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ABSTRACT. In this article we survey, and make a few new observations about,
the surprising connection between sub-monoids of the mapping class groups and
interesting geometry and topology in low-dimensions.

1. INTRODUCTION

Recall that a monoid is a setM with an associative binary operation and a unit (or
colloquially “a group without inverses”). A typical example is the non-negative
integers under addition. Below we describe various ways to construct monoids in
groups. Specifically we discuss how to use generating sets and left-invariant or-
derings to create monoids in groups. We then apply these techniques to the braid
groups and mapping class groups to generate several different sub-monoids. The
surprising thing is that these algebraically defined monoids tend to have deep
connections to topology and geometry! We then show how to use contact geo-
metric ideas to construct more monoids in the mapping class groups that are al-
gebraically not well understood at all. A better such understanding would most
likely have important implications in contact geometry. Moreover previously in-
tractable questions about various monoids in the braid group defined via generat-
ing sets (and long known to be related to algebraic geometry) have been answered
using contact geometric techniques.

It is this amazing connection between the algebra, on one hand, and geometry
and topology, on the other, of monoids in the mapping class group that is the focus
of this paper. We wish to highlight the connections that are known and point to
many interesting open problems in the area.

As we hope this survey paper to be highly accessible, in Section 2 we recall (1)
basic facts about the braid group and their relation to links in S3, (2) a few defi-
nitions and facts about contact geometry in dimension 3, (3) the relation between
braids and contact topology, (4) some results about open book decomposition and
their relation to contact structures and generalized braids, and finally (5) some no-
tation concerning the mapping class group of a surface. In the following section
we discuss how to generate monoids via generating sets for a group and then dis-
cuss some classically known monoids in the braid group. Specifically we discuss
positive, quasi-positive and strongly quasi-positive braids and their topological
and geometric importance.

In Section 4 we show how to create monoids from left-invariant orderings and
then discuss famous orderings of the braid groups and more generally mappings
class groups of surfaces with boundary. This will naturally lead to the notion of
right-veering diffeomorphisms of surfaces and the right-veering monoid which
has important connections to contact geometry. In Section 5 we then indicate the
surprising fact that one can construct many monoids in the mapping class groups
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using ideas from contact geometry. The following section then discusses many
interesting observations about these monoids and even more open questions about
them.

In the final two sections of the paper we show how to use contact geometry
to construct monoids in the braid groups (and discuss many questions related to
this) and how to use contact geometry to study the various classical “positive”
monoids in the braid group.
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2. BACKGROUND

2.1. The braid group. Here we briefly discuss the braid group and will return
to it from the perspective of mapping class groups later. For a more thorough
introduction to the subject we recommend both Birman’s classic book [14] and the
survey paper [15].

We begin by fixing n points x1, . . . , xn on the y–axis inside the unit disk D2

so that their y–coordinate increases with their index. Then recall that an n–strand
braid, or n–braid for short, is an isotopy class of embeddings of n intervals [0, 1]
into D2 × [0, 1] that is transverse to each disk D2 × {t} and intersects D2 × {0}
and D2 × {1} in the points {x1, . . . , xn}. It is clear that given two n-braids w1 and
w2 we can reparameterize the first to lie in D2 × [0, 1/2] and the second to lie in
D2 × [1/2, 1] and then concatenate them to get a new braid w1w2. Thus the set
of n–braids, which we denote by B(n), has a multiplicative structure. One may
easily see that this gives B(n) the structure of a group. This is called the braid
group.
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FIGURE 1. The standard generator σi of the braid group B(n).

There is a simple finite presentation for the braid group called the Artin presen-
tation, [3]. The generators are the braids σi depicted in Figure 1 for i = 1, . . . , n−1
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and the relations are
σiσj = σjσi if |i− j| > 1

and
σiσi+1σi = σi+1σiσi+1.

Notice that given a braid w we can consider the image of w in D2 × [0, 1] with
D2 × {0} glued to D2 × {1} by the identity. This gives a link in D2 × S1 and if we
identify D2 × S1 with the neighborhood of the unknot in R3 (taking the product
framing to the zero framing on the unknot) then the image of w will be a link
w in R3 called the closure of w. Notice that if one uses cylindrical coordinates
on R3 then the identification of D2 × S1 with a neighborhood of the unknot can
be done in such a way that the S1 factor is the θ coordinate. Thus we see that
the θ–coordinate is monotonically increasing as we traverse any component of w.
Similarly if L is any link in R3 that is disjoint from the z–axis and has θ–coordinate
monotonically increasing then we say that L is braided about the z–axis. Notice
that in this case we can isotope L, through links braided about the z–axis, so that it
lies in a neighborhood D2 × S1 of the unknot in the z = 0 plane. Choosing any θ0,
L will intersect D2 × {θ0} in some number of points, say n. Now we can further
isotope L in D2 × S1 so that it intersects D2 × {θ0} in the points x0, . . . , xn. Thus
cutting D2×S1 along D2×{θ0}will result inD2× [0, 1] and L will become a braid
w. It is clear that L is isotopic to the closure w of the braid w. It is quite useful to
know that all links can be so represented.

Theorem 2.1 (Alexander 1923, [2]). Given any link L in R3 there is some natural
number n and n–braid w such that L is isotopic to the closure of w.

It should be clear that the braid in Alexander’s theorem is not unique. For exam-
ple given a n–braid w we can form an (n+ 1)–braid w± called the positive/negative
stabilization of w by adding a trivial (n+ 1)st strand and then multiplying w by the
generator σ±n . One easily checks that the closures of w and w± are isotopic links.
Similarly given w one can conjugate w by another n–braid b to get a braid with the
same closure: w is isotopic to bwb−1. It turns out these two procedures are the only
way to get braids with the same closure.

Theorem 2.2 (Markov 1935, [56]). Two braids w and w′ have isotopic closures if and
only if w and w′ are related by a sequence of stabilizations, destabilizations and conjuga-
tions.

Thus we see that the study of knots can be encoded in the study of the braid
groups. We also remark that all the above statements hold for links in S3 as well
as R3 and we will switch between these two settings when convenient.

2.2. Contact structures. A contact structure ξ on a 3–manifoldM is a 2–dimensional
sub-bundle of the tangent bundle of M that is not tangent to any surfaces along
an open subset of the surface. This is most conveniently expressed in terms of
a (locally defined) 1–form α such that ξ = kerα and α ∧ dα 6= 0 at any point.
The assumption that we can choose α globally is equivalent to ξ being orientable
which we will assume throughout this paper. The canonical example of a contact
structure is ξstd = ker(dz+r2dθ) on R3, see Figure 2. A well known theorem of Dar-
boux, see [36], says that any contact structure on a 3–manifold is locally equivalent
to (R3, ξstd). So we could have defined a contact structure to be a 2–dimensional
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FIGURE 2. The contact structure ξstd and ξot with the overtwisted
disk indicated on the right. (Figure courtesy of S. Schönenberger.)

sub-bundle ξ of the tangent bundle that is locally modeled on (R3, ξstd). Compact-
ifying R3 to S3 we get an induced contact structure ξstd on S3 that can also be seen
as the set of complex tangencies to S3 when S3 is thought of as the unit sphere in
C2.

Contact structures fall into one of two categories: tight and overtwisted. We
say a contact structure ξ on M is overtwisted if there is a disk D embedded in M
such that D is tangent to ξ along its boundary and at one point on the interior.
Such a disk is called an overtwisted disk. If no such disk exists then the contact
structure is called tight. An example of an overtwisted disk can be seen in R3 with
the contact structure ξot = ker(cos r dz + r sin r dθ) as the disk of radius π in the
plane {z = 0}. See Figure 2.

We will return to the tight versus overtwisted dichotomy shortly, but first recall
a few other basic definitions and facts about contact structures. In the study of
contact structures it is important to consider knots adapted to a contact structure
in various ways. We call a knot K in a contact manifold (M, ξ) Legendrian if K is
always tangent to ξ and we call it transverse if TxK is transverse to ξx in TxM for
all x ∈ K. When considering isotopies of such knots we always consider isotopies
through knots with the same property. It turns out that each topological knot
type can be realized by many different Legendrian and transverse knots (that is
a topological knot can be topologically isotoped to be a Legendrian or transverse
knot in many different ways). For more on Legendrian and transverse knots see
[29], but here we recall some basic invariants of such knots. First there are two
classical invariants of a Legendrian knot K. There is the framing fr(K, ξ) that ξ
gives to K. If K is null-homologous it also has a framing coming from a Seifert
surface Σ, that is a surface with boundary K. In this case the difference between
fr(K, ξ) and the Seifert framing is called the Thurston-Bennequin invariant of K
and is denoted tb(K). It is easy to show that ξ restricted to Σ is trivial, thus we
can pick a non-zero vector field v in ξ along Σ. Now if K is oriented then we can
also take an oriented tangent vector field w along K. The rotation number of K
is the rotation of w along K with respect to v. We denote this number by r(K).
One may easily check that Legendrian knots that are Legendrian isotopic have the
same Thurston-Bennequin invariants and rotation numbers.
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Later we will be interested in surgeries on Legendrian knots. Specifically, given
a Legendrian knot L in a contact manifold (M, ξ) then L has a neighborhood that
is contactomorphic to a product neighborhood of S1×{(0, 0)} in S1×R2 with the
contact structure dz − y dθ where (y, z) are Euclidean coordinates on R2 and θ is
the angular coordinate on S1. If one removes this neighborhood and glues back
in a solid torus to perform ±1–surgery, with respect to the framing of L given by
the contact planes, then there is a unique way to extend the contact structure on
the complement of the neighborhood over the surgery torus so that it is tight on
the surgery torus. The resulting contact manifold is called ±1–contact surgery on
(M, ξ) along L. Also,−1–contact surgery is called Legendrian surgery. It is known
that all contact 3–manifolds can be obtained from the standard contact structure
on S3 by a sequence of ±1–contact surgeries, [20].

Now given a transverse knotK that is the boundary of a surface Σ we can again
trivialize ξ|Σ and use a non-zero section of ξ|Σ to push off a copy K ′ of K. Then
the self-linking number of K is just the linking number of K and K ′ (that is the
intersection number of K ′ and Σ). We denote this number by sl(K) and can easily
see that it is an invariant of the transverse isotopy class of K.

We finish this section by briefly reviewing various types of fillings. For a more
leisurely discussion see [27]. We say a contact manifold (M, ξ) is strongly sym-
plectically filled by the symplectic manifold (X,ω) if X is a compact manifold with
∂X = M and there is a vector field v on X defined near the boundary of X so that
v is transverse to ∂X , the flow of v dilates ω (that is Lvω = ω where L stands for
the Lie derivative), and α = (ιvω)|M is a contact form for ξ. We say that (X,ω)
is a weak symplectic filling of (M, ξ) if again X is compact, ∂X = M and ω is a
symplectic form when restricted to ξ. One can easily see that if (X,ω) is a strong
symplectic filling of (M, ξ) then it is also a weak symplectic filling. (Sometimes the
word symplectic is left out when talking about fillings.) One key fact about fillings
is given in the following results.

Theorem 2.3 (Gromov 1985, [42]; Eliashberg 1990, [22]). Any weakly symplectically
fillable contact structure is tight.

We have one final type of filling of a contact structure. A complex manifold
(X, J) is called a Stein manifold if it admits a proper function φ : X → R that is
bounded below and strictly-plurisubharmonic. By strictly-plurisubharmonic we
mean that −d(J∗dφ) is a symplectic form on X . A Stein domain is a regular sub-
level set of φ and a Stein filling of (M, ξ) is a Stein domain defined by φ : X → R
with boundary M for which −J∗dφ restricted to M is a contact form for ξ. One
can easily check that if a contact manifold is Stein fillable then it is also strongly
and weakly symplectically fillable.

We end by noting that Legendrian surgery preserves all forms of fillability. That
is if (M, ξ) is fillable in some sense and (M ′, ξ′) is obtained from it by Legendrian
surgery on some link, then (M ′, ξ′) is also fillable in the same sense, [23, 30, 84].

2.3. Braids and contact topology. The birth of modern contact topology could
very well be Bennequin’s seminal paper showing that there were at least two dis-
tinct contact structures on R3. He did this by showing that all transverse knots in
the standard contact structure ξstd = ker(dz+r2 dθ) satisfy the Bennequin inequal-
ity but transverse knots in ξot = ker(cos r dz + r sin r dθ) do not. More specifically
he proved the following result.
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Theorem 2.4 (Bennequin 1983, [13]). If T is any knot transverse to the standard contact
structure ξstd on R3 then

(1) sl(T ) ≤ −χ(Σ),

where Σ is any Seifert surface for T .

As the genus of a knot is determined by its Euler characteristic this also gives
a lower bound on the genus of a knot. So not only did this theorem indicate that
there is more than one contact structure on R3 it also showed that contact struc-
tures can give interesting purely topological information. The Bennequin inequal-
ity had taken on a central role in contact topology thanks in large part to Eliashberg
connecting it with tightness.

Theorem 2.5 (Eliashberg, 1992 [24]). Let ξ be a contact structure on a 3–manifold M .
Then the following are equivalent:

(1) The contact structure ξ is tight (ie contains no overtwisted disks).
(2) The contact structure ξ contains no embedded disks with Legendrian boundary

and contact framing 0.
(3) All transverse knots in (M, ξ) satisfy the Bennequin bound.
(4) There is a topological knot type such that any transverse knot in that topological

knot type satisfies the Bennequin bound.
(5) There is a topological knot type such that any transverse knot in that topological

knot type satisfies any upper bound on their self-linking numbers.

The implication that Item (2) implies (1) is clear and Item (3) also implies (1)
because an overtwisted contact structure has a transverse unknot with self-linking
number 1 (just take the boundary of a slight enlargement of an overtwisted disk).
The reverse implications were established by Eliashberg in [24] by studying char-
acteristic foliations and careful application of the Giroux cancellation lemma (see
[28] for an exposition of this). Clearly Item (3) implies Item (4) which in turn
implies Item (5). The fact that Item (5) implies Item (1) is easily established by
showing that if ξ is not tight then there is no bound for any knot type by not-
ing, as above, that an overtwisted contact structure has a transverse unknot with
self-linking number 1 and that the self-linking number is additive plus one under
connected sum (ie sl(K#K ′) = sl(K) + sl(K ′) + 1). In particular, while clever the
proof of Theorem 2.5 is elementary.

The proof of Theorem 2.4 is a beautiful application of braid theoretic techniques,
see [13] for details. Here we will just indicate the connection between braids and
contact geometry.

We first observe that a closed braid in R3 is naturally a transverse knot in ξstd. To
see this notice that when the r-coordinate is large the contact planes ξstd are almost
tangent to the half-spaces {θ = c}. As, by definition, a closed braid transversely
intersects these half spaces if we isotope a closed braid so that its r-coordinate is
sufficiently large we see that it is transverse to ξstd too. Moreover given any two
representatives of the same closed braids with large enough r-coordinates they
will clearly be transversely isotopic. Thus we see that braids naturally give us
transverse knots in (R3, ξstd). Bennequin observed that all transverse knots can be
so expressed.

Theorem 2.6 (Bennequin, 1983 [13]). Let T be a transverse knot in (R3, ξstd). Then T
can be isotoped through transverse knots to be the closure of a braid.
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We will not give a detailed proof here, but simply notice that standard braiding
procedures for knots (that is techniques to prove Alexander’s theorem) can be
easily adapted to transverse knots. The reader is encouraged to try to prove this.

We briefly recall another braid theory result that generalize from topological
knots to transverse knots. Specifically the Markov Theorem has the following
transverse analog.

Theorem 2.7 (Orevkov and Shevchishin, 2003 [61]; Wrinkle, 2002 [86]). The closure
of two braids represent transversely isotopic transverse knot in (R3, ξstd) if and only if
they are related by (1) conjugation in the braid group (ie isotopy as close braids) and (2)
positive Markov stabilizations and destabilizations.

The two theorems above say that one can study transverse knots in (R3, ξstd) by
just studying braids and that in this respect the only difference between transverse
and topological knots is negative Markov stabilizations. In particular one can com-
pute the self-linking number of a transverse knot in terms of a braid representing
it.

Lemma 2.8 (Bennequin, 1983 [13]). Let w be an element in the n-strand braid group
B(n). The transverse knot represented by the closure w of w has self-linking number

sl(w) = writhe(w)− n,
where writhe(w) is the writhe of the natural diagram for the closure of w and can be
computed as the exponent sum of the word w. That is, if w = σε1i1 . . . σ

εk
ik

in the braid
group B(n), where each εi is either 1 or −1, then writhe(w) =

∑
εi.

2.4. Open book decompositions and braids. Given a surface Σ with boundary
and a diffeomorphism φ : Σ → Σ that restricts to be the identity map in a neigh-
borhood of ∂Σ one can form the mapping torus Tφ of φ, that is the front and back
of Σ× [0, 1] are identified with φ:

Tφ = Σ× [0, 1]/(p, 1) ∼ (φ(p), 0).

Notice that ∂Tφ is a union of copies of S1×S1 (the product structure coming from
S1 × [0, 1]/ ∼ where S1 is a boundary component of Σ). We can now glue a copy
of S1×D2 to each boundary component of Tφ so that S1×{pt} is glued to S1×{t}
and {pt} × ∂D2 is glued to {θ} × S1. See Figure 3. This gives a closed 3–manifold
Mφ. We say that (Σ, φ) is an open book decomposition forM ifMφ is diffeomorphic to
M (technically this diffeomorphism should be part of the structure but is usually
left implicit in discussions of open books). We call Σ a page of the open book and
φ the monodromy.

Notice that the cores of added solid tori form a link B in Mφ
∼= M and the

complement of B is diffeomorphic to the interior of Tφ so there is a fibration π :
(M − B) → S1 whose fibers are the interior of Seifert surfaces for B. The link
B is called the binding of the open book and the closures of the fibers of π are
called the pages. The pair (B, π) can easily be seen to determine (Σ, φ) (φ only up
to conjugation) and is also called an open book decomposition for M . The two
definitions of open book are often used interchangeably but one should note they
are not quite the same. In any event, we will mainly consider open books in terms
of pages and monodromies.

Example 2.9. As a simple example we consider the open book with page a disk
D2 and monodromy φ the identity map. Clearly Tφ is simplyD2×S1 and so when
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Σ× {0} Σ× {1}

φ

Σ× { 1
2}

Σ× {0}

FIGURE 3. Constructing an open book decomposition. On the left
we see a the mapping torus Σ× [0, 1] with Σ×{1} glued to Σ×{0}
by φ. On the right we see the solid torus (green) glued to the
mapping cylinder. The red circle is the binding (core of the solid
torus).

a solid torus is glued to this as above we get Mφ diffeomorphic to S3. Moreover
the core B of the added solid torus is the unknot in S3 so the binding of this open
book is the unknot.

Generalizing the notion of braid we can consider an n–strand braid in Σ× [0, 1].
That is fix n points on Σ, say {x1, . . . , xn}. Then an n–strand braid in Σ × [0, 1],
or n–braid for short, is an isotopy class of embeddings of n intervals [0, 1] into
Σ× [0, 1] that is transverse to each Σ×{t} and intersects Σ×{0} and Σ×{1} in the
points {x1, . . . , xn}. Just as for ordinary braids one can multiply two braids and
see that we get a group B(n,Σ). Moreover it is clear that one can take the closure
of a braid b in B(n,Σ) to get a closed link b ∈ Mφ for any φ that preserves the
points {x1, . . . , xn} (and as we can assume these points are in a neighborhood of
∂Σ where φ is the identity one can ignore this last condition). There is an obvious
notion of positive and negative stabilization as in the standard braid group where
an extra “stand” is added (that is xn+1×[0, 1] where xn+1 is a point close to xn) and
then the original braid is multiplied by the braid with a single positive or negative
half-twist is added between the xn and xn+1 strands.

Example 2.10. Returning to the open book for S3 in Example 2.9 above we see
that a braid in the just defined sense is exactly a braid in the original sense. That is
B(n,D2) is exactlyB(n) and the just defined stabilization operations give ordinary
braid stabilization.

We now have the generalization of Alexander’s and Markov’s theorems.

Theorem 2.11 (Skora 1992, [76]; Sundheim 1993, [78]). Given an open book (Σ, φ)
any link in Mφ can be represented as the closure of a braid of some index. Moreover if two
braids represent the same link then they are related by (1) isotopies as closed braids (that is
isotopies through links that are transverse to the pages of the open book and disjoint from
the binding) and (2) positive and negative stabilization.

Notice that original version of Markov’s theorem two braids gave the same knot
if they were related by conjugation and stabilization and in the above theorem
they need to be related by “braid isotopy” and stabilization. One may easily check
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that for braids in the open book (D2, idD2) braid isotopy is exactly conjugation
in the braid group. There is a similar statement for general open books but the
conjugation is “twisted” by the monodromy map. The reader is encouraged to
work out explicitly what this means though it will not be relevant for what follows.

2.5. Contact structures and the Giroux correspondence. In 1975 Thurston and
Winkelnkemper [79] showed how to associate a contact structure ξφ on the man-
ifold Mφ to an open book (Σ, φ). Later in 2002 Giroux [40] made the following
definition: a contact structure ξ onM is supported by the open book (B, π) if there
is a 1–form α with ξ = kerα, α is non-zero on B, dα is non-zero on the pages of the
open books and the orientation induced on the pages by dα and on B by α agree.
Intuitively this means that the binding is transverse to the contact structure and
the contact planes, away from the binding can be isotoped to be arbitrarily close
to the tangent planes to the pages. Giroux then noted that with care the Thurston
and Winkelnkemper construction gave a contact structure supported by the given
open book and that there is a unique contact structure compatible with a given
open book. Giroux then made the amazing discovery that every contact structure
is supported by some open book! He actually showed more but first we need a
definition.

Given an open book (Σ, φ) and a properly embedded arc c in Σ then the positive
stabilization of (Σ, φ) is the open book (Σ′, φ′), with page Σ′ obtained from Σ by
attaching an (oriented) 1-handle along ∂c and monodromy φ′ = τγ ◦ φ where τγ is
a Dehn twist (see below) along γ which is the closed curve formed as the union of
c and the core of the added 1-handle. One can similarly define a negative stabiliza-
tion in the same way but using τ−1

γ instead of τγ . One can show that the manifolds
Mφ and Mφ′ associated to an open book and its stabilization (either positive or
negative) are diffeomorphic. It is an interesting exercise to work out the definition
of stabilization in terms of the binding and fibration: (B, π). Giroux observed that
the contact structure supported by an open book and its positive stabilization are
isotopic. He moreover proved the following one-to-one correspondence.

Theorem 2.12 (Giroux 2002, [40]). Let M be a closed oriented manifold. Then there is a
one-to-one correspondence between

{oriented contact structures up to isotopy}
and

{open book decompositions (B, π) up to isotopy and positive stabilization}.
This amazing result has been a cornerstone of contact geometry ever since and

will feature prominently in our discussion of monoids in mapping class groups.
Just as we did for ordinary braids we can associate transverse links to braids

in open books. Specifically, given a braid b in B(n,Σ) we can consider its closure
b in Mφ and note that it is transverse to the pages. Since, as discussed above, we
may assume the contact planes are very close to the tangent planes to the pages
we see that b is a transverse link. We say that a transverse link coming from the
closure of a braid is braided about the open book. We end this subsection by noting
for future use that Bennequin, Orevkov-Shevchishin, and Wrinkles theorems have
been generalized to transverse links in all open books.

Theorem 2.13 (Pavelescu, 2008 [68]). Let ξ be a contact structure on a 3-manifold M
that is supported by an open book (B, π).
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(1) Any transverse knot T in (M, ξ) can be braided about (B, π).
(2) Two braids are isotopic through transverse knots if and only if they are related by

braid isotopy and positive Markov stabilizations and destabilizations.

2.6. Mapping class groups. We denote an oriented surface of genus g with k
boundary components and n marked points by Sg,kn . We will frequently leave
out superscripts or subscripts if they are clear from context or unimportant. The
mapping class group of Sg,kn is the group of diffeomorphisms of Sg,kn preserve the
marked points set-wise modulo isotopies through such maps. We denote this
group

Mod(Sg,kn ).

If the diffeomorphisms are the identity on the boundary of Sg,kn the group of iso-
topy classes is denoted

Mod(Sg,kn , ∂Sg,kn ).

We will discuss the mapping class group more in the following sections.

3. MONOIDS VIA GENERATING SETS

Given any group G and a subset A of that group that generates G (that is every
element of G can be written as a product of the elements of A and their inverses)
then we can get a sub-monoid of G by

M(A) = {all words in non-negative powers of the elements of A}.

In the following two subsections we consider monoids in the mapping class group
defined using generating sets and see how they are related to interesting geometric
and topological properties.

3.1. Dehn twists. Given an oriented surface S, any embedded closed curve γ in
S has a neighborhood diffeomorphic to S1× [0, 1]. The (positive) Dehn twist along
γ is the diffeomorphism

τγ : S → S

that is the identity map outside the neighborhood of γ and equal to the map
(θ, t)→ (θ− 2πf(t), t) for points in the neighborhood S1× [0, 1], where f : [0, 1]→
[0, 1] is a non-decreasing function that is identically 0 near 0 and identically 1 near
1. See Figure 4. This map is clearly smooth and it is a standard fact that the isotopy

τγ

γ

FIGURE 4. A positive Dehn twist about γ.
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class of τγ is independent the specific choice of neighborhood of γ and choice of f ,
and only depends on γ up to isotopy.

Theorem 3.1 (Dehn, 1920’s [19]; Lickorish, 1964 [54]). The set of positive Dehn twists
along curves in S generate the mapping class group Mod(S).

We denote byDehn+(S) the monoid inMod(S, ∂S) generated by positive Dehn
twist about curves in S. Using relations in the mapping class group, see for exam-
ple [32], it is easy to see the following.

Theorem 3.2. If S is a compact surface without boundary, then Mod(S) = Dehn+(S).

However if S is a surface with boundary Dehn+(S) is not a group and is a
proper sub-monoid of Mod(S, ∂S). This is a non-trivial fact that can easily be seen
from contact geometry using the Giroux correspondence. (There are other proofs
of this as well, for example one can use orderings as discussed in Section 4, and the
contact geometric proof of this is essentially a repackaging of the ordering proof.)

3.2. Half twists along arcs. Suppose that Sn is an oriented surface with n marked
points {x1, . . . , xn}. Recall that a diffeomorphism of Sn is allowed to permute the
punctures. Consider an arc αwhose interior is embedded in Sn in the complement
of the marked points and whose end points map to distinct marked points. There
is a neighborhood of α in S that contains only the marked points ∂α and is orien-
tation preserving diffeomorphic to the disk of radius 2 about the origin in R2 by a
diffeomorphism taking α to {(x, y) : x = 0 and |y| ≤ 1}. Let f : [0, 2] → [0, 1] be a
function that is equal to 1/2 on [0, 1], equal to 1 near r = 2, and is non-decreasing.
We can now define a diffeomorphism hα : Sn → Sn by a (r, θ) 7→ (r, θ − f(r)2π)
on the disk of radius 2 (using polar coordinates) and equal to the identity outside
of the neighborhood of α. This diffeomorphism exchanges the two marked points
involved. We call hα a (positive) half-twist along α.

It is well known that Mod(Sn, ∂Sn) is generated by positive Dehn twists about
embedded closed curves and positive half-twists along arcs. We explore the spe-
cial case when the surfaceDn is a disk with nmarked points. In this caseMod(Dn, ∂Dn)
is better known as the braid group B(n). To see this notice that given an element
[φ] ∈ Mod(Dn, ∂Dn) if we think of φ as a diffeomorphism of D2 then it is isotopic
to the identity (since all diffeomorphisms of D2 that fix the boundary are). Let
Φ : D2 × [0, 1]→ D2 be this isotopy. Then the trace of the isotopy is an n–braid in
D × [0, 1]:

image {Φ : ({x1, . . . , xn} × [0, 1])→ D × [0, 1]} .
See Figure 5. Using the notation in Section 2.1 we can choose arcs αi on the y-axis
connecting xi to xi+1 in D2. Notice that the positive half-twist along αi corre-
sponds to the braid σi.

We will use various generating sets to discuss three notations of positivity in
the braid group.

3.2.1. Standard generators. First consider the standard generators σ1, . . . , σn−1 for
the braid groupB(n) given in Section 2.1. We call a braid positive if it can be written
as a positive word in the σi. Thus we get the positive monoid P (n) in B(n).

Before moving on we make a few quick observations about closures of positive
braids. First notice that one can easily build a Seifert surface for a knot given
as the closure of a braid word. Specifically given a braid word w = σε1i1 . . . σ

εk
ik

,
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σ1

FIGURE 5. On the left is a positive half twist about the red arc. On
the right is the corresponding braid σ1.

where each εi is either 1 or −1, in the braid group B(n) we can take n parallel
disks D1, . . . , Dn such that each has constant z-coordinate and the z-coordinate is
increasing with the index on Di. See Figure 6. Notice that the boundary of these

D1

D2

FIGURE 6. On the top are two disksD1 andD2 whose boundary is
the closure of the trivial 2–braid. In the middle, left a half twisted
band is added between the two disks. The resulting surface has
boundary the closure of the braid σ1. In the middle, right is an
alternate view of the half twisted band that will be used later. On
the bottom is a surface with boundary the closure of the braid
σ1σ1σ1.

disks gives the closure of the trivial n–braid. Now for each letter in the word w we
add a half twisted band connecting the corresponding disks. Again, see Figure 6.
The resulting surface Σw clearly has boundary the closure of w.

Proposition 3.3. If w is a positive braid word then the Seifert surface Σw constructed
above is a minimal genus Seifert surface for the closure of w.

Proof. There are many ways to prove this but we give a proof that illustrates the
usefulness of the Bennequin inequality. Notice that the surface Σ has Euler char-
acteristic χ(Σw) = n − k since we used n disks (that is n, 0–handles) and k bands
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(that is k, 1–handles) to build Σw. (Recall that k is the length of the braid word w.)
Thus the genus of Σw is g(Σw) = 1

2 (k − n+ 1).
From Lemma 2.8 we see that the closure of w is a transverse link with self-

linking number sl(w) = k − n and hence we know by the Bennequin inequality
from Theorem 2.4 that any surface Σ with ∂Σ = w satisfies 2g(Σ) − 1 = −χ(Σ) ≥
sl(w) = k − n. Thus we see that Σw has minimal genus among all surfaces with
boundary w. �

We also notice another nice geometric fact about closures of positive braids.

Theorem 3.4. Let K be the closure of a positive braid (where every generator σi is used
at least once). Then K is a fibered link.

This theorem was originally due to Stallings in 1978 [77] but can easily be seen
using Gabai’s criteria for knots being fibered [34].

3.2.2. Quasi-positive generators. The above is the standard notion of positivity for
braids and we see that closures of positive braids have some nice properties, but
one might ask why choose the above generating set to define positivity? Is there
a more “natural” one that maybe says more about properties of “positive” braids
defined in term of these generators?

Thinking of the braid group as a mapping class group and using the notation
from the beginning of the section we can take the set Aqp of half twists hα about
all arcs α in D that intersect the xi only in its end points, see for example Figure 7.
Clearly Aqp generates the braid group B(n). We let QP (n) be the monoid gener-
ated by Aqp and call any braid in QP (n) a quasi-positive braid. Moreover any link
that is the closure of a quasi-positive braid will be called a quasi-positive link.

α

FIGURE 7. An arc α and the corresponding braid.

Example 3.5. Notice that hα for α as in Figure 7 can be written

hα = (σ3σ2σ1σ1σ
−1
2 )σ3(σ2σ

−1
1 σ−1

1 σ−1
2 σ−1

3 )

= wσ3w
−1

wherew = σ3σ2σ1σ1σ
−1
2 . So we see that hα is a conjugate of the standard generator

σ3.

Remark 3.6. One may easily show that for any arc α as above the element hα can
be written as a conjugate of a generator σi. So a braid is quasi-positive if it can
be written as a word in the conjugates of the “standard generators” σi. Or said
another way QP (n) is normally generated by the generators {σ1, . . . , σn}.
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We claim these generators are a more natural generating set since we are not
preselecting a specific set of arcs as we did for the σi but taking all arcs to define
the generators. Of course one draw back to this generating set is that it is not finite.
So QP (n) is not finitely generated but it is finitely normally generated.

Another argument that quasi-positivity is a more natural notion than positivity
is that it has a surprising geometric interpretation. Specifically we will think of S3

as a sphere of some radius in complex 2-space C2. Let Σ be a complex curve in
C2. If Σ intersects S3 transversely then we call K = Σ ∩ S3 a transverse C-link, see
Figure 8.

ΣK

S3

FIGURE 8. The complex curve Σ is represented by the horizontal
blue rectangle and intersects S3 transversely in the link K.

We note that the class of transverse C-links includes links of singularities, like
the torus knots, but is a much bigger class of knots.

We have the following amazing theorem.

Theorem 3.7 (Rudolph, 1983 [74]; Boileau and Orevkov, 2001 [17]). The set of trans-
verse C-links in S3 agrees with the set of quasi-positive links in S3.

So quasi-positivity has a geometric meaning! The fact that quasi-positive links
are transverse C-links was shown by Rudolph and the fact that transverse C-links
are quasi-positive was shown by Boileau and Orevkov.

Orevkov has a method of using quasi-positive knots to study Hilbert’s 16th

problem about the possible configurations of real algebraic planar curves, see [60].
In particular as part of his program to study Hilbert’s 16th problem Orevkov

asked [62] the following two questions.

Question 3.8. Given two quasi-positive braids representing the same fixed link,
are they related by positive Markov moves and conjugation?

Question 3.9. Given a quasi-positive link, is any braid representing the link with
minimal braid index quasi-positive?

The answer to the first question is now known to be NO, but it is YES for a
subset of quasi-positive links. Moreover a partial positive answer to the second
question can also be given. All these results involve contact geometry and will be
given in Section 8. We also note that Orevkov proved the following result.

Theorem 3.10 (Orevkov, 2000 [62]). A braid B is quasi-positive if and only if any
positive Markov stabilization of B is quasi-positive.
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Notice that a positive answer to Question 3.8 together with this theorem would
say that questions about quasi-positive links could be answered purely in the
terms of the quasi-positive monoids QP (n).

We now consider surfaces with boundary a quasi-positive link. Recall our con-
struction of a Seifert surface Σw for the closure of a braid w above. We can try
the same thing except the core of our attached bands will be given by the arcs α
defining the generators of the quasi-positive monoid.

Example 3.11. Consider the 4-braid w from Figure 7. To construct an immersed
surface with boundary w we take 4 disks as shown in the middle of Figure 9 and
then attache a 1-handle with core given by α. One easily sees that the resulting
surface has the desired boundary.

α

α

FIGURE 9. The arc α that defines the diffeomorphism hα shown
on the left. The surface Σ̃α shown on the right.

More generally given a word w in the quasi positive generators we get an im-
mersed surface Σ̃w for the closure of w. Notice that w can also be represented as
a word w′ in the standard generators of the braid group and from there we get
a surface Σw′ . Clearly the length of the word w′ is longer than (or equal to) the
length of w and so Σ̃w will have genus less than or equal to the genus of Σw′ . The
main draw back to Σ̃w is that it is not embedded. But notice that it only has ribbon
singularities and no clasp singularities. (Recall that any immersed surface with
embedded boundary in a 3-manifolds will have double points that are either of
clasp or ribbon type. See Figure 10.) Notice that if we think of Σ̃w as sitting in

FIGURE 10. A ribbon singularity shown on the left and a clasp
singularity shown on the right.

S3 = ∂B4 then a piece of one of the sheets involved in the ribbon singularity can
be pushed into the interior of the 4-ball so that Σ̃w can be slightly perturbed, rela-
tive to the boundary, to be embedded in B4. We now recall that following work of
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Rudolph [75] concerning slice knots, Lisca and Matić and, independently, Akbulut
and Matveyev proved the “slice Bennequin bound”.

Theorem 3.12 (Lisca and Matić, 1996 [55]; Akbulut and Matveyev, 1997 [1]). If T
is any knot transverse to the standard contact structure ξstd on S3 then

sl(T ) ≤ −χ(Σ),

where Σ is any smoothly embedded surface in B4 with boundary T .

Thus we see that the self-linking number of a transverse knot T also bounds the
4–ball genus (a.k.a. the slice genus), g4(T ), of the knot. The proof of this theorem is
much more difficult than the proof of Bennequin’s original theorem and involves
gauge theory. Mirroring the proof of Proposition 3.3 one can easily see the surface
Σ̃w constructed for a quasi-positive braid minimizes the 4–ball genus.

Proposition 3.13. If w is a quasi-positive braid word then the surface Σ̃w constructed
above is a minimal genus surface in B4 with boundary the closure of w. That is g4(w) =

g(Σ̃w).

3.2.3. Strongly quasi-positive generators. Our last class of “positive braids” are the
so called strongly quasi-positive braids. For these we take as a generating set for
B(n) the braids

σij = (σi . . . σj−2)σj−1(σi . . . σj−2)−1,

for 1 ≤ i < j < n. Or in terms of the mapping class group model ofB(n) the σij are
just half twists along arcs that have non-positive x-coordinate, see Figure 11. We

α

i
i

j
j

FIGURE 11. An arc α and the corresponding braid σij .

call a braid strongly quasi-positive if it can be written as a positive word in the gen-
erators σij . The monoid of strongly quasi-positive braids will be written SQP (n).

Notice that ifw ∈ SQP (n) then the surface Σ̃w constructed in the last subsection
is embedded in S3 and so is a Seifert surface for the closure w of w. More to the
point notice that the slice Bennequin inequality gives

sl(w) + 1

2
≤ g4(w) ≤ g3(w)

and by construction sl(w)+1
2 = g(Σ̃w). So for strongly quasi-positive knots the

genus and 4-ball genus agree. One may easily use this to find examples of quasi-
positive knots that are not strongly quasi-positive. Moreover since there are strongly
quasi-positive knots that are not fibered it is clear that they do not have to be pos-
itive braids.
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3.2.4. Summary. We see that by choosing various generating sets for the braid
group B(n) we get a sequence of monoids with the following strict inclusions:

P (n) ⊂ SQP (n) ⊂ QP (n) ⊂ B(n).

Moreover each of these monoids is associated to interesting geometric properties
of the knots coming from the closures such braids. Namely:

(1) The closure of a quasi-positive braid bounds a complex surface in the 4–
ball and the natural ribbon surface built from the quasi-positive braid is a
surface of minimal genus in the 4–ball with boundary the closed braid.

(2) The closure of a strongly quasi-positive braid also bounds a complex sur-
face in the 4-ball, its 4-ball genus and Seifert genus are equal, and the natu-
ral surface built form the strongly quasi-positive braid is a surface of min-
imal genus in S3 with boundary the closed braid.

(3) The closure of a positive braid is a fibered knot in S3 with minimal genus
Seifert surface coming form the braid presentation.

Later, in Section 8, we will see that one may use contact geometry to say something
about these monoids. In particular, one can address Questions 3.8 and 3.9.

4. MONOIDS VIA ORDERINGS

In this section we explore the use of (left-invariant) orderings and quasi-morphisms
to construct monoids in groups.

4.1. Left-invariant orderings. Recall that a strict linear ordering on a set S is a re-
lation < such that

(1) the property < is transitive and
(2) for each a, b ∈ S we have exactly one of the following being true, a < b, b <

a or b = a.
We say such and ordering on a group G is a left-invariant ordering if g < h implies
kg < kh for any g, h, k in G.

Now given a left-invariant ordering < on a group G we get a monoid

M< = {g ∈ G : e < g or g = e},
where e is the identity element in G. Clearly if g and h are in M< then g < gh by
the left-invariant property and e < g < gh by the transitivity property. Thus M<

is closed under multiplication and clearly contains e.
It turns out that the mapping class group of a surface with boundary (and possi-

bly with marked points) has a left-invariant ordering. To see this, we discuss how
to compare two arcs on a surface with the same end point. Let c1 and c2 be two arcs
embedded in an oriented surface S so that they share an end point x ∈ ∂S. The
boundary of these arcs needs to be contained in the union of ∂S and the marked
points. We say that c1 is to the right of c2 at x if c1 is not isotopic to c2 and after
isotoping c1 and c2, relative to their end points, so that they intersect minimally
and orienting them away from x we have that the oriented tangent to c1 followed
by the oriented tangent to c2 gives an oriented basis for TxS. See Figure 12. If c1 is
to the right of c2 at x then we denote this by c2 <x c1.

We now define a left invariant ordering on the braid group thought of as the
mapping class group Mod(Dn, ∂Dn) that will be generalized to any (non-closed)
surface later. Denoting the marked points in Dn by {x1, . . . , xn} as in Section 2.1.
Consider the arcs c1, . . . , cn where ci has one end point on xi, the other end point,
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c1
c2 c′1(x)

c′2(x)

x

FIGURE 12. The arcs c1 and c2 sharing the endpoint x in ∂S. If the
surface has the “counterclockwise” orientation then c2 is less than
c1 at x, that is c1 is to the right of c2 at x.

which we denote yi, on ∂Dn and has constant y-coordinate. See Figure 13. We

x1

x2

xn

c1

c2

cn

FIGURE 13. The arcs cn used in the ordering of the braid group.

say that the braid b1 ∈ Mod(Dn, ∂Dn) is greater than the braid b2 if for the first
i such that b1(ci) 6= b2(ci) we have b2(ci) <yi b1(ci). Notice that b1 and b2 are
isotopic if and only if the image of all the arcs ci under b1 and b2 are isotopic
(rel end points and the isotopies of the arcs are not allowed to cross the marked
points). Thus we see that b1 < b2, b2 < b1 or b1 = b2. So we clearly have a total
order on Mod(Dn, ∂Dn) that is obviously left-invariant. Notice that one would
get a different order on Mod(Dn, ∂Dn) if the arcs were ordered differently or if a
different set of n arcs were chosen. The first left-invariant orderings on the braid
group was defined by Dehornoy in 1982 using an algebraic approach. In [33] it was
shown that Dehornoy’s order is essentially equivalent to the one defined above.
(It takes a little work to see this and the authors thank Dan Margalit for helping to
confirm this observation.)

Generalizing the above example we construct orderings on the mapping class
group Mod(S, ∂S) for surfaces with boundary by comparing arcs in a basis for S
with their image under a mapping class element. More specifically consider a sur-
face S of genus g with k boundary components and marked points {x1, . . . , xn}.
Once can choose 2g + k − 1 properly embedded disjoint arcs {γ1, . . . , γ2g+k−1}
that cut S into a disk with n marked points. Now choose n further disjoint arcs
{α1, . . . , αn} that are disjoint from the γi and such that ∂αj consists of one point on
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the boundary of S and xj . We call the union of these arcs a basis for S and denote
it by A. Now chose an ordering O of the boundary points of these arcs that are
contained in ∂S: {y1, . . . , y4g+2k−2+n}. See Figure 14.

γ1

γ2

α1

x1

y1

y2

y3

y4

y5

FIGURE 14. The arcs used in defining the ordering of Mod(S, ∂S).

To define our left-invariant ordering on Mod(S, ∂S) we need a couple of simple
observations.

Lemma 4.1. Let f and g be two diffeomorphisms the surface S that fix the boundary of S.
If f and g act the same way on each arc in a basis A then f is isotopic to g. (Here we say
f and g act the same on an arc c if f(c) and g(c) are isotopic relative to their end points.)

Lemma 4.2. Let c and c′ be two properly embedded arcs in S that have the same end
points. The arcs are isotopic if and only if neither c <x c′ nor c′ <x c at each end point x
of c.

We now define a left-invariant ordering <A,O on Mod(S, ∂S) as follows. If f
and g are two diffeomorphisms of S then we say f <A,O g if there is some i
in {1, . . . , 4g + 2k − 2 + n} such that the arc β in A with end point yi satisfies
f(β) <yi f(β) and all the arcs A with endpoints yj for j < i are fixed (up to
isotopy) by f ◦ g−1.

More informally we say that f <A,O g if running through the end points in the
order O the first time f and g act differently on an arc in the basis then g moves
the arc to the right of f at that end point. Notice that according to Lemmas 4.2
if neither f <A,O g nor g <A,O f then f and g act the same on all the arcs in
A and then Lemma 4.1 implies that f and g are isotopic. So we see that <A,O is a
strict linear ordering. One may easily check that the ordering is left-invariant since
applying a diffeomorphism to a pair of arcs will not change whether or not one is
to the right or left of the other. Thus we have a left-invariant order on Mod(S, ∂S)
and the corresponding monoid

M<A,O

that depends on the basis A and ordering O of the endpoints of the arcs.
It is clear that the intersection of monoids in a group is also a monoid. So to

remove the dependence of the basis and ordering when defining M<A,O we can
define the right-veering monoid as follows

V eer+(S) =
⋂
A,O

M<A,O ,
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where the intersection is taken over all bases A for S and all orderings O of the
endpoints. If φ : S → S is a diffeomorphism in V eer+(S) then we call it right-
veering (though it is probably more accurate to call it non-left-veering). Once can
easily verify that φ is right-veering if and only if for every embedded arc γ the
image φ(γ) is to the right of γ at each end point (or isotopic to γ). Since the work
of Honda, Kazez and Matić [47] the notion of right-veering has become a central
notion in contact geometry due in large part to the following fundamental theo-
rem.

Theorem 4.3 (Honda, Kazez and Matić, 2007 [47]). If ξ is a tight contact structure on
a closed 3–manifold, then any open book supporting ξ has right-veering monodromy.

So once again we see that a natural monoid has connections to interesting geo-
metric properties. It is easy to see that there are many open books for overtwisted
contact structures that are also right-veering so this monoid does not completely
characterize right-veering, but it does provide quite a bit of insight into the tight
vs. overtwisted dichotomy.

4.2. Quasi-morphisms. Notice that if we have a groupG, another groupH with a
left-invariant ordering<, and a homomorphism f : G→ H , then we can construct
monoids in G as we did for H . That is we can set

Mf,< = {g ∈ G : g = eG or eH < f(g)},
where eG is the identity element in G and analogously for eH . But one can get by
with much less. Suppose that we have a quasi-morphism from a group G to the
real line R. This is simply a map of sets

q : G→ R

such that there is some constant C that satisfies

|q(g1g1)− q(g1)− q(g2)| < C

for all g1, g2 ∈ G. (Notice if C = 0 then q is a homomorphism.) Given this and a
number r can now consider the sets

Mr,q = {g ∈ G : g = e or q(g) ≥ r}.
It should be clear that if r ≥ C then Mr,q is a monoid.

We now consider such a quasi-morphism on the mapping class group. Given a
diffeomorphism of a surface φ : S → S that is the identity on the boundary one
can define the fractional Dehn twist coefficient (or FDTC for short) of φ relative to a
boundary component C of S. We denote this by c(φ,C). This was originally stud-
ied in Gabai and Ortel’s work [35] on essential laminations and then addressed
Roberts [72, 73] when looking at taut foliations. Its most modern incarnation oc-
curred in work of Honda, Kazez and Matić [47, 48] in relation to contact geometry.

There are several definitions of the FDTC. We give a simple topological defi-
nition and then state a few properties that are useful for computations and our
discussion of monoids. Recall that according to the Nielsen-Thurston classifica-
tion of surface diffeomorphisms a diffeomorphism φ : S → S is freely isotopic
to a diffeomorphism h : S → S that is (1) periodic, (2) pseudo-Anosov, or (3) re-
ducible. (Here freely isotopic means the isotopy can move the boundary.) Recall h
is periodic if there is an n such that hn is freely isotopic to the identity on S and it
is reducible if there is a non-empty collection of curves on S that is preserved by
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h. The diffeomorphism is pseudo-Anosov if there is a pair of measured geodesic
laminations λs and λu that are preserved and dilated in certain ways by h, see [47]
for more details. (Notice that a periodic diffeomorphism is technically reducible
too, so when we call h reducible we will mean that it is not periodic and preserves
a multi-curve.) In the case that h is pseudo-Anosov we define the fractional Dehn
twist coefficient for the boundary component C of S as follows. Notice that the
diffeomorphism h induces a flow on the mapping torus Tφ of φ. When restricted
to the torus C × S1 in ∂Tφ this flow will have rational slope and hence its flow
lines will contain parallel closed curves. Let one be γ. Recall that we have a natu-
ral longitude λ = C × {pt} and meridian µ = {pt} × S1 for C × S1 and hence γ is
homologous to pλ+ qµ. The fractional Dehn twist coefficient of φ along C is

c(φ,C) =
p

q
.

There is a similar definition for reducible and periodic diffeomorphisms. For more
details on the definition see [47], for now, we will simply focus on important prop-
erties of the FDTC. Specifically it is known that the FDTC gives a quasi-morphism
from the mapping class group to the rational numbers. That is if you fix a bound-
ary component C of S then

c(·, C) : Mod(S, ∂S)→ Q
satisfies

|c(φ ◦ ψ,C)− c(φ,C)− c(ψ,C)| ≤ 1.

This seems to be a well known folk result, but a nice proof of it can be found in
[50].

Now for any r ∈ R and surface S with boundary define

FDTCr(S) = {φ ∈Mod(S, ∂S) :φ = idS or

c(φ,C) ≥ r for all components C of ∂S}.

The quasi-morphism condition implies that for r ≥ 1, FDTCr(S) is a monoid!
In [47], it was shown that in both the periodic and pseudo-Anosov case a dif-

feomorphism φ was right veering if and only if all of its fractional Dehn twist
coefficients were non-negative. This easily implies the same for the reducible case
too. Thus one may easily conclude that

FDTC0(S) = V eer+(S),

so it is a monoid too.

5. MONOIDS VIA CONTACT GEOMETRY

Our third method for constructing monoids in the mapping class group is a bit
unexpected. We have already seen that there are relations between contact geom-
etry and monoids but one can actually construct monoids via contact geometry.

Recall from Section 2.5 that given an element φ in the mapping class group
Mod(S, ∂S) one can construct a 3–manifold Mφ and a contact structure ξφ on
it. Now given a property P of a contact structure one can define a subset of
Mod(S, ∂S)

MP(S) = {φ ∈Mod(S, ∂S) : ξφ has property P}.
A main question we have is when is MP(S) a monoid. Before answering this we
note a few examples in Table 1. Here we recall that to a contact structure ξ on
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Property P Name for the subset MP(S)
Stein fillability Stein(S)

Strong fillability Strong(S)
Weak fillability Weak(S)

Tightness Tight(S)
Non-zero Ozsváth-Szabó contact invariant OzSz(S)

Universal Tightness UT (S)
Tight but virtually overtwisted V OT (S)

Overtwisted OT(S)
TABLE 1. Contact geometric subsets of the mapping class group.

a 3–manifold M there is an element c(ξ) in the Heegaard-Floer groups ĤF (−M)
that is zero if the contact structure is overtwisted, [65]. So OzSz(S) corresponds to
monodromies of open books with c(ξ) 6= 0. (We note that one can take coefficients
for ĤF (−M) in Z2 or Z, or one could use twisted coefficients. These would all lead
to different monoids. For the purposes of this paper we will use Z2 coefficients and
leave it to the reader to consider the other coefficients.)

Recall from Section 3.1 that we have the monoid Dehn+(S) consisting of map-
ping class group elements that can be written as the composition of right handed
Dehn twists and from Section 4 that we have the monoid V eer+(S) of right veer-
ing diffeomorphisms. These two monoids and the sets above are related according
to the following diagram (where the surface S has been suppressed from the no-
tation for the sake of space):

OzSz

Dehn+ Stein Strong T ight V eer+.

Weak

(5)

(1) (2)

(3)

(4)

(7)

(6)

All the arrows represent inclusions. Inclusion (1) follows from [23, 40], inclusions
(2) and (4) are obvious, (3) follows from [64], (5) form [65], (6) from [23, 42] and
(7) from [47]. It is also known that all the inclusions are strict. The strictness of
(7) comes from [47], (5) and (6) follow from [38] and [30], respectively, while (3)
and (4) follow from [39] and [25], respectively and (2) was shown to be a strict
inclusion in [37]. Lastly the strictness of (1) follows from [4, 83]. We also note that

Tight(S) = UT (S) ∪ V OT (S).

We now return to our question as to which MP(S) are monoids.

Theorem 5.1 (Baker, Etnyre, and Van Horn-Morris 2012, [4]; and Baldwin 2012,
[9]). Let P be a property of a contact structure. Then MP(S) is a monoid if and only if P
is preserved under (possibly internal) connected sums and Legendrian surgery (and ξidS
satisfies the property).

It is well known that the first three and the fifth property in Table 1 are pre-
served under connected sum and Legendrian surgery and in [82] Wand showed
the same for the fourth property. Thus by Theorem 5.1 we see that the first 5 prop-
erties in the table define monoids. (That OzSz(S) is a monoid was previously
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shown by Baldwin in [6].) It is also not hard to see that the last three proper-
ties do not give monoids. Specifically it is well known that overtwistedness is
not preserved by Legendrian surgery and Gompf in [41] gave examples of Leg-
endrian surgeries on universally tight contact structures that resulted in virtually
overtwisted contact structures. The following example shows that V OT (S) is not
a monoid.

Example 5.2. Consider the planar surface S in Figure 16 and the curves γi shown
there too. Let φ = τ2

γ1τ
2
γ2τγ3τγ4τ

−1
γ5 . One may easily check that this open book

supports the virtually overtwisted contact structure on the lens space L(4, 1) (that
is the contact structure coming from Legendrian surgery on the tb = −3, r = 0
unknot in S2, and the given monodromy comes form the “obvious monodromy”
by a lantern relation). Now let φ′ and φ′′ be the monodromies obtained by rotating
the surface on the left in Figure16 by 2π

3 and 4π
3 , respectively. (Said another way φ′

and φ′′ are obtained by conjugating φ by the given rotations of the surface.) Each of
these monodromies gives a virtually overtwisted contact structure on L(4, 1). The
composition of all of the monodromies gives (after applying a lantern relation)
φ ◦ φ′ ◦ φ′′ = τ4

γ1τ
4
γ2τ

4
γ3τ

2
γ4 .

−2

−2

−2

−2

−4 −2 −2 −2−2 −2 −2

FIGURE 15. Plumbing diagram of the Milnor fillable contact structure.

In [26], Etgü and Ozbagci show how to produce a planar open book decompo-
sition with positive monodromy on any manifold described by a plumbing along
a tree with no bad vertices. Reversing their construction, one can see that the open
book with monodromy τ4

γ1τ
4
γ2τ

4
γ3τ

2
γ4 corresponds to an open book made by apply-

ing their construction to the plumbing given in Figure 15. Etgü and Ozbagci show
such open books are horizontal and their supported contact structure is transverse
to the fibers of the Seifert fibration. One can then conclude the contact structure
is universally tight using a result of Massot [57] (see also Lekılı and Ozbagci [53]).
Combining these observations shows that the composition of the three virtually
overtwisted monodromies φ ◦ φ′ ◦ φ′′ yields a universally tight contact structure
and so for the four-holed sphere, V OT (S) is not a monoid. One can trivially ex-
tend this to most other surfaces by adding one handles and extending by the iden-
tity.

There are several proof of Theorem 5.1, but the basic idea for the “hard” direc-
tion is that one can construct the contact manifold supported by (S, φ ◦ ψ) from
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the disjoint union of the contact manifolds supported by (S, φ) and (S, ψ) by a
sequence of the operations in the theorem.

6. QUESTIONS ABOUT MONOIDS

One might now be interested in the structure of the monoids discussed above.
Here we discuss a few obvious questions.

Question 6.1. Are the monoids above “easily” presented? Are any finitely pre-
sented or finitely generated?

It is known [5, 49] that when S has genus 1 and 1 boundary component, then

OzSz(S) = Tight(S) = V eer+(S).

It is also known that V eer+(S)−Dehn+(S) is non-empty. So one is naturally left
to ask the following question.

Question 6.2. What is the relation between the monoids Dehn+(S), Stein+(S),
Strong(S), Weak(S) and OzSz(S) when S is genus one with one boundary com-
ponent? What are their generators?

In [5] it was shown that for a surface S with of genus one with one boundary
component Tight(S) is normally generated by

τa, τb, (τaτb)
3τ−nb , for n ∈ Z,

where a and b are simple closed curves in S that intersect once. From this one can
easily show the following.

Theorem 6.3. For any surface S with boundary Tight(S) is not finitely generated.

Proof. Using properties of non-left veering maps, one can show that right handed
Dehn twists along homologically essential, simple closed curves are initial ele-
ments in the right-veering monoid V eer+(S), that is there are no non-trivial el-
ements less than them. To see this, we show that any factorization of Dγ into
non-left veering maps consists precisely of Dγ (and the identity). Specifically, if α
is a proper arc which is fixed by Dγ (that is, it is disjoint from γ), then any right-
veering factor of Dγ also must fix α. Thus all factors of Dγ are supported in an
annulus neighborhood of γ.

In general, this shows that any submonoid of V eer+(S) which containsDehn+(S)
must include Dehn twists about all simple closed curves in its generating set and
so cannot be finitely generated. �

Question 6.4. Do any of the contact monoids above have a finite, normally gener-
ating set? For example, Dehn+ is normally generated by a single Dehn twist.

Notice the above presentation shows that OzSz(S), for S a genus one, one
boundary component surface, can be generated by the elements in Dehn+(S) to-
gether with (τaτb)

3τ−nb , for n ∈ Z. This brings up the following natural question.

Question 6.5. IfMi, i = 1, 2, are two of the monoids above withM1 ⊂ M2 then
which elements fromM2 must be added toM1 to generate all ofM2?

Continuing with our natural questions we have the following.
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Question 6.6. Can you characterize when any φ ∈ Mod(S, ∂S) is in one of the
above monoids? In particular given φ are there conditions on φ that will imply
that ξφ is tight? Does it help if you restrict S to be planar? or of small genus? or
with a small number of boundary components?

Or a possibly simpler question is the following.

Question 6.7. If φ is in one of the above monoids is there a condition that would
force it into a sub-monoid?

In [85] Wendl showed that for a planar S we have

Dehn+(S) = Stein(S) = Strong(S)

and then in [59] this was extended to include

Strong(S) = Weak(S).

Question 6.8. Can you use information about the fractional Dehn twist coefficients
of a diffeomorphism to help with any of the above questions?

For example, in [48] Honda, Kazez and Matić showed that if S has only one
boundary component then FDTC1(S) ⊂ Weak(S); however it is known that
there are φ ∈ Weak(S) − FDTC1(S) and that if S has more than one bound-
ary component then FDTC1(S) does not have to be contained in Weak(S), in fact
Examples 6.9 shows that there are φ ∈ FDTC1(S) that are not even in Tight(S).

γ1 γ2

γ3 γ4

γ5

−2 − 4
3 − 3

2

−2

FIGURE 16. Left, planar surface with four boundary components
and curves used to describe the monodromy in Example 6.9.
Right the manifold constructed in the example.

Exercise 6.9. Let S be the surface in Figure 16 and φ = τ2
γ1τγ2τ

3
γ3τ

2
γ4τ
−2
γ5 , where the

γi are also shown in the figure. One may easily check that the manifold M asso-
ciated to the open book (S, φ) is the Seifert fibered space M(−2; 1/2, 2/3, 3/4). Let
ξ be the supported contact structure. From [80] it is know that any tight contact
structure onM is Stein fillable, but the Oszváth-Szabó contact invariant of ξ is zero
(this can be seen using [10] by capping off the boundary component of S parallel
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to γ1 and noting the resulting open book supports an overtwisted contact struc-
ture). But since Stein fillable contact structures must have non-vanishing contact
invariant we see that ξ is overtwisted. One may easily check that the FDTCs of φ
at the boundary component parallel to γ2 is 1, while all other FDTCs are greater
than 1.

Moreover, Ito and Kawamuro [51] have shown that if S is planar with any num-
ber of boundary components, then FDTCr(S) ⊂ Tight(S) for any r > 1, but the
example mentioned above shows that FTDC1(S) 6⊂ Tight(S).

From the above results one might hope that if a diffeomorphism is in some
monoid then mild hypothesis on the FTDC might promote it to a smaller monoid.

Colin and Honda gave similarly strong results on the tightness of a contact
structure by looking at open books with connected binding.

Theorem 6.10 (Colin-Honda 2013 [18, Theorem 4.2]). Let S be a surface with con-
nected boundary and h a mapping class element. If h is periodic, then (M, ξ(S,h)) is tight
if and only if h is right-veering. Moreover, the tight contact structures are Stein fillable.

There are similar results that hold when the monodromy is pseudo-Anosov.
Colin and Honda use the growth rates of the generators for the contact homology
complex (as one increases the action) to show the following.

Theorem 6.11 (Colin-Honda, 2013 [18, Theorem 2.3 and Corollary 2.7]). Let S be
a surface with connected boundary and h a mapping class element. If h is (isotopic to) a
pseudo-Anosov diffeomorphism φ with fractional Dehn twist coefficient k/n (where n is
half the number of fixed points of φ on the boundary), then

• If k = 2, then (M, ξ(S,h)) is tight.
• If k ≥ 3, then (M, ξ(S,h)) is universally tight (and the universal cover of M is
R3).

We also have the following question about fractional Dehn twist coefficients.

Question 6.12. Are the sets FDTCr(S) monoids for any r ∈ (0, 1)?

We end this section with the following general question.

Question 6.13. Are there other interesting monoids inMod(S, ∂S) that correspond
to something in the contact (or symplectic, or complex, or Riemannian) world?

7. MONOIDS IN THE BRAID GROUP VIA CONTACT GEOMETRY

As we saw in Section 3.2, there are some natural monoids in the braid group
which come from generating sets, and each has a connection to the smooth topol-
ogy and contact geometry of knots and links. Much like for surfaces, though,
there are other monoids in the braid group coming from contact geometry and
various knot homologies. In the first subsection we discuss monoids in the braid
group analogous to those constructed in Section 5 using contact geometry while
in the following subsection we discuss using co-product operations in various ho-
mology theories to construct monoids. We thank Liam Watson for help with the
foundational work of many of the ideas presented in this section.
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7.1. Monoids in the braid group and transverse knots. As in Section 5 if P is a
property of a transverse knot, then we can consider the subset of the braid group
B(n)

MP(n) = {w ∈ B(n) : w has the property P}.
We are interested in when these sets are monoids. Some examples of such prop-
erties are given in Table 2. The precise concepts used to define the subsets will be

Property P Name for the subset MP(n)
Equality in slice Bennequin bound X (n)

Equality in s-invariant bound S(n)
Equality in t-invariant bound T (n)

Non-zero ψ invariant Ψ(n)
k–fold cyclic cover is Stein fillable Stein(n, k)
k–fold cyclic cover is strong fillable Strong(n, k)
k–fold cyclic cover is weak fillable Weak(n, k)

k–fold cyclic cover is tight Tight(n, k)
k–fold cyclic cover has non-zero
Ozsváth-Szabó contact invariant OzSz(n, k)

TABLE 2. Subsets of the braid group defined by properties of
transverse knots.

discussed in below. For now we determine that these are all monoids.

Theorem 7.1. Let P be a property of braids which is preserved under transverse isotopy
(of the closure), disjoint union (that is stacking the braids) and appending quasi-positive
half twists. Then the subset of the braid group B(n) consisting of all braids which satisfy
P is a monoid.

Here we use stacking braids to mean taking two k–braids w1 and w2 and dia-
grammatically putting one on top of the other to form a 2k–braid.

Proof. If we stack two k–braids w1 and w2 on top of each other to form a 2k–braid,
we can append k quasi-positive half twists to form a braid which is positively
Markov equivalent to the composition w1w2. This is illustrated in Figure 17 for
the k = 3 case. In the figure we start with w2 and then turn it upside down (the
closure of this braid gives the same transverse knot). In the next diagram we then
conjugate w2 by an a half twist and stack w1 on top. We now isotope w1 to the
lower 3 strands. Finally, we add quasi-positive bands to cancel the quasi-negative
bands. This results in a braid that is positive Markov equivalent to the braid w1w2.
We note the idea behind this proof comes from Figure 5 of [7] or similarly Figure 8
of [4]. �

7.1.1. Bennequin type inequalities. There is a braid group analogue of the question
of whether Dehn+ and Stein are the same monoid. While any quasi-positive pre-
sentation of a braid produces a slice surface which realizes the slice-Bennequin
bound (and all such surfaces can be realized as complex plane curves), the con-
verse is not clear and is an interesting open question. However, realizing the slice-
Bennequin bound is a property which satisfies the conditions of Theorem 7.1, and
so we have the following theorem.
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w2
w2

w2

w1

w1 w2 w1 w2

FIGURE 17. Constructing w1w2 from w1 and w2 using stacking
and appending quasi-positive half twists.

Theorem 7.2. The set of braids in B(n) whose underlying transverse link L satisfies the
bound

sl(L) = −χ4(L)

forms a monoid X (n) in B(n).

Question 7.3. Are the monoids QP (n) and X (n) in B(n) the same?

Additionally, there are many natural monoids coming from any invariant of an
oriented link which are related to the slice-Bennequin inequality. Below we give
the examples of the concordance invariants s and τ in Khovanov homology and
Heegaard Floer homology respectively.

We begin with the s invariant. In [71], Rasmussen used Khovanov homology
to define an invariant s(K) of knots in S3 and proved that s(K) ≤ 2g4(K). For
our purposes, we want an invariant which gives an upper bound on the maximal
self-linking number of a knot and Plamenevskaya [69] proved that for transverse
knots sl(K) ≤ s(K)−1. Thus s(K)−1 improves the slice-Bennequin bound on self-
linking number. Additionally, we need our invariant to behave nicely under the
addition of quasipositive half twists, and the lower bound on −χ of a cobordism
provides this.

In [67], Pardon extended the definition of Rasmussen’s s invariant from knots to
links1. For oriented links L, one can extract from this a cobordism invariant that we
will call d̃(L). For knots, this agrees with s(K)−1 and in general, d̃ behaves nicely
under oriented cobordisms. (That is, this value of d̃ changes by no more than the
Euler characteristic of the interpolating surface.) Additionally, Plamenevskaya’s
proof that sl(K) ≤ s(K)− 1 for transverse knots extends without change to yield
a bound sl(L) ≤ d̃(L). Thus, d̃ gives a condition which satisfies the hypotheses of
Theorem 7.1.

Theorem 7.4. The set of braids in B(n) whose underlying transverse link L satisfies the
bound

sl(L) = d̃(L)

1In [12], Beliakova and Wehrli define a concordance invariant for links which suits certain purposes
(like concordance) better, though unfortunately not ours. For an oriented link L, the value of Beliakova
and Wehrli’s invariant is (1/2)(d̃(L)− d̃(L)), where L is the oriented mirror of L.
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forms a monoid S(n) in B(n).

Moreover, since sl(L) ≤ d̃(L) ≤ −χ4(L), for each n we have inclusions of
monoids

QP (n) ⊂ X (n) ⊂ S(n).

Now we turn to the τ invariant bound on self-linking number. Ozsváth and
Szabó [63] and Rasmussen [70] introduced an invariant of knots in S3 coming
from the spectral sequence from knot Floer homology to the Floer homology of
S3 and show that this is a concordance invariant. Again, for convenience, τ was
defined so that τ(K) ≤ g4(K) and so we define τ̃(K) = 2τ(K)−1. In [44], Hedden,
building on his paper [45], has shown that the invariant τ̃ can be extended to an
invariant of oriented links (which behaves as expected with respect to oriented
cobordisms). Additionally, τ̃ obeys the same self-linking number bound as it does
for knots.

Theorem 7.5. The set of braids in B(n) whose underlying oriented transverse link satis-
fies

sl(L) = τ̃(L)

forms a monoid T (n) in B(n).

The invariant τ̃ still respect the slice genus bound τ̃(L) ≤ −χ4(L) and the self-
linking number bound sl(L) ≤ τ̃(L) and so we have an inclusions of monoids

QP (n) ⊂ X (n) ⊂ T (n).

Question 7.6. Are the monoids S(n) and T (n) distinct? There are examples of
knots where s and 2τ do not agree [46], which leaves open the possibility that they
might indeed be distinct.

7.1.2. Non-vanishing of transverse invariants. We now turn to Plamenevskaya’s trans-
verse invariant ψ of transverse links in Khovanov homology. In [69], Plamen-
evskaya introduced a class ψ(L) of a transverse link L in the Khovanov Homol-
ogy of the link KH(L). The class is determined by a braid diagram w represent-
ing a transverse link L. The invariant behaves functorially under the removal of
quasi-positive half twists via crossing resolution (see Theorem 4 in [69]) and so the
non-vanishing of the invariant is preserved by the addition of quasi-positive half
twists. The non-vanishing of the invariant is also clearly preserved under disjoint
union. Thus by Theorem 7.1 we have the following theorem.

Theorem 7.7. The subset of the braid group B(n) yielding transverse links whose cor-
responding ψ invariant is nonzero forms a monoid in the braid group. We denote this
monoid Ψ(n).

Plamenevskaya’s work avoided the language of monoids but did show that all
quasi-positive braids have nonzero ψ invariant. In particular, the set of quasi-
positive braids forms a submonoid

QP (n) ⊂ Ψ(n).

Question 7.8. Is X (n) ⊂ Ψ(n)? Are S(n) and Ψ(n) related?
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7.1.3. Cyclic branched covers. Given a transverse knot T in any contact manifold
(M, ξ) then it is well known, and each to verify, that there is a contact structure ξ̃
induced on any branched cover M̃ ofM over T . We will consider transverse knots
in (S3, ξstd) that come as the closures of braids w. Moreover, since the only covers
one is always guaranteed to have are cyclic covers we restrict attention to these.
We will denote the k–fold cyclic cover of (S3, ξstd) branched over the closure of the
braid w by (S3(w, k), ξ(w, k)).

One may easily check that if we are given two n–braids w1 and w2 and denote
the result of stacking w2 on top of w1 by w then (S3(w, k), ξ(w, k)) is obtained from
(S3(w1, k), ξ(w1, k)) and (S3(w2, k), ξ(w2, k)) by an k–fold connected sum (that is
connected sum followed by k − 1 internal connected sums). Moreover appending
a quasi-positive half twist to a braid w changes the k–fold branched cover by k− 1
Legendrian surgeries. This is easily checked for double covers and verified in
general in [43].

This coupled with the discussion in Section 5 implies that all the properties that
give monoids in that section also give monoids in the braid group via branched
coverings. For example the property defining the monoid Tight(S) in Map(S, ∂S)
gives the monoid Tight(n, k) in the braid group B(n) consisting of braids whose
closures give transverse links that induce tight contact structures on the k–fold
cyclic cover. For each fixed n and k we have the same set of inclusions as discussed
in Section 5. In addition [43] shows that

QP (n) ⊂ Dehn+(n, k)

for all k and n.

Question 7.9. Is QP (n) = Dehn+(n, k) for any n and k?

The answer is almost certainly no, but for small n and k it might be true. (For
example for n = 2 and k = 2 the answer is YES, and with a little more work one
can see that the answer is YES for n = 2 and k = 3, but these might be the only
such cases with a positive answer.)

One may also easily see that for any property defining these monoids adding a
strand preserves the property of the cover so we have, for example, Tight(n, k) ⊂
Tight(n+ 1, k), and similarly for the other properties.

Question 7.10. Is there a relation between Tight(n, k) and Tight(n, k + 1)? What
is the relation between Tight(n, k) and Tight(n+ 1, k)? and similarly for the other
branched cover monoids.

There has been work relating OzSz(n, 2) to Ψ(n), [8, 11], but currently the exact
relation is unknown.

Question 7.11. What is the relation betweenOzSz(n, 2) to Ψ(n)? Is Ψ(n) ⊂ OzSz(n, 2)?

7.2. Co-products and monoids. Given a homology theory that contains a trans-
verse knot invariant and a co-product operation on the homology we can construct
monoids as is illustrated below. We will see that these seem to be refinements of
various monoids constructed above.

Recall that in [66] Ozsváth, Szabó and Thurston defined an invariant θ of trans-
verse knots that lives in the (grid diagram formulation of) link Floer homology
HKL−(m(L)) of the mirror image of the link L. In [7], Baldwin proved there is a
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comultiplication map on the link Floer homology of closures of braids

µ : HFL−(m(w1w2))→ HFL−(m(w1#w2)),

that respects the θ invariant. That is µ(θ(w1w2)) = θ(w1#w2). There are similar re-
sults for a stabilized version of the hat-invariant, θ̂. It is known [81] that θ̂(w1#w2)

is non-zero if and only if both θ̂(w1) and θ̂(w2) are both non-zero. This leads to the
following result.

Theorem 7.12 (Baldwin 2010 [7]). Let L1 and L2 be transverse links with braid rep-
resentatives w1 and w2 of the same braid index and define L to be the transverse link
represented by the braid w1w2. If θ̂(L1) and θ̂(L2) are both non-zero, then θ̂(L) is also
non-zero.

This obviously leads to a monoid by considering braids whose closures have
non-zero θ̂ invariants.

Corollary 7.13. The subset of the braid group B(n) yielding transverse links whose cor-
responding θ̂ invariant is non-zero forms a monoid in the braid group which we denote
Θ(n).

As the referee pointed out Ψ(n) and Θ(n) are distinct monoids for some values
of n due to the example given in Section 3 of [58]. There it is shown there are
transverse representatives of the knotm(10132) with non-zero θ̂ invariant and zero
ψ invariant. So we are left to ask the following question.

Question 7.14. Is the monoid Ψ(n) contained in Θ(n)?

8. STUDYING MONOIDS USING CONTACT GEOMETRY

In this section we will show how some monoids in the braid group, that are not
a priori related to contact geometry, can be studied using contact geometry.

We start with a result about transverse knots.

Theorem 8.1 (Etnyre and Van Horn-Morris. 2010 [31]). Let K be a fibered knot in S3

that is also the closure of a strongly quasi-positive braid and let Σ be the associated Seifert
surface (built as in Section 3.2 from a strongly quasi-positive braid representing K). Then
there is a unique transverse knot T in the standard contact structure ξstd on S3 that is
topologically isotopic to K and with sl(T ) = −χ(Σ).

We now note several consequences of this result. First we state a “quasi-positive
recognition” result.

Corollary 8.2. Let K be a fibered, strongly quasi-positive knot in S3. Then a braid b
whose closure is K is quasi-positive if and only if a(b) = n(b) − χ(K). (Here we denote
by a(b) the algebraic length of b, which was also called writhe earlier, and n(b) is the braid
index of b, that is the number of strands of b.)

Proof. By hypothesis there is a word w in the strongly quasi-positive generators of
SQP (n) such that its closure w is topologically isotopic to K. Moreover Σ = Σ̃w
(where Σ̃w is the Seifert surface for w constructed in the Section 3) and one easily
sees that

χ(Σ̃w) = n(w)− a(w)
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and of course as discussed above χ(K) = χ(w) = χ(Σ̃w). Also w is a transverse
knot with self-linking sl(w) = −χ(Σ̃w) by Lemma 2.8.

Now let w′ be some other braid word whose closure represents K = w′. If we
assume that

a(w′) = n(w′)− χ(K)

then we see that the transverse knot w′ has self-linking sl(w′) = −χ(Σ̃w). So by
Theorem 8.1 we see that w andw′ are transversely isotopic. Now Theorem 2.7 says
that w and w′ are related by positive Markov moves and Theorem 3.10 then says
that w′ must be quasi-positive.

We now conversely assume that w′ is a quasi-positive braid representing K.
Let Σ′ be the ribbon surface constructed from the quasi-positive braid w′ as in
Section 3. As before we know that χ(Σ′) = n(w′)− a(w′). Now we see

χ(K) ≤ −sl(w′) = n(w′)− a(w′) = χ(Σ′) ≤ χ(K),

and the result clearly follows. �

We now turn to Orevkov’s questions, specifically Questions 3.8 and 3.9.

Corollary 8.3. Let K be a fibered, strongly quasi-positive knot in S3. Any two quasi-
positive braids representing K are related by positive Markov moves (and conjugation).

Remark 8.4. In particular, this says that two positive braids represent the same
knot if and only if they are related by positive Markov moves (and conjugation). So
all questions about knots represented by positive braids can be answered purely
in the Positive Braid Monoids.

Remark 8.5. The answer to Orevkov’s Question 3.8 is NO for general strongly
quasi-positive knots as the following example shows (thus being fibered is a cru-
cial hypothesis). In [16] Birman and Menasco showed that the two braids

σ2p+1
1 σ2r

2 σ2q
1 σ−1

2

and
σ2p+1

1 σ−1
2 σ2q

1 σ2r
2

give the same topological knots but different transverse knots if p+ 1 6= q 6= r and
p, q, r > 1. Note that they are of course strongly quasi-positive but since they are
not transversely isotopic any sequence of Markov stabilizations taking one to the
other must contain negative stabilizations.

Proof. Let w1 and w2 be two quasi-positive braids representing the same strongly
quasi-positive fibered knotK. By Corollary 8.2 we know that their closuresw1 and
w2 are both transverse knots with self-linking number equal to −χ(K). Thus by
Theorem 8.1 we know that w1 and w2 are transversely isotopic and so Theorem 2.7
implies they are related by positive Markov moves (and conjugation). �

For Orevkov’s second questions we have the following partial answer.

Corollary 8.6. Let K be a fibered, strongly quasi-positive knot in S3. Then any minimal
braid index representative of K is quasi-positive.

Proof. Dynnikov and Prasolov [21] (see also LaFountain and Menasco [52] for an
alternate approach) proved the “Kawamuro Braid Geography Conjecture” (or also
known as the “generalized Jones conjecture”). Specifically they showed that given
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a knotK if b is the minimal braid index of braids representingK then there is some
constant l such that for any braid w representing K we have

b+ |a(w)− l| ≤ n(w).

Graphically this is shown in Figure 18 where we plot all the values of (a(w), n(w))
for braids w representing K.

(l, b)
a(w)

n(w)

FIGURE 18. The shaded region is the “Braid Geography Cone”
that contains the ordered pairs (a(w), b(w)) for all braids w whose
closures give the link K.

Now given a fibered, strongly quasi-positive knot K we know from the Ben-
nequin bound that for any braid w representing K we have

a(w)− n(w) = sl(w) ≤ −χ(K).

We know there is a strongly quasi-positive braid w such that K = w and that
sl(w) = a(w)− n(w) = −χ(K). So (a(w), b(w)) is on the right hand edge of “Braid
Geography Cone”, see Figure 18. Now if w′ is a minimal braid index braid rep-
resenting K then (a(w′), n(w′)) is at the vertex of the Cone and hence we see that
sl(w′) = a(w′) − n(w′) = −χ(K). Thus Theorem 8.1 implies that w and w′ are
transversely isotopic and hence they are related by positive Markov moves (and
conjugation) by Theorem 2.7. Now of course Theorem 3.10 implies thatw′ is quasi-
positive. �

Remark 8.7. It is still not known if the hypothesis of fibered is necessary in this
result. In addition it is not known if strongly quasi-positive can be replaced with
quasi-positive.
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[58] Lenhard Ng, Peter Ozsváth, and Dylan Thurston. Transverse knots distinguished by knot Floer

homology. J. Symplectic Geom., 6(4):461–490, 2008.
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