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ABSTRACT. We prove that for generic geometry, the curl-eigenfield solutions to the

steady Euler equations on R
3
/Z

3
are all hydrodynamically unstable (linear, L2 norm).

The proof involves a marriage of contact topological methods with the instability crite-

rion of Friedlander-Vishik. An application of contact homology is the crucial step.

1. INTRODUCTION AND STATEMENT OF RESULTS

The problem of linear hydrodynamic instability for steady Euler flows on three-dimensional
domains is classical in nature and foundational in implication. It is universally asserted
that in dimension three such flows are almost always unstable, though the precise def-
inition of “almost always” is an issue left undiscussed. The small literature on generic
properties of fluid flows [11, 23] focuses on the Navier-Stokes setting and uses external
forcing or Dirichlet data as a parameter.

We present a clear formulation of the problem and prove a generic instability theorem
for a large class of flows — the curl eigenfields — which form the most fascinating and
challenging steady solutions to the Euler equations. The chief difficulty with genericity
issues for curl eigenfields is that the “space of all eigenfields” on a typical Riemannian
three-manifold is a “discrete” space and is not amenable to perturbations. Our idea in
formulating a well-defined genericity statement is to use the geometry of the domain
as a parameter.

Main Theorem: For a generic set of Cr Riemannian metrics on T 3 := R
3/Z3 (for each 2 ≤

r <∞), all of the curl-eigenfield solutions to the Euler equations (with nonzero eigenvalue) are
linearly hydrodynamically unstable in energy norm.

Certainly, one would prefer results about a fixed metric, preferably the Euclidean one
in which we appear to reside. However, the machinery we develop to prove generic-
ity with regard to geometry of the domain — the transversality theory coupled with
contact homology — is the genuine contribution of the paper. Our proofs should carry
over to parameter spaces which are physically more realistic, such as the shape of the
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boundary of a fluid container. We have chosen to use the Riemannian structure as a pa-
rameter space in order to minimize the analytic details required and boil the problem
down to its topological essence.

Here and throughout the paper, the term generic is interchangeable with the term resid-
ual: a subset A ⊂ X is residual if it is a countable intersection of open dense subsets of
X. All of the function spaces dealt with in this paper (spaces of vector fields, etc.) are
Baire spaces, implying that residual subsets are dense, though not necessarily open.
We use the language and notations of differential forms throughout the paper: d de-
notes the exterior derivative, ι denotes contraction, ∗ denotes the Hodge-star operator,
δ := ∗d∗ is a codifferential, and ∆ := dδ + δd is the Laplacian.

Given the recent excellent surveys on the intricacies of the instability problem [12, 14],
there is little need to reintroduce the perspectives in detail. In brief, a vector field u is a
solution to the steady Euler equations if

(1.1) (u · ∇)u = −∇p ; ∇ · u = 0,

for some real-valued pressure function p. Given such a solution, u is said to be linearly
stable if, for every sufficiently small divergence-free field v(0), the evolution of v(t)
under the linearized Euler equation about u,

(1.2)
∂v

∂t
+ (u · ∇)v + (v · ∇)u = −∇p,

is bounded in some predetermined norm. For the remainder of this work, we will,
following [12, 13], use the energy (L2) norm on vector fields. The solution u is said
to be linearly unstable if, for some v(0), the solution v(t) has unbounded growth in the
chosen norm.

Thanks to an insight of Arnold and the analysis of Friedlander-Vishik [13] (who used
the technique developed by Lifshitz-Hameiri [21]), it is now known that the underly-
ing dynamics of the flowlines of the steady solution u can force linear instability. In
particular, we rely on the following:

Instability Criterion: [13, 21] The presence of a nondegenerate periodic orbit of hyperbolic
(saddle) type in a steady Euler flow induces linear instability in the energy norm.

The outline of the proof of the Main Theorem is as follows: First, we show that for
a generic metric, all of the fixed points of all the curl-eigenfields in that metric are
nondegenerate. Any nondegenerate fixed point is immediately of saddle type (since
the flow is divergence-free) and thus forces instability. This, then, provides a quick
proof of generic instability for invariant flow domains such as S2 × [0, 1] which are
forced to have fixed points on the boundaries.

Most flow domains, however, have vanishing Euler characteristic and thus admit flows
without fixed points. The crux of the difficulty is determining when an eigenfield with-
out fixed points possesses a saddle type periodic orbit. We show that in the absence
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of fixed points, all of the periodic orbits are generically nondegenerate. But how does
one determine if periodic orbits exist and are of saddle type? To answer this last, most
difficult question, we turn to contact topological methods, including the recently an-
nounced contact homology of Eliashberg, Givental, and Hofer [7]. See Appendix A for an
introduction to contact homology and [8, 15] for an introduction to contact topological
techniques in fluid dynamics.

We restrict attention in this work to R
3 with periodic boundary conditions: the three-

torus T 3. The sole impediment to applying the proof to arbitrary three-dimensional
domains is the computation of the contact homology. For domains with boundary
which admit a nonvanishing vector field (such as a solid torus), the techniques of [9]
should suffice to adapt the proofs to this setting.

The Instability Criterion exists in a slightly more general form: a non-periodic orbit
having a positive Lyapunov exponent is sufficiently expanding to push through the
analysis. We have chosen to focus on instances of strict recurrence (fixed points and
periodic orbits). It is likely that a more ergodic-theoretic approach to generic instability
would yield stronger results.

Our results would be more physically relevant by considering a bounded domain and
changing the genericity parameter to be the shape of the boundary (the space of em-
beddings of the boundary into a fixed Euclidean space). The machinery of our proofs
translated effortlessly to this setting, the only difficulty lying in the applicability of the
transversality results to this parameter space. That these spaces are sufficiently large is
asserted without proof in [24] and explored in [17] in the context of eigenfunctions of
the Laplace operator.

2. GENERIC EIGENFIELDS

This section presents the basic notation and definitions, then continues with the prin-
cipal technical lemmas.

2.1. Curl eigenfields. We begin with the class of curl eigenfield solutions to the Euler
equations on a compact boundaryless three-manifoldM with Riemannian metric g and
volume form µ (assumed to be the volume form derived from g for simplicity — this
is not entirely necessary [8]). The vector field u is a curl eigenfield of eigenvalue λ iff

(2.1) λµ(u, ·, ·) = d(g(u, ·)),

or, in forms notation, if ∗dα = λα, where α := ιug is the dual 1-form to u and ∗d is the
curl operator on 1-forms. See [3] for the notation used in geometric fluid dynamics on
Riemannian manifolds.

A Beltrami field on M is defined to be a volume-preserving vector field u whose curl is
parallel to u: in other words, fιuµ = d(ιug) for some map f : M → R. It is a well-
known fact that f is an integral for the flow of u: its values are fixed along orbits of
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u. Thus, in the case when f is not constant on open sets, the flowlines are restricted to
invariant 2-tori almost everywhere. This is a very restrictive assumption, and is in fact
not globally possible on most (e.g., hyperbolic) 3-manifolds. For a typical Riemannian
manifold (e.g., one without too many symmetries), the moduli space of curl eigenfields
is discrete (since the curl squared is essentially the Laplacian operator and thus pos-
sesses discrete spectrum). The class of Beltrami fields can be significantly larger in the
case where the dynamics is integrable.

The Instability Criterion requires some expanding dynamics within the flow, the sim-
plest examples of which are fixed points and periodic orbits which are nondegenerate
and of saddle-type. A nondegenerate fixed point is one whose eigenvalues are all
nonzero. A nondegenerate periodic orbit for a Hamiltonian flow is defined to be one
whose Floquet multipliers (eigenvalues of the linearized return map to a cross-section
of the orbit) are not equal to one.

2.2. Reeb fields. Our analysis of curl-eigenfields is strongly rooted in methods de-
rived from contact geometry. For an introduction to contact geometry, see [1, Ch. 8].
In brief, a contact form on a 3-manifold M is a 1-form α ∈ Ω1(M) such that α ∧ dα is
nowhere vanishing. A contact structure onM is a smooth plane field onM which is (lo-
cally) the kernel of a contact 1-form. Two fundamental examples of contact structures
are the kernel of dz + x dy on R

3 and also the plane field orthogonal to the fibers of the
Hopf fibration of the unit S3 in Euclidean R

4.

To every contact form α is associated a unique vector field, called the Reeb field, which
captures the geometry of the 1-form in the directions transverse to the contact structure.
The Reeb field of α, denotedX, is defined implicitly via the two conditions:

(2.2) dα(X, ·) = 0 ; α(X) = 1.

The dynamics of the Reeb field, together with the geometry of the contact structure,
suffice to reconstruct the contact 1-form.

Contact geometry enters fluid dynamics via the following results [8]. For every nonva-
nishing curl eigenfield u on (M3, g) with eigenvalue λ 6= 0, the dual 1-form α := ιug is
a contact 1-form since α∧dα = λα∧∗α 6= 0. Furthermore, the Reeb field of α is a rescal-
ing of u. Conversely, for each contact form α, there is a natural adapted Riemannian
metric making the Reeb field an eigenfield of the curl operator in that metric:

(2.3) g(v,w) := (α(v) ⊗ α(w)) + dα(v, Jw),

where J is any almost-complex structure on ξ = kerα (a bundle isomorphism J : ξ → ξ

satisfying J2 = −ID) adapted to dα.

The more general version of this correspondence theorem can be used to understand
the existence and qualitative behavior of steady solutions to the Euler equations [8, 9,
10]. For example, by exploiting the flexibility of contact forms, one can construct steady
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Euler flows on a 3-d Riemannian ball which possesses periodic flowlines exhibiting all
knot and link types [10].

Our strategy for the remainder of the paper is first to attack the case of curl-eigenfields
with fixed points using simple genericity results. The remaining case concerns (rescal-
ings of) Reeb fields for contact forms. We will use contact-topological methods in this
last case. These topological methods also require a certain degree of nondegeneracy,
and thus necessitate genericity statements.

2.3. Genericity theorems. The following technical result provides the basis for the in-
stability theorem.

Theorem 2.1. For generic choice of Cr metric (for each 2 ≤ r <∞), all of the curl-eigenfields
on a compact three-manifold M with non-zero eigenvalue have all fixed points nondegenerate.
In addition, if any eigenfield does not possess any fixed points, then all its periodic orbits are
nondegenerate.

The proof will be detailed through a series of lemmas. The first two lemmas establish
that generically all non-zero eigenvalues are simple and eigenfields are transverse to
the zero section. We adapt Uhlenbeck’s techniques [24] to our situation with two major
modifications: (1) we work with vector fields rather than functions; (2) we use the curl
operator rather than the Laplacian. Moreover, to simplify the analysis we consider the
dual situation by regarding the curl operator as ∇× := ∗d on the space of 1-forms
instead of on vector fields. Denote the space of Riemannian metrics on M by G and let

(2.4) E0 := {(g, α) ∈ G × Ω1(M) : δα = 0},

and

(2.5) E := ker(∗d|E0
)⊥.

Note E is a bundle over G and the operator ∗d is a fibrewise map. From the Hodge
theorem we know E = G × δdΩ1 and that ∗d : E → E is a bundle isomorphism. Now
let S := {(g, α) ∈ E : ‖α‖2 = 1} and consider

(2.6) φ : S × R → E ; φ(g, α, λ) := (g, ∗dα − λα) ,

so that the inverse image of the zero section gives the curl eigenforms. This is (fibre-
wise) an index zero Fredholm operator to which the transversality theory detailed in
[24] applies. (Though the details are not important, as our operator is elliptic, we will
use an appropriate Sobolev completion on the fibers of E and Hölder norms on G.)

Lemma 2.2. For each r ≥ 1, there exists a residual set in the space of Cr metrics on a closed
M3 such that the eigenspaces of the curl operator (with non-zero eigenvalue) are 1-dimensional
and vary smoothly with the metric.
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Proof: We will show that the zero-section 0 of E is a regular value of φ. In this case,
following [24], Q := φ−1(0) is a manifold that fibers over G with projection π. A Gδ-
dense set of metrics will be regular values of π and, for these values, Qg = π−1(g) =
φ−1

g (0) is a 0-dimensional manifold (here φg = φ|π−1(g)). For each point (α, λ) in Qg we
have ∗dα = λα. This λ is a simple eigenvalue of curl since 0 is a regular value of φ (cf.
[24, Lemma 2.3]). The eigendecompositions vary smoothly since Q is a manifold. The
smoothness condition is required for the application of the Sard-Smale theorem: see
[24, p. 1061].

In order to check that 0 is a regular value of φ, we fix (g, α, λ) ∈ Q and consider γ
orthogonal to the image of Dφ. Thus for any (h, β, s) ∈ T(g,α,λ)(S × R) we have

(2.7)
〈

∗dβ − λβ + sα+
[

DGφ(g,α,λ)

]

(h), γ
〉

= 0,

where differentiation along the direction of G is denoted [DGφ(g,α,λ)] (this is denoted
D2 in [24]). Thus γ is orthogonal to α (and so can be thought of as an element of
TαS). Moreover, 〈β, ∗dγ − λγ〉 = 0 for all β ∈ TαS. Thus taking β = ∗dγ − λγ we
see that ∗dγ − λγ = 0. (Note 〈∗dγ − λγ, α〉 = 〈∗dγ, α〉 = 〈γ, ∗dα〉 = λ〈γ, α〉 = 0 so
∗dγ − λγ ∈ TαS.) Hence γ is an eigenform for ∗d. Using 〈[DGφ(g,α,λ)](h), γ〉 = 0 one
may easily show that γ must vanish in the neighborhood of some point, then unique
continuation implies γ = 0. (Alternately one could show γ vanishes away from the
zeros of α and then use continuity of γ.) �

For such a metric, then, one can unambiguously designate the ith eigenfield of curl, for
i ∈ N.

Corollary 2.3. Given any continuous β ∈ Eα there is an h such that (h, β, 0) ∈ T(g,α,λ)Q.

Proof: Choose any tangent vector (h, β, 0) ∈ T(g,α,λ)Q. Being constrained to the tangent
space implies that

(2.8) ∗dβ − λβ +
[

DGφ(g,α,λ)

]

(h) = 0.

From Lemma 2.2 we know that DGφ is onto continuous 1-forms (in E). Therefore,
given any β, we can choose a tangent perturbation h to the space of metrics such that
[DGφ](hi) = λβi − ∗dβi, thus solving Equation (2.8). �

Lemma 2.4. There is aGδ dense subset of Cr metrics in G (r ≥ 2) for which all curl eigenfields
with non-zero eigenvalues have all fixed points nondegenerate.

Proof: Following [24], consider

(2.9) ψ : Q×M → T ∗M ; ψ(g, α, λ, x) := α(x).

As in the proof of Lemma 2.2, it suffices to show that the zero-section 0 is a regular
value of ψ. The smoothness condition is required for the application of the second
transversailty theorem of [24, p. 1061] (cf. proof of Theorem 2, p. 1067). Consider an
arbitrary point (g, α, λ) ∈ Q and denote by DQψ the derivative of ψ at this point along
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Q. For (g, α, λ, x) ∈ Q×M , it is clearly seen that [DQψ](h, β, 0, 0) = β(x). Corollary 2.3
then implies that the derivative DQψ is onto. �

Lemma 2.5. For each i ∈ Z − {0} and each positive integer T , there exists an open dense set
of metrics in G so that, if the ith eigenfield of curl has no fixed points, then all of the periodic
orbits of period less than T are nondegenerate.

Proof: The set of generic (in the sense of Lemma 2.2) metrics in G which have no fixed

points for the ith eigenfield is open, so work in this set, denoted G̃i. Choose any metric

g ∈ G̃i and let Ũ i
g denote a sufficiently small neighborhood of g in G̃i. Let u denote

the ith curl eigenfield of g, and Og the slice of Q through (g, u, λ) lying above Ũ i
g. All

Beltrami fields near u are in Og. Since there are no fixed points of u, the g-dual 1-form

α := ιug is a contact form whose Reeb field is a rescaling of u by 1/ ‖u‖2. Note that
rescalings are irrelevant since nondegeneracy is a topological property of the flowlines

of a vector field. The map (g, u, λ) 7→ (α = ιug, ‖u‖
2 , J) is a continuous invertible map

(where J is the almost complex structure on the contact structure discussed above)
from Og to an open set U . Projecting U to the first factor we obtain an open set Uα of
contact 1-forms near α.

We show there is a dense open set in Uα containing 1-forms with nondegenerate Reeb
vector fields. Then the inverse image of this set will be open and dense in U , which

leads to an open dense subset of Ũ i
g as desired.

Let α′ be a contact 1-form in Uα. Gray’s theorem (see, e.g., [1, p. 169-171]) says that the
perturbed contact structure α′ can be deformed through a contact isotopy to the contact
structure for α. Thus, α′ can be deformed to a 1-form which is a near-identity rescaling
of α. From the proof of Gray’s Theorem (using the Moser method in particular), this
isotopy is smooth with respect to α′ — the entire neighborhood of 1-forms near α can
be contact-isotoped to near-identity rescalings of α.

Fixing the family of contact isotopies, there is an induced continuous map Φ from Uα

to Ck(M) which returns this well-defined scaling function for the ith eigenfield of the
domain. From results of C. Robinson [22, Thm. 1.B.iv] and Hofer et al. [19, Prop. 6.1],
it follows that there is an open dense set of near-identity rescaling functions f such that
the Reeb field for fα has all periodic orbits of period < T nondegenerate.

It remains to show that the Φ-inverse image of this open dense set is an open dense
subset of Uα. Since Φ is continuous, the inverse image is open. One may easily show
denseness by observing that if Φ(α′)α = φ∗α′ does not have the desired property then
there are functions fj arbitrarily close to f = Φ(α′) such that fjα does have the desired
property and

(2.10) (φ−1)∗(fjα) =
fj ◦ φ

−1

f ◦ φ−1
α′

approximates α′. �
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Proof of Theorem 2.1: Take the intersection of the residual sets of metrics from Lemma 2.2,
Lemma 2.4, and Lemma 2.5 over all i and T ∈ N. This intersection has the desired
properties. �

3. CONTACT HOMOLOGY

One of the central problems in the topology of contact structures is the classification
problem: given contact structures ξ and ξ′ on M , is there a isotopy of M which takes
ξ to ξ′? In dimension 3 this problem was greatly clarified by dividing the set of con-
tact structures into two mutually exclusive types: tight and overtwisted structures (for
definitions, see [1, p. 192]). A theorem of Eliashberg [6] states that the overtwisted
structures are classified by the homotopy type of the plane field, and thus are easily
distinguished. This is decidedly not the case for the tight structures, whose classifica-
tion is a subtle and challenging problem.

To this end, Eliashberg, Givental, and Hofer have announced a powerful new homol-
ogy theory for contact structures which uses periodic orbits of an associated nonde-
generate Reeb field as the chains, a (shifted) Conley-Zehnder index as the grading,
and pseudoholomorphic curves in the symplectization of the contact manifold as the
mechanism for a boundary operator [7]. Very recently, the foundations of this contact
homology have been given a rigorous footing in the thesis of Bourgeois [5].

For the interested reader, we provide a brief sketch of the ideas behind contact homol-
ogy in an Appendix. For readers who are not concerned with the particulars of the
theory, we will frame the remainder of the paper in such a manner that the contact
homology is a “black box” which counts periodic orbits.

A little terminology will suffice. Contact homology is an invariant for a contact struc-
ture ξ. Recall that any homology theory is a way of counting equivalence classes of
certain chains. In contact homology, chains are generated by periodic orbits of Reeb
fields. More specifically, an element [c] of the contact homology CH∗(ξ) is an equiva-
lence class of periodic orbits of any nondegenerate Reeb field associated to ξ. To each
such element [c] ∈ CH∗(ξ) is associated its grading, |c|, an integer which determines
whether the periodic orbits are of hyperbolic type (|c| is odd) or elliptic type (|c| is
even).

The salient feature of contact homology is this: any element of CH(ξ) with odd grad-
ing forces the existence of hyperbolic periodic orbits in all nondegenerate Reeb fields
associated to ξ.

There are a few variants of contact homology which will prove useful in our argu-
ments. One can consider the contractible contact homology CH0(ξ) whose chain groups
are generated by contractible periodic orbits. Both CH(ξ) and CH0(ξ) are, in general,
very difficult to compute. It is frequently easier to compute a version known as the
cylindrical contact homology, CCH(ξ).
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3.1. The 3-torus. Proving the hydrodynamic instability theorem requires knowing the
existence of a periodic orbit of saddle-type for all non-degenerate Reeb fields on T 3. A
deep theorem of Hofer [18] guarantees that any Reeb field for an overtwisted contact
structure possesses a closed orbit of grading +1; thus, we need merely cover the case
of the tight contact structures. For T 3, these are fortunately classified [16, 20]: there is
an infinite family of isomorphism classes represented by

(3.1) ξk := ker (sin(kz)dx+ cos(kz)dy) ,

for k ∈ Z − {0}. The following contact homology argument is the crucial step in the
instability proof:

Lemma 3.1. For a nondegenerate Reeb field associated to any tight contact structure on T 3,
there is always at least one hyperbolic periodic orbit.

Proof. We begin with an explicit cylindrical homology computation which controls the
grading of orbits. For any generic rescaling of the forms in Eqn. (3.1) for which cylindri-
cal contact homology is well-defined, Bourgeois [5] has shown that CCHA(ξk) is non-
trivial in grading −1, whereA is, say, the homology class given by {(x, y, z) : y = 0, z =
0}. Thus there must be hyperbolic periodic orbits whenever the cylindrical contact ho-
mology is well defined. If the cylindrical contact homology is not well-defined then
there must be contractible periodic orbits with grading either −1, 0 or 1 via Proposi-
tion A.2. If the gradings are 1 or −1 then there exists a contractible hyperbolic periodic
orbit.

In the case that the grading is 0, we turn to the full contact homology. by using the
Bott-Morse perturbation technique of [5], one shows that there are no contractible pe-
riodic orbits for nondegenerate contact forms close to those of Eqn. (3.1). Hence, the
contractible contact homology of ξk vanishes. Since, in the case considered, we must
have a contractible periodic orbit with grading zero, the chain complex for CH0(ξk)
possesses an element [c] with |c| = 0. Therefore, there must exist a nontrivial chain
with odd grading which prevents a nonzero cycle in the contact homology. This im-
plied chain is the desired hyperbolic orbit. �

3.2. Proof of main theorem.

Theorem 3.2. For generic choice of Cr metric (2 ≤ r < ∞), all of the curl-eigenfields on a
three-torus T 3 (with nonzero eigenvalue) are hydrodynamically unstable.

Proof: First, use Theorem 2.1 to reduce everything to either nondegenerate fixed points
or periodic orbits. Given such a field u, if it possesses a fixed point, then it is immedi-
ately of saddle type due to volume conservation and satisfies the Instability Criterion.
If the field is free of fixed points, then it is (after a suitable rescaling which preserves
the topology of the flowlines) a Reeb field for the contact form α := ιug. If the con-
tact structure ξ = kerα is overtwisted, Hofer’s theorem [18] implies the existence of a
periodic orbit with grading +1. The nondegeneracy implies that the orbit is of saddle
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type and hence forces hydrodynamic instability. In the final case where ξ is tight, the
contact homology computation of Lemma 3.1 implies instability. �

4. CONCLUSIONS AND QUESTIONS

Several drawbacks of our methods are clear. The topological definition of residual is
less satisfactory than related measure-theoretic notions: a more statistical result would
be an improvement. Likewise, the Friedlander-Vishik criterion informs only about lin-
ear stability: one would prefer hard results on nonlinear stability. With these weaker
notions, however, we have demonstrated that the problem can be reduced to a topo-
logical question.

We wish to highlight two positive features of our techniques:

(1) Our methods are fully three-dimensional and global. We do not assume any
symmetry. We do not perturb off of an integrable system.

(2) Our results comprise, to our knowledge, the first application of contact homol-
ogy outside of the study of contact structures.

With the exception of the contact homology computation for the class of tight contact
structures on T 3, the methods used to prove generic instability are applicable to any
closed three-manifold, as well as to compact three-manifolds with invariant bound-
aries (e.g., the solid torus). On a few sufficiently simple three-manifolds (spheres, lens
spaces), it is possible to construct explicit nondegenerate curl eigenfields which do not
possess hyperbolic periodic orbits. It remains unclear whether these fields are hydro-
dynamically unstable.

Besides the curl eigenfields, there are two other classes of steady solutions to the Euler
equation. There are the Beltrami fields, for which ∇ × u = fu for some f : M → R. It
is well-known that in this case f is an integral of motion: Luf = 0. Likewise, all other
steady solutions satisfy u × (∇ × u) = −∇(H) for some H : M → R, which is again
an integral of motion. In the case of a real-analytic integral, the flow domain is filled
almost everywhere with invariant 2-tori [2].

As we have shown, the curl eigenfield solutions to the Euler equations are geometrically
persistent — they occur in families parameterized over a residual set of metrics. It is an
extremely interesting problem to decide which other solutions to the Euler equations
(or, indeed, behaviors of solutions) are geometrically persistent. We are inclined to
believe, based on the integrability restrictions cited above, that the more general class
of Beltrami fields are not geometrically persistent.

Question 4.1. Are there any other steady solutions to the Euler equations which can be
parameterized (locally) over a generic set of metrics?
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The viable candidates for integrable fields which are not hydrodynamically unstable
are those which possess a great deal of symmetry, e.g., the Hopf flow (unit flow along
the fibers of the Hopf fibration on the unit 3-sphere in Euclidean R

4).

Question 4.2. Is the Hopf flow on the round S3 linearly unstable?

APPENDIX A. INTRODUCTION TO CONTACT HOMOLOGY

Contact homology is an invariant that counts periodic orbits in a Reeb field for a contact
structure ξ. We will frame our discussion via an analogy with the more familiar Morse
homology.

Recall that the Morse homology of a compact manifold M begins with a choice of func-
tion f : M → R. The Morse homology counts the number and type of fixed points of
the gradient vector field X = −∇(f). It is necessary to assume that f is chosen so that
these fixed points are all nondegenerate (i.e., that f is Morse). One defines a grading on
these fixed points — the Morse index is the dimension of the unstable manifold. This
yields a collection of chain groups, Cn(M,f), which has all the fixed points of Morse
index n as generators. The tricky part of this homology theory is to define a boundary
operator ∂ : Cn → Cn−1 which satisfies ∂ ◦ ∂ = 0. For any fixed point p ∈ Cn, ∂(p) is
a linear combination of points qi ∈ Cn−1 whose stable manifolds intersect the unstable
manifold of p in a heteroclinic connection. By assigning the proper orientation to the
stable and unstable manifolds, one gets ∂ ◦ ∂ = 0. The homology of the resulting chain
complex,MH∗(M,f), is well-defined and can be shown to be independent of f ; in fact,
the Morse homology is isomorphic to the homology of M . See Figure 1.

Contact homology begins in a similar manner. Fix a contact structure ξ on M3 and
choose a contact 1-form α for ξ. Any two 1-forms α and α′ with ξ as kernel are related
by α′ = fα for some f : M → R

+; this choice of α is analogous to the choice of a
Morse function. The appropriate vector field to examine is the Reeb field X, and the
appropriate invariant sets are the periodic orbits. It can be shown [19] that for a generic
choice of α, all the periodic orbits of X are nondegenerate. Let C be the set of periodic
orbits for the flow of X.

To each periodic orbit c ∈ C, a grading, |c|, can be assigned using a shifted Conley-
Zehnder index — an integer which is approximately equal to the number of half-twists
the linearized flow performs along one cycle. When |c| is odd, the nondegenerate peri-
odic orbit is of hyperbolic type; when |c| is even, the nondegenerate orbit is of elliptic
type. For a rigorous treatment of the Conley-Zehnder index see, e.g., [18]. Defining the
analogue of chain groups in this case requires a more intricate algebraic structure. One
defines the graded algebra A to be the free super-commutative unital algebra over Z2

with generating set C.

The boundary operator in contact homology is not unlike that in Morse homology: the
idea is to count something that connects one periodic orbit to others. The ‘heteroclinic’
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a

a′

b

b′

c c′

FIGURE 1. An example of Morse homology on a 2-sphere. Here, the
function f : S2 → R is assumed to be height. The critical points and
connecting orbits are shown. The chain groups and boundary maps
are:

Za ⊕ Za′

»

1 1

0 0

–

−→ Zb ⊕ Zb′

»

0 1

0 1

–

−→ Zc ⊕ Zc′

objects one counts are certain punctured surfaces in M × R. The key to using surfaces
to capture information about the periodic orbits of X is to place a type of complex
multiplication onM×R which is adapted toX and ξ and to embed punctured Riemann
surfaces by a map which is holomorphic with respect to the complex geometry.

Specifically, the symplectization of (M, ξ) is the four-manifoldW = M×R with symplec-
tic form ω := d(etα), where t denotes the R coordinate. One equips W with an almost
complex structure J : TW → TW by observing that T(x,t)W = ξx ⊕ R〈X〉 ⊕ R〈 ∂

∂t
〉, and

by defining J on ξ to be any complex structure on ξ compatible with dα|ξ and to send

X to ∂
∂t

. This choice of J entwines the dynamics ofX with the t-direction. See Figure 2.
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ξ

X

∂
∂t

FIGURE 2. The effect of the almost-complex multiplication in T (M ×R)
is to rotate in the contact plane ξ according to a symplectic basis for dα
and to rotate the Reeb direction into the symplectization direction ∂/∂t.

Holomorphic curves in W are maps ϕ : Σ → W from a Riemann surface (Σ, j) to W

such that dϕ ◦ j = J ◦ dϕ. It is a fact that there are no compact Riemann surfaces
in W ; one must introduce punctures [18]. If Σ is a punctured Riemann surface, the
energy of Σ is defined to be

∫

Σ ϕ
∗(dα). This energy measures how much of the surface

is “visible” to the contact planes (where dα is an area form). If ϕ = (w, h) : Σ →
M × R has finite energy then any (non-removable) punctures can be shown to possess
a neighborhood parametrized by {(θ, τ) : θ ∈ S1 and τ ∈ [0,∞)} such that limτ→∞ h

approaches ±∞ and limτ→∞w(θ, τ) approaches a parametrization of a periodic orbit γ
for X. The intuition behind this is that if a surface has finite energy, then in the limit as
t→ ±∞, the surface must be orthogonal to the contact planes, and thus tangent to the

(X, ∂
∂t

) planes: see Figure 3. One calls a puncture positive (negative) if h approaches ∞
(−∞) as τ → ∞. For more information on finite energy holomorphic curves and their
asymptotics see [4].

Given periodic orbits a, b1, . . . , bk ∈ C, let Ma
b1...bk

denote the set of finite energy holo-
morphic curves in W that are conformally punctured spheres, with one positive punc-
ture asymptotic to a and negative punctures asymptotic to b1, . . . , bk,modulo holomor-
phic reparametrization. Such curves are the analogues of heteroclinic connections from
one fixed point of a gradient field. Note: since J is R-invariant, there is an R-action on
M. One now defines

(A.1) ∂a =
∑

(

#Ma
b1...bk

/R
)

b1 . . . bk,

where the sum is taken over all b1, . . . bk such that the dimension of Ma
b1...bk

is 1.

Proposition A.1. [5, 7] The differential ∂ lowers the grading by 1. For a generic contact 1-
form (and almost complex structure) ∂2 = 0 and the homology of (A, ∂) is independent of the
contact form chosen for ξ (and the almost complex structure).

The homology of (A, ∂) is called the contact homology of (M, ξ) and is denoted CH(ξ).
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ξ

ϕ(Σ)

M

W = M × R

a

b1

b2

∂
∂t

FIGURE 3. A finite energy J-holomorphic map ϕ from a punctured sur-
face Σ into the symplectization W = M × R has punctures limiting to
cylinders over periodic orbits of the Reeb field as t → ±∞. The bound-
ary of a periodic orbit a is defined by counting all such surfaces which
limit to a as t→ +∞ and recording the limiting orbits {bi} as t→ −∞.

It is in general difficult to find all holomorphic curves in W and hence to compute
the contact homology. There are several more restricted variants that allow for easier
computation.
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One such simplification is the contractible contact homology CH0(ξ) whose chains are
A[0], the sub-algebra generated by contractible periodic orbits. The contractible con-
tact homology is also well defined for generic contact forms. Under some circum-
stances, a similar restriction can be obtained by fixing a homology class of curves in
M . Specifically if there are no contractible periodic orbits one may define the cylindri-
cal contact homology as follows. Given A an element in the first homology ofM , one lets
CA = {c ∈ C|[c] = A ∈ H1(M)} and defines AA to be the sub-algebra of A generated
by CA. The boundary map is defined on AA by counting only holomorphic cylinders
Σ = S1 × R.

Proposition A.2. [5, 25] The cylindrical contact homology CCHA(ξ) is well-defined and
independent of the contact form used so long as there are no contractible periodic orbits with
grading −1, 0 or 1.
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