
KNOTS AND CONTACT GEOMETRY I:

TORUS KNOTS AND THE FIGURE EIGHT KNOT

JOHN B. ETNYRE AND KO HONDA

Abstract. We classify Legendrian torus knots and Legendrian �gure
eight knots in the tight contact structure on S3 up to Legendrian isotopy.
As a corollary to this we also obtain the classi�cation of transversal torus
knots and transversal �gure eight knots up to transversal isotopy.

1. Introduction

There have recently been several breakthroughs concerning the classi�-
cation of tight contact structures on 3-manifolds [Gi3, H1, H2, EH]. The
main ingredient in all these advances is the theory of convex surfaces, due
to Giroux [Gi1]. Convexity enables us to understand neighborhoods of sur-
faces very well and, more surprisingly, relate the characteristic foliation on
one surface to the characteristic foliation on another surface that meets it
along a Legendrian curve. Moreover, it reduces the study of characteristic
foliations on a surface | often quite delicate | to the study of multi curves
on a surface. These dividing curves turn out to be more 
exible and robust.
In this paper the authors introduce the tools from convex surface theory to

the study of Legendrian and transversal knots in the standard tight contact
structure on S3: Legendrian and transversal knots have played an impor-
tant role in distinguishing tight contact structures [K1, LM1] and detecting
overtwisted contact structures [Be, EH]. Moreover, important topological
properties can be detected using Legendrian knots. Speci�cally, Rudolph
[R] has shown how to use invariants of Legendrian knots in a knot type to
�nd obstructions to slicing this knot type. This has been generalized by
Lisca and Mati�c [LM2] and Kronheimer and Mrowka [KM] to �nd bounds
on the slice genus of a knot.
Recently there has been some progress in the classi�cation of transversal

knots. Eliashberg [E3] had previously shown that transversal unknots are
determined by their self-linking number (the only classical invariant), and,
for a few years, this was the only knot type for which a transversal clas-
si�cation existed. Then, in 1998, Etnyre [Et] classi�ed positive transversal
torus knots by showing their knot type and self-linking number determine
the transversal isotopy class. More recently, Birman and Wrinkle [BW] ex-
tended Etnyre's results to transversal iterated torus knots, using a di�erent
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approach | namely, the study of braid foliations and the work of Menasco
[Men] on iterated torus knots. Until now, however, the only classi�cation
result for Legendrian knots was the classi�cation of Legendrian unknots by
Eliashberg and Fraser [EF]. Eliashberg and Fraser had proved that, for Leg-
endrian unknots, the classical invariants (the Thurston-Bennequin invariant
and the rotation number) determine the Legendrian isotopy type. In this
paper we prove:

Theorem. Two oriented Legendrian torus knots are Legendrian isotopic if
and only if their Thurston-Bennequin invariants, rotation numbers and knot
types agree.

We also �nd the range of the classical invariants for Legendrian torus knots,
thus �nishing the classi�cation. In particular we show that, for a negative
(p;�q)-torus knot K with p > q > 0,

tb(K) � �pq:

The classical Bennequin inequality only gives

tb(K) � pq � p� q;

while the bounds discovered by Fuchs and Tabachnikov [FT, Ta] give

tb(K) � �pq

if q is even but only
tb(K) � �pq + p� q

when q is odd. We thank Fuchs for informing us of the computations of
these bounds in the dissertation [Ep] of one of his students. Thus we give
the �rst class of knots | the (p;�q)-torus knots with q odd | for which all
known bounds on the Thurston-Bennequin invariant are not sharp.
As a corollary of the above theorem, we obtain a special case of the

Birman-Wrinkle-Menasco result:

Theorem. Two transversal torus knots are transversally isotopic if and only
if their self-linking numbers and knots types agree.

We also prove:

Theorem. Two oriented Legendrian �gure eight knots are Legendrian iso-
topic if and only if their Thurston-Bennequin invariants and rotation num-
bers agree.

We complete our classi�cation by identifying the range of the Thurston-
Bennequin invariant and rotation number for Legendrian �gure eight knots.
We then obtain the classi�cation of transversal �gure eight knots as a corol-
lary.

Theorem. Two transversal �gure eight knots are transversally isotopic if
and only if their self-linking numbers agree.

Continuing our line of inquiry, an open-ended question is:

Question 1. Which transversal and Legendrian knots are determined by
their classical invariants?
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It is known that, at least for Legendrian knots, the answer is not `all knot
types'. Using the powerful new invariants of contact homology, Hofer and
Eliashberg and (independently) Chekanov [C] found Legendrian knots whose
classical invariants agree but are not Legendrian isotopic. It is interesting to
note that the knot type Chekanov uses is the �rst knot type in the standard
knot tables (e.g. [Ro]) not covered by one of the above theorems! For
transverse knots, the authors do not know whether there exist transversal
knots which are not distinguished by their classical invariants.

2. Basic contact geometry

Recall a contact structure on a 3-manifoldM is a maximally nonintegrable
plane �eld �: Throughout this paper we assume our contact structures are
transversely oriented and thus can be globally given as the kernel of a 1-form
� where � ^ d� 6= 0: Moreover we always orient M by � ^ d�:
If � is a surface inM then �\T� is a singular line �eld on � and may be

integrated to a singular foliation �� called the characteristic foliation. The
singularities may be assumed to be either elliptic or hyperbolic (depending
on the local degree of the foliation) and if � is oriented then they also
have a sign determined by the compatibility of the orientations of � and
T� at the singularities. There are many standard ways to manipulate the
characteristic foliation | for details see [A, Gi1, EF]. We also recall that
the characteristic foliation determines a contact structure in a neighborhood
of the surface.
A contact structure � is called tight if there are no embedded disks D with

a limit cycle in their characteristic foliation. If � is not tight, then it is called
overtwisted. The standard example of a tight contact structure is given by
�0; the complex tangencies to S3 � C 2: This is the unique tight structure
on S3 [E2]. The uniqueness is easily seen using Darboux's Theorem and the
following theorem.

Theorem 2.1 (Eliashberg [E2]). A tight contact structure on the 3-ball is
uniquely determined (up to isotopy) by the characteristic foliation on its
boundary.

In [E2] the group of contactomorphisms was also studied. Fix a point p in
S3 and let Di�0(S

3) be the group of orientation-preserving di�eomorphisms
of S3 that �x the plane �0(p); and let Di��0 be the group of di�eomorphisms
of S3 that preserve �0:

Theorem 2.2 (Eliashberg [E2]). The natural inclusion of

Di��0 ,! Di�0(S
3)

is a weak homotopy equivalence.

2.1. Legendrian Knots. A curve 
 in M is called a Legendrian curve (or
Legendrian knot if 
 is closed) if it is everywhere tangent to the contact
plane �eld �: Suppose 
 is closed. Our prime interest in this paper is the
classi�cation of a Legendrian knot 
 up to isotopy through Legendrian knots.
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This is equivalent to the classi�cation of Legendrian knots up to global
contact isotopies.

Lemma 2.3 (see [E3]). If  t : S
1 !M is a Legendrian isotopy, then there

is a contact isotopy ft : M !M such that ft Æ  0 =  t:

The contact planes � provide a canonical framing of the normal bundle of

. If 
 is null-homologous, then we may use the Seifert surface � to assign
an integer to the canonical framing which we call the Thurston-Bennequin
invariant of 
 and denote by tb(
): If we orient 
, then the oriented unit
tangent vector to 
 will provide a section of �j
 : The Euler class of �j�
relative to this section is called the rotation number of 
 and is denoted
r(
): If 
 is a Legendrian knot in R3 with the standard contact structure
� = ker(dz + xdy), then its projection onto the yz-plane, called the front
projection, will have no vertical tangencies and at each crossing the arc with
the smallest slope will lie over the other arc. See Figure 1. Moreover any

Figure 1. Examples of Legendrian knots in the xy-projection.

knot diagram satisfying these conditions will represent a Legendrian knot.
In this projection it is easy to compute the Thurston-Bennequin invariant
and the rotation number of 
: They are given by

(1) tb(
) = w(
)� rc;

and

(2) r(
) =
1

2
(Dc � Uc);

where w(
) is the writhe of 
; rc is the number of right cusps in the projec-
tion, Dc is the number of downward cusps and Uc is the number of upward
cusps in the projection. In Figure 1, the unknot has tb = �2 and r = �1
and the trefoil has tb = �6 and r = 1. It is an interesting exercise to work
these formulas out or see [Go].
The only result previously known concerning the classi�cation of Legen-

drian knot is due to Eliashberg and Fraser [EF]:

Theorem 2.4. Two oriented Legendrian unknots in a tight contact structure
are Legendrian isotopic if and only if the have the same Thurston-Bennequin
invariant and the same rotation number. Moreover, a complete list of Leg-
endrian unknots is given in Figure 2.
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2s

t

Figure 2. Legendrian unknots with tb = �2s � t and r =
�(t� 1).

We will present a short proof of this theorem in Section 3.5.
Call a knot type K Legendrian simple if (oriented) Legendrian knots in

this knot type are determined by their Thurston-Bennequin invariant and
rotation number. Thus the unknot is Legendrian simple.
The Bennequin inequality

(3) tb(
) + jr(
)j � ��(�)

provides a (non-optimal, see Theorem 4.1) upper bound on the Thurston-
Bennequin invariant of a Legendrian knot. It is easy, however, to decrease
the Thurston-Bennequin invariant. Speci�cally, let 
 be an oriented Legen-
drian knot. We can �nd a contactomorphism from a neighborhood N of 

to M = f(x; y; z) 2 R3y jx

2 + z2 < �g; where R3y is R3 modulo y 7! y + 1
and �0 = fdz + xdy = 0g; and 
 is sent to the image of the y-axis in M .
Now a positive (negative) stabilization of 
; S+(
) (S�(
)) is the curve in N
corresponding to the curve in M shown in Figure 3. From Equations 1 and

S+

S-

Figure 3. Stabilization of Legendrian knots (in yz-projection).

2 it is easy to see that

(4) tb(S�(
)) = tb(
)� 1

and

(5) r(S�(
)) = r(
)� 1:

It is important to notice that S+(
)[
 cobound a disk D for which 
n@D =
S+(
) n @D; 
 \D contains three negative singularities, two elliptic and one
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hyperbolic, and S+(
) \D contains the same two elliptic singularities and
a positive elliptic singularity. See Figure 4. We also observe the following

e- e-

e+

h-

Figure 4. A bypass.

simple lemma (cf. [FT]).

Lemma 2.5. Stabilization is well-de�ned and S+(S�(K)) = S�(S+(K)):

In this paper we use a strategy developed in [Et] (for transversal knots)
to classify various Legendrian knots. Speci�cally:

Strategy 2.6. Given a knot type K,

(1) Classify Legendrian knots realizing K with maximal Thurston-Ben-
nequin invariant.

(2) Show that all Legendrian knots realizing K without maximal Thurston-
Bennequin invariant destabilize (i.e., are stabilizations of other Leg-
endrian knots).

(3) If K and K 0 are Legendrian knots realizing K with maximal Thurston-
Bennequin invariant, then understand the relationship between their
stabilizations.

From Lemma 2.5, if all three steps can be carried out, then we will have
classi�ed Legendrian knots realizing K: Note that if K has a unique Leg-
endrian realization with maximal Thurston-Bennequin invariant (as is the
case with unknots, positive torus knots, and �gure eight knots), then Step
3 is unnecessary.

2.2. Transversal Knots. A knot 
 in a contact manifold (M; �) is called
transversal if it is everywhere transverse to the contact planes. One would
like to classify transversal knots up to isotopy through transversal knots.
The analog to Lemma 2.3 for transversal knots says that this is equivalent
to the classi�cation of transversal knots up to global contact isotopy.
In addition to the topological knot type, (nullhomologous) transversal

knots have one other classical invariant | the self-linking number. If � is
the Seifert surface for the transversal knot 
; then we can �nd a nonzero
section � of �j�: We may use � to push o� a parallel copy 
0 of 
 and then
de�ne the self-linking number of 
 to be

(6) l(
) = 
 � �;
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where � denotes oriented intersection number (i.e., l(
) is just the linking
number of 
 and 
0). Note if � and M are oriented, then 
 has a natural in-
duced orientation. If 
 is a (generic) transversal knot in R3 with the standard
contact structure � = ker(dz+xdy), then its projection onto the yz-plane is
a diagram in which one does not see the diagram segments in Figure 5. To
see this, note that at all but a �nite number of points, where the projection
has vertical tangents, the projected knot can be locally represented by the
graph of a function (y; f(y)): Taking the orientation of the knot into account
we can parametrically represent the knot by (t; f(t)) or (�t; f(�t)): Since
(dz + xdy)( _
) > 0; we know the x-coordinate of the transversal knot must

satisfy x > �df
dt

in the �rst case and x < �df
dt

in the second case. This
clearly rules out the diagram segment on the left-hand side of Figure 5. The
other segments are not allowed since when there is a vertical tangency it
must clearly point in the positive z-direction. We also note that any knot

Figure 5. Diagram segments not allowed in yz-projection
of a transversal knot.

diagram not containing these diagram segments will represent a transversal
knot. This can be easily seen since at any crossing not like the one in Fig-
ure 5 we can �nd appropriate x-coordinates for the knot near the crossing.
In addition, near the vertical tangencies, we can choose any x-coordinate we
like. Now one just has to observe that once the diagram near the crossings
and vertical tangencies has been lifted to R3 it is easy to lift the rest since
one only needs to connect with segments always running in the positive, or
negative, y-direction and can thus choose the x-coordinate to be very posi-
tive or negative. It is also fairly easy to see that any two transversal knots
one constructs from a diagram through this procedure are isotopic through
transversal knots.
In the yz-projection it is easy to compute the self-linking number of 
: It

is given by

(7) l(
) = w(
);

where w(
) is the writhe of 
:
Until recently, the only classi�cation results known for transversal knots

were the following two results:

Theorem 2.7 (Eliashberg [E3]). Two transversal unknots are transversal-
ly isotopic if and only if their self-linking numbers agree. Moreover, the
self-linking numbers of transversal unknots are precisely the negative odd
integers.
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Theorem 2.8 (Etnyre [Et]). Two transversal positive torus knots are trans-
versally isotopic if and only if their self-linking numbers agree and they are
of the same topological knot type. Moreover, the self-linking numbers of a
transversal positive (p; q)-torus knot (p; q > 0) are precisely the odd integers
less than or equal to pq � p� q:

Following Birman and Wrinkle [BW], one says a knot type K is transver-
sally simple if transversal knots in this knot type are determined by their
self-linking number. Recently, using an interesting connection to braid the-
ory, the above theorem was greatly generalized:

Theorem 2.9 (Birman and Wrinkle [BW], Menasco [Men]). Iterated torus
knots are transversally simple.

We recall the de�nition of iterated torus knots. If 
 is any knot, let
N = S1�D2 be a neighborhood of 
 so that S1�fpg; where p 2 @D2; bounds
a Seifert surface in the complement of N: If the integers p and q are relatively
prime, then the homology class p(@D2)+ q(S1�fpg) can be represented by
an embedded closed curve 
(p;q) � @N: The curve 
(p;q) is called the (p; q)-
cable of 
: Any iterated cable of the unknot is called an iterated torus knot.
The above theorem reduces the transversal classi�cation of iterated torus
knots to an existence question, i.e., which self-linking numbers are actually
realized by transversal knots in these knot types. In private communication
with the authors, Birman has �nished the classi�cation by showing that the
possible self-linking numbers for (: : : (
(p1;q1))(p2;q2) : : :)(pn;qn); where 
 is an
unknot, are odd integers less than or equal to ln. Here ln is computed as
follows: Let bn = q1q2 : : : qn; where we use the convention that 0 < qi < jpij;
and set a1 = (q1 � 1)p1 and ai = (qi � 1)pi � ai�1q2i : Then ln = an � bn:
The Bennequin inequality for transversal knots is

(8) l(
) � ��(�);

where � is a Seifert surface for 
: The Bennequin inequality for Legendrian
knots, Equation 3, can be obtained from this inequality as follows: If 
0 is
a Legendrian knot, then we may embed an annulus A = 
0 � [��; �] in a
neighborhood of 
0 so that 
0 is the core, 
0 � f0g; of A and the framing A
induces on 
0 is the same as the one induces by �: Now if A is thin enough we
can assume the characteristic foliation contains 
0 as a closed leaf and the
other leaves are transverse to the boundary and spiral to 
0: Now 
0�f�g is
a positive transversal unknot which we denote T+(


0) and call the positive
transversal push-o� of 
0: Similarly we have the negative transversal push-o�,
T�(
0); of 
0: One can show ([E2])

(9) l(T�(
0)) = tb(
0)� r(
0);

and Equation 3 follows from this and Equation 8.
One can de�ne a notion of stabilization for transversal knots, as we did

for Legendrian one, and use this to develop a strategy to classify transversal
knots. In fact this was used in [Et] to classify transversal positive torus
knots. In this paper we use a di�erent approach originally described to the
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authors by Eliashberg. We begin with a de�nition. Two Legendrian knots 

and 
0 are called stably isotopic if there is some n and n0 such that Sn+(
) and
Sn

0

+ (

0) are Legendrian isotopic. Since tb(
)+ r(
) = tb(S+(
))+ r(S+(
));

a natural invariant of the stable isotopy class of a Legendrian knot is

(10) s(
) = tb(
) + r(
);

which we call the stable Bennequin invariant. We call a knot type K stably
simple if Legendrian knots in this knot type are stably isotopic if and only if
their stable Bennequin invariants agree. Note that we allow ourselves to use
only positive stabilizations in the de�nition of stable isotopy. The reason for
this is twofold: �rst, if we allow negative stabilizations as well, then any two
topologically isotopic Legendrian knots would be stably isotopic (cf. [FT]).
And, second, we have the following:

Theorem 2.10. A knot type K is stably simple if and only if it is transver-
sally simple.

Proof. Begin by assumingK is stably simple. Let 
 and 
0 be two transversal
knots in the knot type K with the same self-linking numbers. Note 
 has
a neighborhood N contactomorphic to f(r; �; z) 2 R2 � S1jr < �g with the
contact structure given by f(� = dz+ r2d�) = 0g: Now, for large integers n;
if Tn are the tori in N with r = 1p

n
, then the characteristic foliation on Tn is

by (�1; n) curves. Let Ln be a leaf in this characteristic foliation. Note Ln
is a Legendrian knot topologically isotopic to 
 and that S+(Ln) = Ln+1.
Note also that if we have some Ln, then we have Lm for all m � n: Thus
from 
 we have a well-de�ned stable isotopy class of Legendrian knot Ln
and from 
0 we similarly get L0n: Now since s(L0n) = l(
0) = l(
) = s(Ln)
we know that there is some m > n and m0 > n0 such that Lm is Legendrian
isotopic to L0m0 : Finally, by observing that T+(Lm) = 
 and T+(L

0
m0) = 
0,

we see that 
 and 
0 are transversally isotopic. Thus K is transversally
simple.
The other implication is proved at the end of the next section as it requires

the theory of convex surfaces developed there. �

3. Convexity in contact geometry

3.1. Contact vector �elds. A vector �eld v is called a contact vector �eld
on a contact manifold (M; �) if the 
ow of v preserves the contact structure �.
A surface � inM is called convex if there is a contact vector �eld transverse
to �. Generically, vj� will be tangent to �j� along curves � that divide �
in a special way. In general, consider F a singular foliation on an orientable
surface � and � a disjoint union of simple closed curves on �: We say �
divides F if � is transverse to F ; � n� is the disjoint union of two (possibly
disconnected) surfaces �+ and �� with @�+ = �@�� = �; and there is a
vector �eld u and volume form ! on � so that u is tangent to F ; �Lu! > 0
on �� and uj� points out of �+: We refer the reader to [Gi1] and [K1] for
proofs of the following facts:
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� Contact vector �elds may be identi�ed with a section of the bundle
TM=�:

� A closed surface may be isotoped by a C1-small isotopy so that it
is convex.

� Let � be a compact orientable surface in the contact manifold (M3; �).
Then � is a convex surface if and only if there is a tubular neighbor-
hood N of � in M that is contactomorphic to (�� (��; �); � + u dt)
taking � to �� f0g, where � is a 1-form on � and u is a function
on � and � > 0.

� Let � be a closed orientable surface. Then � is convex if and only
if there is a dividing set � for ��: (If there is any ambiguity, we
will also write �� instead of � to denote a dividing set of �.) Two
dividing sets � and �0 for the same F are isotopic; hence we will
slightly abuse language and refer to � as `the' dividing set of �.

Let v be a contact vector �eld for (M; �) that is transverse to a surface
� and let � be the dividing curves on �: An isotopy F : �� [0; 1] ! M of
� is called admissible if F (� � ftg) is transversal to v for all t: The major
result concerning convex surfaces says that up to admissible isotopies the
dividing set dictates the geometry of � near �: More speci�cally, we have
the following Flexibility Theorem:

Theorem 3.1 (Giroux [Gi1], Kanda [K2]). Let � be a closed surface or a
surface with Legendrian boundary. Let � be the dividing set for �� and F
another singular foliation on � divided by �: Then there is an admissible
isotopy F of � such that F (��f0g) = �; F (��f1g)� = F and the isotopy
is �xed on �:

Remark 3.2. It is useful to note, and we will frequently implicitly use, that
in a tight structure no dividing curve on a convex closed surface or a convex
surface with Legendrian boundary can bound a disk unless the surface is a
2-sphere. This observation is due to Giroux. For example, see [H1].

A useful formulation of Giroux's Flexibility Theorem above is called the
Legendrian Realization Principle, which is due to Kanda [K2]:

Theorem 3.3 (Legendrian Realization Principle). Consider C, a closed
curve, on a closed convex surface or a convex surface � with Legendrian
boundary. Assume C t �� and every component of � n C nontrivially
intersects �. Then there exists an admissible isotopy Ft = F (�; t), t 2 [0; 1]
so that

(1) F0 = id,
(2) Ft(�) are all convex,
(3) F1(��) = �F1(�),
(4) F1(C) is Legendrian.

If 
 is a closed oriented Legendrian curve in a surface �, then we de�ne
the twist of 
 relative to �, t�(
); to be the twisting of the contact planes
� along 
 measured with respect to the framing induced by �: Note that if
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� is a Seifert surface for 
, then t�(
) = tb(
): We now have the following
useful theorem (cf. [K2] as well as [EF] for the �rst sentence of the theorem):

Theorem 3.4 (Kanda [K2]). If 
 is a Legendrian curve in a surface �; then
� may be isotoped relative to 
 so that it is convex if and only if t�(
) � 0:
Moreover, if � is convex, then

(11) t�(
) = �
1

2
#(
 \ �);

where � is the set of dividing curves for ��:

Here, #(a\ b) is the cardinality of a\ b. Note that 
 t � because � t ��.

3.2. Surfaces with boundary and convexity. Let (M; �) be a contact
manifold. Throughout this section let � be a compact surface whose bound-
ary @� is everywhere tangent to �: Moreover, whenever we are considering
oriented Legendrian curves we assume � is oriented and the orientation is
consistent with the orientation of @�: From Theorem 3.4 we have

Lemma 3.5. The surface � may be made convex if and only if the twist of
� about each boundary component is less than or equal to zero.

For Legendrian knots we have

Lemma 3.6 (Kanda [K2]). Suppose � has a single boundary component 
;
and 
 is Legendrian. Then � may be made convex if and only if tb(
) � 0:
Moreover, if � is convex with dividing curves �, then

(12) tb(
) = �
1

2
#(
 \ �)

and

(13) r(
) = �(�+)� �(��);

where �� are as in the de�nition of convexity.

We will also need the following Edge-Rounding Lemma where two convex
surfaces meet `perpendicularly' along a common Legendrian boundary. But
�rst we discuss a normal form for two intersecting convex surfaces. Let �1
and �2 be compact convex surfaces with Legendrian boundary in a con-
tact manifold (M; �), �1 and �2 intersect transversally along a common
boundary component 
, and t�1

(
) = t�2
(
) < 0. Then �1, �2 can be

C0-small perturbed, �xing the boundary, so that the neighborhood N(
) of

 is locally contactomorphic to f(x; y; z) 2 R3zjx

2 + y2 < �g with the con-
tact structure �n = sin(2�nz)dx + cos(2�nz)dy for some n 2 Z+; where
R3z is R3 modulo z 7! z + 1: �1 \ N(
) = fx = 0; 0 � y � "g and
�2 \N(
) = fy = 0; 0 � x � �g.

Remark 3.7. This local model for the intersection of two convex surfaces
shows how to transfer information from one convex surface to another.

Lemma 3.8 (Edge-Rounding). In the situation described above, if we join
�1 and �2 along x = y = 0 and round the common edge, the resulting
surface is convex, and the dividing curve z = k

2n on �1 will connect to the
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dividing curve z = k
2n �

1
4n on �2, where k = 0; � � � ; 2n � 1. Here we are

assuming that �1 and �2 have been oriented so that the orientations agree
after rounding.

3.3. Bypasses and simpli�cations of the characteristic foliation. We
now wish to describe a method for altering the dividing curves of a convex
surface. These techniques were �rst exploited in [H1] and precursors to them
appeared in [K1].
Given a Legendrian curve 
 a bypass for 
 (see Figure 6) is a convex disk

+

+

+

+

+-

L

a

a0

1

Figure 6. A bypass.

D with boundary made up of two smooth Legendrian arcs a0 and a1 where:

� a0 = (
 \D) � 
;
� along a0 there are three elliptic singularities in D� | two with the
same sign occurring at the endpoints and one with a di�erent sign
in the interior of a0;

� along a1 all the singularities have the same sign, their local degrees
alternate, and there are at least three of them,

� there are no interior singularities in D�:

Note all the singularities of D� have the same sign except one | the sign
of this singularity is the sign of the bypass. Note the relation between the
de�nition of a bypass and a stabilizing disk. In fact, suppose D0 is a stabi-
lizing disk for a Legendrian knot 
0 and, once stabilized, we obtain the knot

. Then from 
's perspective D0 is a bypass | i.e., D0 shows how to isotop

 so that it twists less. Moreover if D is a bypass for a knot 
 and 
0 is the
knot obtained from pushing 
 across D, then D may be isotoped (canceling
extra singularities along �1) so that it is a stabilizing disk for 
0:
Dividing curves are quite helpful in locating bypasses. To see this let

� be a convex surface with Legendrian boundary. In this situation one
may manipulate the the characteristic foliation to make all the singularities
along the boundary (half)-elliptic ([EF]). Now if tb(@�) = �n � 0 then
the dividing curves intersect @�; 2n times. Suppose one of these dividing
curves is boundary-parallel | i.e., cuts o� a half-disk which has no other
intersections with ��. If we think of the characteristic foliation as given by
a 
ow, then we may 
ow this dividing curve \away" from the boundary and
it will limit to a Legendrian curve �: The curve � will separate a disk D
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from � which will be a bypass for @�: (If t(@�) = �1, � 6= D2, and �� is
a single boundary-parallel curve along @�, then we need to exercise a little
care. In this case, we �rst need to perturb � and modify ��, and then use a
more general form of the Legendrian Realization Principle. We remark that
this case actually does not appear in this paper.)

Lemma 3.9. Given a boundary-parallel dividing curve Æ on a convex sur-
face � with Legendrian boundary, one may �nd a bypass for the boundary,
provided �� is not a single arc on � = D2.

Remark 3.10. We will frequently abuse terminology and refer to a boundary-
parallel dividing curve as a bypass.

If � is an annulus, we may �nd boundary-parallel dividing curves using
the following Imbalance Principle (see [H1]):

Proposition 3.11 (The Imbalance Principle). If � = S1 � [0; 1] is convex
and has Legendrian boundary where t(S1 � f0g) < t(S1 � f1g) � 0, then
there exists a boundary-parallel dividing curve (and hence a bypass) along
S1 � f0g.

Bypasses may be used to alter the dividing curves of a convex surface as
follows:

Proposition 3.12. Let A = [0; 1] � [0; 1] be a convex square with three
horizontal dividing curves and vertical ruling. Let 
 be one of the vertical
ruling curves and D a bypass for 
 disjoint from A: Then we may isotop A
rel boundary by pushing A across D so as to alter the characteristic foliation
as shown in Figure 7.

(a) (b)

Figure 7. Dividing curves on A before the isotopy (a) and
after (b).

3.4. The classi�cation of tight contact structures on solid tori. Let
T be convex torus. Assuming � is tight, we know that no dividing curve
bounds a disk, and hence the dividing curves are parallel essential curves. If
there are 2n parallel curves, then, using Theorem 3.1, we may assume there
are 2n curves of singularities in T�; one in each region of the complement of
the dividing curves. We call these curves the Legendrian divides, and their
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slope will be called the boundary slope. We may also assume the the other
leaves in T� form a 1-parameter family of closed curves. We call these curves
the Legendrian ruling curves. It is important to notice that we can make the
slope of these ruling curves whatever we wish, except the boundary slope.
If the characteristic foliation on a convex torus has this nongeneric form we
say the T� is in standard from. If n > 1 and we can �nd a bypass for one of
the ruling curves, then we can isotop T so as to reduce n by one. If n = 1
we have:

Theorem 3.13 (Honda [H1]). Let T be a convex torus in standard from
with two dividing curves and in some basis for T the slope of the dividing
curves is 0. If we �nd a bypass on a ruling curve of slope between � 1

m
and

� 1
m+1 ; m 2 Z; then after pushing T across the bypass the new torus has two

dividing curves of slope � 1
m+1 :

This theorem was a key step in proving:

Theorem 3.14 (Honda [H1] (see also [Gi3])). Let (r0; : : : ; rk) give the con-
tinued fraction decomposition of �p

q
; where p > q > 0: Then there are

j(r0+1) : : : (rk�q+1)(rk)j tight contact structures on S
1�D2 with standard

convex boundary having two Legendrian divides of slope �p
q
: (Here our con-

vention is that the meridian has slope 0.) Moreover, all these structures are
distinguished by the number of positive regions on a convex meridional disk
with Legendrian boundary.

It is not hard to see that if we have the `standard' universally tight contact
structure on T 2 � I (with coordinates (x; y; z)) given by � = sin(�2 z)dx +

cos(�2 z)dy, and we take the one-parameter family of tori T 2�fzg with linear
characteristic foliations, then the slopes of these foliations must decrease as
z increases. For convex tori this is a little more complicated but still true.

Lemma 3.15. If T 2 � [0; 1] has convex boundary in standard form and the
boundary slope on T 2 � fig is si, for i = 0; 1; then we can �nd convex tori
parallel to T 2�fig with any boundary slope s in [s1; s0] (if s0 < s1 then this
means [s1;1] [ [�1; s0]).

This follows from the classi�cation of tight contact structures on T 2�[0; 1]
(see [H1, Gi3, EH]). From this Lemma one can easily show:

Lemma 3.16. If S = D2 � S1 has convex boundary with boundary slope
s < 0; then we can �nd a convex torus parallel to the boundary of S with
any boundary slope in [s; 0):

We also will make use of the following consequence of the classi�cation of
tight contact structures on T 2 � I:

Lemma 3.17. Consider a tight contact structure on T 2�[0; 1] with boundary
slopes s1 = � 1

m
, s0 = � 1

m+1 (m 2 Z+) (for T 2 � f1g and T 2 � f0g,
respectively). If s1 < s < s0, then there exists a pre-Lagrangian (= linearly
foliated) torus T parallel to T 2�fig, and every convex surface T 0 in standard
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form with slope s, after contact isotopy, is transverse to T , and T \ T 0 is
exactly the union of the Legendrian divides of T 0.

We shall also have need for the relative Euler class of a contact structure
on U = T 2 � [0; 1]: Following [EH], if � is a tight contact structure on U for
which the boundary is convex and in standard form, then let v be a nonzero
vector �eld transverse to and twisting (with �) along the Legendrian ruling
curves and tangent to the Legendrian divides. Now let e be the relative Euler
class in H2(U; @U ;Z) for this section of the bundle �j@U : It is important to
note that e is unchanged if we perform a C0-small isotopy of @U so as to alter
the slopes of the ruling curves. Now if c is an oriented curve on T 2 � f0g,
then we can assume the annulus A = c� [0; 1] has Legendrian boundary and
is convex. A slight generalization of Equation 13 yields

(14) e(c) � e(A) = �(A+)� �(A�);

where A� are the positive and negative regions of A from the de�nition of
convex surface. See [EH, K2] for details.

3.5. Legendrian Unknots. In this section we present a brief proof of The-
orem 2.4, using Strategy 2.6. Consider a contact 3-manifold (M; �). The
maximal Thurston-Bennequin invariant for a knot type K is an invariant
of the knot type, and will be denoted tb(K). Observe that the tightness
of � is equivalent to tb(K) < 0, where K is the knot type for the unknot.
Since there exists a Legendrian unknot L with tb(L) = �1 and r(L) = 0,
tb(K) = �1.
We begin with Step 2 in Strategy 2.6. If tb(K 0) < �1, then take a

spanning convex disk D. There must always exist a bypass by Lemma 3.9 {
hence every K 0 with tb(K 0) < �1 is a stabilization of a Legendrian unknot
with tb(K) = �1:
We now complete the proof by showing that there is a unique Legendrian

unknot with tb(K) = �1: In this part of the proof we assume, for clarity,
that M = S3: The general case is not much more diÆcult but obscures the
main ideas. Take a Legendrian unknot K with tb(K) = �1 and consider
a spanning convex disk D with @D = K. Since tb(K) = �1, there is only
one possible dividing set, and we may uniquely normalize the characteristic
foliation using the Flexibility Theorem (Theorem 3.1). If there are two
Legendrian unknots K, K 0 with tb = �1, then there is a di�eomorphism
f : S3 ! S3 (taking D to D0) which is a contactomorphism when restricted
to neighborhoods N(D), N(D0) of the spanning disks D, D0: The map f
may now be isotoped (relative to N(D)) into a contactomorphism on all
of S3 using Theorem 2.1, since the tight contact structures on the 3-balls

S3 nN(D) and S3 nN(D0) induce the same characteristic foliations on their
boundaries. Thus, using Theorem 2.2, we �nd that the tb = �1 Legendrian
unknot inside M = S3 is unique up to contact isotopy.
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For M arbitrary, we need to use the fact (whose proof we leave to the
reader) that two convex 3-balls with the same boundary characteristic fo-
liation are contact isotopic (this essentially follows from Theorem 2.1 as
well). We may then reduce to the M = S3 case, thus proving that every
Legendrian unknot is determined by tb and r.

3.6. Transversal simplicity implies stable simplicity. In this section
we complete the proof of Theorem 2.10 by showing transversal simplicity
implies stable simplicity. Begin by assuming that K is a transversally simple
knot type. Let 
 and 
0 be two Legendrian knots in this knot type with
the same stable Bennequin invariants, s(
) = s(
0): Let K = T+(
) and
K 0 = T+(


0) be the positive transversal push-o�s of 
 and 
0: We can �nd
solid tori neighborhoods N and N 0 of K and K 0 with convex boundaries
such that 
 and 
0 lie, respectively, on the boundary of N and N 0: Note by
thickening the annulus from the de�nition of T+(
) we may assume that 

is a Legendrian divide on @N that is also a (�1; n) curve. Now, since K is
transversally simple and l(K) = s(
) = s(
0) = l(K 0), we can �nd a global
contact isotopy taking K 0 to K: Thus we may think of N and N 0 as solid
torus neighborhoods of the same transversal knot K:
In N \ N 0 we can �nd a neighborhood N� of K contactomorphic to

f(r; �; z) 2 R2 � S1jr < �g with the contact structure given by f(� =
dz + r2d�) = 0g: As before for large integers m; if Tm are the tori in N�

with r = 1p
m
, then the characteristic foliation on Tm is by (�1;m) curves.

Fix some large m and let Lm be a leaf in the characteristic foliation. We now
show that there is some integer k such that Sk+(
) is Legendrian isotopic to
Lm: The same proof will work for 
0, thus proving they are stably equiva-
lent. Isotop Tm to be convex with Lm as a Legendrian divide and the ruling
curves all in the class (�1; n): Let A = 
 � [0; 1] be an annulus embedded
in N nN� with S

1�f0g a ruling curve on @Tm and S1�f1g = 
: If we now
make A convex, then clearly tA(
) = 0 and tA(Lm) < 0 (if tA(Lm) = 0 then

 is Legendrian isotopic to Lm by Lemma 3.17). Now, by the Imbalance
Principle (Proposition 3.11), there exist dividing curves boundary-parallel
to S1�f0g (and of course non-boundary-parallel to S1�f1g). This demon-
strates that Lm is a stabilization of 
 | however, there might be positive
and negative stabilizations. To see that there are only positive stabilizations
we note that T+(Lm) is a transversal curve isotopic to the core curve in N�:
Thus tb(Lm) + r(Lm) = l(K) = tb(
) + r(
); which of course implies that
all the stabilizations were positive.

4. Torus Knots

Let T 2 be a standardly embedded torus in S3: By this we mean that T
provides a genus one Heegaard splitting of S3; so S3 = V0 [T V1 where the
Vi are solid tori. Let � be the unique curve on T that bounds a disk in
V0 and � the unique curve that bounds a disk in V1: Orient � arbitrarily
and then orient � so that �; � form a positive basis for H1(T ) where T is
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oriented as the boundary of V0: Up to homotopy any curve on T can be
written as p� + q�; we shall denote this curve by K(p;q): If p and q are
relatively prime then K(p;q) is called a (p; q)-torus knot. We will always
assume jpj > q > 0 which a�ords no loss of generality since we may switch
the roles of V0 and V1 and K(�p;�q) and K(p;q) describe the same knot. One
may easily compute that the Seifert surface of minimal genus for K(p;q) has
Euler number jpj+ jqj � jpqj:

4.1. Legendrian Torus Knots. Bennequin's inequality for a Legendrian
torus knot says

(15) tb(K(p;q)) + jr(K(p;q)j � �jpj � jqj+ jpqj:

Let tb(p;q) the maximal Thurston-Bennequin invariant of a LegendrianK(p;q)

then

Theorem 4.1. If p; q > 0 then

(16) tb(p;q) = pq � p� q;

and if p < 0, q > 0 then

(17) tb(p;q) = pq:

Remark 4.2. Note that Bennequin's inequality is sharp for positive torus
knots but is not for negative torus knots. As mentioned in the introduction,
the upper bounds for the Thurston-Bennequin invariant coming from the
work of Fuchs and Tabachnikov [FT, Ta] are also not sharp when pq < 0
and q is odd.

We now state our main theorem.

Theorem 4.3. Legendrian torus knots in the standard tight contact struc-
ture on S3 are determined up to Legendrian isotopy by their knot type,
Thurston-Bennequin invariant and rotation number.

To complete the classi�cation of Legendrian torus knots we can also show:

Theorem 4.4. LetK be a Legendrian (p; q)-torus knot with maximal Thurston-
Bennequin invariant. If p; q > 0; then r(K) = 0: If p < 0, q > 0; then

r(K) 2 f�(jpj � jqj � 2qk) : k 2 Z; 0 � k <
jpj � jqj

jqj
g:

Remark 4.5. The above results imply that any Legendrian torus knot is
some stabilization of a knot in Figure 8. In Figure 8 note the positive torus
knot has tb = pq� p� q and r = 0, while the negative (p; q)-torus knot has
tb = pq and r = q(n2 � n1) � e; where jpj = nq + e and n = 1 + n1 + n2:
To get an idea of the possible values of the invariants for negative torus
knots consider the (�7; 3)-torus knot. In Figure 9 we show a graph of the
(four largest) Thurston-Bennequin invariants versus the rotation numbers.
Each dot corresponds to a pair of invariants that is realized by a Legendrian
(�7; 3)-torus knot and each arrow represents a stabilization.



18 JOHN B. ETNYRE AND KO HONDA

p

B   =
n2

n1

B

B

e

Figure 8. Legendrian torus knots.
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Figure 9. Some Thurston-Bennequin invariants and rota-
tion numbers realized by Legendrian (�7; 3)-torus knots.

In this section we classify positive, oriented Legendrian torus knots in
(S3; �) up to Legendrian isotopy, leaving the general case for the following
subsection. Precisely, in this section we prove:

Theorem 4.6. If K and K 0 are two oriented Legendrian positive torus
knots then they are Legendrian isotopic if and only if tb(K) = tb(K 0) and
r(K) = r(K 0): Moreover, if K is a (p; q)-torus knot, with p; q > 0, then
tb(K) � pq � p � q and if tb(K) = pq � p � q � n for some non-negative
integer n then r(K) 2 f�n;�n+ 2; : : : ; ng:
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We employ Strategy 2.6 described in Section 2.1 to prove this theorem.
First note that the maximal Thurston-Bennequin invariant for a Legen-
drian (p; q)-torus knot, with p; q > 0, is tb(p;q) = pq � p � q; since there
is a Legendrian knot realizing this (see Figure 8) and the Bennequin in-
equality says that this is as large as it could be. Moreover, note that the
Bennequin inequality then implies that a Legendrian knot realizing this
Thurston-Bennequin invariant must have rotation number 0. With this in
mind we show:

Lemma 4.7. Let K and K 0 be two topologically isotopic Legendrian positive
torus knots with maximal Thurston-Bennequin invariant. Then K and K 0

are Legendrian isotopic.

Proof. Let T and T 0 be any standardly embedded tori in S3 on which K
and K 0 respectively sit. We describe everything in terms of T and K but
everything also holds for T 0 and K 0: By Theorem 3.4 we may make T convex
without moving K, since the twisting of K with respect to T is �p � q
(recall p; q are positive). Now that T is convex and tb(K) is maximal,
we may assume T is in standard form. This follows from observing that
#(K \�) > jK \�j implies the existence of a bypass along K, and hence a
destabilization. Here #(K \�) is the unsigned (actual) intersection number
and jK \ �j is the (minimum) geometric intersection number of the two
isotopy classes. Let � r

s
; (r; s > 0) be the slope of the dividing curves � and

2n be the number of dividing curves. According to Lemma 3.6, tb(K) =

pq� 1
2#(K\�) = pq�ndet

�
p �s
q r

�
: Thus for tb(K) to equal pq�p�q

we must have n = 1 and r = s = 1:
Let V 00[V

0
1 and V0[V1 be the Heegaard splittings associated to the tori T 0

and T . Since the slopes of the dividing curves are the same, we may use the
classi�cation of tight contact structures on solid tori in Lemma 3.14 to �nd a
contactomorphism � : V0 ! V 00 (note that a meridional disk for V0 of V

0
0 has

exactly one dividing curve). Applying Lemma 3.14 again, we may extend �
to all of S3, thus obtaining a contactomorphism of S3 which takes T to T 0:
By Eliashberg's result (Theorem 2.2) we may �nd a contact isotopy of S3

taking T to T 0: So now we may assume that K and K 0 are two Legendrian
knots on the same convex torus T: Note K and K 0 are both leaves in the
ruling foliation of T: The other ruling curves exhibit a Legendrian isotopy
from K to K 0: �

The proof of Theorem 4.6 is thus complete by Lemma 2.5 and:

Lemma 4.8. If K is an oriented Legendrian (p; q)-torus knot, with p; q > 0
and tb(K) = pq � p � q � n; then there exist positive integers n1 and n2
such that n = n1 + n2; r(K) = n2 � n1 and K = Sn1� (Sn2+ (K 0)) where K 0 is
the unique Legendrian (p; q)-torus knot with maximal Thurston-Bennequin
invariant.
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Proof. Let T be a standardly embedded torus on which K sits. As in the
proof of Lemma 4.7 we may assume that T is convex and in standard form,
since otherwise K can be destabilized. However, this time the slope � r

s
of

the dividing curves is not �1 or the number of dividing curves is not 2.
We �rst consider the case when � r

s
6= �1: Let V0 [ V1 be the Heegaard

splitting associated to the the torus T: Recall the \slope" of the dividing
curves is usually measured thinking of T as the boundary of V0: As the
boundary of V0 or V1 the slope of the dividing curves on T will be less
than �1: Assume V0 has this property. We know, by Lemma 3.16, that
looking at concentric convex tori in V0 we will see dividing curves with
any slope in [� r

s
; 0): In particular, there will be a torus T 0 � V0 with two

dividing curves having slope �1: Let U = T � [0; 1] be the region between
T and T 0 in V0 and A = K � [0; 1] be an annulus lying between T =
T � f0g and T 0 = T � f1g in U: The boundary of U is convex and we may
assume that the ruling curves on both boundary components have slope q

p
:

Thus we may assume that @A = K [ K 0 is Legendrian and A is convex.

The dividing curves will intersect K; N = 2ndet

�
p �s
q r

�
times and

K 0; N 0 = 2(p + q) times. As r and s are not both 1, N 0 > N , so we
can �nd a boundary-parallel arc along K among the dividing curves of A:
This implies the existence of a bypass for K and hence a destabilization.
Speci�cally,K = S�(K 00) for some LegendrianK 00. Repeating this argument
we will eventually �nd a sequence of destabilizations which will exhibit K
as Sn1� (Sn2+ (K 0)) where K 0 is the unique Legendrian (p; q)-torus knot with
maximal Thurston-Bennequin invariant.
Now for the case when � r

s
= �1 and n > 1: In this case we claim that

there is a torus T 0 in, say V1; parallel to T with two dividing curves having
slope �1: To see this just take a copy of T inside V1, make the ruling curves
meridional, and then look at a convex meridional disk D: We may use the
bypasses on D to reduce the number of dividing curves on the copy of T
until there are only two. (This follows easily from Proposition 3.12. Also see
[H1].) Call the resulting torus T 0: Let U = T � [0; 1] be the region between
T and T 0: Now if we make the ruling curves on T 0 have slope q

p
then using

the annulus A = K � [0; 1] in U we may repeat the above argument to
destabilize K: �

4.2. Negative Legendrian Torus Knots. We begin by establishing the
upper bound on the Thurston-Bennequin invariant.

Lemma 4.9. For a nontrivial negative (p; q)-torus knot (�p > q > 0) we

have tb(p;q) = pq < 0:

Proof. First note that the example in Figure 8 shows that tb(p;q) � pq:

We show that tb(p;q) � pq by contradiction. If tb(p;q) > pq, then we can
construct a Stein manifold X (with boundary) by adding a 2-handle to
the 4-ball along a (p; q)-torus knot with framing pq: (Given a symplectic
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4-manifold with convex boundary, one can add a symplectic 2-handle to a
Legendrian knot 
 in the boundary with framing tb(
) � 1 and obtain a
new symplectic 4-manifold with convex boundary, see [E1, Go].) According
to [M], @X is the connected sum of two lens spaces (neither of which is S3

or q = 1 and the knot is trivial). Now, a theorem of Eliashberg [E1] says
that X must be a boundary sum of two manifolds X0 and X1: Using the
Mayer-Vietoris sequence we see that one of the Xi's, say X0; must be an
integral homology ball, but this is impossible since @X0 is a nontrivial lens
space. �

This establishes the second part of Theorem 4.1. The easiest part of
Strategy 2.6 to execute in this situation is Part 2 concerning destabilization.

Lemma 4.10. If K is an oriented Legendrian (p; q)-torus knot, with pq < 0
and tb(K) < pq; then there is a (p; q)-torus knot K 0 such that tb(K 0) >
tb(K) and K is a stabilization of K 0:

Proof. Since tb(K) � pq we can use Theorem 3.4 to show K lies on a convex
standardly embedded torus T: We know the dividing curves � on T have
slope � r

s
6= q

p
; since

(18) tb(K) = pq �
1

2
#(� \K) < pq:

Now as measured on either V0 or V1 the dividing curve have slope less than
q
p
: Assume V0 has such dividing curves. Now since Lemma 3.16 says that we

can �nd tori in V0 whose dividing curves have any slope in [�
r
s
; 0) we can �nd

a torus T 0 in V0 whose dividing curves have slope
q
p
: Now as in the proof of

Lemma 4.8 we can take an annulus A between T and T 0 with one boundary
on K and the other on a Legendrian divide of T 0 and thus �nd a bypass
for K since the dividing curves on A will intersect the boundary component
containing K more than the one containing the Legendrian divide. Hence
we may use this bypass to destabilize K: �

Before proceeding to Parts 1 and 3 of Strategy 2.6 we need to take a
detour concerning rotation numbers and relative \Euler classes." In the fol-
lowing we will assume that K is a Legendrian (p; q)-torus knot with maxi-
mal Thurston-Bennequin invariant. Let T be a convex standardly embedded
torus on which K sits (Theorem 3.4 assures we can �nd such a torus). We
may put T� in standard form with K being one of the Legendrian divides.
We note that all the Legendrian divides of T are Legendrian isotopic. This
follows from Lemma 3.17, since all the Legendrian divides sit on a linearly
foliated torus. Using an argument like the one at the end of the proof of
Lemma 4.8, we may now reduce the number of Legendrian divides on T to
two and assume that K is one of these divides.
Now let S3 = V0 [T V1, where V0 (resp. V1) is the solid torus with

meridional curve � (resp. �). From Lemma 3.16 we know that inside V0 there
is a solid torus S with two dividing curves of slope� 1

m+1 ; where jpj = mq+e;



22 JOHN B. ETNYRE AND KO HONDA

and there is a solid torus S0 containing V0 with two dividing curves of slope
� 1

m
: Let Tm = @S0 and Tm+1 = @S: In addition, set S = S3 n S0 and

S0 = S3 n S:
Now we de�ne an invariant of homology classes of curves on T: Let v be

any globally non-zero section of � and w a section of �jT that is transverse
to and twists (with �) along the Legendrian ruling curves and is tangent to
the Legendrian divides. If 
 is a closed oriented curve on T then set fT (
)
equal to the rotation of v relative w along 
: One may check the following
properties (cf. [Et]).

� The function fT is well-de�ned on homology classes.
� The function fT is unchanged if we isotop T among convex tori in
standard form.

� If 
 is a (r; s)-ruling curve or Legendrian divide then fT (
) = r(
):

We may similarly de�ne fm and fm+1 for curves on Tm and Tm+1: The main
facts we need concerning these invariants are:

(1) fT (�) = 1� q or q � 1:
(2) fm(�) is in fm� 1;m� 3; : : : ; 1�mg:
(3) If fT (�) = 1 � q then fT (�) = fm(�) + (m � jpj): So fT (�) is in

f2m� jpj � 1; 2m� jpj � 3; : : : ; 1� jpjg:
(4) If fT (�) = q � 1 then fT (�) = fm(�) + (jpj � m): So fT (�) is in

fjpj � 1; jpj � 3; : : : ; jpj � 2m+ 1g:

We will prove these facts at the end of this section. From the above prop-
erties we know that

(19) r(K) = pf(�) + qf(�):

Thus the possible values for r(K) lie in

f�(jpj � jqj � 2qk) : k 2 Z; 0 � k <
jpj � jqj

jqj
g:

Since all these possible rotation numbers are realized by Legendrian knots
in Figure 8, this �nishes the proof of Theorem 4.4.

Lemma 4.11. Let K and K 0 be two topologically isotopic Legendrian nega-
tive torus knots with maximal Thurston-Bennequin invariant. Then K and
K 0 are Legendrian isotopic if and only if r(K) = r(K 0).

Proof. Let T and T 0 be tori on which K and K 0 respectively sit. We as-
sume that T and T 0 have been arranged as described above. The proof is
�nished as we �nished the proof of Lemma 4.7. We only need to recall that
Theorem 3.14 says that the contactomorphism type of a tight contact struc-
ture on a solid torus (with standard convex boundary) is determined by the
number of positive bypasses on a meridional disk and the number of positive
bypasses on the meridional disks for V0 and V1; where S

3 = V0 [T V1; are
determined by the rotation number of K: �

We also may show:
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Lemma 4.12. Recall m and e are integers such that jpj = mq + e where
0 < e < q: Let K and K 0 be negative Legendrian (p; q)-torus knots with
maximal Thurston-Bennequin invariant. If the rotation numbers are r and
r� 2e; respectively, then Se�(K) and Se+(K

0) are Legendrian isotopic. If the

rotation numbers are r and r � 2(q � e); respectively, then S
(q�e)
� (K) and

S
(q�e)
+ (K 0) are Legendrian isotopic.

Proof. We assume r(K) = r(K 0) + 2e and leave the similar case to the
reader. In this situation there must be a k so that fT (�) = k + (m � jpj)
and fT 0(�) = k + (jpj �m): Thus fT (�) = 1� q and fT 0(�) = q � 1: In the
notation set up above, let Tm we the convex torus outside V0 with boundary
slope � 1

m
and T 0m be the corresponding one for T 0: From Facts 3 and 4

stated above we know that fTm(�) = k and fT 0

m

(�) = k: By examining
dividing curves on the meridional disks, we also have fTm(�) = fT 0

m

(�) =
0 (from Equation 14). Now arrange for the Legendrian ruling curves on
Tm to have slope q

p
and consider the annulus A between T and Tm with

slope q
p
: We can take one boundary of A to be K � T and the other a

Legendrian ruling curve on Tm: Once we make A convex, the dividing curves
do not intersect the boundary component touching T and intersect the other

boundary component 2 det

�
p �m
q 1

�
= 2(p + qm) = �2e times. Since

the rotation number (values of fT and fTm) of the boundary components of
A di�er by �e, we may use Lemma 3.6 (or a slight generalization of it, see
[EH]) to see there are e boundary-parallel dividing curves separating o� e
negative disks from A: This shows that Ks = A \ Tm = Se�(K): Similarly,
we see that K 0

s � T 0m is Ke
+(K

0):We may now use the argument in the proof
of Lemma 4.11 to �nd a contact isotopy taking Tm to T 0m: A further contact
isotopy takes Ks = Se�(K) to K 0

s = Ke
+(K

0): �

Theorem 4.13. Negative Legendrian torus knots are determined by their
knot type, Thurston-Bennequin invariant and rotation number.

With this theorem we have completed the proof of Theorem 4.3 and the
classi�cation of Legendrian torus knots. Before we begin the proof note that
if we graph the Thurston-Bennequin invariants versus the rotation numbers
that a �xed negative torus knot realizes, as in Figure 9, we obtain a �gure
that looks like a mountain range. Above we have shown that the dots at
the peak of the mountains (corresponding to maximal Thurston-Bennequin
invariant knots) are unique and the dots in the valleys (where stabilizations
of maximal Thurstion-Bennequin invariant knots �rst have the same invari-
ants, in Figure 9 there are the points (�22;�3); (�23; 0) and (�22; 3)) are
unique. The proof of this theorem follows from this and the properties of
stabilizations.

Proof. Let K and K 0 be two (p; q)-torus knots with the same invariants. Let
K destabilize to Kd and K

0 to K 0
d: If Kd and K

0
d have the same invariants,
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then they are Legendrian isotopic andK andK 0 are the same stabilization of
the same knot and hence are Legendrian isotopic. Now suppose the rotation
numbers of Kd and K

0
d di�er by 2e as in Lemma 4.12. Then we can realize

K as a stabilization of Se�(Kd) and K
0 as a stabilization of Se+(K

0
d): Thus

they both destabilize to Se�(Kd) = Se+(K
0
d) and hence they both destabilize

to Kd andK
0
d; implying they are Legendrian isotopic. Finally, if the rotation

numbers of Kd andK
0
d di�er by something else, then a similar argument will

show that K and K 0 will destabilize to the same Legendrian knot, �nishing
the proof. �

Proof of Fact 1: Arrange for all the Legendrian ruling curves on Tm; Tm+1,
and T to be meridional and let D be a meridional disk for S0 that intersects
these three tori in Legendrian curves. We may now isotop D (relative to
its intersection with the tori) so that it is convex. Let D = DV [ A where

DV = D\V0 and A = D nDV : Orient D so that � is the oriented boundary
of DV : Now the dividing curves on DV intersect � = @DV ; 2q times (since
that is the number of times the dividing curves on T intersect �). Moreover,
they intersect each of @D and D \ Tm; 2 times. We claim that all the
dividing curves on DV separate o� disks that contain no dividing curves.
Note this implies that all the bypasses on DV are of the same sign. If this
were not the case, then we would have bypasses on DV of both signs and
we would be able to glue this to a bypass of the same sign on A, creating an
overtwisted disk. To match a bypass on DV with any bypass on A we might
have to \add copies of T to VD," that is, take a copy of T , cut it along �
to obtain an annulus, and glue one of its boundary components to VD and
the other to A. This has the e�ect of shifting the dividing curves on DV

relative to those on A by q
p
(for details see the section on Sliding Maneuvers

in [H1]). Since all the bypasses have the same sign, Equation 13 implies that
fT (�) = r(�) = �1 + q or 1� q: �

Proof of Fact 2: Make the Legendrian ruling curves on Tm = @S be merid-
ional and letD be the meridional disk for S with Legendrian boundary. Note
@D = � (or at least a translate of it). Now the dividing curves intersect the
boundary of D; 2m times. And since there are no closed homotopically
trivial dividing curves we can conclude that there are exactly m dividing
curves. By examining the possible con�gurations and using Equation 13,
one may readily conclude that fm(�) 2 fm�1;m�3; : : : ; 1�mg: Moreover,
by recalling how fm(�) is related to the rotation number of K and noting
the values of r(K) realized in Figure 8, we see that all the possible values
of fm(�) are actually realized. �

Proof of Fact 3: Make the Legendrian ruling curves on Tm and Tm+1 longi-
tudinal and let A be a longitudinal annulus spanning between Tm and Tm+1
with Legendrian boundary. After making A convex, the dividing curves will
intersect S1m = Tm\A in 2m points and S1m+1 = Tm+1\A in 2m+2 points.
We claim that 2m dividing curves run from one boundary component of A to
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the other boundary component and there is one boundary-parallel dividing
curve with endpoints on S1m+1: If this is not the case, then there must be

boundary-parallel dividing curves for S1m and hence a bypasses. Carefully
applying Lemma 3.13, we can then �nd a convex torus between Tm and
Tm+1 with slope not lying between [� 1

m
;� 1

m+1 ]. This, by Lemma 3.15, im-
plies that there is a convex torus with boundary slope 0 and the Legendrian
divides on this torus will be the boundaries of overtwisted disks. Therefore,
the dividing curve con�guration on A is as claimed.
Now make the Legendrian ruling curves on T longitudinal and make A

intersect T in one of these longitudinal curves, say 
: The curve 
 separates
A into two annuli | Am which touches Tm and Am+1 which touches Tm+1:
Note the dividing curves are still as described above. From this we can
deduce the structure of the dividing curves on Am: To this end, note the
dividing curves on Am intersect the boundary component touching Tm; 2m
times and the boundary component touching T; 2jpj times. Due to the
structure of the dividing curves on A, we know that the 2m dividing curves
emanating from Tm run across Am to the other boundary component. Thus
we know there are jpj � m other dividing curves, all of whose boundaries
lie on T: As argued in the proof of Fact 1, we can conclude that these all
separate o� disks that contain no dividing curves and thus give jpj � m
bypasses of the same sign.
Let eU be the relative Euler class for the region U = T 2 � I between T

and Tm. Since eU (�) = fT (�)� fm(�), Equation 14 yields

fT (�)� fm(�) = (m� jpj) or (jpj �m):

If fT (�) = 1� q, then we claim that fT (�)� fm(�) = m�jpj: Assuming the
contrary, we obtain a contradiction to the tightness of � as follows: Using
Equation 13 one may easily check that fm(�) = 0: Thus, if fT (�) = 1� q =
fT (�) � fm(�) = eU (�); then eU (p�+ q�) = 2q(jpj �m) � e > e: However,
looking at the convex annulus A0 of slope p

q
in U , we see that the there are

only e non-closed dividing curves, all of which have their boundary on Tm:
This means that for eU (�) > e there must be some dividing curves bounding
disks, violating the tightness of �: Therefore, fT (�)� fm(�) = m� jpj: �

Proof of Fact 4: This is quite similar to the proof of Fact 3 and is left to the
reader. �

4.3. Transversal Torus Knots. Since Theorem 4.3 implies that Legen-
drian torus knots are stably simple, we may use Theorem 2.10 to conclude

Corollary 4.14. If K and K 0 are transversal torus knots then there are
transversally isotopic if and only if l(K) = l(K 0): If K is a (p; q)-torus
knot, with p; q > 0; then l(K) � pq � p � q and if p < 0, q > 0 then
l(K) = pq + jpj � jqj: Moreover, all odd integers satisfying these bounds are
realized by the appropriate transversal torus knots.
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Figure 10. Legendrian �gure eight knot with tb = �3.

As mentioned earlier, this extends [Et] and reproves a special case of a
result of Birman and Wrinkle [BW] and Menasco [Men].

5. Figure Eight Knots

The following is the main theorem of this section:

Theorem 5.1. The �gure eight knot type K is Legendrian simple.

Again, Strategy 2.6 will be employed to prove Theorem 5.1.

5.1. Determination of tb. The �rst step in the proof of Theorem 5.1 is to
compute the maximal Thurston-Bennequin invariant tb for the �gure eight
knot.

Lemma 5.2. The maximal Thurston-Bennequin invariant for the �gure
eight knot is �3.

Proof. To prove the upper bound tb � �3, use the inequalities due to Fuchs-
Tabachnikov [FT, Ta]. They give upper bounds for tb+r of a Legendrian
knot in terms of the HOMFLY and Kau�man polynomials. A simple calcu-
lation of these polynomials give the desired upper bound. Figure 10 provides
an explicit example of a Legendrian �gure eight knot with tb = �3. �

5.2. Unique maximal tb representative. In this section we prove the
following theorem:

Theorem 5.3. If K and K 0 are two oriented Legendrian �gure eight knots
with maximal Thurston-Bennequin invariant tb = �3 (and necessarily r(K)
= r(K 0) = 0), then K and K 0 are Legendrian isotopic.

Let M be S3 nN where N is a small standard neighborhood of K so that
the Legendrian ruling on @M is by longitudes (this is possible since tb < 0)
| note that there is a well-de�ned longitude coming from the Seifert surface.
Recall we have a �bration p : M ! S1 with �ber a punctured torus � with
Legendrian boundary.
The following is a general procedure for proving that two Legendrian

knots K and K 0 of the same knot type and maximal Thurston-Bennequin
invariant are isotopic. We construct a contactomorphism f : S3 ! S3 taking
K to K 0 as follows: Let f be a map from a standard neighborhood N (as
above) of K to a standard neighborhood N 0 of K 0 | this is possible because
of local uniqueness. Assume N and N 0 have already been identi�ed via f .
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Then we have two tight contact structures on M with identical boundary
characteristic foliations. Assume we can prove the following:

Claim. The two tight contact structures on M are contactomorphic relative
the boundary.

Then the map f may be extended to a contactomorphism of S3 onto S3,
taking K to K 0. With the map f in hand we may use Theorem 2.2 to
show we have a contact isotopy from the identity map id : S3 ! S3 to f ,
exhibiting the desired Legendrian isotopy from K to K 0:
We have therefore reduced the proof of Theorem 5.3 to the analysis (and

normalization) of the tight contact structure on M = S3 n N . Since M
�bers over the circle with punctured torus �ber � = T 2 n D2, we write
M = (�� I)= �, where (x; 0) � (	(x); 1), and

	 =

�
2 1
1 1

�

is the monodromy map. 	 is a di�eomorphism of � which �xes @D2. Note
that the matrix by itself does not completely de�ne 	, since it is possible
to compose with Dehn twists along curves parallel to @D2. Since�

2 1
1 1

�
=

�
1 1
0 1

� �
1 0
1 1

�
;

we de�ne 	 as a Dehn twist along a closed curve parallel to (0; 1), followed
by a Dehn twist along a closed curve parallel to (1; 0). In particular, we
compose with no Dehn twists along @D2. We will use this particular matrix
representative of the conjugacy class of 	.
Consider the characteristic foliation on a convex � with Legendrian bound-

ary. The following several pages will be devoted to normalizing �. Note that
the dividing set �� will consist of closed curves or arcs with endpoints on
@�.
First observe the following simple lemma:

Lemma 5.4. If f
1; : : : 
ng is a collection of non-boundary-parallel, mutu-
ally non-parallel arcs in a punctured torus � (with endpoints on @�), then
n � 3: Moreover, if there exists a closed curve on � disjoint from the 
i's,
then n � 1:

The possible con�gurations of dividing curves are given below:

Proposition 5.5. Suppose the dividing curves on a convex � � M with
Legendrian boundary consist of arcs 
1; : : : ; 
n with endpoints on @�, and
closed curves c1; : : : ; cm:

I. If the 
i's realize one distinct non-boundary-parallel isotopy class on
�; then � may be isotoped so that (a) n � 1 (n odd) and m = 1, (b)
n = 0 and m = 2, or (c) � has a bypass along @�.
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II. If the 
i's realize two distinct non-boundary-parallel isotopy classes
on �; then m = 0 and either (a) each isotopy class has two 
i, or
(b) � may be isotoped so that it has a bypass along @�.

III. If the 
i's realize three distinct non-boundary-parallel isotopy classes
on �; then m = 0 and either (a) one of the isotopy classes has one

i and the other two have one or more, or (b) � may be isotoped so
that it has a bypass along @�.

The proposition is preliminary. It will be improved later, after consider-
ably more work.

Proof. Note that any claim we will be making concerning � should be in-
terpreted up to a C0-small isotopy | in particular, we will make extensive
use of the Legendrian Realization Principle (Theorem 3.3) without explicitly
mentioning each time that a C0-small perturbation is taking place �rst. Let
� be a convex �ber inM with Legendrian boundary, and N an open convex
neighborhood of �. Then in (M nN) = �� [0; 1]; we look for an annulus A
with @A = A0 � A1, where the Ai are Legendrian curves in (a C0-isotoped
copy of) �i = �� fig, and A contains a bypass. Denote the dividing set of
�i by �i.
Let us consider Case I. Observe that m + n is always even. Here we

may always �nd a closed Legendrian curve c on �0 which does not intersect
�0. We take A to be the annulus c � [0; 1]: Note that �1 = 	(�0) and the
geometric intersection number j(c�f1g) \�1j � m+ n, because an Anosov
map cannot �x a curve isotopy class. Realize c�f1g as a Legendrian curve
which has minimal intersection number with �1 in its isotopy class. Then A
will have at least n+m dividing curves emanating from A1 and none from
A0, from which we can conclude using the Imbalance Principle (Proposition
3.11) that there is a bypass along A1:
If m + n � 4, then we may always �nd an embedded bypass, and we

apply Proposition 3.12. Let Æ be the attaching Legendrian arc � �1 for the
bypass, and p; q; r be the intersections with �1 in consecutive order along Æ.
Since m+n � 4, p; q; r lie on distinct dividing curves. If p; q both lie on the

i's (or the same for q; r), then there will exist a boundary-parallel dividing
curve on the new �1, after bypass attachment (and thus a bypass for the
new @�1). If p; q both lie on the ci's (or the same for q; r), then we will be
able to reduce m by two. Hence, if m � 2 and n � 2, every bypass will be
as above, and we may either reduce m by 2 or obtain a bypass for �1 along
@�1. Now there are two other cases: n � 3, m = 1, and p; r lie on 
i's and
q lies on a ci; or n = 1, m � 3, and p; r lie on ci's and q lies on a 
i. In the
latter case, we reduce m by 2. (Note that, in the former case, the bypass
attachment yields a dividing set which puts us in Case III, where two of the
isotopy classes of arcs are represented by a single 
i.)
We eventually have (a) n � 1 and m = 1, (b) n = 0 and m = 2, (b')

n = 2 and m = 0, or (c) a bypass along @�1. We can actually do better, and
remove (b') n = 2, m = 0. If A1 intersects �1 exactly twice, then we have a
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degenerate bypass along A1 (one with same endpoints), and attaching this
degenerate bypass gives rise to a dividing set which has a boundary-parallel
dividing curve. If the intersection number is greater than 2, then keep A but
repeatedly attach bypasses until we arrive at boundary-parallel components
of (the new) �1. Observe that, once we have reduced to (a) or (b), there
will still exist bypasses that can be attached onto �1. However, they do
not necessarily yield boundary-parallel dividing curves after attachment and
cannot be used to destabilize @�1 | at least not immediately.
In Cases II and III,m = 0 by Lemma 5.4. Consider Case II. Let 
1 and 
2

be the two isotopy classes of curves of �0, and n1, n2 be the number of arcs in
each. Note that both n1 and n2 are even. For convenience, we will identify
� = (R2=Z2)nD2, and 
1, 
2 with minimal (shortest-length) integral vectors
v1; v2 2 Z2. It is easy to �nd a curve c on � so that c intersects �0 and �1 in
a di�erent number of points. Indeed consider the subset Cmin of the set C of
(isotopy classes of) closed (connected) curves c on �, consisting of c which
have minimal geometric intersection jc \ �0j among curves in C. Since the
Anosov map 	 cannot preserve a �nite set of closed curves, Cmin 6= 	(Cmin).
Noting that 	(Cmin) consists of curves c with minimal intersection number
jc\�1j among curves in C, we pick c 2 Cmin n	(Cmin). Using this c we may
argue as in Case I to �nd a bypass along �1.
As long as n1; n2 > 2, p; q; r (as above) lie on three distinct dividing

curves, and p; q (or q; r) lie on `consecutive' dividing curves of the same type
v1 (or v2). Thus we can produce a boundary-parallel component of the new
�1 after attaching the bypass to �1. Therefore, at least one of the ni must
equal 2. We will eliminate n1 = 2, n2 > 2 (or n1 > 2, n2 = 2). In this
case, Cmin consists of one curve d2 parallel to v2. As above, d2 62 	(Cmin),
so j�1 \ d2j � n2 � 4, since d2 intersects both 	(v1) and 	(v2). We then let
A = d2 � [0; 1], and �nd a bypass along d2 � f1g. The only nontrivial case
is when our bypass along �1 involves only the two dividing curves isotopic
to 	(v1), p; r lie on the same curve, and the bypass attachment changes the
dividing curves 	(v1), 	(v2) to 	(v1�v2), 	(v2). In this case we will have a
sequence of `nested bypasses'. More precisely, attach the (outermost) bypass
onto �1 and take a new A = d2 � [0; 1] such that d2 has fewer intersections
with the new �1. Note that d2 � f0g intersects �0 twice, but d2 � f1g still
intersects �1 at least four times. In any event, if we reduce this intersection
number to four, there can no longer exist any bypasses of the nontrivial type,
and we produce a destabilization. The only case left is when n1 = n2 = 2.
In Case III, if we crush the boundary � to a point, then homologically

one of the isotopy classes of � is the sum of the other two isotopy classes.
Therefore we write the three classes as v1, v2, v1 + v2, and the number of
dividing curves as n1, n2, n12 (these must have the same parity). Using
the same argument as in Case II (with Cmin), we produce an annulus A,
together with a bypass along �1.
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Figure 11. The standard tessellation of the hyperbolic unit disk

As long as three of the isotopy classes have more than one dividing curve,
any bypass along A1 gives rise to a boundary-parallel component of �1 on
�1. Thus, one of the isotopy classes will have one dividing curve. �

Returning now to our normalization, we know that since tb(K) is max-
imal, there can be no bypasses on �. Thus Proposition 5.5 and Lemma
5.2 imply that there are precisely three dividing curves | we have either
I(a) with n = 3, m = 1 or III(a). In what follows, we need to deal with
con�gurations of both types, but, for the time being, we may assume that
all of the dividing curves are arcs and they are non-parallel (we can switch
from I(a) to III(a) according to the proof of the previous proposition). Let
us still denote the three arcs by the corresponding minimal integral basis
vectors v1, v2, together with their sum v1 + v2.
We will now normalize these vectors, showing that we can always assume

we are in one of two possible situations. To do this we need some way
of listing all possible triples of such vectors (or, equivalently, all possible
two-triangle \triangulations" of T 2). We do this using the standard (Farey)
tessellation of the hyperbolic unit disk D2 = f(x; y)jx2 + y2 � 1g, which
we now review. Recall we start by labeling (1; 0) as 0 = 0

1 , and (�1; 0) as

1 = 1
0 . We inductively label points on S1 = @D2 as follows (for y > 0):

Suppose we have already labeled 1 � p
q
� 0 (p; q relatively prime) and

1 � p0

q0 � 0 (p0; q0 relatively prime) such that (p; q), (p0; q0) form a Z-basis

of Z2. Then, halfway between p
q
and p0

q0 along S1 on the shorter arc (the

one for which y > 0), we label p+p0

q+q0 . We then connect two points p
q
and

p0

q0
on the boundary by a hyperbolic geodesic, if the corresponding shortest

integral vectors form an integral basis of Z2. See Figure 11. An important
observation for us is that the tessellation gives a triangulation of D2 into
a union of ideal triangles, and that each geodesic is on the boundary of
exactly two ideal triangles | any two integral basis vectors v1, v2 can be
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completed into a triple fv1; v2; v3g which mutually form an integral basis,
in exactly two ways. Observe that the three vectors v1; v2; v1 + v2 in the
previous paragraph form the vertices of an ideal triangle in the standard
tessellation and any ideal triangle gives a possible triple. Note also that the
vertices of the triangles in the tessellation are labeled with the slopes of the
vectors in the corresponding triangulation of T 2: More generally, there is
a correspondence between the points on the \circle at in�nity" S11 of the
hyperbolic disk and slopes on T 2:

Proposition 5.6. There exists an isotopic copy of � with dividing set � =
f(1; 1); (0; 1); (1; 2)g or f(1; 0); (0; 1); (1; 1)g.

To prove proposition 5.6 we start with �0 consisting of three dividing
curves corresponding to v1, v2, v1+v2, where fv1; v2g form an integral basis
of Z2 and thus give an ideal triangle in the above tessellation. We will then
show how to add bypasses to � in such a way that the new dividing curves
correspond to a di�erent triangle. After a sequence of such attachments we
will eventually arrive at the triangle corresponding to either f(1; 1); (0; 1);
(1; 2)g or f(1; 0); (0; 1); (1; 1)g.
Before we begin the proof of Proposition 5.6, we need a preliminary

lemma.

Lemma 5.7. The complete list of bypasses that can be attached to the initial
con�guration fv1; v2; v1 + v2g are as given in Figures 12 and 13 below. The
bypasses are subject to two conditions: (1) they do not give rise to destabi-
lizations, and (2) if Æ � �0 is the attaching Legendrian arc for the bypass,
and p; q; r are intersections with �0 in consecutive order along Æ, then p; q do
not lie on the same dividing curve and q; r do not lie on the same dividing
curve.

The proof of the lemma is left to the reader | one simply needs to
check all the possibilities. To do this note that the bypass can only involve
two di�erent dividing curves on � (or else one gets a boundary-parallel
dividing curve on �). This observation will yield 12 possible dividing curve
attachments, three of which will also result in a boundary-parallel dividing
curve on �: The nine remaining possibilities are listed in Figures 12 and 13.

Proof of Proposition 5.6. If �0 has dividing set �0, then act via 	 to get
�1 = 	(�0) on �1 = 	(�0), which is a convex surface which is isotopic to
�0. Hence, we may freely modify � 7! 	k(�) for any k 2 Z, via an isotopy.
Let p;�1

p
2 RnQ be the slopes corresponding to the two eigendirections of

	, with 0 < p <1. On the circle at in�nity S11 of the standard tessellation
of D2, p is an attracting �xed point and �1

p
is a repelling �xed point under

the action of 	. Suppose that the initial con�guration fv1; v2; v1 + v2g
corresponds to slopes a; b; c respectively. Then we may act repeatedly via 	
so that 1 � b > c > a � 0, and we have three possibilities:

(1) a; b; c > p.
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(A)

(B)

(C)

(D)

(E)

Figure 12. Allowable list of dividing curves. The dotted
lines are dividing curves, and the Legendrian arcs of attach-
ment for the bypasses are shown (solid lines). The bypasses
are attached from the front. The left side and right side of
each tile are identi�ed and the top and bottom are also iden-
ti�ed.
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(F)

(G)

(H)

(I)

Figure 13. Continuation of allowable list of dividing curves.

(2) a; b; c < p.
(3) b; c > p, a < p, or b > p, a; c < p.

Assume that in all the cases, bypass attachments do not give rise to boundary-
parallel dividing curves (and hence a destabilization), since that would con-
tradict tb = �3. This means that, for dividing curve con�gurations of type
III(a), we only use moves of type A through I in Figures 12 and 13. For
con�gurations of type I(a), we only use the moves in Figure 15. To simplify
notation, write vs for the shortest integral vector with nonnegative entries,
corresponding to a slope 0 � s 2 Q .

Case 1. We may assume in addition that 1 � a < c < b � 1: Indeed,
if a � 1 then we are done, and if a < 1 then p < a; c; b < 1; since any
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1/1
a

c’

c

b

1/0

1/1
a

c

b

1/0

c’

Figure 14. Type A and H moves.

triangle in the tessellation whose vertices are between 0 and 1 and whose
clockwise-most vertex < 1 has all its vertices < 1: Now since 	(1) = 1 we
may use 	�1 to achieve the desired slopes. We will show that using bypasses
we can perform a sequence consisting of the following moves to our v1; v2;
and v3 = v1 + v2 (hence a�ecting a; b; c):

(1) replace v1; v2; v3 with v01; v
0
2; v

0
3, where v

0
1 = v1 � v2; v

0
2 = v2 and

v03 = v1 = v01 + v02; (corresponds to right drawing in Figure 14)
(2) replace v1; v2; v3 with v01; v

0
2; v

0
3, where v

0
1 = v1; v

0
2 = v2 � v1 and

v03 = v2 = v01 + v02; (corresponds to left drawing in Figure 14) or
(3) replace v1; v2; v3 with v

0
1; v

0
2; v

0
3, where v

0
3 = v1; and v

0
1 and v

0
2 are de-

termined by v02 = v01+v
0
3, and the triangle corresponding to v01; v

0
2; v

0
3

is the innermost triangle in the tessellation with v03 = v1 and all ver-
tices counterclockwise of 1: Here, `innermost' means closest to the
center of the disk.

Note that, if we start with a triangle T corresponding to v1; v2 and v3 =
v1 + v2, then there is a �nite number NT of triangles that can be obtained
from T by the sequence of moves listed above. Moreover, the triangle with
vertices at (1; 2;1) is one of the triangles that can be so obtained. Now, if
T 0 is obtained from T by one of the moves above, then NT 0 < NT : Thus any
(suÆciently long) �nite sequence of these moves will take us from T to the
triangle with vertices at (1; 2;1):
We now show how to �nd the bypasses that allow us to perform the above

moves. Since 	(a) < 1 � a; b; c, j	(va) \ (va [ vb [ vc)j > 2, and, by using
an annulus d � I with d parallel to 	(va), we �nd a bypass of type A, F,
or H in Figures 12 and 13. The bypasses are of the stated type, since the
slope of the bypass is smaller than a; b; or c: Suppose we do not already have
fa; b; cg = f1; 2;1g. Moves of type A and H replace the ideal triangle with
vertices a; b; c by another triangle with vertices a; b; c0 (see Figure 14). Here
c0 corresponds to the slope of �(v2 � v1). Thus, v1; v2 and v3 are a�ected
by applying one of the �rst two moves mentioned above.
A move of type F will give rise to a con�guration of type I(a) with n = 3

and m = 1. Just as we denoted a con�guration of type III(a) by fa; b; cg, we
will denote a con�guration of type I(a) by fag. We deal with the case a = 1
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a

b'

1

2

Figure 15. Two possibilities for bypass attachment.

at the end of the paragraph. Otherwise, in order to modify �0 = fag, take
an annulus d � I, where d has slope 	(a). Note that p < 	(a) < 1. Since
bypass attachments cannot give rise to boundary-parallel dividing curves on
�, there are two possibilities, given in Figure 15. Here b0 is the smallest
slope for which there exists an edge of the tessellation from a to b0. (Note:
in general there are other possibilities for the slope of the bypass but with
this choice of basis for the torus and our choice of d only those shown in
Figure 15 are possible.) After the bypass attachment, � has dividing curves
of type III(a) and two of the dividing curves have slopes a; b0 respectively.
Let v1 and v2 be the minimal integral vectors corresponding to these slopes.
Then the third dividing curve on � is spanned by v3 = v1 + v2 or v2 � v1:
In the �rst case we have performed a move of type 3 listed above and in
the second case we have performed a move of type 3 followed by one of type
2. Thus we may perform a sequence of the above moves eventually obtain
f1; 2;1g or at some point we obtain a con�guration of type I(a) with curves
of slope 1. In this case use 	�1 to modify f1g 7! f1g. Let this be �0. Then,
using the annulus d � I where d has slope 	(1) = 1, we obtain a bypass
which modi�es f1g 7! f1; 2;1g.

Case 2. Assume a < c < b < p. Without loss of generality, assume 0 �
a < c < b � 1

2 (this argument is the same as the one at the beginning
of Case 1). Use the annulus d � I, where d has slope 	(b), to obtain a
bypass of type A, F, or H. The same argument as in Case 1 allows us to
isotop � so that the dividing curves are of type I(a) with slope 0 or of type
III(a) with slopes 0; 12 ;

1
3 : In the �rst case, attaching the only possible bypass

along 	(0) = 1
2 which does not yield a boundary-parallel component on �0,

we obtain f0g 7! f0; 1;1g. Next suppose we have f0; 12 ;
1
3g. If we use the

annulus d�I where d has slope 1
2 , then 	(

1
2) =

3
5 , and F cannot happen (for

F to happen, we need 	(12) > 1). Therefore, f0; 12 ;
1
3g 7! f0; 12 ; 1g, which is

dealt with in Case 3.

Case 3. Here we start with a triangle T in the Farey tessellation whose
vertices straddle p: Below we show that attaching bypasses will either put
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us back in Case 1, which we have already dealt with, or we perform one of
the following moves on v1; v2 and v3 = v1 + v2 :

(1) replace v1; v2; v3 with v01 = v1; v
0
2 = v1 + v2 and v03 = v2 + 2v1 (if

a < p and b > c > p) or
(2) replace v1; v2; v3 with v01 = v1 + v2; v

0
2 = v2 and v03 = v1 + 2v2 (if

a < c < p and b > p).

Assuming this is true for the moment. There is some k such that the vertices
f	k(0);	k(1);	k(1)g span a triangle G in the Farey tessellation that is
disjoint from T and separates T from p: Each time we perform a move of
type 1 or 2 to T , we obtain a new triangle T 0 lying between T and G. Since
there are only a �nite number of triangles in the tessellation lying between
T and G, this process must stop. It can only stop if T = G (or a bypass
attachment puts us in Case 1), in which case we are done.
Suppose that b > c > p and a < p. Use the annulus d � I, where d has

slope 	(c), to obtain a bypass of type C, E, or G. C gives fa; b; cg 7! fcg,
with c > p, which was already treated under Case 1. Bypasses of type E or
G modify v1; v2; v1 + v2 to v1; v1 + v2; 2v1 + v2 | and we are still in Case 3
(though we might have b > p and a < c < p). Now suppose that b > p and
a < c < p. Similarly, we have bypasses of type B, D, or I. I puts us in Case
1, and B, D modify v1; v2; v1+v2 to v1+v2; v2; v1+2v2 (still in Case 3). �

Proposition 5.8. (1) There exists no tight contact structure on �� I for
which �0 is of type III(a) with slopes f0; 1;1g. (2) There exists exactly one
tight contact structure on � � I for which �0 is of type III(a) with slopes
f1; 2;1g, and (�0)� | the signs of each region divided by �0 | are �xed.

Proof. Note that H = � � I is a genus two handlebody. In general, when
analyzing handlebodies with convex boundary, we use compressing disks D1

and D2 so that the cut-open manifold is a 3-ball. To obtain a smooth convex
boundary of H = � � I, we need to round the edges @� � f0; 1g. This is
done using the Edge-Rounding Lemma (Lemma 3.8). When using Edge-
Rounding, we must be careful to remember that, since @� � [0; 1] was the
convex boundary of a neighborhood of a Legendrian curve, there is holonomy
(as we go from �0 to �1). We then arrange for D1, D2 to have Legendrian
boundary | for this we use the Legendrian Realization Principle. Then,
D1, D2 with Legendrian boundary are perturbed, �xing the boundary, so
they become convex. What remains is to study the con�guration of dividing
curves on each compressing disk.
We have @(� � [0; 1]) = �0 [ �1 [ A where A is the annulus @�� [0; 1]:

Below we discuss the dividing curves on �0 and �1 but �rst we consider the
dividing curves on then annulus A and how they are related to the dividing
curves on the �i's. To this end consider Figure 16. In this �gure we identify
the right and left edges, then the center rectangle forms the annulus A: The
top and bottom parts of the picture form neighborhoods of @�i in �i and the
shaded region is obtained using the Edge-Rounding Lemma. The dividing
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Figure 16. Dividing curves (dashed lines) on, and near, the
annulus A:
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Figure 17. Dividing curves on �0 and �1 (dashed lines).
The solid line is our choice of Æ:

curves on �i divide the @�i into 6 intervals. We label the intervals 1-6 so
we can identify them with the corresponding intervals on the annulus A:
(1) �0 = f0; 1;1g and �1 = f12 ;

2
3 ; 1g. See Figure 17. There exists a disk

D = Æ � [0; 1]; where Æ is an arc with slope 1, with geometric intersection
j@D \�@H j = 0. Note that Æ�f0; 1g � @D are represented by solid lines in
Figure 17, and (@Æ) � I � @D lies on A = @� � [0; 1]: Though (@Æ) � I is
not drawn in Figure 16, one may easily determine that @D \ �@H = ;. By
the Legendrian Realization Principle, we may realize @D as a zero-twisting
(rel @H) Legendrian curve. This implies that there is an overtwisted disk
and that there cannot be a tight contact structure on H with this boundary
condition.
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Figure 18. Dividing curves on �0 and �1 (dashed lines).
The solid line is our choice of Æi:

(2) �0 = f1; 2;1g and �1 = f23 ;
3
4 ; 1g. Let Æ1 be an arc on � with slope

1 and let Æ2 be an arc with in�nite slope. Choose the compressing disks D1

and D2 for H to be isotopic to Æ1 � I and Æ2 � I, drawn as in Figure 18.
After using the Legendrian Realization Principle, we take the boundaries
to be Legendrian and @D1 and @D2 to intersect the dividing curves on @H
(minimal geometric intersection number) 2 and 6 times, respectively.
There is only one possibility for the dividing curves on D1. However,

there are several possible dividing curve con�gurations for D2. Consider the
intersections between Æ2 � f1g and �1 | count the intersections from bot-
tom to top along Æ2 � f1g � �1 shown in Figure 18. One may easily check
that there cannot exist a bypass along @D2 which straddles the second in-
tersection or the fourth intersection, without immediately yielding a bypass
for K. Thus, the only two possibilities for D2 are shown in Figure 19. Now,
if D2 had the right-hand con�guration shown in Figure 19, then a bypass
straddles the third intersection between Æ2 � f1g and �1. Note this bypass
is nested inside another bypass on D2: If we added both these bypasses in
succession, the resulting copy of � would have dividing curves f0; 1;1g:
Hence we could �nd an overtwisted disk as above. Thus, the dividing curves
on D2 are shown on the left-hand side of Figure 19.
Now, since we have normalized each of D1, D2 to have a unique dividing

curve con�guration, we have a unique tight contact structure on H with
given con�gurations �0, �1, up to isotopy. This is because any two tight
contact structures with these boundary conditions can �rst be matched up
along D1, D2, and then matched up inside H n(D1[D2) using Theorem 2.1.

�

We have normalized � on � to be of type III(a) with slopes f1; 2;1g.
To �nish the proof of Theorem 5.3 we just note that we can also normalize
the signs of the two regions of � n � by acting via �id on �. Since �id Æ
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Figure 19. Possible dividing curves on �2:

	 Æ (�id)�1 = 	, we may use this isomorphism to switch �+ and ��.
Therefore, we obtain a contactomorphism f : S3 ! S3 taking K to K 0 as
discussed after the statement of Theorem 5.3.

5.3. Destabilization.

Proposition 5.9. If K is an oriented Legendrian �gure eight knot and
tb(K) = �3 � k < �3; then there exist positive integers k1 and k2 such

that k = k1 + k2; r(K) = k2 � k1 and K = Sk1� (Sk2+ (K 0)), where K 0 is the
Legendrian �gure eight knot with maximal Thurston-Bennequin invariant.

Proof. Suppose K is a Legendrian �gure eight knot with tb(K) < �3: From
Lemma 3.6 we know that there must be more than 3 dividing curves on �:
Thus Proposition 5.5 implies that the dividing curves on the Seifert surface
� can be normalized so that we have I(a) (with n � 5), II(a), or III(a). In
each of the cases, we prove that either we can normalize � into a standard
form, or there exists a destabilization | this is done in the same way as in
Proposition 5.6. Then, in the same way as in Proposition 5.8, we prove that
there always exists a destabilization, when � is in the standard form.

Case II(a). Refer again to the tessellation picture, and denote �0 by fa; bg,
where 1 � b > a � 0 (without loss of generality) are the slopes of the two
isotopy classes of arcs on �0. Figure 20 gives a complete list of bypasses that
can be attached, without immediately giving rise to a destabilization. First
assume1 � b > a � 1, and that fa; bg 6= f1;1g. If d is a closed curve with
slope a, then use 	(d)� I to obtain a bypass along �0, using the Imbalance
Principle. If there is no destabilization, then the bypass attachment is of
type A, and fa; bg 7! fa0; bg, where a > a0 � 1. If we repeat this procedure,
we either arrive at f1;1g or obtain a destabilization if a is already the
smallest slope for which there exists an edge of the tessellation to b. Finally,
if we take a closed curve d with slope 1, then 	(d) has slope 2

3 . The bypass
along �0 with �0 = f1;1g, which comes from 	(d) � I, cannot be of type
A or B, and hence we have a destabilization.
Next assume 1 � b > p and p > a � 0. De�ne c to be the slope

corresponding to va + vb. If c < p, then use 	(d) � I, where d has slope b.
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(A)

(B)

Figure 20. Allowable bypasses. The Legendrian arcs of at-
tachment are shown. The bypasses are attached along solid
black or grey lines from the front.

The resulting bypass is not of type A or B, since the slope of 	(d) > c > 0
while the bypasses of type A and B have slope less than c: Thus we can
destabilize. If c > p, then use 	(d) � I, where d has slope a. A type B
move modi�es fa; bg 7! fa; cg. We keep repeating, until eventually the new
c satis�es c < p.
If p > b > a � 0, then we may assume 1

2 � b > a � 0. Assume

fa; bg 6= f0; 12g already. The situation is similar to 1 � b > a � 1 above,

and we eventually obtain f0; 12g or a destabilization. A bypass attachment
of type A (which must exist if there is no destabilization) will put us into
f0; 1g which is already done. Therefore, Case II(a) always destabilizes.

Case III(a). Consider Figures 21, 22, 23 and 24, which list all the possible
bypasses.
Figure 21 (just Type A) is for I(a) (Note: as discussed in the proof of

Proposition 5.6 there are other possibilities for the slopes of the bypasses in
I(a) but with the proper choice of basis for the torus we can always arrange
to be in the situation shown in Figure 21). When two of the isotopy classes of
arcs have more than one parallel copy, then we have Figure 22 and one of B,
C, or D. When two isotopy classes have one copy each, then we have Figures
23 and 24 and one of E, F, G, H, I, J, K, L, or M. As before, represent a I(a)
con�guration by fag and a III(a) con�guration by fa; b; cg. Let mult(s) be
the multiplicity (number of parallel copies) of the isotopy class with slope s.
Assume we have III(a) and the Legendrian curve does not destabilize.

Notice that we may assume that two of the isotopy classes will havemult = 1
after repeated attachments of bypasses | this follows from the fact that if
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(A)

Figure 21. Allowable bypasses. Case I(a).

(B)

(C)

(D)

Figure 22. Allowable bypasses. Case III(a), and two of the
isotopy classes have more than one parallel copy.



42 JOHN B. ETNYRE AND KO HONDA

(E)

(I)

(F)

(G)

(H)

Figure 23. Allowable bypasses. Case III(a), and two iso-
topy classes have one copy each. Bypasses are attached along
solid black or grey lines.
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(J)

(K)

(L)

(M)

Figure 24. Allowable bypasses. Case III(a), and two iso-
topy classes have one copy each. Bypasses are attached along
solid black or grey lines.

mult > 1 for 2 isotopy classes, then Figure 22 implies that there are only
moves B, C, and D, and these yield two isotopy classes of mult = 1 after
repeated application (note depending on the situation one can only �nd
bypasses of type B, C or D and not some combination of these). Therefore
we assume that two classes have mult = 1.
Now assume, in addition, that 1 � b > c > a � 1, and fa; b; cg is not

already f1; 2;1g. As before, take a closed curve d with slope a, and consider
	(d)� I. Since 	(d) intersects each curve of �0 at least once, there exists a
bypass of slope 	(a) with 1 > 	(a) > p. The only possibilities are then E,
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Figure 25. Nesting. The sides of the annulus are identi�ed.
The top is d� f1g and the bottom is d� f0g.

G, J, and L. We also want to distinguish between 	(a) > a0 and 	(a) < a0,
where a0 corresponds to va � vb. If 	(a) > a0, then we have G, J, or L. If
	(a) < a0, then we have E or J.
Assume 	(a) < a0. Suppose �rst mult(a) = mult(b) = 1. Then we have

move J, and repeated application yields mult(a) = mult(c) = 1. Using
move E, we obtain fa; b; cg 7! fa0; a; bg (1 � b > a > a0 � 1), mult(a0) =
mult(a) = 1 and mult(b) > 1. fa0; a; bg corresponds to an ideal triangle
which lies further inward on D2 | the kind on the right-hand side of Figure
14.
Assume 	(a) > a0. Suppose �rst mult(a) = mult(b) = 1. Then repeated

application of move J yields mult(a) = mult(c) = 1. Next, repeated appli-
cation of move G yields mult(c) = mult(b) = 1. Then we are now left with
L which maps fa; b; cg 7! fag. Taking d with slope a and annulus 	(d)� I,
we get fag 7! fa00; a; b00g, where a00 � 1 is the smallest slope with an edge to
a, mult(a00) = mult(b00) = 1, and either a00 < b00 < a or a00 < a < b00. Thus,
eventually the smallest slope a of fa; b; cg goes to 1 and we get to f1; 2;1g
with mult(1) = mult(2) = 1, mult(1) > 1, or there exists a destabilization.
Once we have f1; 2;1g, use 	(d) � I, where d has slope 1, and repeatedly
apply J and G until mult(1) > 1, mult(2) = mult(1) = 1, followed by L,
which gives us f1; 2;1g 7! f1g. Since we may map via 	�1 to get f1g, we
may use f1g or f1; 2;1g as we wish.
Up to now we made no use of the holonomy on @��I. We now mimic the

proof of Proposition 5.8 and study the genus two handlebody H = � � I.
�0 has �0 consisting of n (odd) arcs and 1 closed curve, all of slope 1. �1
has �1 consisting of n arcs and 1 closed curve, all of slope 1. Take d � I,
where d has slope 1. The Legendrian realization d�f1g has twist number 0
on �1, whereas the Legendrian realization d�f0g has twist number n+1 on
�0. Since there is only one allowable bypass attachment onto �0 with slope
1, all the dividing curves on d � I must be nested `in parallel'. See Figure
25. If we attach all the nested bypasses in succession to �0, we eventually
obtain �00, which is identical to �1, except for spiraling. See Figure 26. If
we take the meridional disk D = Æ � I, where Æ is an arc with slope 1; then
j@D\�@H j = n�1. As long as n > 3, there will exist a bypass along @D: In
fact, since D is a disk, at least one bypass will lie entirely on �0: Since the
bypass does not involve the closed dividing curve on �00, it will have to lead
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Figure 26. �0;�
0
0 and �1: The non-dashed curve is Æ:

to a boundary-parallel dividing curve on �00: Thus we have a destabilization
of our knot.
Next assume 1

2 � b > c > a � 0. As above, there is a destabilization or

we get to f0; 13 ;
1
2g, with mult(0) = mult(13) = 1, mult(12) > 1, or to f0g. In

the former case, a bypass of type E then gives f0; 12 ; 1g. In the latter case,

a type A move gives f0; 12 ; 1g.
Assume p > a � 0, 1 � b > p. First assume b > c > p. Then we let

d have slope a, and consider 	(d) � I. Here 	(a) < p. Then we have G,
I, K, or M. I gives fcg with c > p, which is done. If we have M, then the
next bypass operation must be I, and we are done. If we have G, then the
next step is M, and we are done again. We are left with K. Next assume
p > c > a. Then let d have slope b, and consider 	(d)� I. Here 	(b) > p.
We will have F, H, J, or M. As before, F gives fbg with b > p, which is
done. J must be followed by F, and M must be followed by H or J, so we are
left with H. At the end of the day, we are left with f	k(0);	k(1);	k(1)g
(or simply f0; 1;1g), and mult(0) > 1, mult(1) = mult(1) = 1. Now (see
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Proposition 5.8), a handlebody H cut open along � with this con�guration
must give rise to a destabilization | use the disk D = Æ � I, where Æ has
slope 1.

Case I(a). Given the con�guration fa0g with 1 > a0 > 1, move A will put
us into case III(a) with 1 � b > c > a � 1, which is done. Given fa0g with
1
2 > a0 > 0, move A will put us into case III(a) with 1

2 � b > c > a � 0,
which is also done. �

We have now proved that for K, the isotopy class of the �gure eight knot,
there exists a unique maximal Thurston-Bennequin representative, and any
Legendrian �gure eight knot destabilizes to this unique representative. Now,
using Lemma 2.5, we �nd that the classi�cation easily extends to non-
maximal tb Legendrian knots. This proves Theorem 5.1. �

5.4. Transversal Figure Eight Knots. Theorem 5.1 implies that the �g-
ure eight knot is stably simple and thus we may use Theorem 2.10 to con-
clude

Corollary 5.10. If K and K 0 are two transversal �gure eight knots then
they are transversally isotopic if and only if l(k) = l(K 0): Moreover, the self
linking numbers of transversal �gure eight knots realize precisely the set of
odd integers � �3:
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