¢; to pull-back the maps u; and w; to E.
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Let a: C" — R be any smooth function with support in a small ball around a point
¢ € 7', where ¢’ is chosen so that no point outside |J; E+(j) in dD;, maps to ¢'. (There
exists such a point because of the asymptotics of w at punctures and Lemma 6.7.) Let Y, is
the Hamiltonian vector field associated with a, see Section 2.3.

If v is a smooth function with support in Uj E4(j) which is real and holomorphic on
U; OE+(j), if £ + in are coordinates on E(j), and if the support of a is sufficiently small
then

(6.8) 0= / ((Ya +v),u) dA

6.9 — Y, + v, 0u) dE A d (Y, ), u)d
(6.9) ;/M)< +o U>£An+;/aEi(j)< i(Yy + v), u) de

(6.10) -y /8 RS CRRTE

The equality in (6.8) follows since w is an element of the annihilator and since a can be
arbitrarily well C2-approximated by elements in Ham (L, d, R). The equality in (6.9) follows
by partial integration and the restrictions on the supports of @ and v. The equality in (6.10)
follows from du = 0. Taking a = 0 we see, since we are free to choose v, that u must be real
valued on JF (j) for every j.

We then take v = 0 and express the integral in (6.10) as an integral over I, = {x+0i: x >
0} C E. Note that if £ + in are coordinates on F(j) then under the identification by ¢,

dé = dzki = l%jxi“i*l dx and

(611) > /aEi(j)<—z‘Ya,u>df = / (=i¥a(i(2), 3 o)k uy (M) de,
J

Iy Z

where o(j) = +1 equals the sign of p;. Thus, if a(z) = >_; J(j)l%jzkfluj(zki) then « is
antiholomorphic and by varying a we see that « vanishes in the /{R™-directions along an arc
in I;. Therefore o vanishes identically on E.

Pick now instead a supported in a small ball around ¢ in y. With the same arguments as
above we find

0 _/ (3Y, + v),u) dA

_—/ (Ya+v,8u>d7/\dt—2/ (Yo +v,0u) d¢ Adn
Eo Ei(])

J
+ /[Mpo)(—i(Ya +v),u)dr + ; /az;i(j)(_i(ya +0),u) dE
(6.12) - /[M,oo)<_i(Y“ +v),u)dr + ; /aEi(j)(—i(Ya +v),u) dE.

and conclude that u(7,0) € R" for 7 € [M, 00) as well.
Again taking v = 0 we get for the last integral in (6.12)

6.13 —iY,,u)dé = —iY, (w(Z* ,a(z)))ydr =0,
(6.13) ;/E)Eiu; de = [ (Yt a(2)

where I_ = {z + 0i: x < 0} C E, and where the last equality follows since & = 0. Equations
(6.13) and (6.12) together implies (by varying a) that u must vanish along an arc in [M, c0).
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Since u is antiholomorphic it must then vanish everywhere. This proves the annihilator is 0
and the lemma follows. g

Remark 6.13. In the case that w has an injective point on the boundary, the above argument
can be shortened. Namely, under this condition there is an arc A on the boundary of D,
where w is injective and varying v and a there we see that u must vanish along A and therefore
everywhere. Oh achieves transversality using boundary perturbations assuming an injective
point [25].

Corollary 6.14. Let ¢ = aby ...b,,. For a Baire set of h € Ham(L,5,R) = A, T71(0) N
pri(h) N Wy a(e; A) is a finite dimensional smooth manifold of dimension

(A) + vy(a) = > vy(b)) + max(0,m — 2).
J

For a Baire set of h € pHam(L,8, R) = A T=1(0) npr=1(h) N Wy a(ei A) is a finite dimen-
sional smooth manifold of dimension

p(A) + vy(a) — Z vy(b;) +max(0,m — 2) + 1.
J
Proof. Let Z C W§7E,A(C; A) denote the inverse image of the 0-section in Hq ¢ A[0] (T*%'D,, ®
C™) under (I',pr). By the implicit function theorem and Lemma 6.12, Z is a submanifold.
Consider the restriction of the projection 7w: Z — A. Then 7 is a Fredholm map of index
equal to the index of the Fredholm section I'. An application of the Sard-Smale theorem
shows that for generic A € A, 771()\) is a submanifold of dimension given by the Fredholm
index of I'. Note that in the first case, the restriction of dI' to the complement of the
max(0, m—2)-dimensional subspace TC,,, C TW ((c; A) is an operator of the type considered
in Proposition 5.17. Thus, the proposition follows in this first case. In the second case, we
restrict to a (max(0, m — 2) + 1)-codimensional subspace instead. O

6.8. General transversality in the admissible case. If c is a collection of Reeb chords
we define /(c) as the number of elements in c. We note that if (f,w) is a holomorphic disk
with boundary on L with r punctures, then, if » < 2, the kernel of dI" at (f,w) is at least
(3 —r)-dimensional. This is a consequence of the existence of conformal reparameterizations
in this case.

Theorem 6.15. For a dense open set of h € Ham(L,§, R) (h € pHam(L,d, R)), T=1(0) N
pr t(h) C Waa(c) is a finite dimensional C-smooth manifold of dimension as in Corol-
lary 6.14, provided this dimension is < 1 if l(c) > 3 and < 1+ (3 —(c)) otherwise.

Proof. After Corollary 6.14 we need only exclude holomorphic disks in the closure of excep-
tional holomorphic disks. Let a € Ham (a € pHam) be such that I'~1(0) is regular. Then
the same is true for @ in a neighborhood of a. Now assume there exists a holomorphic disk
in the closure of exceptional holomorphic disks at a. Then there must exists an exceptional
holomorphic disk for some @ in the neighborhood. However, such a disk w has k > 2 points
mapping to the image of the positive puncture and with w(/;) = w(I-). It is then easy to
construct (by “moving the branch point”) a k-parameter (k+ (3 —1[(c))-parameter if [(c) < 2)
family of distinct (since the location of the branch point changes) non-exceptional holomor-
phic disks with boundary on L(@). This contradicts the fact that the dimension of T'=1(0) is
<k (<k+ (3=1(c)) for every a in the neighborhood. O

Proof of Proposition 1.2. If the number of punctures is > 3 the proposition is just Theorem
6.15. The case of fewer punctures can be reduced to that of many punctures as in Section
7.7. O
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Corollary 6.16. For chord generic admissible Legendrian submanifolds in a Baire set of
such manifolds, no rigid holomorphic disk with boundary on L decays faster than e~ (@+9Il
close to any of its punctures mapping to a Reeb chord c. Here 0 is the smallest complex angle
of the Reeb chord ¢, § > 0 is arbitrary, and T 4 it are coordinates near the puncture.

Proof. Such a holomorphic disk would lie in W» ((c), where the component of € corresponding
to the puncture mapping to the Reeb chord c is larger than 6. By Proposition 5.16 this change
of weight lowers the Fredholm index of dI' by at least 1. Since the Fredholm index of dI" with
smaller weight (e.g. 0-weight) is the minimal which allows for existence of disks the lemma
follows from Theorem 6.15. g

Proof of Proposition 1.9. The first statement in the proposition follows exactly as above. To
see that handle slides appear at distinct times, let (a1b1; A1) and (agba; A2) be such that

p(Ar) + la1| — |[b1] = p(Az) + |az| — [ba| =0

and consider the bundle W, Alaibi; Ap) >~<ng Alagbg; Ag). Here x denotes the fiberwise prod-
uct where, in the fibers, the deformation coordinates (t1,ts) are restricted to lie in the di-
agonal: t; = to = t. This is a bundle over A, and I' induces a bundle map to the bundle
HiA(Dpy s C") X Hi A(Dpy, C"), where x denotes fiberwise product. It is then easy to check
that I" is a Fredholm section of index —1. As in Theorem 6.15 we see that dI' is surjective
and that the inverse image of the 0-section intersected with pr—!(h) is empty for generic h.
This shows that the handle slides appear at distinct times.

The statement about all rigid disks being transversely cut out at a handle slide instant
can be proved in a similar way: let (a;b1; A1) be as above and let (asbs; A3) be such that

1(As) + lag| — [bs| = 1.
Consider the bundle
Waa(asbs; A3)xWh s (agbg; Ag) xWa a(a1b1; Ay),
and the bundle map I' defined in the natural way with target
HiA(Dimy, C") X HiA(Dmy, C") X HiA(Dry, C™).

Then the map I' has Fredholm index 0 and as above we see dI is surjective. Hence I'"1(0) N
pr1(h) is a transversely cut out O-manifold for generic h. We show that this implies that
if ¢ is such that MY (ai;b1) = {(v,9)} # 0 then MY (az;by) is transversally cut out. Let
(u, f) € MY, (az;b3) and assume the differential dI"Eu p)» Which is a Fredholm operator of
index 0 is not surjective. Then it has a cokernel of dimension d > 0. Furthermore, the image of

the tangent space to the fiber under the differential dI" at the point (((u, ), (u, f),(v,9)), h)

is contained in a subspace of codimension > 2d — 1 in the tangent space to the fiber of the
target space. This contradicts T'=1(0) N pr~1(h) being transversely cut out. O

6.9. Transversality in the semi-admissible case.

Lemma 6.17. Suppose L is admissible chord-semi-generic and A = Hamg(L,d, s), then the
bundle maps

(F7 pl") : Wé,e,A(c) - Hl,E,A(Dma To’le & Cﬂ)p
(F7 pr): Wé,e,A(c) - Hl,e,A(Dma T071Dm ® Cn)

are transverse to the 0-section.
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Proof. We proceed as in the proof of Lemma 6.12. Let u be an element in the annihilator.
The argument of Lemma 6.12 still applies up to the point where we conclude «|l; equals
0. In the present setup not all Hamiltonian vector fields are allowed (see Definition 6.4).
However, the ones that are allowed can be used exactly as in the proof of Lemma 6.12 to
conclude the last (n — 1) components of u must vanish identically.

Since D,, is conformally equivalent to the unit disk A,, with m punctures on the boundary
and since integrals as in (6.7) are conformally invariant, we have for any smooth compactly
supported v with appropriate boundary conditions

(6.14) 0= /Am<av,u> dA = /Am<v,8u> dA+/8Am(u, e~ ) df.

As usual the first term in (6.14) vanishes and we find that v is orthogonal to ewTw(ew)HC (L).

Now the boundary of the holomorphic disk must cross the region X = B(0,2+¢)\ B(0, 2),
and the inverse image of this region contains an arc A in the boundary. The intersection
between the tangent plane of T, pHC(L), p € X and the z;-line equals 0 and the zq-line is
invariant under multiplication by e*’. Hence the orthogonal complement of CieTw(eie)HC(L)
intersects the z;-line trivially as well (for § € A). We conclude that the first component of
u must vanish identically along A and by anti-analytic continuation vanish identically. It
follows that w is identically zero. O

In analogy with Corollary 6.14 we get (with ¢ denoting the degenerate Reeb chord of L)

Corollary 6.18. For a dense open set of h € Hamg(L,d,s), T71(0)Npr~1(h) C Wé,QA(C; A)

and T=1(0) npr~t(h) C W§7E,A(C; A) are finite dimensional manifolds. If ¢ = aby ... by, with
a # c then the dimensions are

NE

pu(A) +via) = (v(b;) +6(bj,c)) + max(0,m — 2) and

ﬁ
Il
—

NE

pu(A) +v(a) — ) (v(bj)) + max(0,m — 2), respectively.

ﬁ
I
-

If c = cby ... by then the dimensions are

m

pu(B) +v(c) = > (v(b;)) + max(0,m — 2) and
r=1
w(B)+v(c)+1— Z(y(bj)) + max(0,m — 2), respectively.
r=1

The same argument as in the proof of Theorem 6.15 gives

Theorem 6.19. For a dense open set of h € Hamg(L,d,s), I71(0) N pr~t(h) N Wy, a(c)
and T7H0) N pr=t(h) N Waa(c) are finite dimensional manifolds of dimensions given by
the dimension formula in Corollary 6.18, provided this dimension is < 1 if I(c) > 3 and
<14 (3—1(c)) otherwise.

Remark 6.20. Note that the expected dimension of the set of disks with dimension count in
W, equal to 1 in Wy is equal to —k (or —k + (3 —I(c)) if I(c < 2)), where k is the number
of punctures mapping to the self-tangency Reeb-chord. Therefore for a dense open set in
the space of chord semi-generic Legendrian submanifolds this space is empty. Since any disk
with exponential decay at the self-tangency point has a neighborhood in W5, we see that
generically such disks do not exist, provided their dimension count in er is as above.
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6.10. Enhanced transversality. Let L be a (semi-)admissible submanifold. If ¢ € L and
(o € D, then define

WQ,G(C7 COup) = {(w7 f) € W2,e(c): (wa f)(CO) = p}

and in the semi-admissible case also Wh ((c, (o, p) in a similar way.

If evey: Wae(c) — L denotes the map eve, (w, f) = (w, f)(¢o). Then eve, is smooth and
transverse to p (as is seen by using local coordinates on Wh(c)). Moreover, evgol(p) =
Ws (c,p) and hence Wh ((c,p) is a closed submanifold of W5 (c) of codimension dim(L).
Note that the tangent space T(,, ;yW2, «(c,p, o) is the closed subspace of elements (v,7) in
the tangent space T\, )WWa.(c) which are such that v: D, — C" satisfies v((p) = 0.

We consider

W2 e U WQ e
C€IDm,
as a locally trivial bundle over 0D,,. Local trivializations are given compositions with suitable
diffeomorphisms which move the boundary point ¢ a little.

We define perturbation spaces as the closed subspaces Ham?(L, d, R) C Ham(L, ¢, R) and
Hamb(L,§) € Hamg(L, ) of functions h such that h(p) = 0 and Dh(p) = 0. Thus, @, fixes
p. (Note that if p is the projection of a Reeb chord this is no additional restriction.) If A
denotes one of these perturbation spaces we form the bundles

Waeale,p) = | Waclep),
Ly, eA

Waeal(e = |J Wacle,p)
Ly, AeA

with local coordinates as before.
As before let ’ denote exclusion of exceptional holomorphic maps.

Lemma 6.21. Assume that p € L has a neighborhood U such that I (U) is real analytic.
Then the bundle maps

(F7 pI‘) : Wé,e,A(cap) - Hl,e,A(Dma To’l*Dm X Cn)
(6.15) (T, pr): Wh o a(c,p) = Hiea(Dm, TV Dy, @ C")
are transverse to the 0-section.

Proof. The proof is the same as the proof of Lemma 6.12 in the admissible case and the same
as that of Lemma 6.17 in the semi-admissible case provided the arcs v and + used there do
not contain the special point p. On the other hand, if one of these arcs does contain p we
may shorten it until it does not. (The key point is that the condition that the Hamiltonian
vanishes at a point does not destroy the approximation properties of the elements in the
perturbation space for smooth functions supported away from this point). O

Corollary 6.22. Let n > 1. For L in a Baire subset of the space of (semi-)admissible
Legendrian n-submanifolds no rigid holomorphic disk passes through the end point of any
Reeb chord of L.

Note, when n = 1 this corollary is not true.

Proof. The proof of Theorem 6.15 shows that for a Baire set there are no exceptional holo-
morphic disks. The Sard-Smale theorem in combination with Lemma 6.21 implies that for a
Baire subset of this Baire set the dimension of the space of rigid holomorphic disks with some
point mapping to the end point of a specific Reeb chord is given by the Fredholm index of the
operator dI' corresponding to I' in (6.15). Since the source space of this operator is the sum
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of a copy of R (from the movement of ¢ on the boundary) and a closed codimension dim L
subspace of the source space of dI" in Lemma 6.12 which has minimal index for disks to appear
generically, we see the index in the present case is too small. This implies that the subset is
generically empty. Taking the intersection of these Baire subsets for the finite collection of
Reeb chord endpoints of L we get a Baire subset with the required properties. O

Corollary 6.23. If L is as in Corollary 6.22 then there are no rigid holomorphic disks with
boundary on L which are nowhere injective on the boundary.

Proof. Let w: Dy+1 — C™ represent a holomorphic disk with boundary on L. By Corol-
lary 6.22 we may assume that no point in the boundary of 0D,, maps to an intersection
point of Il (L).

Assume that w has no injective point on the boundary and let the punctures of Dy,
map to the Reeb chords (cg,...,¢n,) where the positive puncture maps to ¢y. Let C be
the holomorphic chain which is the closure of image w(D,,) of w with local multiplicity 1
everywhere. Then

(6.16) Area(C) < Area(w)

since close to the point in C' most distant from the origin in C™, w has multiplicity at least
two.

The corners of C'is a subset S of ¢fy, . . ., ¢}, and by integrating > ; yjdxj along the boundary
0C of C which lies in the exact Lagrangian Il (L) we find

(6.17) Area(C) = Z(c)) — Y. Z(c)),

c;es,j>0

where the first term must be present (i.e. C' must have a corner at ¢f;) since otherwise the
area of C' would be negative contradicting the fact that C' is holomorphic. On the other hand

(6.18) Area(w) = Z(co) — Z Z(cj).

5>0
Hence
(6.19) Area(C) > Area(w),
which contradicts (6.16). This contradiction finishes the proof. O

6.11. Transversality in a split problem. In this section we discuss transversality for disks,
with one or two punctures, lying entirely in one complex coordinate plane. Let L C C" x R
be an admissible Legendrian submanifold. Let A ¢ R? denote the standard simplex. Let
A1 (Az) be the subsets of R? which is bounded by dA, smoothened at two (one) of its
corners. Let (z1,...,2,) be coordinates on C". Let m;: C" — C denote projection to the i-th
coordinate and let 7;: C* — C"~! denote projection to the Hermitian complement of the
z;i-line. Finally, if v(¢), t € I C R is a one parameter family of lines then we let fv df denote

the (signed) angle y(t) turns as ¢ ranges over 1.

Lemma 6.24. Let (u,h) € Wa(ab; A), u(A) + la| — |b] = 1, be a holomorphic disk with
boundary on L such that 7y ou is constant and such that myou = fog, where g: Ay — Ds is a
diffeomorphism and f: As — C is an immersion. Furthermore, if t1,ts are coordinates along
components of ODz, assume that the paths I'(t) = dll(T(ynyi;)L) of Lagrangian subspaces
are split: T'(tj) = ~(t;) X Vj, where y(t) € C is a (real line) and V; ¢ C*71, j = 1,2,
are transverse Lagrangian subspaces. Then dl'(, py is surjective. (In other words, (u,h) is
transversely cut out).
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Proof. The Fredholm index of dI' at (u,h) equals 1. If v is the vector field on Dy which
generates the 1-parameter family of conformal automorphisms of Dy (the vector field 9, in
coordinates 7 4 it € R x [0, 1] on D) then & = du - v lies in the kernel of dI" and d7 - £ = 0.

Since the boundary conditions are split we may consider them separately. It follows from
Section 5.4 that the mdl" with boundary conditions given by the two transverse Lagrangian
subspaces Vl and Vg has index 0, no kernel and no cokernel.

Let 6; and 62 be the interior angles at the corners of the immersion f. Since f(0As9)
bounds an immersed disk we have

/ d@—i—/ df + (m — 01) + (m — 02) = 2m.
71 2

If 7 = m1 o, where 7 is in the kernel of dI' then, thinking of Dy as R x [0, 1], we find that,
asymptotically, for some integers n; > 0 and ng >0

?71(7’ +it) = {

—(0 it
cre”(Ortmm(T4it) - for 7 4oo,

coell2trem)(THit) - for 7 o0,

where ¢; and ¢y are real constants. Cutting Dy off at |7| = M for some sufficiently large M
we thus find a solution of the classical Riemann-Hilbert problem with Maslov-class

1
%<91+¢92—91—92—(n1+n2)ﬂ'>.

Since the classical Riemann-Hilbert problem has no solution if the Maslov class is negative
and exactly one if it is 0 we see that the solution £ = & produced above is unique up to
multiplication with real constants. O

Lemma 6.25. Let (u,h) € Wa(a; A), u(A) + |a] = 1, be a holomorphic disk with boundary
on L such that 71 o u is constant and such that 7 ou = f o g, where g: Ay — Dy is a
diffeomorphism and f: Ay — C is an immersion. Furthermore, if t is a coordinate along
0Dy, assume that the path I'(t) = dIl¢(T(uny,)L) of Lagrangian subspaces is split: T'(t) =
Y1(tj) X y2(t) X -+ X Y (t), where v;(t) C C is a (real line) such that

/d¢9<0, for2 <j<n.
;

Then dIL ) is surjective.

Proof. The proof is similar to the one just given. Using asymptotics and the classical
Riemann-Hilbert problem it follows that the kernel of dI' is spanned by two linearly in-
dependent solutions &7, j = 1,2, with ;&7 = 0. g

6.12. Auxiliary tangent-like spaces in the semi-admissible case. Let L be a chord
semi-admissible Legendrian submanifold and assume that L lies in the open subset of such
manifolds where the moduli-space of rigid holomorphic disks with corners at c is O-dimensional
(and compact by Theorem 8.2). Now if (w, f) is a holomorphic disk with boundary on L
then by Lemma 6.17 we know that the operator

(6.20) dC': Ty yWae(€) — Hi,e(Dpm, T* Dy @ C™)

is surjective.

For any (w, f) with m+1 punctures which maps the punctures py, . .. px to the self tangency
Reeb chord of Ly, let € € [0, 00)™ =% x (—6,0)*, where § > 0 is small compared to the complex
angle of the self tangency Reeb chord and the components of é which are negative correspond
to the punctures p1,...,pr. Define the tangent-like space

Tw, £, Wa,e(c)



THE CONTACT HOMOLOGY OF LEGENDRIAN SUBMANIFOLDS IN R2n+!1 69

as the linear space of elements (v,7) where v € T,Cp41 and where v € Ha ¢(Dppt1,C")
satisfies

U(C) S Hc(T(w’f)(oL) for all ( € Dy,

/ (Ov,u) ds = 0 for all u € CF(AD,,,C").
D,

and consider the linear operator
(6.21) dl'(v,7) = dev +iodwor.

The index of this Fredholm operator equals that of the operator in (6.20) and moreover by
asymptotics of solutions to these equations (close to the self-tangency Reeb chord we can use
the same change of coordinates in the first coordinate as in the non-linear case, see Section 3.6
to determine the behavior of solutions) we find that the kernels are canonically isomorphic.
Thus, since the operator in (6.20) is surjective so is the operator in (6.21).

7. GLUING THEOREMS

In this section we prove the gluing theorems used in Sections 1.3 and 1.5. In Section 7.1 we
state the theorems. Our general method of gluing curves is the standard one in symplectic
geometry. However, some of our specific gluings require a significant amount of analysis. We
first “preglue” the pieces of the broken curves together. For the stationary case this is done in
Section 7.5, for the handle slide case in Section 7.6, and for the self-tangency case in Sections
7.12 and 7.17. We then apply Picard’s Theorem, stated in Section 7.2. Picard’s Theorem
requires a sequence of uniformly bounded right inverses of the linearized & map. We prove
the bound for the stationary case in Section 7.8, for the handle slide case in Section 7.9, and
for the self-tangency case in Sections 7.15 and 7.21. Picard’s Theorem also requires a bound
on the non-linear part of the expansion of 0, which we do in Section 7.22. To handle disks
with too few boundary punctures, we show in Sections 7.7 through 7.7.2, how by marking
boundary points the disks can be thought of as sitting inside a moduli space of disks with
many punctures.

Recall the following notation. Bold-face letters will denote ordered collections of Reeb
chords. If ¢ denotes a non-empty ordered collection (ci,...,c¢y) of Reeb chords then we
say that the length of c is m. We say that the length of the empty ordered collection is
0. Let c!,...,c" be an ordered collection of ordered collections of Reeb chords. Let the
length of ¢/ be I(j) and let a = (ay, ..., ax) be an ordered collection of Reeb chords of length
k> 0. Let S = {s1,...,s,} be r distinct integers in {1,...,k}. Define the ordered collection
ag(cl,...,c") of Reeb chords of length k — r + > j=11(j) as follows. For each index s; € S

remove as; from the ordered collection a and insert at its place the ordered collection cl.

Recall that if a is a Reeb chord and b is a collection of Reeb chords of a Legendrian
submanifold, then M 4(a;b) denotes the moduli space of holomorphic disks with boundary
on L, punctures mapping to (a,b), and boundary in L which after adding the chosen capping
paths represents the homology class A € Hy(L). After Theorem 6.15 we know that if the
length of b is at least 2 then M 4(a;b) is identified with the inverse image of the regular
value 0 of the 9-map I' in Section 4.7. If the length of b is 0 or 1 then M 4(a;b) is identified
with the quotient of T"1(0) under the group of conformal reparameterizations of the source
of the holomorphic disk.

Similarly if Ly, A € A is a 1-parameter family of chord generic Legendrian submanifolds we
write Mﬁ(a; b) for the parameterized moduli space of rigid holomorphic disks with boundary
in Ly, and punctures at (a(A),b(\)), A € A. We also write M* (a,b) to denote the moduli
space for a fixed Ly, A € A.
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Finally if K € C" and § > 0 then B(K, d) denotes the subset of all points in C" of distance
less than ¢ from K.

7.1. The Gluing Theorems. In this section we state the various gluing theorems.

7.1.1. Stationary gluing. Let L be an admissible Legendrian submanifold. Recall that a
holomorphic disk with boundary on L is defined as a pair of functions (u, f), where u: D,,, —
C"™ and f: 0D,, — R. Below we will often drop the function f from the notation and speak of
the holomorphic disk u. Let M4(a;b) and M¢(c;d) be moduli spaces of rigid holomorphic
disks, where b has length m, 1 < 7 < m, and d has length [.

Theorem 7.1. Assume that the j-th Reeb chord in b equals c. Then there exists 6 > 0,
po > 0 and an embedding
Ma(a;b) x Mc(c;d) x [po, 00) — Matc(a;byjy(d));
(’LL, /U7 p) = U ﬂpvu
such that if u € Ma(a;b) and v € Mc(c;d) and the image of w € Majc(a;bj(d)) lies
inside B(u(Dy1) Uv(Diy1);9) then w = uf,v for some p € [pg, 00).
Proof. The theorem follows from Lemmas 7.7, 7.13, and 7.22 and Proposition 7.6. O

7.1.2. Handle slide gluing. Let Ly, A € (=1,1) = A be a l-parameter family of admissible
Legendrian submanifolds such that
(7.1) Mii(a;b) = M (a;b)

is a transversely cut out handle slide disk, represented by a map u: D,,11 — C" (the length
of b is m) and such that for all A € A, all moduli-spaces of rigid disks with boundary on L)
are transversely cut out.

We formulate two gluing theorems in this case. They differ in the following way. In
Theorem 7.2 we consider what happens when the positive punctures of rigid disks are glued
to negative punctures of the handle slide disk. In Theorem 7.3 we consider what happens
when the positive puncture of the handle-slide disk is glued to negative punctures of a rigid
disk.

Theorem 7.2. Assume that b in (7.1) has positive length and has c in its j-th position. Let
./\/loc(c; d) be a moduli space of rigid holomorphic disks, where the length of d is k. Then there
exist 6 > 0, po > 0, and an embedding

MY (a;b) x ME(c;d) x [po,00) — M, cla;byy(d)),
(’LL, v, p) —u ﬂpvu
such that if v € MX(c;d) and the image of w € M4 . (a; by (d)) lies inside B(u(Dpy1) U
V(Dg41);0) then w =uf,v for some p € [pg, 00).
Proof. The theorem follows from Lemmas 7.8, 7.14, and 7.23 and Proposition 7.6. O

Theorem 7.3. Let ./\/loc(c; d) be a moduli space of rigid holomorphic disks, where d =
(di,...,dy). Let S = {s1,...,8:} C {l,...,1} be such that ds; = a for all s; € S. Then
there exist po > 0, 6 > 0, and an embedding

ML(c;d) x TigM(a;b) x [po,00) — MEL, 4(c;ds(b, ..., b)),
(v, Uy ... ,u,p) — vﬁfu,
such that if v € Mé(c; d) and the image of w € ./\/léJrr_A(c; ds(b,...,b)) lies inside B(v(Dj41)U
UW(Dmt1) U ... Uu(Dipy1)); 0) then w = vﬁgu for some p € [pg, 00).
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Proof. The theorem follows from Lemmas 7.9, 7.15, and 7.23 and Proposition 7.6. g

7.1.3. Self tangency shortening and self tangency gluing. Let Ly, A € (—1,1) = A be an
admissible 1-parameter family of Legendrian submanifolds such that Lg is semi-admissible
with self-tangency Reeb chord a. For simplicity (see Section 2) we assume that all Reeb
chords outside a neighborhood of a remain fixed under A. We take A so that if A > 0 then
L_, has two new-born Reeb-chords a™ and a~, where Z(a™) > Z(a™). Assume that all
moduli spaces of rigid holomorphic disks with boundary on L) are transversely cut out for
all fixed A € A, that for all A € A, there are no disks with negative formal dimension, and
that all rigid disks with a puncture at a satisfy the non-decay condition of Lemma 3.6 (see
Remark 6.20).

Theorem 7.4. Let A~ = (—1,0). Let M%(a,b) be a moduli space of rigid holomorphic disks
where the length of b is l. Then there exist pg > 0, § > 0 and a local homeomorphism
My(a;b) x [po,00) — M% (a;b);
(u7 p) = ﬁpu7
such that if u € MY%(a;b) and the image of w € MY (a*;b) lies inside B(u(Dyy1);0) then
w = f,u for some p € [pg, 00).

Let M%(c, d) be a moduli space of rigid holomorphic disks where the length of d is m.
Let S C {1,...,m} be the subset of positions of d where the Reeb chord a appears (to avoid
trivialities, assume S # (0)). Then there exists pg > 0 and § > 0 and a local homeomorphism

MOC(Cv d) X [PO, OO) - M[CV (Cv ds(ai)%
(u7 /0) = ﬁpua

such that if u € M%(c;d) and the image of w € MY (c;dg(a™)) lies inside B(u(Dp+1);0)
then w = §,u for some p € [pg,00).

Proof. Consider the first case, the second follows by a similar argument. Applying Proposition
7.6 and Lemmas 7.16, 7.17 and 7.24 we find a homeomorphism MY (a; b) — ./\/lz_ (a™,b) for
A~ < 0 small enough. The proof of Corollary 6.14 implies that M, - (a™, b) is a 1-dimensional
manifold homeomorphic to My _(a;b) x A_, the theorem follows. O
Theorem 7.5. Let AT = (0,1) and let M?41 (a;bh), ..., MY (a;b") and M(c;d) be a
moduli spaces of rigid holomorphic disks where the length of b is l(j), and the length of d

ism. Let S C {1,...,m} be the subset of positions of d where the Reeb chord a appears and
assume that S contains r elements. Then there exists § > 0, pg > 0 and an embedding

T j + T
ME(c;d) x T MY (a; b7) x [pg, 00) — Mg+wj(c; dg(b',...,b");
(/U7u17"'7u1“7p) '_)Uﬁp(uh’”?ur)u
such that if v € M%(c;d) and u; € M%j(a;bj), j = 1,...,r and the image of w €
./\/léizj Aj(c; ds(b',...,b")) lies inside B(v(Dyy1) Uur(Dyys1) U+ Utp(Dyy41)); 6) then

w=vf,(u1,...,u,) for some p € [pgy,00).

Proof. Apply Proposition 7.6 and Lemmas 7.19, 7.21, and 7.25 and reason as above. g

7.2. Floer’s Picard lemma. The proofs of the theorems stated in the preceding subsections
are all based on the following.
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Proposition 7.6. Let f: By — By be a smooth map between Banach spaces which satisfies
f(w) = f(0) + df (0)v + N(v),
where df (0) is Fredholm and has a right inverse G satisfying
IGN (u) = GN ()| < C(|lull + [Jv[D][w = vll;
for some constant C. Let B(0,¢) denote the e-ball centered at 0 € By and assume that

1
G0 < —.
1T < o
Then for e < %, the zero-set of f~1(0) N B(0,€) is a smooth submanifold of dimension
dim(Ker(df (0))) diffeomorphic to the e-ball in Ker(df(0)).

Proof. See [12]. O

In our applications of Proposition 7.6 the map f will be the O-map, see Section 4.7.

7.3. Notation and cut-off functions. To simplify notation, we deviate slightly from our
standard notation for holomorphic disks. We use the convention that the neighborhood FE,,; of
the positive puncture pg in the source D,, of a holomorphic disk (u, f) will be parameterized
by [1,00) x [0, 1] and that neighborhoods of negative punctures £, ., j > 1 are parameterized
by (—oo, —1] x [0, 1].

In the constructions and proofs below we will use certain cut-off functions repeatedly. Here
we explain how to construct them. Let K > 0, a < b, and let ¢: [a,b+ K + 1] — [0,1] be
a smooth function which equals 1 on [a,b] and equals 0 in [b+ K,b+ K + 1]. It is easy to
see there exists such functions with |D¥¢| = O(K~F) for k = 1,2. Let ¢ > 0 be small. Let
¥: [0,1] — R be a smooth function such that 1(0) = (1) = 0, ¥'(0) = ¢'(1) = 1, with
|| < e. We will use cut-off functions «: [a,b+ K + 1] x [0,1] — C of the form

a(r +it) = ¢(7) +ith(t)¢' (7).
Note that «|d([a,b + K + 1] x [0,1]) is real-valued and da = 0 on 9([a,b + K + 1] x [0, 1]).
Also, |D¥a| = O(K™1) for k = 1,2.

7.4. A gluing operation. Let L be a chord generic Legendrian submanifold. Let (u, f) €
Ws (a,b) where b = (b1,...,by) and let (vj, h;) € Wa (bj,c?), j € S C {1,...,m}. Denote
the punctures on Dy,1+1 by pj, j = 0,...,m and the positive puncture on Dy, by g;.
Let g7, 0 € [0,1] be a l-parameter family of metrics as in Section 4.3. Then for M > 0
large enough there exists unique functions
§: By [-M] — Tp;:C"
nj: B, [M] — Tp: C",
such that
exp}i;f (&(T +it)) = u(T +it),
expij*_ (i (T +1it)) = v;(r +it),
where exp? denotes the exponential map of the metric g°. Note that by our special choice
of metrics the functions ¢ and 7 are tangent to II(L) and holomorphic on the boundary.

For large p > 0, let D2 (p), r =1+ m + >_jes(U(4) — 1) be the disk obtained by gluing to
the end of

Dint1\ U Epj[_p]
JjeS
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corresponding to p; a copy of
D)1 — Eq;lp]

by identifying px [0, 1] C E),; with —px[0,1] C E,;, for each j € S. Note that the metrics (and
the complex structures s and x2(j)) on Dy, y1 and Dy(jy11 glue together to a unique metric
(and complex structure «,) on D?(p). We consider Dy,1q \Ujes Ep;[—p] and Dy(j)41\ Eqg, [p]

as subsets of D (p).
For j € S, let Q; C D?(p) denote the subset

Eqlp—2,p] U By [—p, —p+2] ~ [-2,2] x [0,1]

of DJ(p). Let z = 7 + it be a complex coordinate on Q; and let a*: Q; — C be cut-
off functions which are real valued and holomorphic on the boundary and with a™ = 1 on
[—2,—-1]x[0,1], ™ =0o0n [0,2] x [0,1], @~ =1 on [1,2] x[0,1], and @~ = 0 on [—2,0] x [0, 1].
Define the function Ef(u,vl, coyvp): Dy — C" as

vi(€); ¢ €Dy \ Egylp — 2],
S (w v, o)) = wC), ¢ € D \Ujes Ep;[—p + 2],
expp: (a7 (2)§;(2) + T (2)n;(2),  z=T+it €y

7.5. Stationary pregluing. Let L C C" x R be an admissible Legendrian submanifold.
Let u: D,,+1 — C™ be a holomorphic disk with its j-th negative puncture p mapping to c,
(u, f) € Wa(a,b), and let v: D;11 — C" be a holomorphic disk with the positive puncture ¢
mapping to ¢, (v, h) € Wa(c,d). Define

(7.2) w, = S5 (u,v).
Lemma 7.7. The function w, satisfies w, € Wa(a, by;y(d)) and
(7.3) 10w,[lr = O(e™%),

where 0 is the smallest complex angle at the Reeb chord c. In particular, ||Ow,|; — 0 as
p — 0.

Proof. The first statement is trivial. Outside €2;, w, agrees with u or v which are holomorphic.
Thus it is sufficient to consider the restriction of w, to €2;. To derive the necessary estimates
we Taylor expand the exponential map at ¢*. To simplify notation we let ¢* = 0 € C™ and
let £ € R?™ be coordinates in TpC™ and = € R*" coordinates around 0 € C". Then

(7.4) exp(§) = & — T ()€€ ) + O(I¢).

This implies the inverse of the exponential map has Taylor expansion
(7.5) E=x+ Fg(t)xixkﬁk + O(z).

From (7.4) and (7.5) we get

(7.6) expp(atéy) = atut ((@")® — a0 (u's? 9 + O(lul)

and a similar expression for a™7; in terms of v;. Lemma 3.6 implies that u and Du are

O(e™) in E,, [p], which together with (7.6) implies (7.3). O
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7.6. Handle slide pregluing. Let L), A € (—1,1) = A be a l-parameter family of chord-
generic Legendrian submanifolds such that

M (a;b) = MY (a; b)
is a transversally cut out handle slide disk, represented by a map wu: D,,+1 — C™ with

punctures ¢, p1,...,Pm.

We first consider the case studied in Theorem 7.2. Let v: D;y; — C" represent an element
in M2(c,d). Let

wg = Z,{Jj}(u,v),
and define
Wp = w2 o],

see Section 4.5. (We cut off wg close to its punctures in order to be able to use local
coordinates as in Lemma 4.14 in a neighborhood of w,.)

Lemma 7.8. The function w, satisfies (w,,0) € Wa a(a,b;(d)) and
(7.7) 10w,[lr = O(e~%),

where 0 > 0 is the smallest complex angle at any Reeb chord of Lo. In particular ||Ow,|| — 0
as p — 0.

Proof. We must consider the gluing regions and the effect of making wg constant close to all
punctures. The argument in the proof of Lemma 7.7 gives the desired estimate. g

For Theorem 7.3, we need to handle a few more punctures. Let v: D;y; — C" be an
element in M2 (c,d) where the elements in S = {s1,...,s,} are indices of punctures which
map to a. Let

wg’s = Ei(v,u,...,u)
and define
w§ = 5[y
Lemma 7.9. The function wf satisfies (wf,O) € Wi a(c,dg(b)) and
(7.8) 10wl = O(e~"),

where 0 > 0 is the smallest complex angle at any Reeb chord of Lo. In particular ||Ow,|| — 0
as p — 0.

Proof. See the proof of Lemma 7.8. g

7.7. Marked points. In order to treat disks with less than three punctures (i.e., disks with
conformal reparameterizations) in the same way as disks with more than three punctures we
introduce special points which we call marked points on the boundary. When a disks with
few punctures and marked points are glued to a disk with many punctures there arises a disk
with many punctures and marked points and we must study also that situation.

Remark 7.10. Below we will often write simply W,  to denote spaces like W (c), dropping
the Reeb chords from the notation.

Let L € C" x R be a (semi-)admissible Legendrian submanifold and let u: D,, — C"
represent (u, f) € Wh (k) where & is a fixed conformal structure on D,,. Let U, C (L),
r =1,...,k be disjoint open subsets where Il (L) is real analytic and let g, € 0D, be points
such that u(q,) € U, and du(q,) # 0. After possibly shrinking U, we may biholomorphically
identify (C",U,,u(g,)) with (C™,V C R",0). Let (z1 + iy1,...,Zn + iyn) be coordinates on
C" and assume these coordinates are chosen so du(q,) - vo = 01, where vy € Ty, Dy, is a unit
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vector tangent to the boundary. Let H, C R"™ denote an open neighborhood of 0 in the
submanifold {z; = 0}.

Let S denote the cyclically ordered set of points S = {p1,...,Dm,q1,--.,qr} where p; €
0D, are the punctures of D,,. Fix three points s1, 2,53 € {p1,p2,03,41,---,qr} then the
positions of the other points in S parameterizes the conformal structures on A,,;1x. As in
Section 4.6, we pick vector fields v;, j = 1,...,m + k — 3 supported around the non-fixed
points in S. Given a conformal structure on A, we endow it with the metric which makes
a neighborhood of each puncture p; look like the strip and denote disks with such metrics
Dy, -

If (u, f), u: -Dm,k: — C" and f: 8f)m7k — R are maps and & is a conformal structure on
l~7m+k then forgetting the marked points ¢1,...,q; we may view the maps as defined on D,,
and the conformal structure k¥ gives a conformal structure x on D,,. Note though that the
standard metrics on D,, corresponding to x may be different from the metric corresponding
to & (this happens when one of the punctures ¢; is very close to one of the punctures p,).
However, the metrics differ only on a compact set and thus using this forgetful map we define
for a fixed conformal structure & on Dmk the space

W (%) C Wae(k)

as the subset of elements represented by maps w: D,, — C" such that w(q,) € H, for
r =1,...,k. Using local coordinates on Wh (k) around (u, f) we see that for some ball B
around (u, f), WQS (Rk) N B is a codimension k submanifold with tangent space at (w,g) the

closed subset of T, W2, consisting of v: Dy, — C" with (v(gr),01) = 0. We call -Dm,k: a
disk with m punctures and k& marked points.

The diffeomorphisms qb?j , 0; € R generated by to ©; gives local coordinates o = (01, ...,0m4k—3) €
R™**=3 on the space of conformal structures on -Dm,k: and the structure of a locally trivial
bundle to the space

Wi = | Ws.(#).

’%ecm+k

The O-map is defined in the natural way on this space and we denote it r.

7.7.1. Marked points on disks with few punctures. Let L C C" xR be a (semi-)admissible sub-
manifold, let m < 2 and consider a holomorphic disk (u, f) with boundary on L, represented
by a map u: D,, — C" . We shall put 3 — m marked points on D,,.

Pick U, C U (L), 1 <7 < 3 —m as disjoint open subsets in which II(L) is real analytic
and let ¢, € 0D, be points such that u(g.) € U, and du(g,) # 0. Such points exists by
Lemma 6.7. As in Section 7.7 we then consider the g, as marked points and as there we use
the notation H, for the submanifold into which g, is mapped.

Then the class in the moduli space of holomorphic disks of every holomorphic disk (w, g)
which is sufficiently close to (u, f) in Wh . has a unique representative (w0, §) € WQS .- Namely,
any such (w,g) must intersect H, in a point ¢, close to ¢, 1 < r < 3 —m. If ¢ denotes
the unique conformal reparameterization of D,, which takes g, to ¢., 1 < r < 3 —m then
w(¢) = w(¥(¢)). Moreover, if

(7.9) AT gyt Ty Wase — Ma,e[0)(Dy, T Dy @ C™),

has index k (note kK > 3 — m since the space of conformal reparameterizations of D, is
(3 — m)-dimensional) then the restriction of dI'¢, ) to T(y, s Wf . has index k — (3 —m). In
particular if dI', y) is surjective so is its restriction.
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We conclude from the above that to study the moduli space of holomorphic disks in a
neighborhood of a given holomorphic disk we may (and will) use a neighborhood of that disk
in Wf . and I' rather then a neighborhood in the bigger space W5 ( and I'.

7.7.2. Marked points on disks with many punctures. Let L C C" x R be as above, let m > 3
and consider a holomorphic disk (u, f) with boundary on L, represented by a map u: D, —
C™ . We shall put k& marked points on D,,.

Pick U, C (L), 1 < r < k as disjoint open subsets in which Il (L) is real analytic and
let g, € OD,, be points such that u(q,) € U, and du(g,) # 0. As in Section 7.7 we then
consider the ¢, as marked points and as there we use the notation H, for the submanifold
into which ¢, is mapped.

Note that (u, f) lies in Wh . as well as in WQS .- We define a map

Q: U CWS, = Waer Q(w,g,6%) = (1,4,

where U is a neighborhood of ((u, f),&) in as follows.
Consider the local coordinates w € R™+73 on Cm+r around K and the product structure

Rm+/€73 — Rm73 % R] % Rk*j’
where R is identified with the diffeomorphisms

7 o -3
¢T:¢;ZOH'O ;7:137 T:(Tla"'77—m*3)€Rm ’

where j is the number of elements in {s1, s2,s3} \ {p1,p2,p3}, and where RF77 is identified
with the diffeomorphisms

¢’ = gfggll o~~og5(§7::j, o= (017---70'k—j) e RFI
where {?17 ce 7§k7j} =S \ ({p47 s 7pm} U {817 82, 83})'

For 6 near £, let {s,...,s, ., s} denote the corresponding positions of punctures and
marked points in A and let ¢): A — A be the unique conformal reparameterization such
that ¥(p;) = pg» for j = 1,2,3 and note that we may view v as a map from D,, to Dy, j.
Let s =97 1(s]) for 3<1<k+m—3and s # p;, i =1,2,3 let (1,0) € R™H*=3-7 be the
unique element such that ¢™ o ¢7(s;) = s]. Define

Q(w,0) = (woyoo”,(¢7)7"),
where (¢7)~! is interpreted as a conformal structure on D,, in a neighborhood of & in local

coordinates given by ¢7, 7 € R™ 3 and where we drop the boundary function from the
notation since it is uniquely determined by the C"-function component of Q(w,#) and g.

Lemma 7.11. The map Q maps UNT~(0) into I =1(0). Moreover, Q is a C'-diffeomorphism
on a neighborhood of (u, f).

Proof. Assume that (w,g) € T='(0). Then w is holomorphic in the conformal structure 6.
Since % is a conformal equivalence and since the conformal structure 6 is obtained from & by
action of the inverses of ¢7 o ¢ this implies

0= dwodi+io(dwodp)o(dp”) o (dgT) o jn o (dd7) o (dg”) .
Thus
0= (dwody o dg” +io (dwodpodd”)o(dd7) o juo (dd7) ™) o (d6") ™",

and w o1 o ¢7 is holomorphic in the conformal structure d¢7 j..(d¢™)~! as required.
For the last statement we use the inverse function theorem. It is clear that the map Q is C*
and that the differential of Q at (u, f) is a Fredholm operator. In fact, on the complement of
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all conformal variations on Dmk not supported around any of ps, ..., p., it is just an inclusion
into a subspace of codimension k, which consists of elements v which vanish at ¢i,...,q.
Since du(q,) # 0 for all r it follows easily that the image of the remaining k directions in
Tiu ) Wég . spans the complement of this subspace. O

It is a consequence of Lemma 7.11 that if (u, f) is a holomorphic disk with boundary on L
and more than 3 punctures then we may view a neighborhood of (u, f) in the moduli space
of such disks either as a submanifold in WQS . or in Ws . in a neighborhood of (u, f).

Remark 7.12. Below we extend the use of the notion W, . to include also spaces qu «» when
this is convenient. The point being that after Sections 7.7.1 and 7.7.2 we may always assume
the number of marked points and punctures is > 3, so that the moduli space of holomorphic
disks (locally) may be viewed as a submanifold of W .

7.8. Uniform invertibility of the differential in the stationary case. Let
L: Wy — H1[0)(Dyn, T D, @ C™)

be the -map defined in Section 4.7 (see Remark 7.10 for notation). Let u: D, 11 — C™ and
v: Diy1 — C" be as in Section 7.1.1 and consider the differential dI', at (w,, k,), where w,
is as in Lemma 7.7 and &, is the natural metric (complex structure) on D,(p), r = m + L.
After Sections 7.7.1 and 7.7.2 we know that after adding 3 — m or 3 — [ marked points on
holomorphic disks with < 2 punctures, we may assume that m > 2 and [ > 2 below.

Lemma 7.13. There exist constants C' and pg such that if p > po then there are continuous
right inverses

Gp: Ha[0)(T**' Dy (p) © C") — Tl ) W
of dT",, with
1G(OI < Cliglh-

Proof. The kernels

ker(df(uy,ﬂ)) C TuW2 @ T/ﬂcm-i-la

ker(dl“(vm)) C T Wy @ TKQCI+1
are both 0-dimensional. As in Section 7.7, we view elements v € Tx,Crt1 (72 € Tk,Cia1) as
linear combinations of sections of End(7T'D,,+1) (End(TD;41)) supported in compact annular
regions close to all punctures and marked points, except at three. Since these annular regions
are disjoint from the regions affected by the gluing of D,,+1 and D;y1, we get an embedding

T:"Cl Cm—l—l ¥ TmzclJrl - ch,,cm—f—ra
In fact, using this embedding,

TK,JCT = Tnlchrl S TI{QCZ—FI S R,

where the last summand can be taken to be generated by a section -y of End(7TD,(p))
supported in an annular region around a puncture (marked point) in D,(p) where there
was no conformal variation before the gluing. Then v spans a subspace of dimension 1 in
Tiw,r,)W2- Let a be a coordinate along this 1-dimensional subspace. We prove that for
(&,7) € W, = {a = 0} we have the estimate

(7.10) &I < ClldT,H (€ )16

for all sufficiently large p. Since the Fredholm-index of dI', equals 1, this shows dI', are
surjective and with uniformly bounded inverses G, as claimed and thus finishes the proof.
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Assume (7.10) is not true. Then there exists a sequence of elements ({n,vn) € Wy,
p(N) — oo as N — oo with

(7.11) 1N, )l =1,
(712) ||8KP(N)§N +i0 dwp(N) © ’YNH1 — 0.

As in Section 7.4, we glue a negative puncture at p to a positive one at ¢. Note that on the
strip

(713) 0, = (Byl~1\ Byl—p]) U (B, [\ Eglp]) ~ [~p,p] x [0,1] € Dy (p)

the conformal structure r, is the standard one and therefore Or , is just the standard 0
operator. Also, since vy does not have support in ©, the second term in (7.12) equals 0
when restricted to ©,,.

Let a,: ©, — C be cut-off functions which are real and holomorphic on the boundary,
equal 1 on [—2,2] x [0,1], equal 0 outside [—3p, 3p] x [0,1], and satisfy |D*a,| = O(p~1),
k=1,2.

Then a,n)&n is a sequence of functions on R x [0, 1] which satisfy boundary conditions
converging to two transverse Lagrangian subspaces. Just as we prove in Lemma 5.9 that
the (continuous) index is preserved under small perturbations, we conclude that the (upper
semi-continuous) dimension of the kernel stay zero for large enough p(IV); thus, there exists
a constant C' such that

(714)  fenl=2,2 x [0, 1]]12 < laénllz < €l @n) Il + 1 @apn)énh).
As N — oo both terms on the right hand side in (7.14) approaches 0. Hence,
(7.15) len][=2,2] x [0, 1]l — 0, as N — oo,

Pick cut-off functions ﬁ]'t, and (5 on D,(p) which are real valued and holomorphic on
the boundary and have the following properties. On D41 \ Ep[—p + 1], B = 1 and on
Diy1 \ Eqlp], B = 0. On Dy \ Eglp — 1], By = 1 and on Dyqq \ Ep[—p], By = 0. Let
(En,7Nv)T = (ﬁ]j\t,@v, ﬁ]j\E/yN). Using the invertibility of dI'y = dI'(, ) and dI'— = dI'(,, ,) We
find a constant C' such that

I(€n Ta)E ]| < ClldT+(Ex, )|
(7.16) < C(I185dT(en, ) | + 1085)enIh )

The first term in the last line of (7.16) tends to 0 as N — oo by (7.12), the second term
tends to 0 by (7.15). Hence, the left hand side of (7.16) tends to 0 as N — oo. Thus, (7.15)
and (7.16) contradict (7.11) and we conclude (7.10) holds. O

7.9. Uniform invertibility in the handle slide case. Two handle-slide gluing theorems
(Theorem 7.2 and Theorem 7.3) were formulated. Here the handle-slide analogs of Lemma
7.13 corresponding to these two theorems will be proved. The lemma corresponding to
Theorem 7.2 is proved first, using a straightforward extension of the proof of Lemma 7.13.
Second the more difficult lemma corresponding to Theorem 7.3 is dealt with. Compare with
the Appendix in [31].

Let Ly be as in Section 7.1.2 and let u: D,,11 — C", be the handle slide disk and let p
denote one of its negative punctures mapping to the Reeb chord b. Also, let v: Dj;q — C"
be a rigid disk with positive puncture ¢ mapping to b. Consider the differential dI', at
(wp, kp,0), where w), is as in Lemma 7.8, x, is the natural metric (complex structure) on
D,(p)y,r=m+1,and 0 € A = (—1,1). Again we assume m > 2 and [ > 2.
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Lemma 7.14. There exist constants C and pg such that if p > po then there is a continuous
right inverse G, of dI',
Gp: HA[O(T** Dy (p) ® C") = Ty, 00 Wai
such that
1Go(E < ClIE]]-

Proof. The kernels

ker (dL (4 x1,0) € T(u,0)Wa,r © T, Cint 1,4

ket (dl (4 i0)) C T(v,r0) W © Ty Cria
are O-dimensional (note that A is not involved in the second line). As in the proof of Lemma
7.13, we consider the embedding

T, Crt1 ® Ty, Cri1 — 1o, Contts
and use this inclusion to get the isomorphism
T,Crnyt = T, Cint1 ® T, 11 B R,

where the last summand can be taken to be generated by a section of End(T'D,(p)) supported
around a puncture (marked point) where no conformal variation was supported before the
gluing. Let 7y denote a tangent vector in this direction. Then 7y spans a subspace of
dimension 1 in T{y,, x,0)/V2,e,a- Let a be a coordinate along this 1-dimensional subspace. We
prove that for (£,7,A) € W, = {a = 0} we have the estimate

(7.17) 1€ 7 M < ClldT,H (€, v, Al

for all sufficiently large p. Since the Fredholm-index of dI', equals 1, this finishes the proof.
Assume (7.17) is not true. Then there exists a sequence of elements ({n,vn, An) € Wy,
such that, p(N) — 0o as N — oo and

(7.19) [0k, ) €N + 10 dwpnvy © YN + AN, ()Y (wy(vy) It — 0.

Let a,: D,(p) — C be smooth functions which equal 1 on (D41 \ Ep[—3p]), equal 0 on
the complement of Dy,41 \ Ep[—p + 3], are holomorphic and real valued on the boundary,
and satisfy |D*a,| = O(p~1), k = 1,2. Consider the support of o, as a subset of D,1.
Then (fj{,,'ﬁ{,) = (apn)€ns apnyTN) s a sequence of elements in Ty, ., 0)W2,e.4 © Thy Cint1
The invertibility of dI'(, ., o) implies there exists a constant C' such that

(7.20) 16X 7R AW < CllOn, € + i 0 du oy + AN Y (u)1.

On the other hand, noting that Oy, is the standard J-operator in a neighborhood of ¢ and
that 0y, is the standard d-operator in the gluing region we find that

10,83 + i 0 du o 7 + AJY (u) | SC(H%(@,JSN +iodwoyy + MY (w,))lh

l@ap)enlh + 11 = ap)d¥ @))y).

The first term in the right hand side goes to zero as p — oo by (7.19). The second term goes to
0 since |da,| = O(p~1). Finally, the last term goes to 0 since Y (u) € Hi(Dyi1, T Dypi1®
C™). Hence, the right hand side goes to 0 as p = p(IN) — co. We conclude from (7.20) that
(&%, 7%, AN)|| — 0 as p — oo. In particular, it follows that Ay — 0 as p — oo and once this
has been established we can repeat the argument from the proof of Lemma 7.13 to conclude
that (7.17) holds true. O
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We now turn to the second case. Let Ly be as in Section 7.1.2 and let again w: D,,11 — C",
be the handle slide disk and let ¢ denote its positive puncture mapping to the Reeb chord a.
Also, let v: Djy1 — C" be a rigid disk with a set S of negative punctures S = {p1,...,pxr}
mapping to a. Again we assume m > 2 and [ > 2.

Consider the differential de at (wf ,nﬁ ,0), where wf is as in Lemma 7.9, nf is the

natural metric (complex structure) on DS(p), r =1+ km, and 0 € A ~ (—1,1). We let
D%H_l, j=1,...,k denote k distinct copies of D,,+1.

Lemma 7.15. There exist constants C and pg such that if p > po then there is a continuous
right inverse Gf of de

G5 Hi[0)(T*"' D, (p) @ C") — Tiys .0 Vo
such that
IGZ < Clilh-
Proof. The kernels

ker(dr(’v,lig,())) - T(v,O)WZA S?) Tlizcl—i—l)
ker(dr(u,/ﬂ,O)) C T(u,O) WQ,A S?) Tnlchrl

are 1-dimensional, respectively 0-dimensional. Note that ker(dl', ., o)) is not contained in
the subspace {A = 0}. We consider first the special case S = {1}. As in previous proofs we
write,

Tfipcl-‘,-m = Tligcl—f—l & Tnlchrl O R,

where the generators of R is a section 7, of End(7'D;4,,(p)) which is supported around one
of the previously fixed punctures of D,,11. As in the proof of Lemma 7.14, we prove the the
estimate

(7.21) 1(€,7, M| < ClldrE (€, 7, A1

on the complement of the new conformal direction. This finishes the proof in the special case
when k = 1.

In order to move to higher k, we prove that the kernel of dI‘,{)l} is not contained in {\ = 0}
for p large enough. Assume this is not the case. Then there exists a sequence ({n,vn,0)
such that

Let a be a smooth function, real valued and holomorphic on the boundary of Dil}, equal to
1 on (Dit1 \ Ep [—3p]) U (D1 \ Eql2p]) and equal to 0 on the gluing region €. Using the
uniform invertibility of dI'(,, ., o) and of dI'(, , o) on the complement of {\ = 0} we conclude
that [|a({n,yn)|| — 0. Finally, using the elliptic estimate on the strip we also find that
the 2-norm of &y restricted to (Ep, [—3p] \ Ep,[—p]) U (Eq[3p] \ Eqlp]) goes to zero. This
contradicts (7.22) and we find the kernel has A-component.

Now consider the case k > 1. We assume by induction that the desired invertibility of de

is proved for S with |S| < k and that the kernel of dI‘g has A component. Letting T be the

union of S and the new puncture, we view w’ as obtained by gluing w;? and u. Repeating

the above argument we prove the estimate on the complement of the new-born conformal
structure and also the fact that the kernel of dI‘Z has A component. Since k is finite this
finishes the proof. O
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7.10. Self-tangencies, coordinates and genericity assumptions. Let z = = 4+ iy =
(#1,.+,2n) = (1 +iy1,...,2 + iyy) be coordinates on C". Let L C C" x R be a semi-
admissible Legendrian submanifold with self-tangency double point at 0. We assume that
the self-tangency point is standard, see Section 2.

Theorems 6.19 and 8.2 imply that the moduli-space of rigid holomorphic disks with bound-
ary on L is a 0-dimensional compact manifold. Moreover, because of the enhanced transver-
sality discussion in Section 6.10, we may assume that there exists rg > 0 such that for
all 0 < r < 1o, if u: Dy, — C" is a rigid holomorphic disk with boundary on L then
dDp Nu~ (B(0,7)) is a disjoint union of subintervals of 0E, [+M], for some M > 0 and
some punctures p; on 0D, mapping to 0.

By Lemma 3.6, if u: D,, — C" is a rigid holomorphic disk with ¢* a positive (¢~ a
negative) puncture mapping to 0 then there exists ¢ € R such that for ( = 7+ it € E+[+M]

u(Q) = (~2¢+0)70,...,0) + O,

for some 6 > 0. For simplicity, we assume below that coordinates on E +[M] are chosen in
such a way that ¢ = 0 above.

7.11. Perturbations for self-tangency shortening. For 0 < a < 1, with a very close to

1 and R > 0 with R™! < rg, let bg: [0,00) — R be a smooth non-increasing function with
support in [0, R~1) and with the following properties

br(r) = (R+ R 2 forr € [0, (R+ %Ra)l} ,

|Dbr(r)| = O(R™),

|D?br(r)| = O(R?72%),

|D%br(r)| = O(R*™3),
(7.23) |DYbg(r)| = O(RO™*).

The existence of such a function is easily established using the fact that the length of the
interval where Dbpg is supported equals

1N\ 1
R - (R - 53“) = 5RH + O(R?@2),

Let
(7.24) hr(z) = —z1(2)br(|2]).

Let L' and L? be the two branches of the local Lagrangian projection near the self-tangency,
see Section 2 or Figure 2. For s > 0, let U denote the time s Hamiltonian flow of hr and let
Lg(s) denote the Legendrian submanifold which results when ¥¥ is lifted to a contact flow
on C™ x R (see Section 2) which is used to move L% Let L%(s) = U$(L?). Let g(R,s,0) be
a 3-parameter family of metrics on C" such that L' is totally geodesic for g(R,s,0), L%(s)
is totally geodesic for g(R, s, 1) and such that g(R,s,0) and g(R, s, 1) have properties as the
metrics constructed in Section 4.3.

Note that L%(1) N L' consists of exactly two points with coordinates (£(R + R*)™!
O(R™3),0,...,0).

We will use ¥4, to deform holomorphic disks below. It will be important for us to know
they remain almost holomorphic in a rather strong sense, for which we need to derive some
estimates on the flow ¥¥% and its derivatives. Let X denote the Hamiltonian vector field of
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hr. Then if D denotes derivative with respect to the variables in C"* and - denotes contraction
of tensors

(7.25) %\PSR =Xg; V) =id,
(7.26) d%D\IJSR =DXg-DV¥%; DY) =id,
(7.27) %DQ\IISR =D*Xp - DU% - DU, + DXp - D*U%;  D?*0Y =0,
%D?’\l};{ =D*Xp - DV%, - DU, - DU%, + 2D*Xp - D*V5, - D5,

(7.28) + D*Xg - DU, - D*U%, + DXg - D3U5,; D309 = 0.

Since X =i - Dhr and z1(2) = O(R™1) for |2] in the support of bg, (7.23) implies
(7.29) | Xg| = O(R™ ),
(7.30) |IDXg| = O(RI720),
(7.31) |D*Xp| = O(RP3),
(7.32) |D?*X | = O(RP9),

If 0 <s <1 then
FO (7.25) and (7.29) imply |¥% —id | = O(R~(F),
F1 (7.26) and (7.30) first give |DW%| = O(1). This together with (7.30) imply |[DW¥3, —
id| = O(R'729).
F2 (7.27), (7.30), (7.31), F1, and Duhamel’s principle imply |D?¥%| = O(R3739).
F3 In a similar way as in F2 we derive |D30%| = O(R>™19).

Let u: R x [0,1] — C" be a holomorphic function and and let w: [0, 1] — [0, 1] be a smooth
non-decreasing surjective approximation of the identity which is constant in a §-neighborhood
of the ends of the interval. Consider the function ug(7 + it) = \Ilué(t) (u(T 4 dt)). We want
estimates for ug, Oug and DOug and 0-DOup.

FO implies

(7.33) up = u+ O(R~01+9),

For the estimates on Oup and its derivatives we note

(7.34) Bup = D\I/“Iift)% + z‘(D\If;;(“% + Z—‘ZXR(U))
By (7.29), (7.30), F1, and the holomorphicity of u,

(7.35) |Bug| = O(R'™2%)| Du| + O(R~(F9).

Taking derivatives of (7.34) with respect to 7 and ¢t we find (using F0-3 and (7.29)-(7.32))
|DOug| =O(R'™2")|D*u| + O(R*~3*)| Dul?

(7.36) + O(R'™%%)|Du| + O(R~(+%)
|0, DOuR| =O(R*~2%)|D3u| + O(R3>73%)| Du||D*u| + O(R>~4%)| Du?
(7.37) + O(R'29)| D?u| + O(R*73%)| Dul?* + O(R~ )| Dul.

Finally, let 6: [0,1] — R be a smooth function supported in a %5—neighborhood of the
endpoints of the interval with §’(0) = 6’(1) = 1. Define

(7.38) GRr(T +it) = up(r +it) +i0(t)Our(r + it).
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Then ugr = @gr on the boundary and @g is holomorphic on the boundary. Also for some
constant C

(7.39) lig| < C(|lur| + |0ur]),
(7.40) |5@R| S C(|5UR| + |D(§uR|),
(7.41) |DOuR| < C(|0ug| + |DOug| + |0 DOug|).

7.12. Self-tangency preshortening. Let u: D,,.1 — C" be a rigid holomorphic disk with
boundary on L and with negative punctures p1, . .., pr mapping to 0. (The case of one positive
puncture mapping to 0 is completely analogous to the case of one negative puncture so for
simplicity we consider only the case of negative punctures.)

For large p > 0 let R = R(p) be such that the intersection points of L' and L%(1) are
at = (£(p+p)~1,0,...,0). Then R(p) = p+ O(p~'). Define

_ Ju© for ¢ € Dynaa \ (U By, [=50]).
up(C) =93 . . 1
Up(py (T +1t)  for ( =7 +it € B [—5p].
Then there exist unique functions
Er(J): Epj[_p] — T,-C"
such that
eXpR7t(§R(j)(C)) = uP(C)? C € Epj[_p]7

where exp! denotes the exponential map in the metric g(R,w(t),t) at a™.

Let oz (—00, —p] x[0,1] — C be a smooth cut-off function, real valued and holomorphic on
the boundary and such that a,(741it) = 1 for 7 in a small neighborhood of —p, a,(7+it) =0
for v < —p— %p“, and |DFa,| = O(p™2), k = 1,2. Define w,: Dp,+1 — C" as

() for ¢ € Dunsa \ (U By, [-1),
(7.42) w(Q) = q expt(a,(QEr()(C)) for (=T+it € By l-pl, j=1,....k
a— for(EUjEpj[—p—%p“].

7.13. Weight functions for shortened disks. Let u: D,,+; — C" be a rigid holomorphic
disk with boundary on L. Let € > 0 be small and let e,: D,,11 — R be a function which
equals eIl for 7 + it € Ep, \ Ep,[—p] and is constantly equal to e for 7 + it € Ej, [—p].
Define W5 _. , just as in Section 4.8 but replacing the weight function e, with the new weight
function e,. The corresponding weighted norms will be denoted || - ||2,—¢,- We also write
Hi,—e p[0)(Dys1, T*%F @ C™) to denote the subspace of elements in the Sobolev space with
the weight function e, which vanishes on the boundary.

7.14. Estimates for self-tangency preshortened disks.

Lemma 7.16. The function w, in (7.42) lies in Wa _c , (see Remark 7.10 for notation) and
there exists a constant C' such that

10wy |l1,—c,p < Ce™Pp 1739,

Proof. The first statement is obvious. Consider the second. In Dy, 41\ (Epj [—p]), w, equals
u which is holomorphic. It thus remains to check E, [—p] ~ (—o0, —p] x [0, 1].
Taylor expansion of exp™! gives

(7.43) exp & = ¢ —TH(R,)§'¢00, + O(I¢]).
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The Taylor expansion of the inverse then gives

(7.44) Er = Qg + DX (R, t)a%0501 + O(|ig[®).
Thus in (—oo, —p| x [0, 1] we have
(7.45) w, = ayiig + (a, — a2)TH (R, 1) igad0 + O(|apl®).

Now R = p+ O(p~!) from Section 7.12, |D¥a,| = O(p=?) for all cut-off functions, and by
Lemma 3.6 |D*u| = O(p~1+k), in (—oco, —p] x [0, 1]; thus, applying (7.39) through (7.41) to
(7.45) we get
Gy| + [DIw,| = O(p~ ).
Noting that éwp is supported on an interval of length % p%, so multiplying with the weight
function we find B .
[0wp|[1,—e,p < CePp~'m2
O
7.15. Controlled invertibility for self-tangency shortening. Let dI', denote the differ-
ential of the map
Ty Wo—ep— Hi—epl0](Dimi1, T @ CM).
Referring to Sections 7.7.1 and 7.7.2, we assume that m > 2 and [(j) > 2 for each j.
Lemma 7.17. There exist constants C and pg such that if p > po then there is a continuous
right inverse G, of dI',
Gﬂ: Hly—E,p[O] (T*OJDT’(IO) ® Cn) - T(wpv’ipvo)wz—ﬁyp
such that for any § >0
(7.46) 1G] < CPp'I€lI, -
Proof. The kernel
ker(dFu) C TuWQ,—e D TnCmH

has dimension 0. By the invertibility of dI',, we conclude there is a constant C' such that for
§ € TyWep,, we have

(7.47) €]l < Clldlu, o], -

Assume that (7.46) is not true. Then there exists a sequence {y € Ty, Wa ¢ p(n) With
p(N) — oo as N — oo such that

(7.48) IEnll =1,
(7.49) 4T 1 ey < Cp7' 2.

Let a: Dy 41 — C be a smooth function which equals 0 on Ej, [—p — % p%| and equals 1 on
Dypy1 \ (U Ep.[—p — 10]), which is real valued and holomorphic on the boundary and with
|DFal = O(p~2), k = 1,2. Then (7.47) implies
(7.50) lagnll < C(1(0a)en 11— + ladlu pEn [l1,-c) = O(p™)

Finally, we let ¢: (—co, —p+ p? — C be the function which equals (p) — 6(7), where (1)
denotes the angle between the tangent line of Lf,(l) intersected with the z;-plane (the plane
of the first coordinate in C™) at u(7 + ) and the real line in that plane. From Lemma 3.6 we
calculate that |[D¥¢| = O(p?~2), 0 < k < 2. Using the same procedure as for cut-off functions
we extend it to a function ¢: (—oo, —p + p?) x [0, 1] which is holomorphic on the boundary,
which equals ¢ on (—oo, —p+ p?) x {1} and which equals 0 on (—oco, —p+ p?) x {0} and with
the same derivative estimates. Let M = Diag(¢,1,...,1).
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Let a be a cut-off function which is 0 in Dy,1 \ Ep;[—p + p?] and 1 on Ej,[—p]. Having
frozen the angle away from 0, we can use Lemmas 5.8 and 5.9 (assuming that e is smaller
than the smallest component of the complex angle) to get

(7.51) le™aMey|| < Cp(lle™ (9aM)En|| + [le™PaMdl & |l)

The first term on the right hand side inside the brackets is O(p®~2) + O(p~2%) the second
term is O(p~'7?%). Hence as p — oo the right hand side goes to 0. This together with (7.50)
contradicts (7.48) and we conclude the lemma holds. O

7.16. Perturbations for self-tangency gluing. For R > 0 with R~ << rg, let ap: [0,00) —
R be a smooth non-increasing function with support in [0, %Ril) and with the following prop-
erties

ar(r) = R for r € [0, R7?],
|Dag(r)| = O(1),
(7.52) |D2ag(r)| = O(R).
The existence of such functions is easily established. Let hr: C" — C™ be given by

(7.53) hr(z) = z1(2)ar(|z1])-

For s > 0, let ®%, denote the time s Hamiltonian flow of hr and let Lp(s) denote the
Legendrian submanifold which results when ®% is lifted to a local contact flow on C" x R
which is used to move L?. (Note that ®% fixes the last n — 1 coordinates and has small
support in the z1-direction and so its lift can be extended to the identity outside L?(s).) Let
L%(s) = ®%(L?). We pick ag so that L%(s) N L' =0, for 0 < s < (KR)™! for some fixed
K > 4.

As in Section 7.11 we derive the estimates

(7.54) |®% —id| < O(R™?),
(7.55) |D®%, —id| = O(R™Y),
(7.56) |D2®%| = O(1).

For convenient notation we write v%(s) for the curve in which L%(s) intersects the z;-line
in a neighborhood of 0.

7.17. Self-tangency pregluing. Let u: D,, — C" be a rigid holomorphic disk with bound-
ary on L and with negative punctures py, ..., pg (as above we write S = {p1,...,pr}) mapping
to 0. Let vj: Dyjy11 — C, be rigid holomorphic disks with positive punctures ¢; mapping
to 0.

For 0 < p < ocolet R=p, s= (Kp)~! and let L, be the Legendrian submanifold which
results when ®% is applied. Consider the region Z, in the z;-line bounded by the curves
Y%(8), YR(8), ul(p+it), 0 <t <1, and v(j)'(p +it), 0 <t < 1. By the Riemann mapping
theorem there exists a holomorphic map from a rectangle ¢,: [-A(p), A(p)] x [0,1] — C
which parameterizes this region in such a way that [—A(p), A(p)] x {j — 1} maps to ~;(s),
Jj = 1,2. Moreover, since Z, is symmetric with respect to reflections in the Im z; = y;-axis
we have ¢,(0+:[0,1]) C {Rez; = z; = 0}.

Lemma 7.18. The shape of the rectangle depends on p. More precisely, there exists constants
0 < K; < Ky < 0o such that K1p < A(p) < Kap for all p.

Proof. Identify the z;-line with C. Consider the region ©, bounded by the circles of radius 1
and 1 + 4p~2 both centered at i € C, and the lines through ¢ which intersects the x-axis in
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the points +2(p)~!. Mark the straight line segments of its boundary. The conformal modulus
of this region is easily seen to be p + O(p~1).

On the other hand, using (7.54) and (7.55) one constructs a (K +O(p~1))-quasi conformal
map from ©, to Z,, for some K > 0 independent of p. This implies the conformal modulus
m,, of ©, satisfies

(7.57) (K+0(p ") p+0(p") <m, < (K+0(p ))(p+0(p))

and the lemma follows. O

Let u!' and vjl- denote the zi-components of the maps u and v;. Since ®7, fixes o outside
|z1| < (2p)~! we note that

(7.58) u' maps the region E, [—p] \ E,,[—2p] into ©,\ ¢,(0 x [0,1]).
and that
(7.59) vj maps the region Ey, [p] \ Ep,[2p] into ©, \ ¢,(0 x [0,1]).

Fix 0 < a < i. Using u?, vjl-, the conformal map ¢, and their inverses, we construct a
complex 1-dimensional manifold D, (p) by gluing Q;(p) = [—A(p), A(p)] x [0,1] to Dppg1 \
(Uj Ep [—(1 + a)p]) and Dj;)11E4[(1 +a)p]. Note that, by construction, D,(p) comes
equipped with a holomorphic function

(7.60) wy: Dp(p) — C,

which equals u! on D,, 1 \U; Ep,;[—(1+a)p], which equals vjl» on Dygjy+1 \ By, [(1+a)p], and
which equals ¢, on €);, for all j.

We next exploit the product structure of I~ L in a neighborhood of 0. If v’ and v} denotes
the remaining components of u and v; so that u = (u!,u’) and v; = (v},v}) then in some
neighborhood of the punctures ¢; and p;, v} and u; are holomorphic functions with boundary
on the two transverse Lagrangian manifolds P; and P», see Section 2. As in Section 4.3 we
find a 1-parameter family g(o) of metrics on C"~! ~ {z; = 0}. Then, for M sufficiently large,
there exist unique vector valued functions ¢; and 7; such that

(7.61) expy & (T +it) = /(T +it), T+it € By [-M],
(7.62) expy (1 + it) = vj(r +it), T+ it € Ey[M].

Now pick a cut-off function o which equals 1 on Dy, 41 \U; Ep,;[—p+5] and 0 on Ep,; [—p+3].
Pick similar cut-off functions a™ on Dy(j);1. Define w),: D;(p) — Cc" 1 by

¢

u'(€), C € D1 \U Ep,[—p + 5],

v3(C), ¢ € Dygjy+1 \ Eg;lp — 5],
(7.63) wy,(¢) =  exph(at()€;(¢)), ¢ € Ep;[—p+5]\ Ep,[—pl,

expo(a™(C)ni(€)), ¢ € Eglp— 5]\ Ep,lpl,

0, ¢ e Qj.

\

Finally, combining (7.60) and (7.63), we define

(7.64) w, = (w),w)

P %p
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7.18. Weight functions and Sobolev norms for self tangency gluing. Consider D, (p)
from the previous section, € > 0, and a smooth function f: D,(p) — C". Let

e fT denote the restriction of f to

int (Dss \ | By, [- (1 + )],
J

which we consider as a subset of Dy, 1.
e f~ denote the restriction of f
Uint (Diggyen \ B, [(1+ a)p]),
J
which we consider as subset of the disjoint union [ J ; Dyjy41

e f9 denote the restriction of f to the disjoint union U; int(£25(p))-

For € > 0, let e_ denote the weight function on Uj Dy(j)+1 which equals 1 on Dyj)41 \ Ey,
and equals ’I™! in E,;, each j. Let || - [|z,,— denote the Sobolev norm with weight e . Let eV
denote the weight function on €; which equals e€4(P)*+7+7) and || - || .o denote the Sobolev
norm with this weight. Finally, let e} be the function on D,,;; which equals e2(4(P)+2) on
Din1\U; Ep,] and equals e2e(Ap)tr)=elrl ip Ep,. Let |||+ denote the corresponding norm.

Define

(765) ||f||k:,e,p = HerHk,e,-l- + ”fOHk,e,O + Hff||k,e,—~

Using this norm we define as in the shortening case the spaces Wa ¢ , and Hi ¢ p[0] (D11, T 0l
C™). The d-map I': Wa ., — H1,[0)(T*"' D,, ® C") is defined in the natural way.

7.19. Estimates for self tangency glued disks.

Lemma 7.19. The function w, in (7.64) lies in Wa ¢, and there exists a constant C' such
that

[0wpllr.c,p < Cel=T422,
where 6 > € is the smallest non-zero complex angle at the self tangency point 0 and where
K5 is as in Lemma 7.18.

Proof. Note that the first coordinate of w, is holomorphic and that the support of 5wp is
disjoint from €2;. Using the asymptotics of u" and v} the proof of Lemma 7.7 applies to give

the desired estimate once we note that the weight function is O(ef2¢) by Lemma 7.18. O

7.20. Estimates for real boundary conditions. In order to prove the counterpart of
Lemma 7.17 in the self tangency gluing case we study an auxiliary non-compact counterpart
of the gluing region.

Let Q(p) = [-A(p), A(p)] x [0,1] and let M, be the complex manifold which results when
(—o0,—(1 —a)p] x [0,1] and [(1 — a)p,00) x [0,1] are glued to ©(p) with the holomorphic
gluing maps u' o (¢,)~! and vjl- o (¢,) !, respectively. (That is, the maps which were used to
construct D, (p).) We consider Sobolev norms on M, similar to those used above.

For € > 0, let

o 0 : [=A(p), A(p)] x [0,1] — R be the function €?(r + it) = €7,
e e : (—o0,—(1 —a)p] x [0,1] — R be the function e (7 + it) = e<P=AP)+7)
e e : [(1 —a)p,00) x [0,1] — R be the function e} (1 + it) = e<(-P+API+7)

If f: M, — C is function we let as above F=, f% f* denote the restrictions of f to the

interiors of the pieces from which M, was constructed and define the Sobolev norm

(7.66) £ llkpe = 1F e+ 1O lise A+ 1L N
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Lemma 7.20. There are constants C' and po if p > 0 and if f: M, — C is function which
is real valued and holomorphic on the boundary and has | f||x,pe < 00 then

(7'67) ”f”k,p,e < C”gf”kfl,p,ev
fork=1,2.
Proof. To prove the lemma we first study the gluing functions. Let ¥: [—p, —(1 — a)p) X
[0,1] — [-A(p),0] x [0,1] be the function u' o (¢,)~!. Note that ¢ is holomorphic and that
by (7.58) has a holomorphic extension (still denoted v) to [—p,0) x [0, 1].

To simplify notation we change coordinates and think of the source [—p,0) x [0,1] as
[0,p) x [0,1] and of the target [—A(p), 0] x [0,1] as [0, A(p)] x [0,1]. Thus
(7.68) b2 10,0] % [0,1] = [0, A(p)] x [0,1
is a holomorphic map. Consider the complex derivative g—qﬁ. This is again a holomorphic
function which is real on the boundary of [0,p) x [0,1]. In analogy with Lemma 5.2 we
conclude that

8¢ _ !/ nmwz
(7.69) =Y e
nez

for some real constants ¢,. Integrating this and using (0) = 0, we find

(7.70) Y(z) = coz + Z cne"?,
for some real constants ¢,. Then
(7.71) i =) = coi + Y _ cue™™
and we conclude ¢y = 1. Moreover, if )% denotes the double of 1 (which has the same Fourier
expansion) then since 1% (it) is purely imaginary for 0 < ¢t < 2, we find that ¢, = —c¢, for all
n # 0. Thus
(7.72) P(z) =z + Z cn (e — e,
n

The area of the image of 97 is O(p) by Lemma 7.18. Since this area equals the L*-norm of
the derivative of 1% we conclude that

p P
(7.73) 2/ 12 dr + Z / n?m?|c,|?e®™™ dr = O(p).
0 0

nez
Integrating we find there exists a constant K and 0 < § < 1 such that

(7.74) len| < Kp(n) 2e™ < Ke ™m0,

for each n # 0. Thus, in the gluing region [0, ap) we find

(7.75) [P(z) — 2] < KZ eUm=0=a)p < gl (m=200a))p — T
n>0

where 1 > 0. Similarly one shows |Dy —id| < Ke 2" and | D%y < Ke 2",

Assume (7.67) is not true then there exists a sequence f; of functions on M,;y, p(j) — oo
as j — 0o, with
(7.76) 1f5ll2.p,e = 1,
(7.77) 19F;ll1,pe = 0, as j— oo

Let v: (—o0, —(1—a)p] x [0,1] be a cut-off function which equals 1 on (—oo, —(1 — +a)p] x
[0,1] which equals 0 on [—(1 — 1a)p, —(1 — a)p), has |[D*y| = O(p™'), k = 1,2, and is real
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valued and holomorphic on the boundary. Then by uniform invertibility of the -operator on
the strip with constant weight € we find

(7.78) 17 fllzie < CUON flle + 1190 f [11.e)-
Here both terms on the right hand side goes to 0 as p — co. In a similar way we conclude
(7.79) 18fl2.e = 0,

for 5 a cut-off function on [(1 — a)p, 0).

Now let a be a cut-off function on [—A(p), A(p)] % [0, 1] which equals 1 on [—A(p)+2, A(p)—
2] x [0,1] and equals 0 outside [-A(p) + 1, A(p) — 1] x [0, 1]. We find
(7.80) lafllze < CUIO) flle + ladf1.e)-

Here the second term on the right hand side goes to 0 as p — oo by (7.77). The first goes to
0 as well since ||vf|| — 0 and ||5f|| — 0 and since the transition functions are very close to
the identity for p large.

In conclusion we find || f||2,p,c — 0, contradicting (7.76), and (7.67) holds. O

7.21. Uniform invertibility for self tangency gluing. Let dI', denote the differential of
the map

I Waep — Hiepl0)(Dns1, T @ C),
at w,. Referring to Sections 7.7.1 and 7.7.2, we assume that m > 2 and I(j) > 2 for each j.

Lemma 7.21. There exist constants C' and pg such that if p > po and then there is a
continuous right inverse G, of dI',,

Gyt Hie p0)(T* Dy (p) @ C") = Ty, ) Wererp
such that
G, < Cll€]1,e.0-

Proof. Recall 0 < € < 6, where # > 0 is the smallest non-zero complex angel at the self-

tangency point. Assume we glue k disks v1,...,v; to u. The kernels
dr(u,fﬂ) C T(u,nl)WQ,—ea
(7.81) AL w;m2(7)) © Twg,ma (i) Weees

are both of dimension 0 and dI'(, ;) and dI'(,, ,(;)) are invertible.
As usual we consider the embedding

k
(7.82) T, Crmg1 @ @Tﬂz(j)cl(j)Jrl - T“ﬂcr’
J=1

which identifies the left-hand side with a subspace of codimension k in T} ,C,. Let W, denote
the complement of this subspace in T(y, x,)W2,¢,p- We show that there exists a constant ¢
such that for p large enough and (£,v) € W,

(7.83) 1M < Clldly (&, )]-

Assume (7.83) is not true then there exists a sequence ({n,vn) € Wy, where p(IN) — oo
as N — oo with

(7.85) dT yny (En, )l — 0, as N — oo.
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Let BS: Dy (p) — C be a cut-off function which equals 1 on Dy,11\ (U; Ep, [—%p]), equals 0
outside D1\ (U; Ep, [—3p]), with |D*89] = O(p™!), k = 1,2. By the uniform invertibility
of dl',, ;) we find

(786)  [18%)Ex 1) 2 < ClAT ey By (€3, Tl <

(7.87) C (@B e e + 180y T (s 1) 1 )
Both terms on the right hand side goes to 0 as N — oo. Hence

(7.88) 1Byiav) (€ns 18 ) l2.cp = 0, s N — oc.

Similarly, with 52: D.(p) — C a cut-off function which equals 1 on Dy \qu[%p],
equals 0 outside Dj(j)41 \ qu[%p], with ]Dkﬁg\ = O(p~!), k = 1,2, we find, by the uniform
invertibility of dl“(vjm(j)) that

(7.89) 18 5y (€8, ) |20 = 0, as N — oo for all j
For 1 < j < k we consider the region
(7.90) ©;(p) =
90 (B \ By [0+ 0)]) U ) 4 () 10at) (B \ B [0+ a)]).

Note that there is a natural inclusion ©;(p) C M,, where M, is as in Lemma 7.20. Also
note that the boundary conditions of the linearized equation over €;(p) splits into a 1-
dimensional problem corresponding to the first coordinate and an (n—1)-dimensional problem
with boundary conditions converging to two transverse Lagrangian subspaces in the remaining
(n — 1) coordinate directions.

Let af be a cut-off function on ©;(p) which equals 1 on

(7.92) By, 301\ By, -0+ a)g],

equals 0 outside

(7.99) By, [\ By [~(1 + )],

with |[D*at| = O(p~!), k = 1,2, and which is real valued and holomorphic on the boundary.
Note that over the region where o™ is supported the boundary conditions of w, agrees with
those of u. Thus the angle between the line giving the boundary conditions of w, and the
real line is O(p~1) and it is easy to construct a unitary diagonal matrix function M on the
support o with |[D¥M| = O(p~!), k = 1,2 with the property that My has the boundary
conditions of w, in the last (n — 1) coordinates and has real boundary conditions in the first
coordinate. Thus Lemma 7.20 implies that

(794) ot Exllape < CIMat el < O (100" MEll1cp + IMIEN1c,)-

Here both terms in the right hand side goes to 0 as N — oo.
In exactly the same way we show that

(7.95) la~exll =0 asp— oo,

for a cut-off function o~ with support on the other end of ©,.
Let a” be a cut-off function which equals 1 on [—A(p) + 2, A(p) — 2] x [0,1] and equals 0
outside [—A(p) + 1, A(p) — 1] x [0, 1] and with the usual properties. Then the function

(7.96) (7 +it) = (AN (Bp(r + i)™ 0 (r + it)en (7 + it)
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has the boundary conditions of w, in the last (n — 1) coordinates (two transverse Lagrangian
subspaces in this region) and has real boundary conditions in the first coordinate.
Lemma 7.20 implies

la%nllpe < ClEREN (N) - 0%l pe <
(797)  C(10(d@E ™ (V) ™) - enllope + (@%@ ()T - Bewlope)-

Using (7.55) and (7.56) in combination with (7.94) and (7.95) we find that the first term in
(7.97) goes to 0 as N — 0. By (7.85), so does the second. Hence

(7.98) ||O‘0§N‘|1,p,e — 0.
Applying the same argument to 9;&x and i0;{n we conclude that
(7.99) ||0‘0§N‘|2,p,6 — 0.

Now (7.89), (7.88), (7.94), (7.95), and (7.99) contradict (7.84) and we find that (7.83)
holds. o

To finish the proof we let p; = 885%, see Section 6.9. Then p; anti-commutes with jy,
and we consider the p; as newborn con]formal variations spanning the complement of W, in
Twp o) Wase,p-

The images of p1j, j = 1,...,k under dI', are clearly linearly independent since they have
mutually disjoint supports. We show that their images stays a uniformly bounded distance

away from the subspace dI',(1W,). Assume not, then there exists a sequence of elements
(&p,7p) in W, with

(7.100) ”drp((gpa'Yp) - Nj) 1,0 =0 asp— oo.
Since [|dLpp;ll1,e,p = O(1) we conclude from (7.83) that [|(§,7p)ll2,c,, = O(1). Then, with
the cut-off function 3} from above and notation as in Section 6.9 we find

(7.101) 14T ;1237 (B35 0) = Ci)llne = 11T (B3(Eps 1p) = 1) 1,60 <

(7.102) 18500 (E0s %) = ki) 10 + 1B (05 %0) = 1) l1,c.0-

The right hand side of the above equation goes to 0 as p — oo. Hence so does the left
hand side. This however contradicts the invertibility of dI'(,, .,(;)) and we conclude dI',(W))
stays a bounded distance away from dI',(x;). Thus, defining G, (dI',pj) = p; finishes the
proof. O

7.22. Estimates on the non-linear term. In Section 4.7, we linearized the map I" using
local coordinates B around (w, f) € Wa . To apply Floer’s Picard lemma, we must study
also higher order variations of T'.

For (w, f,0) € Waa, w: D,, — C" and conformal structure x on D,,, we take as in
Section 4.5 local coordinates (v, k) € By x R™™® x A on Wy around (w, f) and write (in
these coordinates)

L(v, A\, ) = 0xv +iodwoy+ X 0. Y{ + N(v, \,7).

We refer to N (v, \,v) as the non-linear term. We consider A to have dimension 0 in the
stationary and the self tangency cases and have dimension 1 in the handle slide case. We
first consider stationary gluing

Lemma 7.22. There exists a constant C such that the non-linear term N(v,7v) of I' in a
netghborhood w,, where w, is as in Section 7.5 satisfies

(7103)  [N(w8) = N(w,k) | < C(llulls + 18] + llolla + ) (Ilu = vl + 18 = 1)
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Proof. With notation as in Section 4.5 we have
L(v,7) = Oty (expa(c()o v(()).
Wp

We prove (7.103) first in the special case v = 3 = 0. We perform our calculation in coordinates
x+iy on D,(p), which agree with the standard coordinates on the ends and in the gluing region
on D,(p). On the remaining parts of the disk the metric of these coordinates differs from the
usual metric by a conformal factor but since the remaining part is compact the estimates are
unaffected by this change of metric. In these coordinates we write 0, = 0, + i0y. Now, as in
Lemma 4.12 we find

Oy expy, v = J[wp, v, 0wy, 0,0, 0](1) + O, (expy,, v) - 9,0,

where J[z, &, 2/, &', 0] denotes the Jacobi field in the metric g(o) along the geodesic exp? t£
with initial conditions J(0) = ', J'(0) = &'. Of course a similar equation holds for 9, exp{, v.
Let G: (C™)* x [0,1] x R — C" be the function

G(CC, fu xla 5/7 g, U/) = J[CC, 57 CC/, 5/7 U](l) - CC/ - 5/ + 8o’ engf : UI
(unrelated to the earlier right inverses G) then with w, = w,
N(v) = G(w, v, 0yw, 00, 0,0,0) + iG(w, v, 0yw, Oyv, 0, 0y0).

Moreover, the function G is smooth with uniformly bounded derivatives, it is linear in 2/, &', o/,
and satisfies

G(.CU, 07 xla gla g, J/) = 07
(7.104) DyG(x,0,2',¢',0,0") =0,

where the last equation follows from Taylor expansion of the exponential map and the Jacobi
field.
We estimate the 1-norm of

G(w,u, 0yw, 0zu, 0,0,0) — G(w, v, Dyw, Oy, 0, 0,0).
For the 0-norm, we write
‘G(w,u, 0w, Oputy 0,0,0) — G(w, v, 0w, 0y, 0, 8900)‘ <
‘G(w,u, Opw, Oz, 0, 0,0) — G(w, u, Oyw, Oyv, 0, 8550)‘
+ ‘G(w,u,@xw, 0y, 0,0,0) — G(w, v, O, w, dyv, 0, 8900)‘ <
C(JullDu — Do| + [Dollu — o] ) <

(7.105) C((Jul + lehIDu — Dol + (|Du] + | Do)u — o),

where we use (7.104). Noting that the || - ||o-norm controls the sup-norm we square and
integrate (7.105) to conclude

(7.106) ING) = N@)llo < C(llulla + lloa ) 1w = o]l
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For the 1-norm we find an L%-estimate of

D1G(w,u, 0yw, 0pu, 0,0,0) — D1G(w, v, Opw, Oyv, 0, 8x0)‘|Dw|
+ | D2G(w, u, Opw, O, 0,0,0) - Du — DoG(w, v, 0zw, Opv, 0, 0y0) - Dv‘

D3G(w, u, Opw, Ozu, 0, Oy Do, w — D3G(w, v, 0w, 0yv,0,0,0) - D@xw‘

5G w, u, a;tw7 89:”7 g, a D5G(w7 v, a:twu a:tvu g, a:to-) ‘ |D0-|

++++

( )
( o)
D4G(w, u, Dgw, Dty 7, Dy ) - DAyts — DyG(w, v, yw, Dyv, 7, Dpr) - DIy
( o) —
( o)

(7.107) DeG(w, u, Opw, Oz, 0, Oy DO,o — DgG(w, v, 0pw, Opv,0,0,0) - DOyo|.

Using (7.104) the first and fifth terms in (7.107) are estimated by
(7.108) C(Ju] + |v|)(Ju — v| + |Du — Dv|)(|Dw| + |DF)),

where F' is the extension of f: 0D,(p) — R as in Section 4.5. The second term in (7.107) is
estimated by

~—

(7.109) c((\uy + 0])| Du — Do| + (|Du| + |Dv|)| Du — Dov| + |u — v|(|Dul + \Dv\)).
For the remaining terms we use the linearity of G in 2/,¢’, 0’ to write them as

DsG(w,u, DOyw, Oyu, 0,0,0) — D3G(w, v, DOyw, 0,v, o, 810)‘

+ ‘D4G(w,u, Opw, DOyu, 0,0,0) — D4G(w,v, 0w, DOyv, o, &EO')‘
+ ‘DGG(w,u, Opw, Opu, 0, DOyo) — DgG(w, v, 0z w, Oyv, 0, D@ma)‘.
Thus the third and sixth terms in (7.107) are estimated as in (7.105) by
(7.110) C((|u| + [v])|Du — Dv| + (|Dv| + [Dul)|u — v|).
Finally, the fourth term in (7.107) is estimated by
(7.111) C((|u| + [v])| D% — D20 + (|D%u| + | D) |u — v|)

To estimate the L?-norms of these expressions we use the sup-norm bound of |u| and |v| and
the fact that the || - ||;-norm controls the LP-norm for all p > 2. For example

/ (|Du| + | Dv|)?|Du — Dv|* dA <
Dm

([ @oul+10op)* ([ apu- Do) <

(7.112) (Iull2 + lol2)?(u = vll2)*
We conclude that we have the estimate
IN@) = N@)lh < C(Jlulla + loll2) 1 = o]z,

as desired.
Finally in the case when also the conformal structures changes we note that if j. in coor-
dinates = + iy is represented by the matrix

()
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then j, . is represented by the matrix

(1% %)
14+¢2 —¢,)

where ¢, : D,, — R is a compactly supported function. The extra term which enters in the
non-linear term is then

(qﬁ%G(w,u,@yw, Oy, 0,0y0) — ¢3G(w,v, Oyw, Oyv,0,0y0)),

which is easily estimated using the techniques above. O

For handle slide gluing the corresponding lemma reads.

Lemma 7.23. There exists a constant C' such that the non-linear term N(v,\,v) of I in a
neighborhood of w,, where w, is as in Section 7.6 satisfies

IN(u, 8,0 = N, 5 )l < C(lfulla+ 181+ 171+ ollz + 1yl + 1l ) (lu—vllo + 1871+ 1A~ sl

Proof. The proof is similar to the proof of Lemma 7.22. The main difference arises since
the local coordinate map also depends on A € A. Replacing the function G in the proof of
Lemma 7.22 with the function (notation as in Section 4.5)

H(‘T7 57 xlu 5/7 g, 0-/7 )‘) =
J[‘T7 57 'Tla 5/7 g, )\](1) - CC/ - 5/ - )\ : D}/OU(:C) : LE/ + aU(eXpif(x) Agé) : 0-/7
A

g
x

where J[z,&, 2’ &' o, \] is the Jacobi field along the geodesic exp;’,,( ) A& with initial condi-
A

tions J(0) = dy)§ - o' + 0595 - o', J'(0) = ASE' + dAS -2’ - £ 4+ 0, AS - o' - € and repeating the

argument given there proves the lemma. O

In the self-tangency shortening case the estimate is somewhat changed since we work in
Sobolev spaces with negative exponential weights in the gluing region. Here we have

Lemma 7.24. There exists a constant C' such that the non-linear term N(v,v,\) of I in a
neighborhood of w,, where w, is as in Section 7.12 satisfies

IN(u, B) = N, #)l1,-ep < Ce® (Jlullz—cp + 18] + o]z, —ep + 1)
x (= vlla.—cp +18 =)

Proof. The proof is exactly the same as the proof of Lemma 7.22. We must only take into
account in what way the weights affect the estimates. Starting with (7.106), we see that the
norm || - [|2,p,—e does not control the sup-norm uniformly in p. But it does control e~ times
the sup-norm. Thus we conclude instead of (7.106)

(7.113) IN () = N@)I| < Ce(l[ullz,-ep + [0]l2—cp) 1t = vll2, e

Similarly, we loose this factor in the other estimates where we use the sup-norm. Let ¢,
denote the weight function from Section 7.13. When we use the L*-estimate we have instead
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of (7.112) the following

|Du| + | Dv|)?|Du — Dv[2e,2) dA <

e2ep

X

D,

eer/ (IDu] + | Do])2| Du — Duf?et dA <
D,
L

1 1
4. 4\2 4 4\ 2
(1Du| + [De])et) (/ (1Du — Duly'et)” <
D,
O (||ullz,—e,p + [0ll2,—,0)* (1t = vll2,—e,)*.
We conclude finally
[IN(u) = N(0)l[1,—c,p < CeP([Jullz,—c,p + V]2, —c o) 4 = vll2,—¢,p-

The same argument as in Lemma 7.22 then takes care of the conformal structures and the
lemma follows. g

Finally, we consider self-tangency gluing, where we have a large weight function which does
not interfere (destructively) with the sup-norm and the L* estimates.

Lemma 7.25. There exists a constant C such that the non-linear term N(v,7v) of I' in a
netghborhood of w,, where w, is as Section 7.17 satisfies

IN(u, B) = N, )l <C(J[ullacp + 18] + oll2.c + 1)

X (lu = vlla.cp +18 = 1)
Proof. See the proof of Lemma 7.22 O

8. GROMOV COMPACTNESS

In this section we prove a version of the Gromov compactness theorem. In Section 8.2,
we discuss the compactification of the space of conformal structures which is done is [17]. In
Section 8.3, we translate the notions of convergence and (limiting) broken curves from [22] to
our setting. There are two notions of convergence we must prove: a strong local convergence
and a weak global convergence. In Sections 8.5 and 8.6, we adopt Floer’s original approach,
[13], to prove the strong local convergence. In proving local convergence, we in fact prove
that our holomorphic disks, away from the punctures, are smooth up to and including the
boundaries, see Remark 8.6. To prove the weak global convergence in Section 8.7, we analyze
where the area (or energy) of a sequence of disks accumulates, and construct an appropriate
sequence of reparameterizations of the domain to recover this area.

We note that although our holomorphic curves map to a non-compact space, C", the set
of curves we consider lives in a compact subset. This follows because C" is a symplectic
manifold with “finite geometry at infinity”: a holomorphic curve with a non-compact image
must contain infinite area. And the area of any disk we consider is bounded above by the
action of the chords mapped to at its corners. Thus, we can prove the Gromov compactness
theorem in this non-compact set-up. For a review of finite geometry at infinity (also known
as “tame”), see [1] Chapter 5, as well as [7, 18, 31].

8.1. Notation and conventions for this section. Unlike in the other sections, we need
to consider Sobolev spaces with derivatives in LP for p # 2. We define in the obvious way
the spaces W} ’loc(Am,C”) to indicate C"-valued functions on A,, whose first k£ derivatives
are locally LP-integrable. For this section only, we denote the corresponding norm by || - || -
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In order to define broken curves in the next subsection, we will need to extend the disk
continuously to the boundary punctures. Of course the extra Legendrian boundary condition,
h, does not extend continuously. For this reason, we will only extend u to A,,, the closure
of Ay, thus, u: A, — C™. Note that [lul|, ) might still blow up at these punctures. We
sometimes only consider u and u|0A,, in which case we write u : (A, 0A,) — (C", I (L)).
For X C Ay, let [Jullkpx = [|u|X||kp, and |ul/g e denote the norm restricted to some disk
(or half-disk) of radius e.

Because we sometimes change the number of boundary punctures, we will denote by D
the unit disk in C".

8.2. Compactification of space of conformal structures. Recall C,, is the space of
conformal structures (modulo conformal reparameterizations) on the unit disk in C with m
boundary punctures.

When m > 3, we define a stable cusp disk representative with m marked boundary points,
(3;p1,-.-,Pm), to be a connected, simply-connected union of unit disks in C where pairs of
disks may overlap at isolated boundary points (which we call double points of ) and each disk
in X has at least 3 points, called marked points, which correspond either to double points or
the original boundary marked points. When m = 1 or 2, the stable cusp disk representative
shall be a single disk. Two stable cusp disk representatives are equivalent if there exist a
conformal reparameterization of the disks taking one set of marked points to the other. We
define a stable (cusp) disk with m marked points to be an equivalence class of stable disk
representatives with m marked points.

In Section 10 of [17], Fukaya and Oh prove that C,,, the compactification of C,,, is the
space of stable disks with m marked points.

8.3. The statement. A broken curve (u,h) = ((u',h'),... (u,h")) is a connected union
of holomorphic disks, (u/, h?), (recall v/ is extended to A,,;) where each u/ has exactly one
positive puncture and except for one disk, say u', the positive puncture of u/ agrees with
the negative puncture of some other u/". One may easily check that a broken curve can be
parameterized by a single smooth v : (Dy,,dD) — (C",IIx(L)), such that v™! is finite except

at points where two punctures were identified, here v~! is an arc in A,,.

Definition 8.1. A sequence of holomorphic disks (uq,hq) converges to a broken curve
(u,h) = ((u*, h1), ..., (N, hN)) if the following holds
(1) (Strong local convergence) For every j < N, there exists a sequence ¢3 : D — D of
linear fractional transformations and a finite set X7 C D such that u, o ¢?, converges
to u/ uniformly with all derivatives on compact subsets of D\ X7
(2) (Weak global convergence) There exists a sequence of orientation-preserving diffeo-

morphisms f, : D — D such that u, o f, converges in the C°-topology to a parame-
terization of w.

Henceforth, to simplify notation when passing to a subsequence, we will not change the
indexing.

Theorem 8.2. Assume (uq,ho) € M(a;by, ..., by,) is a sequence of holomorphic disks with
L, Legendrian boundary condition. Let ko € Cmy1 denote the conformal structure on the
domain of uy. Assume Ly, converges to an embedded Legendrian L in the C*°-topology. Then
there exists a subsequence (Uq,ha, ko) such that ks converges to k € Cpy1 and (U, ha)
converges to a broken curve (u,h) whose domain is a stable disk representative of k.

Note that using the strong local convergence property a posteriori, this compactness result
proves that all derivatives of a holomorphic disk (u,h) are locally integrable away from the
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finite set of points. In particular, such disks are smooth at the boundary away from these
points. See Remark 8.6.

We also remark that, the appropriately modified, Theorem 8.2 holds if the disks have more
than one positive puncture.

8.4. Area of a disk. For holomorphic u : (D,0D) — (C", Tl (L)), recall that Area(u) =
[ w*w, where w = Y, dx; A dy;, denotes its (signed) area.

Lemma 8.3. Consider an admissible Legendrian isotopy parameterized by A € A. We assume
A C R is compact. Denote by Ly the moving Legendrian submanifold. There exists a positive
upper semi-continuous function h: A — R such that for any non-constant holomorphic map

u: (D,0D) — (C", I (Ly)), Area(u) > h(A).

Proof. We need the following statement from Proposition 4.3.1 (ii) of Sikorav in [1]: There
are constants r1,k (depending only on C") such that if » € (0,71] and u: ¥ — B(x,r) is a
holomorphic map of a Riemann surface containing x in its image and with u(9%) C dB(z, )
then Area(X) > kr2.

Since u is non-constant, Stokes Theorem implies © must have boundary punctures. Choose
r > 0, an upper semi-continuous function of A, such that:

e for all Reeb chords ¢, II(Ly) N B(c*,r) is real analytic and diffeomorphic either
to R™ x {0} U {0} x R" or the local picture of the singular moment in a standard
self-tangency move (see Definition 2.3).

e for all distinct Reeb chords ¢y, ¢a, B(cj,r) N B(ch,r) = () and

o 1 <1y

Let 0y be the smallest angle among all the complex angles associated to all the tranverse
double points of I (Ly). Now set

kr? cos® 6,
h(A) = mi in Z(c), ——= 7 > 0.
o0 =min{_gip 200, T2

Suppose u maps all n of its punctures to the same double point ¢*, then by (1.4)
Area(u) > Z(c) > h.

(Note the number of positive punctures of u must be larger than the number of negative ones
since u is not constant.)

Otherwise, assume u maps boundary punctures to at least two distinct double points cJ, ¢3
where ¢} is a non-degenerate double point. Then ¢ ¢ B(c},r) implies that there exists a

point = € u(D) NIIl(L) N dB(c], §). Moreover, B(z, %) C B(w,r) intersects I (L) in

only one sheet. Using the real-analyticity of the boundary, we double u(D) N B(z, =5 Or)
and apply the proposition of Sikorav to conclude
2 02
Area(u) > Area(u(D) N B(x, TCO; 6))‘)) > kr cgs O > h.
O

We introduce one more area-related notion, again borrowed from [22]. Given a sequence
of holomorphic maps u, we say z € D is a point mass of {us} with mass m if there exists a
sequence z, € D converging to z € D such that

lim lim Area (u|Be(zo) N D) = m.

e—0 a—00
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8.5. Strong local convergence I: bootstrapping. In this subsection we prove the follow-
ing “bootstrap” elliptic estimate: if we know a holomorphic curve lies locally in W,f with
p > 2,k > 1, then the || - ||,y x-(local)-norm controls the || - ||,/ x+1-(local)-norm for p’ € 2, p).

This proof first appeared as Lemma 2.3 in [13] and later corrected as Proposition 3.1 [24].
Floer and Oh both prove the k = 1 case and state the general case. Although there are no
new techniques here, we present for the reader the general case in more detail.

Let A C C denote the open disk or half-disk with boundary on the real line. Let W}’ (A,C")
denote the closure, under the || - || -norm, of the set of all smooth compactly supported
functions from A to C".

Lemma 8.4. For everyl > k, l —2/q > k — 2/p, there exists a constant C' such that if
& e WP(A,C") is compactly supported, £[0A C R", and 06 € W | (A,C") then

(8.1) 1€ll,q < CllOENli-1,4-

This is stated as Lemma 2.2 of [13] and Lemma 3.2 of [24]. Floer attributes this result
to Theorem 20.1.2 of [20]. However, we were unable to deduce Lemma 8.4 for £ > 1 from
Hormander’s theorem. Alternatively, one can use the Seeley extension theorem (see [23],
section 1.4 for example) to extend the map to the full disk (in the case of the half disk) and
then use the well-known full disk version of Lemma 8.4.

We can now state and prove this subsection’s main theorem.

Theorem 8.5. Fix k > 1 and (not necessarily small) dx_1 > 0 > 0. For any compact
K C A, there ezists a “constant” C1 = Cy(||u||k 24s,_,) depending continuously on ||u||k 245, _,

such that for all holomorphic maps u € W;Jrak*l(A,C”) with u(0A) C (L), we have
(8'2) Hu”k+172+5k:K < Cluu”k,2+6k:A'

Moreover, if uy is a sequence of holomorphic maps in W,erék*l(A, C™) such that u,(0A) C
O (L) and |ua|lk2+s,_, s uniformly bounded, then there exists a subsequence u, converging

in W,?“HS’“ (K,C") to some holomorphic map u: K — C".

Remark 8.6. Note how we can use the Sobolev embedding theorem to conclude that all
derivatives of the curve lie in L? locally, assuming we have a finite local || - [|1 245, norm to
begin with. In particular, a holomorphic disk (h, u) with boundary punctures becomes smooth
at the boundary away from the punctures. We did not have to assume this smoothness a
PrioTi.

Proof. We shall only prove the first statement. The second one easily follows from the first
and the Sobolev embedding theorem.

Our goal is to prove (8.2) in some small € ball in K. The claim will then follow from the
compactness of K.

Because W,erék’l compactly sits in CY for k > 1, we can choose small € (continuously in
|lw|lk 245, ,) and € such that given zy € K, u(B(z0,€)) C B(u(zo,€')). We fix € and € at the
end of the proof. Assume € is small enough such that B(z, €) does not contain any boundary
punctures of u.

Choose a diffeomorphism ¢ of C" so that ¢(II¢(L)) N Ber(¢ou(zg)) corresponds to a piece
of R" ¢ C" if 29 € QA. Assume zg = 0 € JA as we will not consider the easier interior
estimate. Locally near 0 define v = ¢ o u; thus, v has R™ boundary conditions and (%*iv =0
where 5¢*i uses the pull-back (almost) complex structure.

Choose a compactly supported smooth function 7 : A — R such that vy(z) = 1 for |z| < %
and set 7.(z) = y(z/€). Note that we can choose v such that the C¥-norm |ve||cx is of order
eik' By Lemma 8.4, there exists Cs such that for any e,
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(8.3) vevllesiors, < Colld(vev)|lk2ts,
< CQ(‘|(8’Y€)’1)‘|]€72+5I€ + ||’Y€8UH1€,2+51€)
w. L Ov
< Oy H’y€||CkHUHk,2+5k:e + 'YG(QZ) ? _'L)a—
Y1lk,2+68,

where x + iy is the complex coordinate in A.
To simplify notation, let J(v) = ¢*i —i. We can assume that all derivatives of J(-) are
uniformly bounded on B(¢ o u(zg),€’). We consider the last term of (8.3):

ov . . ov
(8.4) \wma— <o ¥ \DZ(J@))D] (%8—)
Yk, 246 {i,j | i+i=k} Y7 0,246,
ov
< CiCIT(W)lore | D" (%a—) i
Y/ 10,245
; i Ov
ST DI LA P D e
{ij | i+j=k.j<k} 0.p:€
where 117 = ﬁ - ﬁ. (Here we use 6;_1 > 0.)

Choose € small enough such that |J(v)| < m; thus, combining (8.3) and (8.4), we get

: ov
DI (7 2=
(V 33/)

2
(8.5) §\|’Yev\|k+1,2+5k < 02||’Ye\|ck||v||k,2+6k:e+

C2C3 > 1D (T (0)) 0,246 1:¢

{i. | i+j=k,j<k} 0P
Since, i - (24 dx—1) > 2 for 1 <i < k, we get (see [22] Proposition B.1.7)
(8.6) DTl ars, e < NI @246, 12 < C5 (1 llor + 1) [0l 215, < Cos
where Cs = Cg (”ka,Hék,l:e) .
Fix any s > p. Then for any « > 0, if we set
1 _ 1
2496,
n=STeT
P S
we get
- 0 - 0 » 0
(8.7) 'D] (%_v> < k||D? (%_v> +rx M| D! <7€—U)
Ay 0,p Ay 0,s 9y 0,246y,
; 0 ; 0
< kCr||D’ (%—v> + kD (%—v)
Ay 1,248, Ay 0,246,
<

. ov
J -
P (Wkﬁy)

The first inequality uses an interpolation result and the second the embedding theorem.
Choose k such that

kCs H’Ye””j+2,2+6k + e :
0,240,

(88) CQCgC(gHCg S

Wl
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Using (8.6) to (8.8) we bound the first term of the sum on the left hand side of (8.5):

ov
k-1 (. Ov
P (76 31/)

1 _
< g hevllizis, + C2C3Cs - 57" [0llk2+450:c

(8.9) CQCg HDIJ(’U

)HO,2+51€_116 0
P

Combining (8.5) with (8.9), there exists Cy = Cy (||v||k,2+,_,:¢) and Cio = Cio (||v]lk,246,_1:¢)
such that

1
3 evlerizes, = (Calveller + Co) [0llk2+60:e +

oo Y | (’yg—Z)

This last line follows since ||v||x 245, :c controls ||v||j41p:e for j <k —1.

0,p

< Crollvlle,2465:e

g

8.6. Strong local convergence II: uniformly bounding higher Sobolev norms. In
order to apply Theorem 8.5, we need a uniform bound on the || - ||t 2+5-norm where § > 0
might be large. Our holomorphic disk only come with a bound on the || - ||; 2-norm in terms
of the action. In this subsection we indicate how the latter norm controls the former.

Theorem 8.7. Consider the sequence of holomorphic disks (ua,ha) € M(a;bi,... by).
There exists a finite number of points z1, ...,z € 0N, and a “constant” C11 = C11(K,p, k)

such that for any positive integer k, for any p € R with k > %, and for any compact set

K CAp\{z,....at,
HDkuozHO,p:K <Cn.

This result in the special case when m = 2 and k = 1 was proved as Theorem 2 in [13] and
then reproved as Proposition 3.3 in [24]. Thus, the first part of this proof uses some ideas of
[13]. For the cross-referencing inclined reader, we borrow the notation from [24].

Proof. Let a = Area(u,) which is independent of «. Let
No(K) = inf{n > 0: there exists z € K such that

k 2_k
HD uOtHO,p:B(z,n) > ne }
Assume 7, (K) — 0 for some subsequence, otherwise our theorem holds. Choose z, € K such

that

P 1 o ok
2577310-

HDkua

071753(2&77762)
Define ro, =1, 1dis‘u(za, 0A,,). There are two cases to consider. We must derive a contradic-
tion for both.

Case 1: 7, — 0.

Pass to a subsequence and assume z, converges to some zg € A,.
Let A C R? be a compact subset and use variables (s,t) on R?. Let f : A — R*". We
remark that when rescaling variables (s,t) — (s, 5t), the LP-norm changes like:

5.10) 4]~ ()

This remark allows us to use the Floer technique for our more general case: (k,p), k >
versus (1,p), p > 2.

Dka — /B*kJr%
p

D’“f”p.

hSA1N
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Since ro, — o0, for every R > 0 and large enough o we have holomorphic maps

v :CD B(O,R) —C", wa(z) = ua(na(z - Za))?

satisfying
(8.11) [Dvallgs < @
1
8.12 HDk “H > =
( ) Y 0,p:B(0,1) — 2
(8.13) HD’%QH 1, for all z € B(0,R — 1).
0,p:B(z,1)

Equations (8.11) to (8.13) follow from (8.10) and the exponent in the definition of 7,. We
use (8.13) and the last statement of Theorem 8.5 to find a subsequence, v, converging in
W{(B(0, R),C™) to some holomorphic map wg : B(0, R) — C". (Technically, the convergence
is in W,f " for some p’ < p; however, since we still have p’ > 2 we will ignore this.) Repeating
this procedure for all positive integers R and choosing converging subsequences, we obtain a
holomorphic map w : C — C™ satisfying

(8.14) ||Dw\|072

IN

V

(8.15) HD%H %

0,p:B(0,1)

By (8.15), w is non-constant; hence, ||Dw||,, =a’ > 0.
To derive a contradiction, consider the sequence of annuli

CDA,:={re? : p<r<p+1}.

(8.14) implies that || Dw|[q 5.4, — 0. Thus, for some circle Cjy = {p'e?} where p’ € (p,p+1),
we have \|Dw||072:0p, — 0. By Sobolev’s Theorem, this implies ||w||CO:C;, — 0.

Thus, for sufficiently large p, w|C)y spans a small disk D, C C" whose (absolute) area is
bounded by %/ Let B, C C be the disk spanned by C. Choose p large enough such that
[Dwllo,2;8,, > %‘ll Let @ : 5% — C" be the (not necessarily holomorphic) map w|B, capped
off with D,. Then, with w =), dx; A dy; we find, since m(C") = 0,

/

0= [ #°6) 2 IDulozs, - [ w25 >0
52 ’ P D 3

o
Case 2: 7y — r < 00.

In this case, zo, — z9 € 0A,,. We proceed as before to construct a limiting holomorphic
map w, where this time

w:C,={2€C : Im(z) >—r} -C"

with w(9C,) C II(L) and satisfying (8.14) and (8.15). Here B1(0) is the unit ball in C,..
At this point our proof deviates from [13] and [24] because of multiple boundary punctures.
Repeat the second part of the discussion of Case 1, where A, C C, is a “partial” annulus

and Cy C A, a “partial” circle. Instead of constructing a smooth (but not necessarily

holomorphic) map @ as before, we use the convergence [|wl|co.c; — 0 to conclude that (after
precomposing with a linear fractional transformation from the unit disk D C C to C, which

takes —1 to o0)

w: (D\{=1},0D\ {-1}) — (C", 1 (L))

can be continuously extended to —1.

By Lemma 8.3, [lw||yo > A
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From the construction of w and v,, it is easy to see that for large enough «,

Area (ua |Am \ B(za,na)) <a-— g

Note that zy is an example of a point mass for the sequence u,. We will relabel it z; to
coincide with the statement of the theorem.
Now suppose there is a subsequence z, — 29 # 21 such that

1 2—pk

|t = 3l

07p:B(20<777a)
Repeating Case 1, we again conclude that z5 € 0A,,. Furthermore,

Area (uq |Am \ (B(2a, 1) U B(zan.))) < a— 2;.

Assume « is large enough such that B(za,7a) U B(za,n,) = 0. Since a is finite, this can only
happen a finite number of times: z1,...z2;. So as long as K C Ay, \ {z1,... 2}, the bound of
the theorem holds.

]

8.7. Recovering the bubbles. The goal of this subsection is to construct a (not neces-
sarily conformal) reparameterization of A,, which recovers all disks which bubble off. This
reparameterization implies the second convergence in Definition 8.1.

Consider a sequence (uq, hq ) which converges strongly on any compact K C Ay, \{z1,..., 2}
By the proof of Theorem 8.7, we can assume that z; is a point mass with mass m; > 0.

Let C. C C denote the upper-half plane. Let B, = {z € C, : ||2]| < r} and C, = 0B,.

Define the conformal map
~ —z +iR?
o:C A, e} =—2
'¢ + ¢ (Z) 2+ ’LR&

where R, € R is such that

<21

Area (uq [t (Br,)) = mi.
Pass to a subsequence and assume o < o implies R, < R,/, which can be done since by
the definition of point mass, lim,_.., Ro = 00. Note that

(8.16) lim Yo (Br,) = lim ¢ (BRS/Q) = 2.
a— 00 a—0o0 «
Assume « is large enough so that v, (B R3/2> contains no other point masses of the sequence

uq. However, 1, (B Rg/2> might contain boundary punctures.

After passing to a subsequence, we can use Theorems 8.5 and 8.7 to assume that u,
converges to some u on any compact set in A, \ ({22, cey 21 Uty (BRi/2>) .

The definition of R, and (8.16) imply

(8.17) lim Area (ua ‘% (BRg,/2 \ BRQ> ) = 0.

a—00
Use (8.17) and argue as in the previous subsection to find some half circle Cr, C C,, with
R, e (RY* —1,RY?] such that
[[ua o waHCO:CR,a — 0.

Define the center of mass of u, o 1, to be

. 1 ‘
20 =Ta+ia == | |D(uaota)l’ (@ +iy)de Ady € Br,,
Br,
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where x + iy are coordinates on C,. Define the conformal map ¢, which sends ¢ to z4:

¢ Cy — Cy, ¢a(z) = Ya? + Tq-
Note that although ¢, ! (Cg,) might remain bounded, ¢! (CR’a ) converges to oo because

3/2
1 (A 1 .
oL (R;e"g)‘ > %max{|c0s9|,|sm9|}
Ya
and yo < Rq.
Define the conformal map
z—1
v:D U(z) =

where D C C is the unit disk. Note that ¥~ !¢t (C’R/a) — —1 and that u, 0¥ 0 ¢ o ¥ all
have center of mass at 0 € D. (Recall that the center of mass uses the Euclidean metric on
C4, not on D.)

Since

||u01 o Q;Z)a o ¢Ot o \IJHCO:lII*lo(b(;l(CR&) - 07

pass to a subsequence as before and conclude that ug 0 ¥, © o © ¥ converges to some
holomorphic w on compact sets outside of some boundary point masses and punctures, as
well as —1 (since uq © Py © P © ¥ is not defined at —1).

As before, w can be continuously extended to —1. We claim that under this reparameteri-
zation, —1 is not a point mass of 1, 0, 0 Py 0 W. Otherwise, in the C set-up, as some mass
escaped to oo, the center of mass would have to go to oo as well, contradicting the fact that
it is fixed at i € C,..

Because u, converges to u outside of 1, (B R3/2>, and because no area is “unaccounted”
(o3

for by (8.17), we can continuously extend u to z; so that u(z1) = w(—1). Considering how u
and w were obtained from u, it is easy to see that the sign of the punctures (z; for u and —1
for w) will be opposite. Thus since each of u and w must have a positive puncture each will
have exactly one. Repeat the above argument at all the other point masses z;. Then repeat
for any new point masses in the sequences defining the holomorphic disks w; associated to
zj. Continuing until all point masses have been dealt with we see no holomorphic curves were
overlooked in the reparameterization.

8.8. Proof of Theorem 8.2. Let II(L) denote the limiting Lagrangian boundary con-
dition. Let h = h (II(L)) be the minimal area of non-constant maps defined in Section
8.4. Use the discussion in Section 8.2 to pass to a subsequence whose conformal structures
converge to a stable disk.

We wish to apply Theorem 8.5 to derive strong local convergence. To achieve the required
uniform bound on ||uql/k2+s, ,:x for some compact set K C A,, which lies away from

point masses, we apply Theorem 8.7 k times to bound ||uq||; 245, ,:x for i =1,..., k. The
reparameterizations ¢7 in Definition 8.1 come from the discussion in Section 8.7.
The weak global convergence follows readily from Section 8.7. g
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