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ABSTRACT. We give a complete coarse classification of Legendrian and transverse torus
knots in any contact structure on S3.
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1. INTRODUCTION

The study of Legendrian and transverse knots in contact 3–manifolds has gone hand
in hand with the development and application of contact geometry, with many key fea-
tures (like tightness) and constructions (like Legendrian and transverse surgery) relying
on them. Moreover, over the last 20 or so years, a rich and beautiful theory of Legendrian
and transverse knots has developed. However, there has been surprisingly little work on
Legendrian knots in overtwisted contact manifolds. This might partially be due to the
fact that overtwisted contact structures are classified and are determined by their alge-
braic topology [13]. However, non-loose Legendrian and transverse knots in overtwisted
contact structures, which are those with tight complements, are of great interest. For ex-
ample, Legendrian surgery on a non-loose Legendrian knot might produce tight contact
structures and hence be the key to the classification of tight contact structures on certain
manifolds. Indeed, in a forthcoming paper by the first two authors and Tosun [20], the
results in this paper will be used to classify tight contact structures on some small Seifert
fibered spaces where such a classification has remained elusive. The result in this paper
will also be used in joint work of the first two authors and Piccirillo and Roy [19] to con-
struct explicit symplectic embeddings of rational homology balls into CP2 and its blowups.
In addition, the results in this paper will illuminate many new features of non-loose knots,
showing that there is as rich a structure to them as for the much studied Legendrian and
transverse knots in tight contact manifolds.

In this paper, we give a complete coarse classification of non-loose Legendrian and
transverse torus knots in any overtwisted contact structure on S3. Combining with the
results of [16] and [15], this completes the coarse classification of Legendrian and trans-
verse torus knots in any contact structure on S3. We note, in particular, that this gives the
first classification of Legendrian knots that involves Giroux torsion in their complement.
The existence of such knots was shown in [15], but all previous classification results only
considered the case without Giroux torsion.

Previously, non-loose knots were only completely classified for Legendrian and trans-
verse representatives of the unknot [14]. There have been several partial classifications for
other knots [15] and in particular torus knots [25, 43]. In Section 3, we will give a sim-
ple algorithm to classify non-loose Legendrian and transverse torus knots. In Section 1.3
and 1.4, we will also give closed form classifications for non-loose Legendrian and trans-
verse (2,±(2n + 1))–torus knots and (5,±8)–torus knots.

The proofs of our main results relay on two main ingredients, convex surfaces and the
geometry of the Farey graph. While convex surface theory is now a well-known part of
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contact geometry, we have to develop several new techniques. The most interesting might
be the ability to add Giroux torsion to some virtually overtwisted contact structures, see
Lemma 6.15 and its associated lemmas, which relies on what appears to be a novel appli-
cation of Honda’s work on tricky non-rotative layers [36]. To the authors’ knowledge, all
previous work involving Giroux torsion — its existence or adding it to an existing con-
tact structure — has been restricted to universally tight contact structures. So we give
the first examples of the existence of Giroux torsion for tight but virtually overtwisted
contact structures. (These examples are on the complement of some torus knots, but in
a future work, the first two authors will give examples on closed 3–manifolds). Another
interesting technique is the ability to detect non-loose knots by carefully applying the state
transition technique in overtwisted contact structures. This allows us to determine when
all Legendrian (p , q)-knots are non-loose without relying on contact surgery diagrams or
invariants from Heegaard Floer homology. This is done for (p , q)-torus knots with tb < pq
in Proposition 7.5 and 7.13 and the same arguments work for tb � pq as well; moreover,
Propositions 7.16 and 7.20 show that all non-loose knots with tb > pq are destabilizations
of ones with tb � pq, so the non-looseness can also be seen without contact surgery dia-
grams or invariants from Heegaard Floer homology. Concerning the geometry of the Farey
graph, we develop new ways to analyze pairs of paths in the Farey graph that approach
a given fraction from different directions, see Section 2.3. From this, we can, among other
things, determine when two non-loose knots stabilize to become equivalent, see Proposi-
tions 7.10 and 7.15. We can also use this to calculate the classical invariants of non-loose
torus knots without relying on contact surgery diagrams, see Lemma 2.19; and this, in par-
ticular, allows us to distinguish non-loose Legendrian knots after adding Giroux torsion to
their complements, see Lemma 6.19 (there does not seem to be a way to do this using the
more classical surgery diagram approach to computing rotation numbers).

1.1. Basic notations and prior classification results. So far, with the exception of [15, 24],
non-loose Legendrian knots have only been studied in S3. To discuss these results, we
recall that Eliashberg classified overtwisted contact structures on all 3–manifolds, and on
the 3–sphere they are in one-to-one correspondence with the integers, [13]. We will denote
by ξn , for n ∈ Z, the overtwisted contact structure on S3 with d3(ξn) � n. See Section 2.5
for the definition of the d3-invariant.1

We denote the Thurston-Bennequin invariant of a Legendrian knot L by tb(L) and its
rotation number by rot(L). For a transverse knot T we denote its self-linking number by
sl(T). We also denote the amount of convex Giroux torsion in the complement of a stan-
dard neighborhood of a Legendrian knot L by tor(L). See Section 2.2 for the definition
of convex Giroux torsion. Note that all classification results so far, except those in [15],
only considered Legendrian knots with tor � 0. We say knots are coarsely classified if they
are classified up to co-orientation preserving contactomorphism, smoothly isotopic to the
identity. It is well-known that loose knots are coarsely classified by the classical invariants

1We adopt the convention that the d3-invariant of contact structures on S3 are integers and the standard
tight contact structure has d3-invariant 0. This differs from the original definition in [32] by 1/2. We also note
that some papers enumerate overtwisted contact structures with their Hopf invariant which is the negation of
the d3-invariant.



4 JOHN B. ETNYRE, HYUNKI MIN, AND ANUBHAV MUKHERJEE

[15, Theorem 1.4]. We say two Legendrian knots L1 and L2 are equivalent if there is a co-
orientation preserving contactomorphism, smoothly isotopic to the identity, sending L1 to
L2, and similarly for transverse knots.

Previously, the only knot type for which there was a complete coarse classification of
non-loose knots was the unknot. In [14], Eliashberg and Fraser showed that only the con-
tact structure ξ1 supports non-loose unknots and the non-loose representatives are: Li

± for
i ≥ 2 and L1 such that

tb(Li
±) � i and rot(Li

±) � i − 1,

tb(L1) � 1 and rot(L1) � 0,

and satisfy

S±(Li
±) � Li−1

± and S±(L2
±) � L1 ,

S∓(Li
±) and S±(L1) are loose.

From this one can see that there are no non-loose transverse unknots.
To visualize the classical invariants of Legendrian knots we consider the mountain range

of Legendrian knots for a given smooth knot type. Given a smooth knot type K and a
fixed contact structure ξ, we denote by L(K) the set of Legendrian knots in ξ up to coarse
equivalence2 and consider a map Φ : L(K) → Z2 that sends L ∈ L(K) to (rot(L), tb(L)).
The image of Φ is called the mountain range of K. We can also restrict Φ to the subset
Lnl(K) of non-loose Legendrian knots realizing K; and since we completely understand
loose Legendrian knots isotopic to K, we will refer to the mountain range of K in some
overtwisted contact structure, as the image of Φ restricted to Lnl(K).

If one considers the non-loose unknots discussed above, we see that their image under Φ
is an infinite V with vertex at (0, 1). We will say a mountain range for a knot type contains
a V with vertex at (a , b) if the image of Φ contains Legendrian knots as above where the
vertex of the V has invariants (a , b). See the right drawing of Figure 4 for example.

In [25], Geiges and Onaran gave the next coarse classification results for some torus
knots with specific classical invariants. They considered only “strongly exceptional" knots.
The term exceptional is what we are calling non-loose, and strongly means there is no
Giroux torsion in the complement. In this paper we will say such knots are non-loose
without convex Giroux torsion, or non-loose knots with tor � 0. Their results are as fol-
lows.
Left-handed trefoil: There are exactly two non-loose Legendrian representatives without
convex Giroux torsion with tb � −5 or tb < −6, and there is at least one with tb � 1 and at
least two for all other values of tb. All these examples are in ξ2.
Right-handed trefoil: There are exactly four non-loose Legendrian knots having tor � 0
and tb � 7. Two have rot � ±4 and live in ξ1 and the other two have rot � ±8 and live in
ξ−1. They also constructed non-loose Legendrian knots in ξ−1 with tb realizing any inte-
ger less than or equal to 5 and such Legendrian knots in ξ1 with tb realizing any integer
greater than or equal to 6.

2Usually, L(K) denotes the set of Legendrian knots up to Legendrian isotopy. In this paper however, since
we only consider coarse classification, we adopt this definition.
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Other torus knots: For p ≥ 2 and n ≥ 1, there are exactly 2p non-loose Legendrian
(p , np + 1)-knots having tor � 0 and tb � np2 + p + 1. If n ≥ 2, then there are exactly
2(p − 1)(n − 1) such non-loose Legendrian (p ,−(np − 1))–torus knots having tor � 0 and
tb � −np2 + p − 1. They also worked out the rotation numbers of these knots and which
overtwisted contact structures in which they live.

Geiges and Onaran also produced interesting surgery descriptions for all their exam-
ples. One thing they did not do is to indicate how their examples are related by stabiliza-
tion; thought through personal communication, in some cases, such as for the left handed
trefoil with tb < −6 they are able to see this relation. Though in other cases, this is not clear,
such as what happens to the non-loose Legendrian left-handed trefoil with tb � 1 when it
is stabilized? Is it non-loose? (We see below, that there are actually three such knots and
each has different behavior under stabilization.)

In [43], Matkovič coarsely classified non-loose negative (p , q)–torus knots with tb < pq
and with tor � 0. The classification is in terms of specific contact surgery descriptions in
Figure 2, and to determine if a given surgery description is non-loose one must determine
if Legendrian surgery on the knot produces a tight contact manifold. This is translated
into information about the rotation numbers in the contact surgery diagram; which, in
turn, is equivalent to our “pairs of decorated paths" description used in our classification
algorithm given in Section 3.

While we do not consider links in this paper, we do mention that Geiges and Onaran
have coarsely classified all non-loose Legendrian Hopf links (including ones with tor >
0) in [26]. This and Eliashberg and Fraser’s result above are the only complete coarse
classification of non-loose representatives of a link type.

The only results involving the classification, and not just the coarse classification, of
non-loose Legendrian knots is the work of Vogel, [44]. He showed that for each tb and
rot realized by a non-loose unknot above, there are exactly two non-loose unknots up to
Legendrian isotopy. We believe that some of our results below can also be upgraded to
classifications up to Legendrian isotopy, but that will be the subject of future work.

We also note that in addition to the above works, there have been many constructions
of non-loose knots, see for example [27, 28, 40].

1.2. General non-loose torus knots. From now on, we always assume that |q | > p > 0. In
Section 3, we will give a simple algorithm to classify non-loose Legendrian representatives
of any (p , q)–torus knot. In this section, we discuss the properties of the classifications that
have a simple closed form. In particular, we will see that for non-loose Legendrian (p , q)–
torus knots having tor � 0 and tb ≥ pq, there is a simple classification and such knots with
tb < pq always destabilize. Thus the intricacies in our algorithm involve understanding
when the representatives with tb � pq become the same or loose under stabilization. We
will also see that there is always a simple classification for non-loose Legendrian knots
with tor > 0.

The first observation from our classification concerns destabilizing non-loose Legen-
drian knots.
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Theorem 1.1. Any non-loose (p , q)–torus knot destabilizes except when tb � pq or one Legen-
drian representative when pq < 0 and tb � |pq | − |p | − |q |. Non-loose Legendrian knots with
tb � pq sometimes destabilize and sometimes do not.

We can also restrict the potential d3-invariants of overtwisted contact structures that
support non-loose torus knots.

Theorem 1.2. Suppose ξ is an overtwisted contact structures on S3 supporting a non-loose Leg-
endrian (p , q)–torus knot L with tor(L) � n, then

d3(ξ) �
{

odd if pq > 0 and n ∈ Z, or pq < 0 and n is a half-integer,
even if pq < 0 and n ∈ Z, or pq > 0 and n is a half-integer.

To state our classification, we first let q/p be a rational number with |q/p | > 1. If pq < 0,
we have the continued fraction

q
p
� [a1 , . . . , am] � a1 −

1
a2 − 1

···− 1
am

where ai ≤ −2 for 1 ≤ i ≤ m. If pq > 0, we consider the continued fraction(
p
q
− 1

)−1

� [a1 , . . . , am].

In either case, we consider the continued fraction(
q
p
−

⌈
q
p

⌉)−1

� [b1 , . . . , bn].

We now set

m(p , q) � |(a1 + 1) · · · (am−1 + 1)am | · |(b1 + 1) · · · (bn−1 + 1)bn |

and

n(p , q) � |(a1 + 1) · · · (am + 1)| · |(b1 + 1) · · · (bn + 1)|
We will see in Section 2.2 that m(p , q) is the number of tight contact structures on a solid
torus with convex boundary having two dividing curves of slope q/p times the number of
such contact structures with dividing slope p/q, and n(p , q) is the number of tight contact
structures on L(p ,−q)#L(q ,−p), where we use the convention that L(p , q) is −p/q–surgery
on the unknot.

We can now enumerate all the non-loose Legendrian (p , q)–torus knots with tb > pq and
tor � 0.

Theorem 1.3. Suppose |q | > p > 1. There are exactly 2n(p , q) non-loose (p , q)–torus knots with
tb � i > pq and tor � 0 which we denote by

Li
±,k for 1 ≤ k ≤ n(p , q)
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except when pq < 0 and i � |pq | − |p | − |q |. In this case, there are 2n(p , q) + 1 non-loose
representatives and this extra Legendrian knot is denoted by Le . We also know that

S±(Li
±,k) � Li−1

±,k for i > pq + 1,

S∓(Li
±,k) is loose for i > pq.

Moreover, S j
±(L

pq+1
±,k ) is non-loose for any j > 0. For the extra Legendrian Le when pq < 0, we

have
S±(Le) � L |pq |−|p |−|q |−1

±,1 .

Any Li
±,k can be realized as a Legendrian knot shown in Figure 1. Also, rot(Li

+,k) � − rot(Li
−,k)

and rot(Le) � 0 and Le lives in the contact structure ξ |pq |−|p |−|q |+1.

( p′−p
p′ )

( q′
q′−q )

(+1)

L+
( p′−p

p′ )

( q′
q′−q )

(+1)

L−

( p′−p
p′ ) ( q′

q′−q )
(−1)

(−1)

(−1)

(−1)

L+

(+1)

m − 1

( p′−p
p′ ) ( q′

q′−q )
(−1)

(−1)

(−1)

(−1)

L−

(+1)

m − 1

FIGURE 1. Half of the 2n(p , q) of non-loose Legendrian (p , q)–torus knots
with tb � pq + 1 and tor � 0 are shown on the top left and the other half on
the top right. Similarly, half of the 2n(p , q) of non-loose Legendrian (p , q)–
torus knots with tb � pq+m for m > 1 and tor � 0 are shown on the bottom
left and the other half on the bottom right. Here, q′/p′ is the largest rational
number such that pq′ − p′q � 1.
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In Section 2.5, we show how to compute the rotation number of Li
±,k and the d3-invariant

of the contact structure on which it lives, but we note that Li
+,k and Li

−,k live in the same
contact structure. We note that surgery diagrams as in Figure 1 first appeared in work of
Geiges and Onaran [25] for specific torus knots, but it is clear from their work that one can
construct examples of non-loose (p , q)-torus knots with tb > pq for any p and q. Our work
shows that all such knots, except one when pq < 0, come from these diagrams.

We can similarly enumerate non-loose Legendrian knots with tb � pq and tor � 0.

Theorem 1.4. Suppose |q | > p > 1. The number of non-loose Legendrian (p , q)–torus knots with
tb � pq and tor � 0 is exactly {

m(p , q) if pq > 0,

m(p , q) − 2
���⌈ q

p

⌉��� if pq < 0

and any such Legendrian knot can be realized as a Legendrian knot shown in Figure 2.

In Section 2.5, we show how to compute the rotation numbers of these knots and the
d3-invariants of the contact structures in which it lives. We note that the surgery diagram
in Figure 2 first appeared in work of Lisca and Stipsicz [41] in the context of small Seifert
fibered spaces, and then in work of Lisca, Ozsváth, Stipsicz, and Szabo [40] to construct
some non-loose Legendrian torus knots using Heegaard-Floer theory.

(− p
p′ )

(− q
q−q′ )

(+1)
(+1)

L

FIGURE 2. L is a non-loose torus knot with tb(L) � pq and tor(L) � 0. Here,
q′/p′ is the largest rational number such that pq′ − p′q � 1.

Remark 1.5. We will see there are always m(p , q) Legendrian (p , q)-knots with tb � pq and
tor � 0, but when pq < 0, it turns out that 2

��⌈q/p
⌉�� of those are in (S3 , ξstd).

The algorithm in Section 3 will give a complete classification of non-loose Legendrian
and torus knots, but we can easily describe the qualitative features of the classification
through mountain ranges. In particular, for all but one of the overtwisted contact struc-
tures supporting non-loose Legendrian (p , q)–torus knots, the mountain range for the non-
loose representatives with tor � 0 will be as in Figure 3. Notice that each mountain range
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contains an infinite X. We call the grey shaded regions in the figure wings. The number of
peaks in the wings will depend on (p , q) and decorated paths in the Farey graph from ∞
to q/p and then to 0, see Section 3.

FIGURE 3. Generic mountain ranges for non-loose Legendrian (p , q)–torus
knots with tor � 0. On the left is the case where pq < 0 and on the right
is where pq > 0. The peaks occur at tb � pq. Each integral point in the
lightly shaded region, whose coordinates sum to be odd, is realized by a
unique non-loose Legendrian knot, while in the darker shaded region on
the right and crossing point on the left there are exactly two representatives
with those invariants.

However we observe the following about the wings.

Theorem 1.6. Given any positive integers n and m1 , . . . ,mn−1 there is some (p , q)–torus knot
whose mountain range in some overtwisted contact structure has 2n peaks, and the distance be-
tween the ith and (i + 1)st peak is at least mi (we label the peaks according to their distance from
the infinite X).

There exists one overtwisted contact structure for each (p , q)–torus knot where the clas-
sification of non-loose representatives is different, see Figure 4.

We note that it might be possible that for some (p , q)–torus knot, two or more of the
mountain ranges shown in Figures 3 and 4 occur in the same overtwisted contact structure.
In which case the Legendrian knots depicted in each figure are never equivalent to those
in another. In all our computed examples we see that this never occurs and conjecture that
it never does.

Conjecture 1.7. In each overtwisted contact structure that supports non-loose (p , q)–torus knots,
the mountain range of such knots is given by only one of the diagrams indicated in Figures 3 and 4.

In [43] Matkovič classified non-loose Legendrian (p , q)-torus knots with pq < 0 and
tb < pq, from this she could classify all non-loose transverse knots, without convex Giroux
torsion, as well. She could then show that if two non-loose transverse knots were not
related by stabilization, then they were in distinct overtwisted contact structures. This
verifies our conjecture for negative torus knots.

We now consider the number of contact structures supporting non-loose Legendrian
(p , q)–torus knots.
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FIGURE 4. The mountain range of non-loose Legendrian (p , q)–torus knots
with tor � 0 for the exceptional contact structures. On the left is the moun-
tain range for a negative (p , q)–torus knot in ξ |pq |−|p |−|q |+1. The crossing is
at (rot, tb) � (0, |pq | − |p | − |q |) and there are three distinct non-loose Leg-
endrian knots. On the right is the mountain range for a positive (p , q) torus
knot in ξ1. The lower vertex is at (rot, tb) � (0, pq − p − q + 2).

Theorem 1.8. There are at most n(p , q) overtwisted contact structures supporting non-loose Leg-
endrian (p , q)–torus knots with tor � 0. And at most

n(p , q) + |(a1 + 1) · · · (am−1 + 1)| · |(b1 + 1) · · · (bn−1 + 1)|
overtwisted contact structures supporting any non-loose Legendrian (p , q)–torus knots.

We note that if Conjecture 1.7 is true, then the upper bound in Theorem 1.8 gives the
exact number of such contact structures.

We also give some qualitative properties of non-loose torus knots with tor > 0.

Theorem 1.9. Let L be a non-loose Legendrian (p , q)–torus knot with tor(L) > 0. Then
(1) tor(L) is finite and well-defined,
(2) there exists a unique Legendrian knot L′ with tb(L′) � pq and tor(L′) � 0 such that the

complement of L is obtained by attaching a convex Giroux torsion layer in the complement
of L′.

We now turn to transverse knots. As is well-known [16, Theorem 2.10], the classifica-
tion of transverse knots is equivalent to the classification Legendrian knots up to negative
stabilization. Thus our algorithm for classifying non-loose Legendrian (p , q)–torus knots
will also classify non-loose transverse (p , q)–torus knots.

Theorem 1.10. Suppose ξ is an overtwisted contact structure supporting non-loose transverse
(p , q)–torus knots. If we suppose Conjecture 1.7 is true, then in ξ, either

(1) there are a finite number of non-loose transverse knots T1 , . . . Tn , the stabilization of Ti is
Ti+1 for i < n, and the stabilization of Tn is loose; or

(2) there are an infinite number of non-loose transverse knots with the same self-linking number
and they are distinguished by the Giroux torsion in their complement.

In the former case all the Ti have zero Giroux torsion in their complement. If Conjecture 1.7 is not
true, then the non-loose transverse knots in ξ could be a union of several copies of non-loose knots
of type (1) and (2) above.
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We note that in [43], Matkovič proved that negative torus knots (with no Giroux torsion
in their complements) are transversely simple and gave an algorithm that could be used
to obtain the above results for these knots.

1.3. Non-loose (2,±(2n + 1))–torus knots. Here we give an explicit classification of non-
loose Legendrian and transverse (2,±(2n + 1))–torus knots for n ∈ N. We begin with
Legendrian (2, 2n + 1)–torus knots.

Theorem 1.11. The (2, 2n+1)–torus knot has non-loose Legendrian representatives only in ξ1 , ξ0 ,
and ξ1−2n . The classification in each of these contact structures is as follows.

(1) In (S3 , ξ0), there are non-loose Legendrian (2, 2n + 1)–torus knots L
i ,k+ 1

2
± for i ∈ Z and

k ∈ N ∪ {0} such that

tb(Li ,k+ 1
2

± ) � i , and rot(Li ,k+ 1
2

± ) � ∓(i − 2n + 1),
and

tor(Li ,k+ 1
2

± ) �
{

k +
1
2 if i > 2n − 1,

k + 1 if i ≤ 2n − 1.

We also have
S±(L

i ,k+ 1
2

± ) � L
i−1,k+ 1

2
± and S∓(L

i ,k+ 1
2

± ) is loose.

(2) In (S3 , ξ1−2n), there are non-loose Legendrian (2, 2n + 1)–torus knots Li ,k
± for i ∈ Z and

k ∈ N ∪ {0} such that

tb(Li ,k
± ) � i , and rot(Li ,k

± ) � ∓(i + 2n − 1)
and

tor(Li ,k
± ) �

{
k if i > 2n − 1,
k +

1
2 if i ≤ 2n − 1.

We also have
S±(Li ,k

± ) � Li−1,k
± and S∓(Li ,k

± ) is loose.
(3) In (S3 , ξ1), there are non-loose Legendrian knots

Li
± , for i > 2n + 1,

Li
2,± , for 2n + 4 ≤ i ≤ 4n + 2,

L2n+1 , and L2n+3
2

with
tb(Li

±) � i , and rot(Li
±) � ∓(i − 2n − 1),

tb(L2n+1) � 2n + 1, and rot(L2n+1) � 0,
tb(Li

2,±) � i , and rot(Li
2,±) � ∓(i − 2n − 3),

tb(L2n+3
2 ) � 2n + 3, and rot(L2n+3

2 ) � 0
such that

S±(Li
±) � Li−1

± , for i ≥ 2n + 3, and S±(L2n+2
± ) � L2n+1 ,

S±(Li
2,±) � Li−1

2,± , for i ≥ 2n + 5, and S±(L2n+4
2,± ) � L2n+3

2 ,
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S∓(Li
2,±) � Li−1

± , for i ≥ 2n + 4, S∓(L2n+3
2 ) � L2n+2

±

and S∓(Li
±) and S±(L2n+1) are loose. All these Legendrian knots have tor � 0.

See Figure 5 for the mountain ranges of non-loose Legendrian right-handed trefoils.

−2 −1 0 1 2

7

6

5

4

3

−3 −2 −1 0 1 2 3

FIGURE 5. The mountain ranges of non-loose Legendrian right-handed tre-
foils. On the left we see the mountain range in ξ0 and ξ−1. In ξ0, the crossing
point of the X is at tb � 1 while in ξ−1, it is at tb � −1. Each dot represents
an infinite family of Legendrian representatives distinguished by convex
Giroux torsion, and at the cross we have two infinite families. On the right
we see the mountain range in ξ1. Each dot represents a unique non-loose
Legendrian representative.

We not turn to Legendrian (2,−(2n + 1))–torus knots.

Theorem 1.12. The (2,−(2n + 1))–torus knot has non-loose Legendrian representatives only in
ξn+l+1 and ξn−l for l ∈ {−n + 1,−n + 3, . . . , n − 3, n − 1}. The classification in each of these
contact structures is as follows.

(1) In (S3 , ξ2n), there are non-loose Legendrian (2, 2n + 1)–torus knots Li ,k
n−1,± for i ∈ Z, k ∈

N ∪ {0}, and Le with

tb(Li ,k
n−1,±) � i , rot(Li ,k

n−1,±) � ∓(i − 2n + 1), and tor(Li ,k
n−1,±) � k ,

tb(Le) � 2n − 1, rot(Le) � 0, and tor(Le) � 0,
such that

Li ,k
n−1,± � S±(Li−1,k

n−1,±) and S±(Le) � L2n−2,0
n−1,± ,

and
S∓(Li ,k

n−1,±) is loose.

(2) In (S3 , ξn+l+1) for l ∈ {−n+1,−n+3, . . . , n−3}, there are non-loose Legendrian (2, 2n+

1)–torus knots Li ,k
l ,± having

tb(Li ,k
l ,±) � i , rot(Li ,k

l ,±) � ∓(i − 2l − 1), and tor(Li ,k
l ,±) � k

such that
S±(Li ,k

l ,±) � Li−1,k
l ,± and S∓(Li ,k

l ,±) loose.
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(3) In (S3 , ξn−l) for l ∈ {−n + 1,−n + 3, . . . , n − 3, n − 1}, there are non-loose Legendrian

(2, 2n + 1)–torus knots L
i ,k+ 1

2
l ,± having

tb(Li ,k+ 1
2

l ,± ) � i , rot(Li ,k+ 1
2

l ,± ) � ∓(i + 2l + 1), and tor(Li ,k+ 1
2

l ,± ) � k +
1
2

such that
S±(L

i ,k+ 1
2

l ,± ) � L
i−1,k+ 1

2
l ,± and S∓(L

i ,k+ 1
2

l ,± ) loose.

See Figure 6 for the mountain ranges of non-loose Legendrian left-handed trefoils.

−2 −1 0 1 2 −2 −1 0 1 2

3

2

1

0

−1

1

0

−1

−2

−3

FIGURE 6. The mountain ranges of non-loose Legendrian left-handed tre-
foils. On the left we see the mountain range in ξ2. Each dot not at the cross
represents an infinite family of Legendrian representatives distinguished
by convex Giroux torsion. At the cross the black dot represents the extra
Legendrian Le and each ring represents an infinite family of Legendrian
representatives. On the right we see the mountain range in ξ1. Each dot
represents an infinite family of Legendrian representatives distinguished
by convex Giroux torsion and at the cross we have two infinite families.

We now consider the classification of non-loose transverse (2, 2n + 1)–torus knots.

Theorem 1.13. The (2, 2n + 1)–torus knot has non-loose transverse representatives only in ξ0 ,
and ξ1−2n . The classification in each of these structures is as follows.

(1) In (S3 , ξ0), there is a family of non-loose transverse (2, 2n + 1)–torus knots Tk for k ≥ 1
with

sl(Tk) � 2n − 1 and tor(Tk) � k
and when stabilized Tk becomes loose. Moreover, Tk+1 is obtained from a Lutz twist on
Tk for i > i and T1 is obtained from a Lutz twist on the maximal self-linking transverse
representative of the (2, 2n + 1)–torus knot in (S3 , ξstd).

(2) In (S3 , ξ1−2n), there is a family of non-loose transverse (2, 2n + 1)–torus knots Tk+ 1
2 for

i ≥ 0 with
sl(Tk+ 1

2 ) � −2n + 1 and tor(Tk+ 1
2 ) � k +

1
2
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any when stabilized Tk+ 1
2 becomes loose. Moreover, Tk+ 1

2 is obtained by the half Lutz twist
of Tk .

Finally we discuss non-loose transverse (2,−(2n + 1))–torus knots.

Theorem 1.14. The (2,−(2n + 1))–torus knot has non-loose transverse representatives only in
ξn+l+1 and ξn−l for l ∈ {−n + 1,−n + 3, . . . , n − 3, n − 1}. The classification in each of these
structures is as follows.

(1) In (S3 , ξn+l+1), for l ∈ {−n + 1,−n + 3, . . . , n − 3, n − 1} there are non-loose transverse
(2,−(2n + 1))–torus knots Tk

l for k ≥ 0 with

sl(Tk
l ) � 2l + 1 and tor(Tk

l ) � k

and when stabilized Tk
l becomes loose. Moreover, Tk+1

l is obtained from a Lutz twist on Tk
l

for k ≥ 0.
(2) In (S3 , ξn−l) for l ∈ {−n + 1,−n + 3, . . . , n − 3, n − 1}, there are non-loose transverse

(2,−(2n + 1))–torus knots T
k+ 1

2
l for k ≥ 0 with

sl(Tk+ 1
2

l ) � −2l − 1 and tor(Tk+ 1
2

l ) � k +
1
2

and when stabilized T
k+ 1

2
l becomes loose. Moreover, T

k+ 1
2

l is obtained from the half Lutz
twist on Tk

l .

1.4. Non-loose (5,±8)–torus knots. In this section we give a complete classification of
non-loose Legendrian and transverse (5,±8)–torus knots as their classification show some
features not seen in the non-loose (2,±(2n + 1))–torus knots. We note that these knots are
part of the family of (5, 5n + 3)–torus knots. Their classification is quite similar and is left
as an exercise for the reader. We begin with the non-loose Legendrian knots.

Theorem 1.15. The (5, 8)–torus knot has non-loose Legendrian representatives only in ξ1, ξ0,
ξ−1, ξ−2, ξ−3, ξ−4, ξ−7, ξ−8, ξ−9 ξ−15, ξ−19, and ξ−27. The classification in each of these contact
structures is as follows. See Figures 7 and 8.

(1) in (S3 , ξ1) we have non-loose Legendrian knots Li
± for i > 29 and L29 such that tb(Li

±) � i,
tb(L29) � 29 and

rot(Li
±) � ∓(i − 29) and rot(L29) � 0

that satisfy

S±(Li
±) � Li−1

± , for i > 30 , S±(L20
± ) � L29 , and S ∓ (Li

±) and S ± (L29) are loose.

In addition, there are Legendrian knots L40
k ,± , k � 2, 3, 4, with Thurston-Bennequin invari-

ant 40 and

rot(L40
2,±) � ∓9, rot(L40

3,±) � ∓7, and rot(L40
4,±) � ∓3.

When these knots are stabilized to have the same invariants (or the invariants of the Li
± or

L29) they become equivalent and they are non-loose until stabilized outside the V defined
by the Li

± and L29. None of these Legendrian knots have convex Giroux torsion in their
complement.
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(2) In (S3 , ξ−1) there are Legendrian knots Li
± for i ∈ Z and Li

2,± for i ≤ 40 such that

tb(Li
±) � tb(Li

2,±) � i , rot(Li
±) � ∓(i − 21), and rot(Li

2,±) � ∓(i − 19).
Moreover, S±(Li

±) � Li−1
± , S±(Li

2,±) � Li−1
2,± , S∓(Li

2,±) � Li−1
± , and S∓(Li

±) is loose. No
stabilization of Li

+ or Li
2,+ is equivalent to a stabilization of Li

i or Li
2,−. All these Legendrian

knots have no convex Giroux torsion in their complement.

−12 −9 −7 −3 12973

40

29

FIGURE 7. The mountain range for the non-loose Legendrian (5, 8)–torus
knots in ξ1. Each dot or circle represents a unique non-loose Legendrian
knot.

(3) In (S3 , ξ−3) and (S3 , ξ−7) we have Legendrian knots Li
± with tb(Li

±) � i and tor(Li
±) � 0

such that

rot(Li
±) �

{
∓(i − 13) in ξ−3

∓(i − 3) in ξ−7

and
S±(Li

±) � Li−1
± and S∓(Li

±) is loose.

(4) In S3 with the contact structures ξ−9.ξ−15 , ξ−19 , ξ−27 we have the Legendrian knots Li ,k
±

where tb(Li ,k
± ) � i and

rot(Li ,k
± ) �


∓(i + 1) in ξ−9

∓(i + 11) in ξ−15

∓(i + 17) in ξ−19

∓(i + 27) in ξ−27

that satisfy
S±(Li ,k

± ) � Li−1,k
± and S ∓ (Li ,k

± ) is loose.

Moreover, tor(Li ,k
± ) � k + 1/2 if it is in ξ−27 and i ≤ 27. Otherwise, tor(Li ,k

± ) � k.
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(5) In S3 with the contact structures ξ−8 , ξ−4 , ξ−2 , and ξ0 we have the Legendrian knots L
i ,k+ 1

2
±

where tb(Li ,k+ 1
2

± ) � i and

rot(Li ,k+ 1
2

± ) �


∓(−1 + i) in ξ−8

∓(−11 + i) in ξ−4

∓(−17 + i) in ξ−2

∓(−27 + i) in ξ−0

that satisfy

S±(L
i ,k+ 1

2
± ) � L

i−1,k+ 1
2

± and S∓(L
i ,k+ 1

2
± ) is loose.

Moreover, tor(Li ,k+ 1
2

± ) � k + 1 if it is in ξ0 and i ≤ 27. Otherwise, tor(Li ,k+ 1
2

± ) � k + 1/2.

We not turn to the Legendrian (5,−8)–torus knots.

Theorem 1.16. The (5,−8)–torus knots has non-loose Legendrian representatives only in ξ1, ξ2,
ξ7, ξ8, ξ14, and ξ28. The classification in each of these contact structures is as follows. See Figure 9.

(1) In (S3 , ξ28), there are non-loose Legendrian (5,−8)–torus knots Li ,k
± , i ∈ Z, k ∈ N ∪ {0}

and Le with

tb(Li ,k
± ) � i , rot(Li ,k

± ) � ∓(i − 27), and tor(Li ,k
± ) � k

tb(Le) � 27, rot(Le) � 0, and tor(Le) � 0

such that

S±(Li ,k
± ) � Li−1,k

± , S±(Le) � L2n−2,0
± and S∓(Li ,k

± ) is loose.

(2) In (S3 , ξ2), there are non-loose Legendrian (5,−8)–torus knots Li
± for i ∈ Z and Li

2,± for
i ≤ −40 having

tb(Li
±) � tb(Li

2,±) � i , and tor(Li
±) � tor(Li

2,±) � 0,

and
rot(Li

±) � ∓(i + 25), and rot(Li
2,±) � ∓(i + 23)

such that
S±(Li

±) � Li−1
± , and S±(Li

2,±) � Li−1
2,± ,

and
S∓(Li

2,±) � Li−1
± , and S∓(Li

±) is loose.

(3) In (S3 , ξ8) there are non-loose Legendrian (5,−8)–torus knots Li
± for i ∈ Z with

tb(Li
±) � i , rot(Li

±) � ∓(i + 5), and tor(Li
±) � 0

satisfying
S±(Li

±) � Li−1
± and S∓(Li

±) is loose.
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−21 −19 19 21

40

20

−2 −1 0 1 2 −2 −1 0 1 2

t t

FIGURE 8. On the top is the mountain range for the non-loose Legendrian
(5, 8)–torus knots in ξ−1. Each dot or circle represents a unique non-loose
representative. The bottom left shows the mountain range for the non-loose
Legendrian knots in ξ−3 and ξ−7. In the first case t � 13 and in the second
it is 3. Each dot or circle represents a unique non-loose representative. On
the bottom right we see the mountain range for non-loose Legendrian knots
in ξ−9 , ξ−15 , ξ−19 , ξ−27 , ξ−8 , ξ−4 , ξ−2 , and ξ0. The values of t in those cases
are −1,−11,−17,−27, 1, 11, 17, and 27, respectively, and each dot or circle
represents infinitely many non-loose Legendrian knots.

(4) In (S3 , ξ14) there are non-loose Legendrian (5,−8)–torus knots Li ,k
± for i ∈ Z and k ∈

N ∪ {0} satisfying

tb(Li ,k
± ) � i , rot(Li ,k

± ) � ∓(i − 7), and tor(Li ,k
± ) � k

such that

S±(Li ,k
± ) � Li−1,k

± and S∓(Li ,k
± ) is loose.
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27

−25

−40

−17 17

−2 −1 0 1 2 −2 −1 0 1 2

−2 −1 0 1 2
−1 0 1

−5 t

FIGURE 9. In the upper left we see the mountain range for non-loose
(5,−8)–torus knots in ξ2 and on the upper left we see the mountain range in
ξ28. On the bottom left is the mountain range in ξ8 and on the bottom right
in ξ1 and ξ7 and ξ14 where t is 27, 7, and −7, respectively. In the diagrams
on the left each dot or circle represents a unique non-loose Legendrian knot
while on the right each dot represents infinitely many distinct Legendrian
knots.

(5) In S3 with the contact structures ξ1 and ξ7 there are non-loose Legendrian (5,−8)–torus

knots L
i ,k+ 1

2
± satisfying tb(Li ,k+ 1

2
± ) � i, tor(Li ,k+ 1

2
± ) � k + 1/2,

rot(Li ,k+ 1
2

± ) �
{
∓(i + 27) in ξ1 ,

∓(i + 7) and ξ7 ,

and

S±(L
i ,k+ 1

2
± ) � L

i−1,k+ 1
2

± and S∓(L
i ,k+ 1

2
± ) is loose.

With the classification of non-loose Legendrian (5,±8)–torus knots, one may easily clas-
sify non-loose transverse knots.

Theorem 1.17. The (5, 8)–torus knot has non-loose transverse representatives only in ξ−1, ξ−3,
ξ−7, ξ−9, ξ−15, ξ−19, ξ−27, ξ−8, ξ−4, ξ−2, and ξ0. The classification in each of these contact
structures is as follows.
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(1) In (S3 , ξ−1) there are two non-loose transverse knots T and T′ with sl(T) � −19, sl(T′) �
−21, and the stabilization of T is contactomorphic to T′. Neither knot has Giroux torsion
in its complement.

(2) In S3 with the contact structure ξ−3 or ξ−7 there is exactly one non-loose transverse knot
T and it has sl(T) � 13 in ξ−3 and −3 in ξ−7. Neither knot has Giroux torsion in its
complement.

(3) In S3 with the contact structure ξ−7 , ξ−9 , ξ−15 , ξ−19 or ξ−27 there is a family of non-loose
transverse knots Tk for k ≥ 1 with tor(Tk) � k and

sl(Tk) �


−1 in ξ−9

−11 in ξ−15

−17 in ξ−19

−27 in ξ−27.

(4) In S3 with the contact structures ξ−8 , ξ−4 , ξ−2 , or ξ0 there is a family of non-loose trans-
verse knots Tk+ 1

2 for k ≥ 0 with tor(Tk+ 1
2 ) � k + 1/2 and

sl(Tk+ 1
2 ) �


1 in ξ−8

11 in ξ−4

17 in ξ−2

27 in ξ0.

Finally we can consider the transverse (5,−8)–torus knots.

Theorem 1.18. The (5,−8)–torus knot has non-loose transverse representatives only in ξ1 , ξ2 , ξ7 ,
ξ8 , ξ14 , and ξ28. The classification in each of these contact structures is as follows.

(1) In (S3 , ξ2) there are two non-loose transverse knots T and T′ with sl(T) � 27, sl(T′) � 25,
and the stabilization of T is contactomorphic to T′. Neither knot has Giroux torsion in its
complement.

(2) In (S3 , ξ8) there is exactly one non-loose transverse knot T and it has sl(T) � −7 and
tor(T) � 0.

(3) In S3 with the contact structure ξ14 and ξ28 there is a family of non-loose transverse knots
Tk for k ≥ 0 with tor(Tk) � k and

sl(Tk) �
{
−7 in ξ14

27 in ξ28

(4) In S3 with the contact structures ξ1 or ξ7 there is a family of non-loose transverse knots
Tk+ 1

2 for k ≥ 0 with tor(Tk+ 1
2 ) � k + 1/2 and

sl(Tk+ 1
2 ) �

{
27 in ξ1

7 in ξ7

1.5. Qualitative features of non-loose Legendrian knots: known and new results. Very
little was known about the qualitative behavior of non-loose Legendrian knots, but we
greatly illuminate their nature in this paper. The first most basic result about non-loose
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Legendrian and transverse knots is a Bennequin type inequality concerning their classical
invariants.

Theorem 1.19 (Świa̧tkowski, see [12, 15]). Let (M, ξ) be an overtwisted contact 3–manifold and
L a non-loose Legendrian knot in ξ. Then

−| tb(L)| + | rot(L)| ≤ −χ(Σ)

for any Seifert surface Σ for L. For non-loose transverse knots we have

sl(T) ≤ −χ(Σ).

The theorem above gives restrictions on the mountain range for non-loose representa-
tives of K, see Figure 10.

rot

tb

1

2

3

4 5

6 7

FIGURE 10. The mountain range of non-loose Legendrian representatives
of a knot type K is contained in the shaded region defined by the four lines
l1 , l2 , l3 , and l4. The lines divide the shaded region into the 7 parts shown.

Recall that Φ : L(K) → Z2 is a map that sends L ∈ L(K) to (rot(L), tb(L)). If one
considers the non-loose unknots discussed in Section 1.1, we see that their image under
Φ is an infinite V with vertex at (0, 1). Our classification of non-loose torus knots and [15,
Theorem 1.12 and 1.13] shows that the non-loose mountain range frequently contains an X,
that is Legendrian knots whose invariants fill the integer points on a line of slope 1 and a
line of slope −1. Given our current knowledge it is reasonable to ask if all mountain ranges
have such a feature.
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Question 1.20. If ξ admits non-loose representatives of a knot type K, then does the mountain
range of non-loose Legendrian knots of the knot type K in ξ always contain a V or X? Does it
always contain an X if ξ is not ξ1?

Looking back at [15, Theorem 1.13], a reasonable place to start looking for a knot where
the answer was NO, would be to consider a knot type K for which −K is not smoothly
isotopic to K.

In [15], there were many questions asked as to what the mountain ranges of non-loose
Legendrian knots could look like. At the time the only known examples showed you
could have Xs and Vs and that was all. In particular it was asked if there could ever be
any non-loose Legendrian knots in Regions 1 or 2 in Figure 10, and if so could there be
multiple (maybe infinitely many) representatives mapping to a fixed point in one of those
regions. If one considers, for example, the (n − 1, n)–torus knot in ξ1 we can see that
there are indeed non-loose Legendrian knots with invariants in Region 1, but at most one
Legendrian representative can map to any point there. We do not know if Region 2 can be
populated. So we reiterate, are refine the questions and ask

Question 1.21. Are there any non-loose Legendrian knots with invariants in R2? Is the cardinality
of the pre-image of any point in R1 under the geography map Φ on non-loose Legendrian knots
bounded by 1?

It was also asked in [15] if for any knot K, there are at most finitely many contact struc-
tures in which it could have non-loose representatives and if there were finitely many con-
tact structures in which there could be infinitely many Legendrian representatives map-
ping to a fixed point (rot, tb). (It was suggested that there might just be two such contact
structures.) All our examples point to the answer being YES to both these questions, but
our examples of the (2,−(2n+1))–torus knots show that this finite number of contact struc-
tures can be arbitrarily large.

In [2], Baker and Onaran defined three invariants that quantify “how tight" are the com-
plement of non-loose Legendrian knots. Our results given quite a bit of new information
about two of them, so we discuss those. Given a non-loose knot L, they were the depth of
L, d(L), defined to be the minimal number of times an overtwisted disk intersects L and
the tension of L, t(L), defined to be the minimal number of stabilizations needed to make L
loose. In [2, Problem 6.1], they asked for constructions of non-loose Legendrian knots with
arbitrarily large tension. We can easily construct such examples by finding torus knots
with arbitrarily large wings, as is guaranteed by Theorem 1.6 (and we can similarly find
such examples for positive torus knots in ξ1).

Baker and Onaran also noted that tension can be refined to consider only positive or
negative stabilizations, so we set t±(L) to be the minimal number of ± stabilizations that
are required to make L loose. From prior work, e.g. [15], it is clear that t±(L) can be infinite.
In [2, Question 6.7] it was asked if there was an L such that both t+(L) and t−(L) can be
infinite. The “extra" Legendrian Le for negative torus knots given in Theorem 1.3 is an
example of such a non-loose Legendrian knot. Similarly, Baker and Onaran [2, Question
6.7] asked if one could have both t±(L) larger than t(L). Again, our extra Legendrian has
t±(Le) � ∞ and t(Le) � 2, so the answer is YES.
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It was shown in [2] that t(L) ≤ d(L), so the examples above (ones with arbitrarily large
wings) show that d(L) can be arbitrarily large.
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2. BACKGROUND AND PRELIMINARY OBSERVATIONS

We assume the reader is familiar with basic Legendrian and transverse knot theory as
discussed in [16] and the convex surface theory in [34]. In Section 2.2 we review the clas-
sification of contact structures on simple manifolds that will be needed in the remainder
of the paper. Before that, we recall the definition of the Farey graph and some important
properties that are needed in those classifications. Then in Section 2.3 we discuss the con-
struction of contact structures on S3 using pairs of decorated paths in the Farey graph. We
then show how to translate this description of the contact structure into a contact surgery
diagram in (S3 , ξstd). Then in Section 2.5, we see how to compute the d3-invariant of these
contact structures as well as the rotation numbers of some Legendrian knots in them. We
end this section by classifying contact structures, with certain boundary conditions, on
P × S1 where P is a pair of pants (that is, a disk with two disjoint sub-disks removed).

2.1. The Farey graph. We will keep track of curves on a torus using the Farey graph. The
Farey graph is constructed as follows. Consider the unit disk in the x y-plane. Label the
point (0, 1) with 0 � 0/1 and (0,−1) with ∞ � 1/0. Connect 0 and ∞ with a straight
line. Now if a point on the boundary of this disk with positive x-coordinate lies half way
between two points labeled a/b and c/d, then label it (a + c)/(b + d) and connect this point
to each of the other two by a hyperbolic geodesic (put the hyperbolic metric on the interior
of the unit disk). We call this the "Farey sum" of a/b and c/d, and denote it by a

b ⊕
c
d . (We

will also use a
b 	

c
d to represent (a − c)/(b − d).) If we iterate this construction, then all the

positive rational numbers will appear. We can repeat this construction for points on the
boundary with negative x-coordinate, but when we do we let∞ � −1/0, so we will get all
the negative rational numbers.

Recall that if one fixes a basis λ, µ for H1(T2), then embedded curves on T2 are in one-
to-one correspondence with Q ∪ {∞}, where a/b is associated to the embedded curve on
T2 in the homology class aµ + bλ. One may easily check that two curves associated to the
numbers r and s form a basis for H1(T2) if and only if there is an edge between r and s in
the Farey graph.

We also introduce the dot product of two rational numbers: a
b
• c

d � ad− bc and note that�� a
b
• c

d

�� is the minimal number of times curves associated to a
b and c

d can intersect.
We end this section by setting up some notation that will be used frequently in the rest

of the paper. Given two numbers r and s in Q ∪ {∞} we let [r, s] denote the elements in
Q ∪ {∞} that are clockwise of r in the Farey graph and anti-clockwise of s.

We have the following well-known lemma, see for example [18].
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Lemma 2.1. Suppose q/p < −1. Given q/p � [a1 , . . . , an], let
(
q/p

) c
� [a1 , . . . , an + 1] and(

q/p
) a

� [a1 , . . . , an−1]. There will be an edge in the Farey graph between each pair of numbers
q/p,

(
q/p

) c , and
(
q/p

) a . Moreover
(
q/p

) c will be farthest clockwise point from q/p that is larger
than q/p with an edge to q/p, while

(
q/p

) a will be the farthest anti-clockwise point from q/p that
is less than q/p with an edge to q/p.

In the lemma, if an + 1 � −1, then [a1 , . . . , an + 1] is considered to be [a1 , . . . , an−1 + 1].
A path in the Farey graph is a sequence of elements p1 , . . . , pk in Q∪ {∞} such that each

pi is connected to pi+1 by an edge in the Farey graph, for i < k. From the above lemma we
see that given q/p < −1 with q/p � [a1 , . . . , an] the minimal path from q/p clockwise to −1
in the Farey graph is p1 , . . . , pk such that if pi is given by [b1 , . . . , bl] then pi+1 is given by
[b1 , . . . , bl + 1].

The rational numbers [a1 , . . . , an], [a1 , . . . , an + 1], . . . , [a1 , . . . , an−1 ,−1] are said to form
a continued fraction block.

2.2. Contact structures on T2 × [0, 1], solid tori, and lens spaces. Both Giroux [31] and
Honda [34] classified tight contact structures on T2 × [0, 1], solid tori, and lens spaces.
Below we discuss the classification along the lines of Honda.

2.2.1. Contact structures on T2 × [0, 1]. Suppose ξ is a tight contact structure on T2 × [0, 1]
with convex boundary and the dividing slope on T2 × {i} is si for i � 0, 1. We say that ξ
is minimally twisting if any convex torus in (T2 × [0, 1], ξ) that is parallel the the boundary
has dividing slope in [s0 , s1].

We denote by Tightmin(T2 × [0, 1]; s0 , s1) the minimally twisting tight contact structures,
up to isotopy, on T2 × [0, 1] with convex boundary having two dividing curves of slope s0
and s1 on T2 × {0} and T2 × {1}, respectively. Let P be a minimal path in the Farey graph
that starts at s0 and goes clockwise to s1. We say P is a decorated path if its edges have each
been labeled with a + or a −. We say two decorated paths are equivalent if the number of +
signs in each continued fraction block is the same.

Theorem 2.2. The contact structures on Tightmin(T2 × [0, 1]; s0 , s1) are in one-to-one correspon-
dence with equivalence classes of decorations on P.

Notice that if s0 and s1 share an edge in the Farey graph, then there are exactly two tight
contact structures in Tightmin(T2 × [0, 1]; s0 , s1). These are called basic slices and the corre-
spondence in the theorem can be understood in terms of stacking basic slices according to
the decorated path.

Consider Tightmin(T2×[0, 1]; q/p ,−1)with q/p < −1 (note that given any s0 and s1 there
is a diffeomorphism of the torus taking s1 to −1 and s0 such a q/p). Let q/p � [a1 , . . . , an],
and recall ai ≤ −2. According to the discussion in the previous subsection, we know the
number of edges in the continued fraction blocks in the minimal path from q/p to −1 is
|an + 1|, |an−1 + 2|, . . . , |a1 + 2|. So according to the theorem above the number of contact
structures on Tightmin(T2 × [0, 1]; q/p ,−1) is

|(a1 + 1) · · · (an−1 + 1)an |.
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Suppose P is a non-minimal path in the Farey graph, then there will be a vertex v in P
such that there is an edge between its neighboring vertices. Let P′ be the path obtained by
removing v and the edges coming into v and adding the edge between v’s neighbors. We
say P′ is obtained from P by shortening at v. Given any decorated path in the Farey graph,
even a non-minimal one, one can construct a contact structure on T2 × [0, 1] by stacking
basic slices. It will be important to know when this contact structure is tight. To this end,
we have the following result.

Theorem 2.3. Let ξ be a contact structure on T2 × [0, 1] described by a non-minimal decorated
path P in the Farey graph. Then ξ is tight if and only if one may construct a shortest path from P by
shortening at vertices with edges labeled with the same sign. When ξ is tight, it will be minimally
twisting and is described by the decorated shortest path between the endpoints of P obtained by
labeling the added edges in the shortening process with the label of the two replaced edges.

We now turn to convex Giroux torsion. Consider the contact structure ξ � ker(sin 2πz dx+
cos 2πz dy) on T2 ×R, where (x , y) are the coordinates on T2 and z is the coordinate on R.
Consider the region T2×[0, k] for k ∈ 1

2N and notice that the contact planes twist k times as
z goes from 0 to k. We can now perturb T2 × {0} and T2 × {k} so that they become convex
with two dividing curves of slope 0. Let ξk be the resulting contact structure on T2 × [0, 1]
(after T2 × [0, k] has been identified with T2 × [0, 1] in the obvious way). Notice that inside
of (T2×[0, 1], ξk) there is a basic slice with one boundary component agreeing with T2×{0}
and having boundary slope 0 and∞. This will either be a positive or a negative basic slice.
By reversing the orientation of ξk , if necessary, we can assume it is positive.

We call (T2 × [0, 1], ξk) a convex k Giroux torsion layer and if we have a contact structure
(M, ξ) into which (T2 × [0, 1], ξk) embeds, we say (M, ξ) has convex k Giroux torsion. We
will use the phrase (M, ξ) has exactly convex k Giroux torsion to the situation where one can
embed (T2 × [0, 1], ξk) into (M, ξ) but not (T2 × [0, 1], ξk+ 1

2 ). We say (M, ξ) has no convex
Giroux torsion, or convex 0 Giroux torsion, if (T2 × [0, 1], ξk) does not embed in (M, ξ) for
any k ∈ 1

2N.

Theorem 2.4. For k ∈ 1
2N, there are exactly two contact structures ±ξk , up to isotopy, on T2 ×

[0, 1] with convex boundary having two dividing curves, both of slope 0, and exactly convex k
Giroux torsion. The two contact structures are contactomorphic.

Lastly, we define a new invariant tor for Legendrian and transverse knots. For a Leg-
endrian knot L, tor(L) � k if the complement of the standard neighborhood of L contains
exactly convex k Giroux torsion in a neighborhood of the boundary but not convex k + 1/2
Giroux torsion. For a transverse knot T, tor(T) � k if (T2 × [0, k], ξ) embeds in the comple-
ment of T in a neighborhood of the boundary, but (T2 × [0, k + 1/2], ξ) does not. If L and T
are loose, we define tor(L) � tor(T) � ∞.

2.2.2. Contact structures on solid tori. Notice we can construct a solid torus from T2 × [0, 1]
in two ways. If we choose a rational slope s on T2 × {0} and collapse the linear curves of
slope s on this torus we will get a solid torus Ss . We call this the solid torus with lower
meridional slope s. Similarly we can collapse the linear curves of slope s on T2 × {1} to get
a solid torus Ss and we say it has upper meridian s.
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We denote by Tight(Ss ; r) the isotopy classes of tight contact structures on the solid torus
Ss with lower meridian s and convex boundary having two dividing curves of slope r.
Similarly Tight(Ss ; r) is the isotopy classes of tight contact structures on the solid torus Ss

with upper meridian s and convex boundary having two dividing curves of slope r.

Theorem 2.5. Let P be a minimal path in the Farey graph from r clockwise to s. Then, the elements
of Tight(Sr ; s) are in one-to-one correspondence with equivalence classes of decorations on the path
P where the first edge is left undecorated. Similarly, the elements of Tight(Ss ; r) are in one-to-one
correspondence with equivalence classes of decorations on the path P where the last edge is left
undecorated.

We now consider formulas for the number of tight contact structures on some solid tori.
If r < −1 and r � [a1 , . . . , an], then we see that

(1) | Tight(S0; r)| � |(a1 + 1) · · · (an−1 + 1)an |,

this is because the minimal path from r to 0 is the same as the minimal path from r to −1
followed by the last edge to 0. Decorations on this first path from r to −1 also characterize
Tightmin(T2 × [0, 1]; q/p ,−1) discussed above.

Notice that there is an orientation preserving diffeomorphism from T2 × [0, 1] to itself
that exchanges the two S1 factors of T2 and inverts [0, 1]. This diffeomorphism identifies
Tight(S∞; r) with Tight(S0; r−1). So if r < Z, then r − dre ∈ (−1, 0) and Tight(S∞; r) �
Tight(S∞; r − dre) via the diffeomorphism that cuts the solid torus along the meridian disk
and adds −dre twists before re-glueing. Thus if (r − dre)−1

� [b1 , . . . , bn], then

(2) | Tight(S∞; r)| � |(b1 + 1) · · · (bn−1 + 1)bn |.

Now if r > 1, then as above we have

Tight(S0; r) � Tight(S∞ , r−1) � Tight(S∞; r−1 − 1) � Tight(S0; (r−1 − 1)−1),

and (r−1 − 1)−1 < −1. So if (r−1 − 1)−1 � [a1 , . . . , an], then the number of tight contact struc-
tures on Tight(S0; r) is also given by the formula on the right-hand side of Equation (1).
Lastly, we note that when r ∈ Z, there is a unique tight contact structure on (S∞; r).

We end our discussion of contact structures on solid tori with a simple observation.

Lemma 2.6. Let ξ be the unique tight contact structure on Tight(S∞; m). Given any contact
structure ξ′ ∈ Tightmin(T2×[0, 1]; n ,m), for m > n integers, there is an embedding of the unique
tight contact structure ξ′′ ∈ Tight(S∞; n) into (S∞ , ξ) whose complement is (T2 × [0, 1], ξ′). In
particular, gluing (S∞ , ξ′′) to (T2 × [0, 1], ξ′) along T2 × {0} is tight.

Proof. Notice that (S∞ , ξ) is a standard neighborhood of a Legendrian knot L. Now inside
S∞ we can stabilize L. Let N± be the standard neighborhood of S±(L) in S∞. Notice that the
contact structure on S∞ \ N± is a basic slice and the sign of the basic slice depends on the
sign of the stabilization. This establishes the lemma for m − n � 1, in general the lemma
follows by further stabilizing L. �
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2.2.3. Contact structures on lens spaces. We can construct a lens space from T2 × [0, 1] as
follows: choose a slope r on T2 × {0} and a slope s on T2 × {1} and let Ls

r be the result of
collapsing the linear curves of the given slope on the boundary components. We say Ls

r is
the lens space with upper meridian s and low meridian r. Note that the lens space L(p , q),
which is −p/q surgery on the unknot, can also be described at L0

−p/q (this is essentially the

definition of −p/q surgery on the unknot) and similarly as L−q/p
∞ . This latter expression is

because there is an orientation preserving diffeomorphism of T2×[0, 1] that exchanges the
S1 factors of T2 and inverts the interval.

Let Tight(Ls
r) be the isotopy classes of tight contact structures on the lens space Ls

r .

Theorem 2.7. Let P be a minimal path in the Farey graph from r clockwise to s. Then the elements
of Tight(Ls

r) are in one-to-one correspondence with equivalence classes of decorations on the path P
where the first and last edges are left undecorated.

Arguing as above to count the number of minimally twisting contact structures on T2 ×
[0, 1]we can easily compute the well know formula that

Tight(L0
r ) � |(a1 + 1) · · · (am + 1)|

if r < −1 and r � [a1 , . . . , am].

Remark 2.8. Given r and s rational numbers let r′ be the rational number such that r′ is
clockwise of r in the Farey graph and as close to s as possible with an edge back to r.
Similarly s′ is the rational number such that s′ is anti-clockwise of s in the Farey graph and
the closest point to r with an edge to s. Then from the classification results above notice
that

| Tight(Ls
r)| � | Tight(Sr ; s′)| � | Tight(Ss ; r′)|.

Geometrically this can be seen by splitting Ls
r in to two solid tori Sr ∪ Ss along a convex

torus of slope r′ or s′. In the former case the contact structure on Sr will be unique so all
the contact structures on Ls

r will come from Tight(Ss ; r′), and similarly in the other case.

2.3. Paths in the Farey graph and continued fractions. When studying non-loose torus
knots in S3, we will need to consider S3 as L0

∞ (that is a lens space with lower meridian∞
and upper meridian 0, see Section 2.2.3). We will describe contact structures on L0

∞ using
paths in the Farey graph. More precisely, given a rational number q/p we will write L0

∞ as
the union of two solid tori: V1 with lower meridian∞ and convex boundary having slope
q/p and V2 with upper meridian 0 and convex boundary having slope q/p, where p , q are
coprime integers and |q | > p > 1. According to Theorem 2.5, we will need two paths in
the Farey graph to specify contact structures on these tori. Let P1 be a path that describes
a contact structure on Tight(S∞; q/p) and P2 be a path describing a contact structure on
Tight(S0; q/p). Given these paths we get a contact structure ξP1 ,P2 on S3. In this section we
will see when the contact structures associated to two different decorated pairs of paths
correspond to the same contact structure. In [42], Matkovič has done the same things for
some small Seifert fibered spaces in terms of her “characteristic vectors", and then in [43]
used this to understand when negative (p , q)-torus knots with tb < pq are in the same
overtwisted contact structure.
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Recall that from Theorem 2.5 we know that P1 is a path from q/p anti-clockwise to ∞
with all edges decorated by a sign except the last edge from bq/pc to ∞ (this edge de-
scribes the unique tight contact structure on a solid torus with convex boundary having
two longitudinal dividing curves), as such we will denote by P1 the decorated path from
q/p anti-clockwise to bq/pc as it contains all the information describing the contact struc-
ture. We have a similar discussion for P2. If q/p < −1, then we need to consider P2 as
a decorated path from q/p clockwise to −1 (the jump from −1 to 0 describes the unique
tight solid torus with given dividing curves and meridian). If q/p > 1, then P2 will be a
decorated path from q/p clockwise to∞ (the jump from∞ to 0 describes the unique tight
solid torus with given dividing curves and meridian).

We say the pair (P1 , P2) is a pair of paths representing q/p.
Below, we will see that when pq < 0, the part of P2 from dq/pe to −1 plays a very

different role in our analysis, and in Section 3, we mainly consider the part of P2 from q/p
to dq/pe. Thus we denote by Pᵀ2 the truncated path from q/p to dq/pe.
Case 1: q/p < −1. To describe these paths, we consider the continued fraction expansion
of q/p

q
p
� a1 −

1
a2 − 1

···− 1
an

where ai ≤ −2. We denote this by [a1 , . . . , an].
An immediate corollary of Lemma 2.1 is the following result.

Lemma 2.9. Let p1 , . . . , pk be the points on the Farey graph in P1, where p1 � q/p and pk �

bq/pc and q1 , . . . ql be the points on the Farey graph in P2, where q1 � q/p and ql � −1. If
pi � [b1 , . . . , b j] then pi+1 � [b1 , . . . , b j−1] and if qi � [c1 , . . . , c j] then qi+1 � [c1 , . . . , c j + 1].

Notice that this lemma allows us to inductively compute all the pi and q j . In particular,
k � n and l � |an | − n − 1 +

∑n−1
i�1 |ai + 1|.

Let A be the continued fraction block in P1 starting at q/p and let B be the continued
fraction block in P2 starting at q/p. The legnth of a continued fraction block C is the number
of points in C minus 1, which is the number of edges in C. Denote the length of a continued
fraction block C by |C |.

Lemma 2.10. The length of either A or B is 1.

Proof. In [21, Section 2.3], it was shown how to construct the path P2 in the Farey graph
from the continued fraction q/p � [a1 , . . . , an]. In particular there are two cases to consider,
when an � −2 and when it is not. We will consider the case when an � −k < −2 first. In
this case, the continued fraction block B is

q1 � q/p � [a1 , . . . , an], q2 � [a1 , . . . , an+1], · · · , qk � [a1 , . . . , an−1 ,−1] � [a1 , . . . , an−1+1].
We also know that

p1 � q/p � [a1 , . . . , an] and p2 � [a1 , . . . , an−1].
Note that p2 and qk have an edge between them in the Farey graph and that

qi � (k − i)p2 ⊕ qk
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for 1 ≤ i ≤ k, see Figure 11. Thus there is an edge in the Farey graph from p2 to qi for
all 1 ≤ i ≤ k. In particular, the points q/p, p2 and q2 all have edges between them. This
says that the next vertex in a continued fraction block that starts with q/p and p2 would be
q3, but as P1 is a path anti-clockwise from q/p to ∞ we see that p3 cannot be q3 (which is
clockwise of q/p), so |A| � 1.

Now suppose that an � −2, and furthermore suppose that an � · · · � an−(k−1) � −2 and
an−k < −2 for some 1 ≤ k < n. In this case, the continued fraction block A is

p1 � q/p � [a1 , . . . , an], p2 � [a1 , . . . , an−1], · · · , pk+1 � [a1 , . . . , an−k].
We also have

q1 � q/p � [a1 , . . . , an] and q2 � [a1 , . . . , an + 1] � [an , . . . , an−k + 1].
Note that pk+1 and q2 have an edge between them in the Farey graph and that

pi � pk+1 ⊕ (k + 1 − i)q2

for 1 ≤ i ≤ k + 1. Thus there is an edge in the Farey graph between pi and q2 for all
1 ≤ i ≤ k + 1. So we once again see that the points q/p, p2 and q2 all have edges between
them. This says that the next vertex in a continued fraction block that starts with q/p and
q2 would be p3 (note that this is true even if k � 1). Again, since P2 is a path clockwise
from q/p to 0, q3 cannot equal to p3 (which is anti-clockwise of q/p), so |B | � 1.

Finally, consider the case that ai � −2 for 1 ≤ i ≤ n. In this case, q/p � −(n + 1)/n and
P2 � {−(n + 1)/n ,−1}. It is clear that |B | � 1. �

Lemma 2.11. A and B both have length 1 if and only if q/p � −(2n + 1)/2.

Proof. One may readily check that for −(2n + 1)/2 both A and B have length 1. Now if
q/p , −(2n + 1)/2 then let n � bq/pc, so q/p ∈ [n , n + 1]. Recall there is an edge in the
Farey graph between n and n+1. Now the first edge in A is from q/p to (q/p)a and the first
edge in B is from q/p to (q/p)c . Recall there is an edge in the Farey graph from (q/p)a to
(q/p)c . Now as any two vertices in the Farey graph that share an edge, also both share an
edge to exactly two other vertices, we know that (q/p)a and (q/p)c share an edge to q/p and
another vertex v. Since q/p , −2(n + 1)/2, we can assume (q/p)a > n or (q/p)c < n + 1.
Since n and n + 1 have an edge, v must be in [n , n + 1] and outside [(q/p)a , (q/p)c]. If
v > (q/p)c , then we see that v is a vertex in P2 and since {q/p , (q/p)c , v} is a continued
fraction block, we see that B has length greater than 1. Similarly if v is less than (q/p)a
then A has length greater than 1. �

If |A| � 1 then we denote by (A1 ,A3 , . . . ,A2n−1) the subdivision of P1 such that each Ai
is a continued fraction block and A1 � A, and denote by (B2 , B4..., B2m) the subdivision of
Pᵀ2 such that each Bi is a continued fraction block and B2 � B. If |B | � 1, then we denote
the continued faction blocks by (A2 ,A4 , ...,A2n) and (B1 , B3 , ..., B2m−1). (If |A| � 1 � |B |
then one may choose the either numbering convention and we know q/p � −(2n + 1)/2.)

Example 2.12. Consider the two paths for −21/8 � [−3,−3,−3]. In this case we have
P1 � {−21/8,−8/3,−3} and Pᵀ2 � {−21/8,−13/5,−5/2,−2}, and the subdivisions A1 �

{−21/8,−8/3}, A3 � {−8/3,−3}, B2 � {−21/8,−13/5,−5/2}, B4 � {−5/2,−2}.
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Observation 2.13. It will be useful to notice that given the concatenated path P1 ∪ Pᵀ2 (here
P1 means P1 run though backwards) there is a unique way to shorten this path to the one
edge path from bq/pc to dq/pe. See Figure 11. Let (p1 , ..., pk) be the points in P1 where
p1 � q/p and (q1 , ..., ql) be the points in P2 where q1 � q/p. Clearly the first point that
can be removed is p1 � q1 � q/p. To continue we suppose we are in the case where the
continued fraction blocks are labeled

(A2 , . . . ,A2n) and (B1 , B3 , . . . , B2m−1),
so B1 has length one. The proof of Lemma 2.10 shows that there is an edge in the Farey
graph between q2 � (q/p)c and all the vertices in the continued fraction block A2 �

{p1 , . . . , pi}. Thus we may first remove p1 � q/p from the path, then p2 and continue
until we have removed pi−1. Notice that there is an edge from pi to q3 so the next vertex
we can shorten is q2. We now have two cases to consider, if B3 has length 1 or greater. See
Figure 11.

If B3 has length 1, then there is an edge from pi+1 to q3 and thus the edge from pi to
q2 extends the continued fraction block A4, i.e. A′4 � {q2 , pi} ∪ A4 is a continued fraction
block. Thus we have

P′1 � (A′4 ,A6 , . . . ,A2n) and P′2 � (B3 , . . . , B2m−1)
and P′1 is a minimal path from q2 anti-clockwise to bq/pc, and P′2 is is a minimal path from
q2 clockwise to dq/pe. Thus (P′1 , P

′
2) are a pair of paths representing q2 and each has one less

continued fraction block than P1 and P2, respectively. We can now inductively continue to
shorten the path until we have the path of length one from bq/pc to dq/pe.

In the case when |B3 | > 1, A′2 � {q2 , pi} replaces A2 and we have

P′1 � (A′2 ,A4 . . . ,A2n) and P′2 � (B3 , . . . , B2m−1)
and P′1 is still a minimal path from q2 anti-clockwise to bq/pc, but now A′2 is its own con-
tinued fraction block with length 1. So the number of continued fraction blocks in P′1 is
the same as for P1 while the number in P′2 is one less than in P2. Moreover, numbering the
continued fraction block by our convention above will give P′1 the odd indices and P′2 the
even. Once again we can inductively continue to shorten the paths until we have the path
of length one from bq/pc to dq/pe.

Notice that this observation implies that |n − m | ≤ 1.

We will call a pair of decorated paths (P1 , P2) i-consistent if the signs of the decorations
on the paths A j and B j with j ≤ i in are all the same and we call the paths i-inconsistent if
(P1 , P2) is (i − 1)-consistent but not i-consistent.

We now wish to consider when two pairs of paths give the same contact structure on S3.
We consider the breakdown of P1 and P2 as above (we will only discuss this case here, with
the case of (A1 , . . . ,A2n−1) and (B2 , . . . , B2m), and the case when the maximal odd index is
smaller, being analogous). Let Di denote Ai if i is even and Bi if i is odd. Suppose P1 and
P2 are i-inconsistent for some i > 2, then of course the paths are (i − 1)-consistent. From
the discussion above we know that there is an edge in the Farey graph between the first
vertex vi of Di and the last vertex v′i in Di−1. Moreover, if v′′i is the second to last vertex
in Di−1 then it is the Farey sum of vi and v′i ; in particular it extends the continued fraction



30 JOHN B. ETNYRE, HYUNKI MIN, AND ANUBHAV MUKHERJEE

p4 p3 p2 q/p

A2A4 B1 B3

q2 q3 q4

p4 p3 p2 q/p

A2A4 B1 B3 B5

q2 q3 q4

FIGURE 11. Two types of paths that behave differently when shortening.
The difference is whether or not B3 has length 1 or not. (The edges are not
to scale to fit into the picture.)

block Di by one extra jump. Since all the edges between vi and v′′i have the same sign,
the contact structure described by the path between vi and v′′i is a basic slice with sign the
common sign of the edges in the path. Now in Di we know there is an edge with opposite
sign and since Di is a continued fraction block one may assume it is the edge adjacent to
vi . So we can exchange the sign on the edge between v′′i and vi and the first edge in Di .
This is equivalent to changing all the signs on the edges in of P1 and P2 between vi and v′′i
as well as the sign of the first basic slice in Di . After we have done this, we have a new
pair of decorated paths P′1 and P′2. We say that (P1 , P2) is i-compatible with (P′1 , P

′
2). Notice,

since one edge in Di−1 kept its same sign, that (P′1 , P
′
2) is (i − 1)-inconsistent.
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Of course we can iterate and find decorated paths (P′′1 , P
′′
2 ) that are (i − 1)-compatible

with (P′1 , P
′
2) and continue until we have (P(i−2)

1 , P(i−2)
2 ) which is 2-inconsistent. We say all

these paths are compatible, see Figure 12.

B1A2 B3A4 B5A6
- - + - - - - - - - - - - - -
- - - + + + + + + + + + + + -
- - - + - - - - - - - - - + +
- - - - - - + + + + + + - + +
- - - - - - + - - - + + + + +

FIGURE 12. The signs in the top row give a 6-inconsistent pair of paths. In
the next row we have shuffled sights in a continued fraction block to get a
5-inconsistent pair of paths. Each of the subsequent rows is obtained from
the previous row by shuffling a basic slice in a continued fraction block to
get a 4, then 3 and finally 2-inconsistent pair of paths.

Since ξP1 ,P2 and ξ
P( j)1 ,P( j)2

are build by gluing the same tight contact structures on solid

tori together, the following lemma is self-evident.

Lemma 2.14. Compatible pairs of decorated paths define the same contact structure on S3.

Remark 2.15. We can now see why it is important to consider the path Pᵀ2 instead of the
path from q/p to −1 as discussed at the beginning of this section. When all the edges in
P1∪Pᵀ2 have the same sign but some edge in between dq/pe and −1 has a different sign, we
know that P1∪Pᵀ2 describes a basic slice. One can see that performing the same “shuffling"
discussed above will change the signs of all of the basic slices in P1 ∪ Pᵀ2 and so you will
not get a pair of paths that is inconsistent at an earlier stage.

In addition, suppose P1 and Pᵀ2 are totally consistent (that is all their signs are the same)
but some of the signs in the path from dq/pe can be different. Then notice that by Theo-
rem 2.3 the path P1 ∪ Pᵀ2 describes a basic slice and so the path from∞ clockwise to bq/pc
followed by P1 ∪ P2 describes the unique tight contact structure on a solid torus and using
Lemma 2.6 when one extends the path all the way to −1 we will have the unique tight
contact structure on a solid torus with dividing slope −1. Notice that the complementary
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solid torus in S3 also has a unique tight contact structure and the union of these tori is the
tight contact structure on S3. In other words, such a path does not describe an overtwisted
contact structure and is unrelated to non-loose Legendrian knots.

Case 2: q/p > 1. To describe these paths we consider the continued fraction expansion
of q/p

q
p
� a1 −

1
a2 − 1

···− 1
an

where a1 � bq/pc and ai ≤ −2 for 2 ≤ i ≤ n. We, again, denote this [a1 , . . . , an].
The same arguments as in Case 1 show the following lemmas.

Lemma 2.16. Let p1 � q/p , p2 , . . . , pk−1 � dq/pe , pk � ∞ be the points on the Farey graph in
P2, and q1 � q/p , q2 , . . . , ql � bq/pc be the points on the Farey graph in P1. If pi � [b1 , . . . , b j]
then pi+1 � [b1 , . . . , b j + 1] for 1 ≤ i < k − 1, and if qi � [c1 , . . . , c j] then qi+1 � [c1 , . . . , c j−1]
for 1 ≤ i < l.

Lemma 2.17. The first continued fraction block of P1 or P2 has length 1, and the other is bigger
than 1.

Remark 2.18. Recall when q/p � −(2n + 1)/2 we saw in Lemma 2.11 that the leading con-
tinued fraction block of P1 and P2 both had length 1. However, when q/p � (2n + 1)/2, we
have P2 � {(2n + 1)/2, n ,∞} which is a continued fraction block, so there are no q/p > 1
with both leading continued fraction blocks having length 1.

When pq > 1 we have one extra type of pair of decorated paths to consider. Suppose all
the signs of P1 and P2 are the same, say negative. Let i be an integer such that i < q/p <
i + 1. As all the signs in all the paths are the same, we can shorten P1 ∪ P2 to a path going
from i to ∞ and describing a basic slice. Now split this path into P going from i to i + 1
and P′ going from i + 1 to∞ and decorate the paths with the common sign. Now the path
P describes a contact structure on the solid torus S∞ that is the unique solid torus with
longitudinal divides and so may be split into a path going from ∞ to i and then to i + 1
where the first jump corresponds to the unique contact structure on the solid torus with
given slope and the second is a basic slice of either sign (see Lemma 2.6). We can choose
the sign of the basic slice to be positive and then subdivide the path to (P1 ∪ P2) ∩ [i , i + 1]
so that all the basic slices are positive. However, P2 has one more edge going from i + 1 to
∞ that is still negative. The paths with the new signs will be denoted (P2m−1

1 , P2m−1
2 ) (here,

we assume 2n > 2m − 1 without loss of generality). Clearly ξP1 ,P2 and ξP2m−1
1 ,P2m−1

2
are the

same as they are described by gluing together the same contact structures on solid tori.
Notice that if the paths are broken into their continued fraction blocks

(A2 , . . . ,A2n) and (B1 , B3 , . . . , B2m−1),
as above, this new pair of paths (P2m−1

1 , P2m−1
2 ) is 2m − 1-inconsistent. As we saw above

we will now get k-inconsistent pairs of paths (Pk
1 , P

k
2 ) for k � 2, 3, . . . , 2m − 1 that are all

compatible. Notice that all the signs of the basic slices in P2
1 are of a fixed sign, say positive,

except the first one which is negative and all the basic slices of P2
2 are negative, except the

first one which is positive.
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2.4. From decorated Farey graphs to contact surgery diagrams. Let (P1 , P2) be a pair of
paths in the Farey graph representing q/p. As discussed in the previous section, once the
paths are decorated they give a contact structure ξP1 ,P2 ; moreover, there is a convex torus
T with two dividing curves of slope q/p that separates S3 into two solid tori with contact
structures described by P1 and P2. We will show in Lemma 6.8 that a Legendrian divide on
this torus will be a non-loose (p , q)–torus knot LP1 ,P2 and all such torus knots with tb � pq
and tor � 0 will occur in this way, as we will show in Section 7.7. Here we would like
to turn the Farey graph description of LP1 ,P2 into a contact surgery diagram in (S3 , ξstd).
The relation between the surgery construction and paths in the Farey graph was originally
observed by Matkovič [42] in the case of small Seifert fibered spaces and then used to study
negative torus knots in her paper [43].

We subdivide P1 and P2 as discussed in Section 2.3. We can convert this decorated
Farey graph into a contact surgery diagram in (S3 , ξstd) for the contact structure ξP1 ,P2 . To
this end, we first consider a smooth surgery diagram for S3 shown in the left drawing of
Figure 13.

p′

p−p′
q−q′

q′

( p
p−p′ )

( q
q′ )

FIGURE 13. Left: smooth surgery diagram of S3. Right: contact surgery
diagram of (S3 , ξ)

Here, we denote (q/p)c by q′/p′. To see this manifold is S3, think of this manifold as a
result of Dehn filling T2 × I along a curve on −T2 × {0} of slope p′/(p − p′) and a curve on
T2 × {1} of slope q′/(q − q′). Let φ be a diffeomorphism of a torus whose matrix represen-
tation is

φ �

(
p′ p′ − p
q′ q′ − q

)
.

After change the coordinates of T2 × I using φ, the meridional slope of two solid tori
glued on T2 × {0} and T2 × {1} are ∞ and 0, respectively. Thus the surgered manifold is
diffeomorphic to S3. Next, convert this diagram into a contact surgery diagram as shown
in the right drawing of Figure 13. Observe that the region between the two Legendrian
unknots is a thickened torus T2 × I with an I-invariant contact structure having dividing
slope −1. After changing the coordinates using φ, we have(

p′ p′ − p
q′ q′ − q

) (
1
−1

)
�

(
p
q

)
.

Thus the dividing slope of the torus is q/p after change of the coordinates. Thus the two
solid tori glued on T2 × {0} and T × {1} are elements of Tight(S∞; q/p) and Tight(S0; q/p)
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respectively. Recall that in [9], Ding, Geiges, and Stipsicz provided an algorithm to convert
a general contact surgery diagram to a contact (±1)–surgery diagram:

• contact (p/q)–surgery on a Legendrian knot L with p/q < 0:
(1) Stabilize L, |r1 + 2| times, where

p
q
� r1 + 1 − 1

r2 − 1
r3···− 1

rn

for ri ≤ −2. Let the resulting Legendrian knot be L1.
(2) For i � 2, . . . , n, let Li be the Legendrian push-off of Li−1 and stabilize it |ri +2|

times.
(3) Then a contact (p/q)–surgery on L corresponds to a contact (−1)–surgeries on

a link (L1 , . . . , Ln).
• contact (p/q)–surgery on a Legendrian knot L with p/q > 0:

(1) Choose a positive integer k such that q − kp < 0. Let r′ � p/(q − kp).
(2) Let L1 , . . . , Lk be k successive Legendrian push-offs of L.
(3) Then a contact (p/q)–surgery on L corresponds to (+1)–surgeries on L1 , . . . , Lk

and a contact (r′)–surgery on L.

Applying the second algorithm to the contact surgery diagram in Figure 13, we obtain
the contact surgery diagram shown in Figure 2. To see this notice that since q/p � (q/p)a ⊕
(q/p)c , see Lemma 2.1, we know that p − p′ > 0 and q − q′ > 0 and q and q′ will both
either be positive or both negative. Choosing k � 1 in the above algorithm will result
in the surgery coefficients shown in Figure 2 which can easily be checked to be less than
−1. Notice that the above algorithm actually produces Figure 2 with the second the third
surgery coefficients interchanged; however, since the two negative surgery coefficients are
less than −1 those Legendrian knots must be stabilized to perform Legendrian surgery and
in [6] it was shown that stabilized components of a (4,−4)-torus link (that is, the surgery
link in Figure 2) can be arbitrarily permuted amongst the other components.

In [8], Ding and Geiges showed that the choice of stabilizations on L1 with contact
surgery coefficient (p/(p − p′)) and L2 with contact surgery coefficient (q/q′) corresponds
to the choice of signs on the basic slices of V1 and V2, respectively. To be more precise,
suppose

−
p
p′

� r1 + 1 − 1
r2 − 1

r3···− 1
ru

and −
q

q − q′
� s1 + 1 − 1

s2 − 1
s3···− 1

sv

for ri ≤ −2 and si ≤ −2. Let [rp1 , ..., rpn ] be the subsequence of [r1 , ..., ru] such that rpi < −2.
Now the choice of stabilizations on Lpi corresponds to the choice of signs on each basic
slice in the continued fraction block A2i−1. Similarly, let [sq1 , ..., sqm ] be the subsequence of
[s1 , ..., sv] such that sqi < −2. Now the choice of stabilizations on Lqi corresponds to the
choice of signs on each basic slice in the continued fraction blocks B2i . Observe that since P2
represents a contact structure on Ti ght(S0 , q/p), the positive stabilization corresponds to
the negative basic slice (respectively the negative stabilization corresponds to the positive
basic slice). See Figure 17 for examples.
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2.5. Homotopy class of plane fields and rotation numbers. Given a pair (P1 , P2) of deco-
rated paths in the Farey graph for the (p , q)–torus knot, we saw in Section 2.4 that we de-
fine a contact structure ξP1 ,P2 on S3 and a non-loose Legendrian (p , q)–torus knot LP1 ,P2 ∈
(S3 , ξP1 ,P2) with tor � 0. Moreover, Lemma 6.8 says that all such Legendrian knots come
from this construction.

To calculate the d3-invariant of ξP1 ,P2 , we first convert the decorated Farey graph (P1 , P2)
for the (p , q)–torus knot into the corresponding contact (±1)–surgery diagram as described
in Section 2.4. See Figure 17 for examples. From the surgery diagram we can compute
d3-invariant of the contact structure on S3 using the formula from [9, Corollary 3.6]:

d3(ξ) �
1
4
(c2 − 3σ(X) − 2(χ(X) − 1)) + q ,(3)

where X is the 4–manifold obtained by attaching 2-handles to the 4-ball as indicated in
the diagram, and q is the number of contact (+1)-surgery components. The quantity c2 is
(rot)ᵀM−1rot, where M is the linking matrix of the surgery diagram and rot is a vector of
rotation numbers of each surgery component. Since rotᵀM−1rot � (−rotᵀ)M−1(−rot), we
see that ξP1 ,P2 is the same as ξ−P1 ,−P2 .

We give two methods to compute the rotation number of LP1 ,P2 . The first method for
computing rot(LP1 ,P2) involves the surgery diagram used above. In particular, we have the
formula from [11, Theorem 2.2]:

rot(L) � rot0 −rotᵀ ·M−1 · lk,(4)

where rot0 is the rotation number of L in the surgery diagram before surgery and lk is
the vector of linking numbers between each surgery component and L. In our surgery
diagram, it is clear that

lk �


−1
...
−1

 .
In our examples rot0 � 0, so we see that rot(LP1 ,P2) � − rot(L−P1 ,−P2).

The second method for computing the rotation number makes the computation directly
from the Farey graph. Given a pair (P1 , P2) of decorated paths in the Farey graph for
the (p , q)–torus knot, let p1 � q/p , p2 , . . . , pk � bq/pc be the vertices in P1 and q1 �

q/p , q2 , . . . , ql be the vertices in P2. Recall, when pq < 0, ql � −1 and when pq > 0, ql � ∞.
Define

rm �

k−1∑
i�1

εi

(
(pi+1 	 pi) •

1
0

)
and

rn �

l−1∑
i�1

ε′i

(
(qi+1 	 qi) •

0
1

)
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where εi is the sign of the edge from pi to pi+1 and ε′i is the sign of the edge from qi to qi+1.
Then define

R(P1 , P2) � p rn + q rm

Lemma 2.19. The Legendrian knot LP1 ,P2 has rotation number

rot(LP1 ,P2) � R(P1 , P2).
Notice that since R(P1 , P2) is simply the rotation number of LP1 ,P2 it can also be computed

from the surgery formula above.

Proof. Suppose T is a convex torus. Let λ and µ be curves on the torus that form a basis
for H1(T). If γ is a curve on T that in homology is pλ + qµ, then when T is isotoped
through convex tori so that γ is a Legendrian curve, it was shown in [16, discussion before
Lemma 4.11] that

rot(γ) � p rot(λ) + q rot(µ),
where rot(λ), respectively rot(µ), is computed by isotoping T through convex tori so that
λ, respectively µ, is a Legendrian curve.

In our setting T is a Heegaard torus for S3 thought of as a neighborhood of an unknot.
The the standard longitude and meridian for the unknot are exactly λ and µ and one
bounds a compressing disk in V1 and the other bounds one in V2. From this we see that
the relative Euler class these two Heegaard tori are the rotation numbers of λ and µ. From
[34, proof of Proposition 4.22] we can compute these relative Euler classes and see that
rot(λ) � rn and rot(µ) � rm . The result follows. �

Using this lemma, we can show that rot(LP1 ,P2) differs by the choice of the decorated
paths (P1 , P2).
Lemma 2.20. If (P1 , P2) , (P′1 , P

′
2), then rot(LP1 ,P2) , rot(LP′1 ,P

′
2
).

Proof. We compute the rotation numbers using Lemma 2.19. That is rot(LP1 ,P2) � prn + qrm
and rot(LP′1 ,P

′
2
) � pr′n + qr′m where rm , rn , r′m and r′n are computed in terms of the decorated

paths as described in Section 2.5. The numbers rm and rn are the relative Euler numbers
for the contact structures on V1 and V2, and similarly for r′m and r′n . In [34], Honda showed
that tight contact structures on solid tori are determined by their relative Euler class. Since
(P1 , P2) , (P′1 , P

′
2), we know that either rm , r′m or rn , r′n .

Arguing by contradiction we assume that rot(LP1 ,P2) � rot(LP′1 ,P
′
2
), so we have that

p(rn − r′n) + q(rm − r′m) � 0.

We first notice that rm − r′m and rn − r′n are both even, since from the formula in Section 2.5
we see that

rm − r′m �

k−1∑
i�1

(εi − ε′i)
(
(pi+1 	 pi) •

1
0

)
,

where the εi are the signs in P1 and the ε′i are the signs in P′1. Thus (εi − ε′i) is even for all i
and we have a similar argument for rn − r′n . Moreover

|rm | ≤
����( q

p
	

⌊
q
p

⌋)
•

1
0

���� � p − 1
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and similarly for |r′m |. We also have

|rn | ≤ |q | − 1

since |rn | ≤ |( qp 	 1
0 ) • 0

1 | when pq > 0 and |rn | ≤ |( qp 	 −1
1 ) • 0

1 | when pq < 0, and similarly
for r′n .

Since gcd(p , q) � 1, the only integer solutions to pa + qb � 0 are a � nq and b � −np for
n ∈ Z. But given the above, we see that

|rm − r′m | < 2p ,

|rn − r′n | < 2|q |.
Thus, p � |rm − r′m | and |q | � |rn − r′n |. However this implies that p and q are both
even, contradicting the fact that gcd(p , q) � 1. Thus we have rot(LP1 ,P2) , rot(LP′1 ,P

′
2
) as

claimed. �

2.6. Contact structures on S1 × P. Consider S1 × P where P is a pair of pants (a disk with
two disjoint open sub-disks removed). Label the boundary components T1 , T2 , and T3 and
consider the basis S1 × {pt} and µi � Ti ∩ ({θ} × P) for H1(Ti). Let S1 × {pt} have slope 0
and µi have slope∞. Let Tight f ree

0 (S1×P; r1 , r2 , r3) be the set of tight contact structures, up
to isotopy (not fixing the boundary point-wise, but preserving it set-wise), on S1 × P with
convex boundary such that Ti has two dividing curves of slope ri and having no convex
Giroux torsion.

Lemma 2.21. | Tight f ree
0 (S1 × P; 0, 0, 0)| � 1

This lemma follows from Lemmas 10 and 11 in [17], though we give the simple proof
for completeness.

Proof. Any contact structure ξ ∈ Tight f ree
0 (S1 × P; 0, 0, 0) has dividing curves parallel to

the S1–fibers on all boundary components. We can make the ruling curves have slope ∞
and then arrange for P � {θ} × P to have its boundary be ruling curves and then make it
convex. We need to consider two cases for the dividing curves on P.

Case 1. There is a boundary-parallel dividing curve on one of the tori Ti for 1 ≤ i ≤ 3.
See the right drawing of Figure 14 for example. Without loss of generality, we can assume
that there is a boundary-parallel dividing curve on T1. Then we can attach a bypass to T1 to
obtain a thickened torus N1 with convex boundary where its back face has slope 0 and its
front face (T1) has slope∞. Now take the 0 sloped annulus A from the back face of N1 to T3
and attach the neighborhood of A to thicken N1 and obtain a thickened torus N′1 with front
and back face both having slope ∞. Moreover, since N′1 contains convex tori parallel to
the boundary with dividing slope different from ∞, we know it must contain convex half
Giroux torsion. This contradiction shows there is no boundary-parallel dividing curves on
any Ti .

Case 2. There is no boundary parallel dividing curves on any Ti . See the left draw-
ing of Figure 14 for example. Honda showed in [35, Lemma 4.1], that the tight contact
structures on S1 × P with 0 slope dividing curves on every T1, T2 and T3 are in one-to-one
correspond with the choice of dividing set on P. There is a unique such configuration of
dividing curves on P up to some number of half twists near each boundary component.
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T1 T2

T3

FIGURE 14. Some possible dividing sets on the pair of pants P.

As we are allowing the boundary components to rotate among themselves, these twists
can be undone and we can assume the dividing curves are as given on the left-hand side
of Figure 14. �

Given any contact structure on Tight f ree
0 (S1 × P;−1,∞, 0) let T′3 be a copy of T3 that is

contact isotopic to T3. We can take an annulus Ai from a slope 0 ruling curve on Ti to a
Legendrian divide on T′3 and make it convex, for i � 1, 2. One may take a neighborhood
Ni of Ti ∪Ai to be a basic slice in Tightmin(T2 × [0, 1]; ri , 0) and the contact structure on the
complement of the Ni is the unique contact structure on Tight f ree

0 (S1 × P; 0, 0, 0). Let si be
the sign of the basic slice Ni and denote the contact structure by ξs1 s2 .

Lemma 2.22. We have

Tight f ree
0 (S1 × P;−1,∞, 0) � {ξ++ , ξ+− , ξ−+ , ξ−−}.

In ξ±± there is a convex annulus A with boundary slope 0 ruling curves on T1 and T2 that has two
dividing curves each running from one boundary component to the other. In ξ±∓ the analogous
annulus will always have boundary parallel dividing curves.

Let η± be the± basic slice in Tightmin(T2×[0, 1];−1, 0) and ζ± be the± basic slice in Tightmin(T2×
[0, 1]; 0,∞). Then ξ±∓ is obtained by gluing the front face of η± to the back face of ζ± together and
removing a standard neighborhood of a Legendrian divide on the convex torus of slope 0. Simi-
larly ξ±± is obtained by gluing the front face of η± to the back face of ζ∓ together and removing a
standard neighborhood of a Legendrian divide on the convex torus of slope 0.

The construction of the contact structures ξ±± and the annulus in the lemma follows
closely the construction in [30, Lemma 4.13], where as the classification itself follows from
[29, Lemma 5.4]. We give the proof of the lemma here, as we will need all the properties of
the contact structures described in the lemma.

Remark 2.23. Notice that given a contact structure in Tight f ree
0 (S1×P;−1,∞, 0) the 0 sloped

ruling curves on T1 and T2 will be isotopic if and only if there is a convex annulus that they
bound has dividing curves running from one boundary component to the other.
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Proof. From the discussion before the lemma, it is clear that there are at most 4 contact
structures, so we are left to see that the given contact structures are indeed tight and satisfy
the required properties.

First consider the ± basic slice ξ± in Tight(T2 × [0, 1];−1,∞). We know there is a con-
vex torus T inside of T2 × [0, 1] with dividing slope 0. Notice that T breaks ξ± into η±
and ζ±. Remove a neighborhood of a dividing curve on T to get a contact structure
on S1 × P. Clearly this contact structure contains no convex Giroux torsion and is in
Tight0(S1 × P;−1,∞, 0). Recall when considering T2 × [0, 1] we orient T2 × {0} using the
inward pointing normal vector and T2 × {1} with the outward pointing vector. However,
when factoring a contact structure in Tight0(S1 × P;−1,∞, 0) as above both the basic slices
with back face T1 and T2 are oriented with the inward pointing vector. Thus the sign of
the bypass on T2 is opposite to what one sees when concatenating η± and ζ±. Thus the
contact structure on S1×P coming from ξ± is ξ±∓. Also, consider a convex annulus A from
a slope 0 ruling curve on T1 to a slope 0 ruling curve on T2. This will also be an annulus
in (T2 × [0, 1], ξ±). We know the Poincare dual of the relative Euler class of this contact
structure is ±(1,−2) and so evaluates to ±2 on A. Since we know the relative Euler class
evaluated on a convex surface is χ(A+) − χ(A−), where A± is the ± regions of the convex
surface A, we see that the dividing curves cannot run across A.

Now for the other two contact structures consider the ± basic slice ξ′± in Tight(T2 ×
[0, 1]; 0,∞). Now let T be a convex torus contact isotopic to T2 × {1} on the interior of
T2 × [0, 1]. Let L be a slope 0 ruling curve on T. Removing a standard neighborhood of
L will result in a contact structure on S1 × P. It will again clearly have no convex Giroux
torsion and be an element in Tight0(S1 × P;−1,∞, 0). Moreover, by construction there is a
convex annulus with boundary slope 0 ruling curves on the boundary components with
dividing slope −1 and∞ that has dividing curves going from one boundary component to
the other. Thus the two contact structures on S1 × P coming from ξ′± are different from the
ones coming from ξ± by their relative Euler classes. Thus they must be ξ±±. Notice that by
construction ξ±± is a union of some contact structure on the thickened tori N1 and N2 and
the unique contact structure on S1 × P′ (where P′ ⊂ P) in Tight f ree

0 (S1 × P; 0, 0, 0). Notice
that if one glues a solid torus S to T3 and extends the contact structure so that it is tight on
the solid torus, then (S1 × P′) ∪ S will be an I invariant contact structure on T2 × I. Thus
(S1 × P) ∪ S will be the result of concatenating a basic slice in Tight(T2 × [0, 1];−1, 0) and
one in Tight(T2 × [0, 1]; 0,∞). Since we have already identified η± ∪ ζ± above, we see that
the current contact structures must come from η± ∪ ζ∓ by removing a 0 sloped dividing
curves from a convex torus. This establishes all the claimed properties. �

Remark 2.24. Notice that in the local model for ξ±± we see that if we attach a ± basic slice
from Tight(T2 × [0, 1]; 0,∞) to ξ±± we will still have a tight contact manifold, but if we
attach the ∓ basic slice then it will become overtwisted.

2.7. Non-rotative layers and properties of bypasses. To study convex Giroux torsion in
the complement of non-loose Legendrian torus knots, we need to understand non-rotative
T2 × I layers. In this subsection, we will review basic definitions and properties of non-
rotative layers. For more details, see [36]. After that, we will review some useful properties
of bypasses which will be used to prove Lemma 6.15. For more details, see [5, 34, 37, 38].



40 JOHN B. ETNYRE, HYUNKI MIN, AND ANUBHAV MUKHERJEE

A non-rotative T2 × I layer, or a non-rotative layer in short, is a tight T2 × I with convex
boundary such that any convex torus parallel to the boundary has the same dividing slope.
We will denote Ti � T2×{i} for i � 0, 1 and let n0 and n1 be the number of dividing curves
on T0 and T1, respectively. Note that n0 and n1 are always even. We say a convex annulus
A in a non-rotative layer is horizontal if it has Legendrian boundary and intersects each
dividing curve on T1 and T2 exactly once. Let (M, ξ) be a tight contact 3–manifold with a
torus boundary T. Then a non-rotative outer layer for T is a non-rotative layer N � T2 × I in
(M, ξ) such that T1 � T, n0 � 2 and n1 ≥ 2. Given two such non-rotative outer layers N1
and N2 for the boundary component T of (M, ξ), Let Ai be a horizontal annulus in Ni such
that A1 ∩ T � A2 ∩ T and denote this curve c. We say that N1 and N2 are disk-equivalent if
there exist a disk D and embeddings φi : Ai → D such that φ(c) � φ(c) � ∂D, φ |c � φ |c ,
and Γ1 is isotopic to Γ2 on D where Γi is obtained from φi(ΓAi ) by extending over D−φi(Ai)
by a single arc (here ΓS denotes the dividing curves on a convex surface S). See Figure 15
for example.

p1

pk

pk+1

pk+2

FIGURE 15. Disk-equivalent annuli (up to holonomy). The blue arc is a
Legendrian arc.

Honda showed that some non-rotative layers are embedded in I-invariant neighbor-
hoods.

Theorem 2.25 (Honda [36]). Let T2 × [0, 1] is a non-rotative layer with n0 � 2. Then it can be
embedded in an I-invariant neighborhood T2 × [0, 2] where n0 � n2 � 2.

One important property is that any two non-rotative outer layers for a fixed torus are
disk-equivalent.

Theorem 2.26 (Honda [36]). Let (M, ξ) be a tight contact 3–manifold with convex boundary and
T be a torus boundary component. Then any two non-rotative outer layers for T are disk-equivalent.

Even though (M, ξ) can contain two different (but disk-equivalent) non-rotative outer
layers for a fixed torus, the complements of these layers are contactomorphic.

Theorem 2.27 (Honda [36]). Let (M, ξ) be a tight contact 3–manifold with convex boundary and
T be a torus boundary component. Suppose (M, ξ) � (Mi , ξi) ∪Ni for i � 0, 1 where Ni is a non-
rotative outer layers for T. Then there is a co-orientation preserving contactomorphism between
(M0 , ξ0) and (M1 , ξ1).
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It is clear that any tight solid torus with convex boundary can be decomposed into a
solid torus with two dividing curves and a non-rotative outer layer. Using Theorem 2.25,
the following is also clear.

Theorem 2.28. Let V be a tight solid torus having convex boundary T with two dividing curves
of slope s. Let N be a non-rotative layer of slope s with n0 � 2 and n1 > 2. Then V ∪ N is tight.

Consider a tight solid torus V with convex boundary T. Let n be the number of dividing
curves on the boundary and q/p be the slope of the dividing curves. We can find (after
perturbation) a Legendrian meridian c on T, which intersect the dividing curves in 2k
points. Label these intersection points as p0 , . . . , p2k−1 consecutively. Let D be a convex
meridian disk in V bounded by c. Clearly, there exists 2k dividing curves on D. We say
a bypass on D is a bypass for pi if there exists a bypass with attaching arc containing pi−1,
pi , pi+1 (indices are considered as an element in Z2k). We also say a bypass is effective if the
attaching arc of the bypass passes three dividing curves and the center dividing curve is
different from the others. Recall that Honda showed [34] attaching an effective bypass to
a torus will decrease the number of dividing curves or change the dividing slope. Honda
also showed that if a bypass in a tight solid torus is not effective, then it is contained in an
I-invariant neighborhood of T (we note that when the bypass is not effective, it could still
increase the number of dividing curves, but one can always find another torus that, with
the original torus, co-bounds an I-invariant contact structure that contains the bypass).

Theorem 2.29 (Honda [34]). Let V be a tight solid torus with convex boundary T. If a bypass
in V whose attaching arc is on T is not effective, then the bypass is contained in an I-invariant
neighborhood of T. In fact, it is either a trivial bypass, or a folding bypass which increases the
number of dividing curves on T by 2.

Here, we review Colin’s isotopy discretization, which is the key idea of “state transition”
(see [37, Section 2]).

Theorem 2.30 (Isotopy Discretization, Colins [4], see also Honda [37]). Let Σ and Σ′ be two
convex surfaces with the same Legendrian boundary. If there is a smooth isotopy between them rel
boundary, then there exists a sequence of surfaces Σ0 � Σ, . . .Σn � Σ′ with the same boundary and
Σi+1 is obtained from a single bypass attachment to Σi .

We say a bypass on a disk is non-nested if it is associated to a dividing curve that sepa-
rates the disk into two components, one of which has no dividing curves. We say there are
nested bypasses for a point p if there are consecutive dividing curves parallel to a non-nested
bypass for p. The number of dividing curves for nested bypasses is called the length of the
nested bypasses. See Figure 16 for example.

3. AN ALGORITHM TO CLASSIFY NON-LOOSE TORUS KNOTS

In this section we give a user’s guide to the complete classification of non-loose Legen-
drian (p , q)–torus knots. We prove that this algorithm really gives the complete classifica-
tion in Section 7.7.
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p1

p2

p3

p4

p5

p6

p7

p8

FIGURE 16. Nested bypasses for p1 with length 2. There are three non-
nested bypasses for p1, p4 and p6.

3.1. The classification of non-loose torus knots without convex Giroux torsion. Below
is an algorithm to classify non-loose (p , q)–torus knots with tor � 0.
Step 1. Determine the overtwisted contact structures that support non-loose (p , q)–torus
knots. Find all 2-inconsistent pairs of decorated paths representing q/p:

{(±P1
1 ,±P1

2 ), . . . , (±Pn
1 ,±Pn

2 )}.

For each i ∈ {1, . . . , n} draw a contact surgery diagram for LP i
1 ,P

i
2

as described in Sec-
tion 2.4, and then use the formula (3) in Section 2.5 to compute the d3-invariant of the
contact structure. These are the only contact structures supporting non-loose (p , q)–torus
knots without convex Giroux torsion.
Step 2. Compute the non-loose Legendrian knots with “exceptional" mountain ranges.
For any (p , q)–torus knot, there is an exceptional overtwisted contact structure where the
classification is qualitatively different from all the others. These are shown in Figure 4 and
described as follows. For pq > 0, this is the contact structure ξ1 and for pq < 0, it is the
contact structure ξ |pq |−|p |−|q |+1. It is useful to note that for pq > 0 the contact structure ξ1 is
described by the pair of paths (P1 , P2)with all signs the same and also by the 2-inconsistent
pair of paths (P′1 , P

′
2)where the signs of all the basic slices in P′1 are the same, say ±, except

for one edge in the first block that is ∓, while all blocks P′2 are labeled with ∓ except for
one edge in the first block that is ±. We also note that when pq < 0 the contact structure
ξ |pq |−|p |−|q |+1 is described by the 2-inconsistent pair of paths (P1 , P2) where all the signs in
P1 are the same and opposite to all the signs in P2.

We begin with the pq > 0 case. Let (P1 , P2) be a pair of paths representing q/p. Recall
that we can arrange the continued fraction blocks in P1 and P2 as follows.

(A1 ,A3 , . . . ,Am−1) and (B2 , B4 , . . . , Bm)

(notice that there are several other cases, but they can be dealt in the same way). Let sk be
the slope in the k th continued fraction block that is farthest from q/p. Set nk � |sk •

q
p | for

k � 2, . . . ,m.
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In ξ1, there is an infinite V with bottom vertex having r � 0 and tb � pq − p − q + 2. That
is, there are Legendrian knots Li

± for i > pq − p − q + 2 and Lpq−p−q+2 with

tb(Li
±) � i , rot(Li

±) � ∓(i − pq + p + q − 2), and tor(Li
±) � 0,

tb(Lpq−p−q+2) � pq − p − q + 2, rot(Lpq−p−q+2) � 0, and tor(Lpq−p−q+2) � 0,

such that

S±(Li
±) � Li−1

± , for i ≥ pq − p − q + 4, and S±(Lpq−p−q+3
± ) � Lpq−p−q+2 ,

and
S∓(Li

±) and S±(Lpq−p−q+2) are loose.

Moreover, there are Legendrian knots Lpq
k ,± with k � 2, . . . ,m such that

tb(Lpq
k ,±) � pq , rot(Lpq

k ,±) � ∓
(
p + q − 2nk

)
, and tor(Lpq

k ,±) � 0

and a stabilization of Lpq
k ,± is non-loose if and only if it stays on or above the V described

above. Lastly, the Legendrian knots described above are coarsely Legendrian simple, so if
stabilizations of any two of them have the same Thurston-Bennequin invariant and rota-
tion number, then they are equivalent.

We now consider the pq < 0 case. In ξ |pq |−|p |−|q |+1, there are non-loose Legendrian knots
Li
± , i ∈ Z and Le with

tb(Li
±) � i , rot(Li

±) � ∓(i − |pq | + |p | + |q |), and tor(Li
±) � 0,

tb(Le) � |pq | − |p | − |q |, rot(Le) � 0, and tor(Le) � 0,

such that
S±(Li

±) � Li−1
± and S±(Le) � L |pq |−|p |−|q |−1

±
and

S∓(Li
±) is loose.

Notice that all these Legendrian knots are determined by the Thurston-Bennequin invari-
ants and the rotation numbers, except when tb � |pq | − |p | − |q |, there are 3 distinct Legen-
drian knots all with the rotation number 0.
Step 3. Compute the non-loose Legendrian knots with “generic" mountain ranges. All
other mountain ranges are as shown in Figure 3 and described as follows. Consider any
2-inconsistent pair of paths (P1 , P2) representing q/p that is not compatible with the ones
discussed in Step 2, it may be compatible with other decorated pairs of paths as discussed
in Section 2.3. Let {(P i

1 , P
i
2)}ni�2 be the collection of all pairs of paths compatible with (P1 , P2)

where (P i
1 , P

i
2) is i-inconsistent and (P2

1 , P
2
2 ) � (P1 , P2).

Recall the truncated path Pᵀ2 � P2∩
[
q/p , dq/pe

]
. Let sk be the slope in the k th continued

fraction block of P1 ∪ Pᵀ2 that is farthest from q/p. Set nk � |sk •
q
p | for k � 2, . . . , n.

In the contact structure ξP1 ,P2 there are non-loose Legendrian knots Li
+ and Li

− for i ∈ Z
with invariants

tb(Li
±) � i , and rot(Li

±) �
{
∓(i − pq + |R(P1 , P2)|) pq > 0,
∓(i − pq − |R(P1 , P2)|) pq < 0,
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where R(P1 , P2) is defined in Section 2.5, such that

S±(Li
±) � Li−1

± and S∓(Li
±) is loose.

Moreover, if n ≥ 3, there are Legendrian knots Lpq
k ,± with k � 2, . . . , n − 1 such that

tb(Lpq
k ,±) � pq , and tor(Lpq

k ,±) � 0

and

rot(Lpq
k ,±) �

{
∓(|R(P1 , P2)| − 2(nk − 1)) pq > 0,
∓(−|R(P1 , P2)| − 2(nk − 1)) pq < 0.

and Si
±S j
∓(L

pq
k ,±) is non-loose if and only if j ≤ nk − 1. Lastly, if stabilizations of the Lpq

k ,± and
Lpq

l ,± have the same invariants, then they are equivalent, while non-loose stabilizations of
Lpq

k ,± and Lpq
l ,∓ are never equivalent. Notice that when pq < 0 then non-loose stabilizations of

Lpq
k ,± and Lpq

l ,∓ will never share the same invariants but when pq > 0 they will. See Figure 3.
One subtlety arises when pq > 0 and all blocks in P1 have the same sign and all blocks

P2 have the opposite sign. In this case, we will see in Lemma 7.1 that ξP1 ,P2 is simply
ξ−pq+p+q which is obtained from ξstd by a half Lutz twist on the unique maximal self-
linking number transverse representative of the (p , q)–torus knot. In this case, the knots
Li
± will have tor(Li

±) � 1/2 when i ≤ pq − p − q and otherwise have tor(Li
±) � 0.

3.2. The classification of non-loose torus knots with convex Giroux torsion. We now
consider non-loose Legendrian knots with tor � n for n ∈ N ∪ {0}. For any pair of paths
(P1 , P2) representing q/p that is totally 2-inconsistent, the classification of non-loose Leg-
endrian knots in ξP1 ,P2 is as follows.

First, assume that when pq > 0 and (P1 , P2) is not the pair of paths such that P1 has only
one sign while P2 has only the other sign. There are non-loose Legendrian knots Li ,n

± in
ξP1 ,P2 for i ∈ Z with invariants

tb(Li ,n
± ) � i and tor(Li ,n

± ) � n ,

and

rot(Li ,n
± ) �

{
∓(i − pq + |R(P1 , P2)|) pq > 0,
∓(i − pq − |R(P1 , P2)|) pq < 0,

where R(P1 , P2) is defined in Section 2.5. We also have

S±(Li ,n
± ) � Li−1,n

± and S∓(Li ,n
± ) is loose.

Moreover, Li ,0
± corresponds to Li

± in the previous section. Notice that the mountain range
for non-loose Legendrian knots in ξP1 ,P2 does not contain any extra “wings" as seen for
some contact structures on the previous section.

We now turn to non-loose Legendrian knots with tor � n + 1/2 for n ∈ N ∪ {0}. Let
(P1 , P2) be a pair of paths representing q/p that is totally 2-inconsistent and let Li

− be the
family of Legendrian knots in ξP1 ,P2 described in the previous section. Let T the transverse
push-off of Li

− (notice Li
− has the same transverse push-off for any i ∈ Z). Finally set ξ′P1 ,P2

to be the result of a half Lutz twist applied to T in ξP1 ,P2 .
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In [10], Ding, Geiges and Stipsicz showed that if we perform the half Lutz twist on a
transverse knot T in (S3 , ξ) and obtain a new contact structure (S3 , ξ′), then the relative
d3-invariant is

d3(ξ′, ξ) � d3(ξ) − d3(ξ′) � sl(T).
In [10], this was only verified when ξ was the standard tight contact structure on S3, but it
is true in general, see [23, Proof of Theorem 4.3.1]. Thus we see that

d3(ξ′P1 ,P2
) �

{
d3(ξP1 ,P2) + |R(P1 , P2)| − pq pq > 0,
d3(ξP1 ,P2) − |R(P1 , P2)| − pq pq < 0.

There are non-loose Legendrian knots L
i ,n+ 1

2
± in ξ′P1 ,P2

for i ∈ Z with invariants

tb(Li ,n+ 1
2

± ) � i , and tor(Li ,n+ 1
2

± ) � n +
1
2

and

rot(Li ,n+ 1
2

± ) �
{
∓(i + pq − |R(P1 , P2)|) pq > 0,
∓(i + pq + |R(P1 , P2)|) pq < 0.

We also have

S j
±(L

i ,n+ 1
2

± ) � L
i− j,n+ 1

2
± and S∓(L

i ,n+ 1
2

± ) is loose.

Notice that the mountain range for non-loose Legendrian knots in ξP1 ,P2 does not contain
any extra “wings" as seen for some contact structures on the previous section.

Now suppose that pq > 0, P1 has all one sign and P2 has only the other sign, as noted
above, ξP1 ,P2 is ξ−pq+p+q . In this case the classification of contact structures on ξ−pq+p+q is
as stated above except

tor(Li ,n
± ) �

{
n i > pq − p − q ,
n + 1/2 i ≤ pq − p − q.

Similarly, in ξ0 � ξ′P1 ,P2
the classification is as stated above except

tor(Li ,n+ 1
2

± ) �
{

n + 1/2 i > pq − p − q ,
n + 1 i ≤ pq − p − q.

When pq < 0 the classification in all cases is as in the case for pq > 0 and (P1 , P2) is not
the pair of paths such that P1 has only one sign while P2 has only the other sign.

4. CLASSIFICATION OF NON-LOOSE (2,±(2n + 1))–TORUS KNOTS

In this section, we apply the algorithm in Section 3 to classify non-loose (2,±(2n + 1))–
torus knots and prove Theorem 1.11, Theorem 1.12, Theorem 1.13, and Theorem 1.14. We
note that the classification of the (2, 2n+1)-torus knots is quite straight forwards and many
steps in the algorithm described above are not necessary. To see the algorithm carried out
in its full generality, please see Sections 4.2, 5.1, and 5.2
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4.1. Non-loose (2, 2n + 1)–torus knots. We begin by classifying non-loose Legendrian
(2, 2n + 1)–torus knots.

Proof of Theorem 1.11. First, we apply Step 1 of the algorithm. The pair of path representing
(2n + 1)/2 is

P1 �

{
2n + 1

2
, n

}
, and P2 �

{
2n + 1

2
, n + 1,∞

}
,

and the continued fraction blocks in P1 and P2 are

A1 �

{
2n + 1

2
, n

}
, and B2 �

{
2n + 1

2
, n + 1,∞

}
.

Now we can list all non-loose decorations of (P1 , P2) as follows:

±(+,+,+), ±(−,+,−), ±(−,+,+)
(Since P2 is a continued fraction block, ±(−,−,+) and ±(−,+,−) are the same). As stated in
the algorithm, we know that when all the signs are the same, the contact structure will be
ξ1. We also know that the sign choices ±(−) on P1 and ±(+,−) on P2 will also give ξ1 since
they are compatible with ±(+,+,+), see the last two paragraphs of Section 2.3. Thus we
only need to compute d3-invariant of ±(−,+,+), which is −pq+p+q � 1−2n by Lemma 7.1.

Now applying Step 2 of the algorithm, we have the Legendrian knots in ξ1 as follows:

Li
± for i > 2n + 1,

L2n+1 ,

Li
2,± for 2n + 4 ≤ i ≤ 4n + 2,

L2n+3
2

with

tb(Li
±) � i , and rot(Li

±) � ∓(i − 2n − 1),
tb(L2n+1) � 2n + 1, and rot(Lpq−p−q+2) � 0,

tb(Li
2,±) � i , and rot(Li

2,±) � ∓(i − 2n − 3),
tb(L2n+3

2 ) � 2n + 3, and rot(L2n+3
2 ) � 0

such that

S±(Li
±) � Li−1

± , for i ≥ 2n + 3, and S±(L2n+2
± ) � L2n+1 ,

S±(Li
2,±) � Li−1

2,± , for i ≥ 2n + 5, and S±(L2n+4
2,± ) � L2n+3

2 ,

S∓(Li
2,±) � Li−1

± , for i ≥ 2n + 4, S∓(L2n+3
2 ) � L2n+2

± ,

and S∓(Li
±) and S±(L2n+1) are loose. All these Legendrian knots have tor � 0. See Figure 5.

Applying Step 3 of the algorithm, we obtain the classification of non-loose Legendrian
knots in ξ1−2n as follows. Note that the decoration ±(−,+,+) are totally 2-inconsistent,
so we do not have to consider the “wings”. We must first compute R(P1 , P2). One many
easily check that rm � 1 and rn � 2n and hence

R(P1 , P2) � (2n + 1) · 1 + 2 · (2n) � 6n + 1.
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Step 3 of the algorithm now gives non-loose Legendrian knots Li ,k
± for i ∈ Z and k ∈ N∪{0}

such that
tb(Li ,k

± ) � i , and rot(Li ,k
± ) � ∓(i + 2n − 1)

and

tor(Li ,k
± ) �

{
k i > 2n − 1,
k +

1
2 i ≤ 2n − 1.

We also have
S±(Li ,k

± ) � Li−1,k
±

and S∓(Li ,k
± ) is loose. See Figure 5.

Finally we consider the non-loose Legendrian knots coming from adding convex half
Giroux torsion to the complements of Li ,0

− . This will give the contact structure obtained
from ξ1−2n by a half Lutz twist on the transverse push-off of Li ,0

− , which is ξ0. So in ξ0, we

have non-loose Legendrian knots L
i ,k+ 1

2
± for i ∈ Z and k ∈ N ∪ {0} such that

tb(Li ,k+ 1
2

± ) � i and rot(Li ,k+ 1
2

± ) � ∓(i − 2n + 1)

and

tor(Li ,k+ 1
2

± ) �
{

k +
1
2 i > 2n − 1,

k + 1 i ≤ 2n − 1.

We also have

S±(L
i ,k+ 1

2
± ) � L

i−1,k+ 1
2

±

and S∓(L
i ,k+ 1

2
± ) is loose. See Figure 5. �

We now turn to the classification of non-loose transverse (2, 2n + 1)–torus knots.

Proof of Theorem 1.13. Since the classification of transverse knots is equivalent to the classi-
fication of Legendrian knots up to negative stabilization [16, Proof of Theorem 2.10], the
theorem follows immediately from Theorem 1.11. In particular, then Tk and the Tk+ 1

2 are

transverse push-offs of L0,k
− and L

0,k+ 1
2− , respectively. �

4.2. Non-loose (2,−(2n + 1))–torus knots. We begin with the classification of non-loose
Legendrian (2,−(2n + 1))–torus knots.

Proof of Theorem 1.12. According to Step 1 of the algorithm in the previous section, we first
find all decorated pair paths (P1 , P2) representing −(2n + 1)/2. We have

P1 � {−2n + 1
2

,−n − 1}, and P2 � {−2n + 1
2

,−n ,−n + 1, . . . ,−1}.

Moreover, the breakdown into continued fraction blocks is

A2 � {−2n + 1
2

,−n − 1}, and B1 � {−2n + 1
2

,−n}, B3 � {−n , . . . − 1}.
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Now we will list all non-loose decorations for (P1 , P2). Since (±,±, . . .) describes ξstd by
Remark 2.15, we have 2n non-loose decorations

±(−,+,
k︷   ︸︸   ︷

+, . . . ,+,

n−1−k︷   ︸︸   ︷
−, . . . ,−)

for 0 ≤ k ≤ n − 1. See the top drawing of Figure 17 (notice that we can shuffle the signs
in B3). We now convert these pairs of decorated paths into contact surgery diagrams as
discussed in Section 2.4. To this end notice that

−
p
p′

� −2 � [−2], and −
q

q − q′
� −2n + 1

n + 1
� [−2,−n − 1].

We thus obtain the diagrams in Figure 17.

(−1)

(−1)

(−1)

(+1)
(+1)

L−

n − 1
(−1)

(−1)
(−1)

(+1)

(+1)

L+

n − 1

−n − 1 − 2n+1
2 −n −2 −1

+ − ±

−n − 1 − 2n+1
2 −n −2 −1

− + ±

FIGURE 17. Surgery diagrams for the non-loose (2,−(2n + 1)) torus knots
with tb � −4n − 2. In the upper box there are n − 1 stabilizations. The signs
of the stabilizations depend on the signs in the continued fraction block A2.

We now use the formula (3) in Section 2.5 to compute d3-invariants. In particular, we
have the linking matrix M for the diagram

M �


−3 −1 −1 −1 −1
−1 −n − 2 −2 −1 −1
−1 −2 −3 −1 −1
−1 −1 −1 0 −1
−1 −1 −1 −1 0


,
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from which we can compute that σ(X) � −1 and χ(X) � 6. There exist 2n rotation vectors:

±rot �


−1

−(l + 1)
−1
0
0


,

for l ∈ {−n + 1,−n + 3, ..., n − 3, n − 1}. From these, we can compute

d3(ξ) � n + l + 1.

One may also use the surgery diagram to compute

|R(P1 , P2)| � 4n + 2l + 3.

In Section 2.5 we also gave a formula for R(P1 , P2) in terms of the decorated pair of paths,
since relating this computation to the one done in terms of the surgery diagram is a little
involved, we give details. First, notice that

p1 � −2n + 1
2

, p2 � −n − 1,

q1 � −2n + 1
2

,

qi � −n + i − 2 for 2 ≤ i ≤ n + 1.

In P1, the signs of blocks are all negative. In P2, there exist k + 1 positive blocks, which are
exactly [q1 , q2], . . . , [qk+1 , qk+2]. Thus we can calculate rm and rn as follows:

rm � (−1)
(
(p2 	 p1) •

1
0

)
� −1,

rn � (qk+2 	 q1) •
0
1
+ (−1)

(
(qn+1 	 qk+2) •

0
1

)
� 2k + 2.

We could now easily compute R(P1 , P2) in terms of k, but we would like to make the
computation in terms of the rotation numbers in the surgery diagram. The rotation number
of the second link component of the surgery diagram in Figure 17 is equal to the difference
between the number of negative blocks and positive blocks (notice that P2 corresponds to
the solid torus with the upper meridian). Thus we have

−(l + 1) � (n − k − 1) − (k + 1)
� n − 2k − 2,

and this implies that
k � (n + l − 1)/2.

Finally, we have

R(P1 , P2) � 2rn + (−2n − 1)rm

� 4n + 2l + 3.

Now we will apply Step 2 of the algorithm and consider the exceptional contact struc-
ture corresponding to the decoration (±,∓, . . . ,∓) such that P1 having all one sign and P2
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having the other. This is the contact structure ξ2n (since P1 and P2 are totally 2-inconsistent
we also obtain non-loose knots with convex Giroux torsion and we list them now). Accord-
ing to the algorithm in Section 3, in this contact structure, we have the following non-loose
Legendrian knots Li ,k

n−1,± for i ∈ Z, k ∈ N ∪ {0} and Le such that

tb(Li ,k
n−1,±) � i , rot(Li ,k

n−1,±) � ∓(i − 2n + 1) and tor(Li ,k
n−1,±) � k

tb(Le) � 2n − 1, rot(Le) � 0 and tor(Le) � 0.

We also have

Li ,k
n−1,± � S±(Li−1,k

n−1,±) and S±(Le) � L2n−2,0
n−1,±

and

S∓(Li ,k
n−1,±) is loose.

See Figure 6.
Now we apply Step 3 of the algorithm and consider the other decorations. Since all

these decorated paths are totally 2-inconsistent, they will also contribute to non-loose Leg-
endrian knots with tor > 0.

Now in ξn+l+1, except for l , n − 1 which was handled above, we have non-loose Leg-
endrian knots Li ,k

l ,± with

tb(Li ,k
l ,±) � i , rot(Li ,k

l ,±) � ∓(i − 2l − 1) and tor(Li ,k
l ,±) � k

and

S±(Li ,k
l ,±) � Li−1,k

l ,± and S∓(Li ,k
l ,±) is loose.

See Figure 6.
In addition, when attaching convex half Giroux torsion to the complements of standard

neighborhoods of the Legendrian knots above, we get non-loose Legendrian knots in the
contact structures on ξn−l for l ∈ {−n + 1,−n + 3, ..., n − 3, n − 1}. In ξn−l , we have the

non-loose Legendrian knots L
i ,k+ 1

2
l ,± for i ∈ Z, k ∈ N ∪ {0} with

tb(Li ,k+ 1
2

l ,± ) � i , rot(Li ,k+ 1
2

l ,± ) � ∓(i + 2l + 1) and tor(Li ,k+ 1
2

l ,± ) � k +
1
2

and

S±(L
i ,k+ 1

2
l ,± ) � L

i−1,k+ 1
2

l ,± and S∓(L
i ,k+ 1

2
l ,± ) is loose.

See Figure 6. �

The classification of transverse (2,−(2n + 1))–tours knots now follows.

Proof of Theorem 1.14. Since the classification of transverse knots is equivalent to the classi-
fication of Legendrian knots up to negative stabilization [16, Proof of Theorem 2.10], the
theorem follows immediately from Theorem 1.12. In particular, Tk

l is the transverse push-

off of L0,k
l ,− in ξn+l+1 and T

k+ 1
2

l are transverse push-offs of L
0,k+ 1

2
l ,− in ξn−l . �



NON-LOOSE TORUS KNOTS 51

5. CLASSIFICATION OF NON-LOOSE (5,±8)–TORUS KNOTS

In this section, we apply the algorithm in Section 3 and classify non-loose (5,±8)–torus
knots and prove Theorem 1.15, Theorem 1.16, Theorem 1.17 and Theorem 1.18. This will
demonstrate the use of our algorithm in a more complicated setting than considered in the
previous section.

5.1. Non-loose (5, 8)–torus knots. In this section we will classify non-loose Legendrian
and transverse (5, 8)–torus knots. We begin with the Legendrian representatives.

Proof of Theorem 1.15. The pair of paths representing 8/5 are

P1 �

{
8
5
,

3
2
, 1

}
, and P2 �

{
8
5
,

5
3
, 2,∞

}
,

and the continued fraction blocks in P1 and P2 are

A1 �

{
8
5
,

3
2

}
, A3 �

{
3
2
, 1

}
, and B2 �

{
8
5
,

5
3
, 2

}
, B4 � {2,∞} .

Since we have

−
p
p′

� −5
3
� [−2,−3] and −

q
q − q′

� −8
3
� [−3,−3],

the linking matrix M of the surgery diagram is

M �



−4 −2 −1 −1 −1 −1
−2 −3 −1 −1 −1 −1
−1 −1 −5 −3 −1 −1
−1 −1 −3 −4 −1 −1
−1 −1 −1 −1 0 −1
−1 −1 −1 −1 −1 0


and from this we can compute σ(X) � −4 and χ(X) � 7. The rotation vectors ±rot gotten
by different choices of stabilizations are

0
−1
1
0
0
0


,



0
1
−1
−2
0
0


,



−2
−1
1
2
0
0


,



2
1
−3
−2
0
0


,



0
−1
−1
0
0
0


,



0
1
−3
−2
0
0


,



−2
−1
1
0
0
0


,



−2
−1
−1
0
0
0


,



0
−1
−1
−2
0
0


,



0
−1
−3
−2
0
0


,



−2
−1
−1
−2
0
0


,



−2
−1
−3
−2
0
0


.

We can compute the d3-invariant of each decoration of (P1 , P2). The first 4 rotation vectors
give ξ1 and correspond to the decorations on the path (P1 , P2)

±(+,−,+,−,−), ±(−,+,+,+,−), ±(−,−,−,−,+), ±(+,+,+,+,+)
(note that ±(+,−,−,+,−) and ±(+,−,+,−,−) are the same). These decorations are, respec-
tively, 2, 3, 4-inconsistent and the last is totally consistent. The next two rotation vectors
give ξ−1 and correspond to the decorations

±(+,−,+,−,+) and ± (−,+,+,+,+)
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(note that ±(+,−,+,−,+) and ±(+,−,−,+,+) are the same). The first being 2-inconsistent
while the second is 3-inconsistent. The remaining 6 rotation vectors give distinct d3-
invariants and correspond to 2-inconsistent pairs of decorated paths. In particular, in the
order of the rotation vectors above we have the decorations for ξ−3 are

±(−,−,+,−,−)
(note that ±(−,−,−,+,−) and ±(−,−,+,−,−) are the same). The decorations for ξ−7 are

±(−,−,+,−,+)
(note that ±(−,−,−,+,+) and ±(−,−,+,−,+) are the same). The decorations for ξ−9 are

±(+,−,+,+,−).
The decorations for ξ−15 are

±(+,−,+,+,+).
The decorations for ξ−19 are

±(−,−,+,+,−).
The decorations for ξ−27 are

±(−,−,+,+,+).
We begin with the exceptional contact structure ξ1. According to Step 2 of the algorithm

in Section 3, there are non-loose Legendrian knots Li
± for i > 29 and L29 such that

tb(Li
±) � i , rot(Li

±) � ∓(i − 29), tb(L29) � 29, rot(L29) � 0

and
S±(Li

±) � Li−1
± for i > 30, and S±(L30

± ) � L29

and
S∓(Li

±) and S±(L29) are loose.

To determine the other non-loose Legendrian (5, 8)–torus knots in ξ1, we note that s2 �

2, s3 � 1, s4 � ∞ and that n2 � 2, n3 � 3, n4 � 5. Thus we have Legendrian knots L40
k ,± for

k � 2, 3, 4 with tb � 40 and

rot(L40
2,±) � ∓9, rot(L40

3,±) � ∓7, and rot(L40
4,±) � ∓3.

Stabilizations of these Legendrian knots and the Li
± and L29 with the same invariants will

be equivalent and they will remain non-loose until they are stabilized outside the V defined
by the Li

± and L29. All these knots have no convex Giroux torsion.
Now we consider the contact structure ξ−1. First, notice that ±(+,−,+,−,+) are 2 in-

consistent and ±(−,+,+,+,+) are 3-inconsistent, and they are compatible. Moreover, one
easily computes that for the first decorations that |R(P1 , P2)| � 19 and for the second dec-
orations that |R(P1 , P2)| � 21. Thus Step 3 of the algorithm gives us non-loose Legendrian
knots Li

± for i ∈ Z and Li
2,± for i ≤ 40 such that

tb(Li
±) � tb(Li

2,±) � i , rot(Li
±) � ∓(i − 21), rot(Li

2,±) � ∓(i − 19)
and

S±(Li
±) � Li−1

± , and S±(Li
2,±) � Li−1

2,± ,
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and
S∓(Li

2,±) � Li−1
± , and S∓(Li

±) is loose.

None of Li
+ or Li

2,+ is equivalent to L j
− or L j

2,− for any i , j ∈ Z. All these Legendrian knots
have no convex Giroux torsion.

In ξ−3 and ξ−7, we have following classification. First, notice that ±(−,−,+,−,−) and
±(−,−,+,−,+) are 2-inconsistent, so in each contact structure the mountain range is an
infinite X. Since they are not totally 2-inconsistent, there are no non-loose Legendrian
knots with tor > 0 in these contact structures. One can also check that |R(P1 , P2)| � 27
and |R(P1 , P2)| � 37, respectively. Thus there are Legendrian knots Li

± with tb(Li
±) � i and

tor(Li
±) � 0 in each contact structure and

rot(Li
±) �

{
∓(i − 13) in ξ−3

∓(i − 3) in ξ−7

that satisfy
S±(Li

±) � Li−1
± and S∓(Li

±) is loose.

All the decorations in ξ−9, ξ−15, ξ−19 and ξ−27 are totally 2-inconsistent, so these con-
tact structures can have non-loose Legendrian representatives with convex Giroux torsion.
One may compute that |R(P1 , P2)| for these four pairs of paths is 41, 51, 57, and 67, respec-
tively. So in each contact structure we have Li ,k

± where tb(Li ,k
± ) � i and

rot(Li ,k
± ) �


∓(i + 1) in ξ−9

∓(i + 11) in ξ−15

∓(i + 17) in ξ−19

∓(i + 27) in ξ−27

that satisfies
S±(Li ,k

± ) � Li−1,k
± and S∓(Li ,k

± ) is loose.

Moreover, tor(Li ,k
± ) � k if it is not in ξ−27, in that case we have

tor(Li ,k
± ) �

{
k i > 27,
k +

1
2 i ≤ 27.

Finally we can add convex half Giroux torsion to these latter four contact structures.
This results in the contact structures ξ−8, ξ−4, ξ−2, and ξ0, and we have non-loose Legen-

drian (5, 8)–torus knots L
i ,k+ 1

2
± where tb(Li ,k+ 1

2
± ) � i and

rot(Li ,k+ 1
2

± ) �


∓(i − 1) in ξ−8

∓(i − 11) in ξ−4

∓(i − 17) in ξ−2

∓(i − 27) in ξ0

that satisfy

S±(L
i ,k+ 1

2
± ) � L

i−1,k+ 1
2

± and S∓(L
i ,k+ 1

2
± ) is loose.



54 JOHN B. ETNYRE, HYUNKI MIN, AND ANUBHAV MUKHERJEE

Moreover, tor(Li ,k+ 1
2

± ) � k + 1/2 if it is not in ξ0, and in that case we have

tor(Li ,k+ 1
2

± ) �
{

k +
1
2 i > 27,

k + 1 i ≤ 27.

�

We now turn to the transverse (5, 8)–torus knots.

Proof of Theorem 1.17. This theorem follows directly from Theorem 1.15 given that the clas-
sification of transverse knots is the same as the classification of Legendrian knots up to
negative stabilization [16, Proof of Theorem 2.10]. �

5.2. Non-loose (5,−8)–torus knots. In this section we will classify non-loose Legendrian
and transverse (5,−8)–torus knots. We begin with the Legendrian representatives.

Proof of Theorem 1.16. The pair of paths representing −8/5 is

P1 �

{
−8

5
,−5

3
,−2

}
, and P2 �

{
−8

5
,−3

2
,−1

}
and the continued fraction blocks in P1 and P2 are

A2 �

{
−8

5
,−5

3
,−2

}
, and B1 �

{
−8

5
,−3

2

}
, B3 �

{
−3

2
,−1

}
.

Since we have

−
p
p′

� −5
2
� [−3,−2], and −

q
q − q′

� −8
5
� [−2,−3,−2].

the linking matrix M of the surgery diagram is

M �



−4 −3 −1 −1 −1 −1 −1
−3 −4 −1 −1 −1 −1 −1
−1 −1 −4 −3 −2 −1 −1
−1 −1 −3 −4 −2 −1 −1
−1 −1 −2 −2 −3 −1 −1
−1 −1 −1 −1 −1 0 −1
−1 −1 −1 −1 −1 −1 0


and from this we can compute σ(X) � −3 and χ(X) � 8. Here, we list all rotation vectors
depending on the choice of stabilizations:

±rot �



0
0
0
0
−1
0
0


,



−2
−2
0
0
1
0
0


,



0
0
−2
−2
−1
0
0


,



−2
−2
0
0
−1
0
0


,



−2
−2
−2
−2
−1
0
0


.
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We can compute the d3-invariant of each decoration of (P1 , P2). The first 2 rotation vectors
above give ξ2 and correspond to the decorations on the paths (P1 , P2) given by

±(+,−.+,−) and ± (−,−,−,+)
(note that ±(−,+,+,−) and ±(+,−,+,−) are the same). The decorations are, respectively,
2 and 3-inconsistent. The remaining rotation vectors give distinct d3-invariants and corre-
spond to 2-inconsistent pairs of paths. The third rotation vector gives ξ8 and corresponds
to the decorations

±(+,−,+,+)
(note that ±(−,+,+,+) and ±(+,−,+,+) are the same). The fourth rotation vector gives ξ14
and corresponds to the decorations

±(−,−,+,−).
The last rotation vector gives ξ28 and corresponds to the decorations

±(−,−,+,+).
We begin with the exceptional contact structure corresponding to the path P1 having all

one sign and P2 having the other. This is the contact structure ξ28. In this contact structure,
we have the following non-loose Legendrian knots Li ,k

± , i ∈ Z, k ∈ N∪ {0} and Le such that

tb(Li ,k
± ) � i , rot(Li ,k

± ) � ∓(i − 27) and tor(Li ,k
± ) � k ,

and
tb(Le) � 27 and rot(Le) � 0,

such that
Li ,k
± � S±(Li−1,k

± ), S±(Le) � L26,0
± and tor(Li−1,k

± ) � k.

We also have
S∓(Li ,k

± ) is loose.

Now we consider ξ2. First, notice that the decorations ±(+,−.+,−) are 2-inconsistent
and ±(−,−,−,+) are 3-inconsistent, and they are compatible. Also, |R(P1 , P2)| � 15 and 17
for each decoration, respectively. In addition, the 2-inconsistent decorations are not totally
2-inconsistent, and so none of the non-loose knots in ξ2 will have convex Giroux torsion.
Thus the algorithm yields the following non-loose Legendrian knots Li

± for i ∈ Z and Li
2,±

for i ≤ −40 such that

tb(Li
±) � tb(Li

2,±) � i , and tor(Li
±) � tor(Li

2,±) � 0,

and
rot(Li

±) � ∓(i + 25), and rot(Li
2,±) � ∓(i + 23).

We also have
S±(Li

±) � Li−1
± , and S±(Li

2,±) � Li−1
2,± ,

and
S∓(Li

2,±) � Li−1
± , and S∓(Li

±) is loose.
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Next, we consider ξ8. Because the decorations for ξ8 is not totally 2-inconsistent and
|R(P1 , P2)| � 35, we have non-loose Legendrian knots Li

± with

tb(Li
±) � i , rot(Li

±) � ∓(i + 5) and tor(Li
±) � 0

satisfying

S±(Li
±) � Li−1

± and S∓(Li
±) is loose.

The decorations for ξ14 are totally 2-inconsistent and |R(P1 , P2)| � 47, so ξ14 contains the
non-loose Legendrian knots Li ,k

± for i ∈ Z and k ∈ N ∪ {0} satisfying

tb(Li ,k
± ) � i , rot(Li ,k

± ) � ∓(i − 7) and tor(Li ,k
± ) � k

satisfying

S±(Li ,k
± ) � Li−1,k

± and S∓(Li ,k
± ) is loose.

Finally, to the totally 2-inconsistent pairs of paths (that are the ones for ξ28 and ξ14), we
can also add convex half Giroux torsion. As described in Section 3.2, this yields the contact
structures ξ1 and ξ7. In each of these contact structures we have non-loose Legendrian

knots L
i ,k+ 1

2
± satisfying

tb(Li ,k+ 1
2

± ) � i and tor(Li ,k+ 1
2

± ) � k +
1
2

and

rot(Li ,k+ 1
2

± ) �
{
∓(i + 27) in ξ1

∓(i + 7) in ξ7

satisfying

S±(L
i ,k+ 1

2
± ) � L

i−1,k+ 1
2

± and S∓(L
i ,k+ 1

2
± ) is loose.

�

We end with the classification of non-loose transverse (5,−8)–torus knots.

Proof of Theorem 1.18. This theorem follows directly from Theorem 1.16 given that the clas-
sification of transverse knots is the same as the classification of Legendrian knots up to
negative stabilization [16, Proof of Theorem 2.10]. �

6. TIGHT CONTACT STRUCTURES ON TORUS KNOT COMPLEMENTS

In this section, we investigate the tight contact structures on the complements of torus
knots. These are Seifert fibered spaces of the disk with two singular fibers. The first clas-
sification results on such spaces were obtained in [7] and used in [25] to give their clas-
sification results for non-loose torus knots and expanded upon in [43]. So several of the
classification results below were already know, but as observed in [25, Section 4.2] most
non-loose torus knot complements are not covered by the results of [7]. We also note that
in [27] tight contact structures on these spaces were also constructed.
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6.1. Torus knot complements. We start by building a topological model of the comple-
ment of a torus knot by following [18, Section 3.1]. Let F1 t F2 be the Hopf link in S3 and
V1 and V2 neighborhoods of F1 and F2, respectively. Then there is a torus T in the comple-
ment of the Hopf link that separates S3 such that S3 � V1 ∪ (T × [0, 1]) ∪ V2. We may take
the (p , q)–torus knot Tp ,q to sit on T × {1/2}. Let N be a neighborhood of Tp ,q in T × [0, 1]
and C � S3 \ N . If we set A′ � (T × {1/2}) ∩ C, then we can consider T × [0, 1] as the
union of N and N(A′), a neighborhood of the annulus A′ in C. See the left drawing of
Figure 18. In N(A′), we can find an annulus A for which each of the boundary component
is a (p , q)–curve, one on ∂V1 and the other on ∂V2. See the right drawing of Figure 18. Here
we use the coordinate system on any torus parallel to T coming from the Seifert framing
of V1 (so the meridian of V1 has slope ∞ and the meridian of V2 has slope 0). We denote
this coordinate system F1. Since we can also think N(A′) as a neighborhood of A, we have
the following model for C,

C � V1 ∪ N(A) ∪ V2.

We notice that C is a Seifert fibered space over a disk with two singular fibers. The regular
fiber is a (p , q)–torus knot in S3 � C ∪ N and this will be called a vertical curve.

A′→

N

A

V1 V2

FIGURE 18. The complement of a neighborhood of a (p , q)–torus knot. Each
cube is T2 × [0, 1] (so the top and bottom are identified as are the front and
back) with curves on the right and left collapsed to give S3. On the left we
see that annulus A′ in the C that separates C into two solid tori. On the
right is the annulus A going from ∂V1 to ∂V2.

We will use two different framing conventions for the torus −∂C(� ∂N). One, which
we denote C1, is the Seifert framing of Tp ,q , and the other one, which we denote C2, comes
from the torus T on which Tp ,q sits. We can convert from the first framing to the second
framing by using the coordinate change map

ψ �

(
1 0
−pq 1

)
,
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where (a , b)ᵀ � aλ + bµ and λ is a longitude from the given framing and µ is a meridian
of N . There is another convenient topological model for C. Notice that if we take the
neighborhood N of Tp ,q to be contained in the interior of T2 × [0, 1], then (T2 × [0, 1]) \N is
S1 × P where P is D2 with two disjoint open disks removed. Now C � V1 ∪ (S1 × P) ∪ V2.
We have ∂(S1 × P) � T1 ∪ T2 ∪ T3 where Ti is identified with ∂Vi for i � 1, 2 and T3 � ∂C.
For each Ti , we can take coordinates so that S1 × {pt} has slope 0 and ({θ} × P) ∩ Ti has
slope ∞. Notice that on T3 this framing agrees with the framing C2 that comes from the
torus T. On the other Ti , this gives a coordinate system F2, and one can convert from the
Seifert coordinates, F1, to this one by the map

φ �

(
q′ −p′

−q p

)
where q′/p′ � (q/p)c , the largest rational number satisfying pq′ − p′q � 1. See Section 2.1
for this notation.

6.2. Contact structures on C. To classify non-loose torus knots, we will first classify tight
contact structures on C having convex boundary with dividing slope n ∈ N (here we use
the Seifert coordinates C1 on −∂C � ∂N) and without convex Giroux torsion. See Sec-
tion 2.2 for the definition of convex Giroux torsion. We note that as we are thinking of C
as the complement of a knot we will orient its boundary as −∂C, in particular the slopes of
dividing curves of tori parallel to −∂C will change in a clockwise direction as they move
into C. We will always assume that |q | > p > 0. Also recall that we use the notation a

b
• c

d to
denote the quantity ad − bc (which can be thought of as the intersection between a slope
a/b curve and a slope c/d curve on T2).

Given the complement C of a (p , q)–torus knot Tp ,q and a slope s on the boundary of C,
we denote by

Tighti(C; s) �{Tight contact structures on C up to isotopy, with convex boundary having

two dividing curves of slope s and convex i Giroux torsion for i ∈ 1
2N ∪ {0}}.

We begin with positive torus knots.

Lemma 6.1. Consider the complement C of a positive (p , q)–torus knot. For any rational number
s with s > pq and any contact structure ξ ∈ Tight0(C; s), there is a contact structure ξ′ ∈
Tight0(C;∞) and a contact structure ξ′′ ∈ Tightmin(T2 × [0, 1]; s ,∞) such that ξ is isotopic to
ξ′ ∪ ξ′′ under the natural identification C � C ∪ (T2 × [0, 1]).

Proof. If (C, ξ) contains 0-twisting vertical Legendrian curve, we can use this to find a
convex torus T parallel to the boundary of C with dividing slope pq. Thus T cuts C into
two pieces, one being T2 × [0, 1] with dividing slopes s and pq. Inside of T2 × [0, 1] there
will be a convex torus T′ with dividing slope ∞. This torus gives the claimed splitting of
the contact structure ξ.

Thus we will consider the case when (C, ξ) does not contain 0-twisting vertical Legen-
drian curve. This implies that the dividing slope of V1 is less than q/p and the dividing
slope of V2 is bigger than q/p or negative. Here, we are using F1, the Seifert coordinates of
V1.
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Now we perturb ∂V1 and ∂V2 so that the ruling curves become (p , q)–curves, and per-
turb A so that it becomes convex and one boundary component is a ruling curve of ∂V1
and the other a ruling curve of ∂V2. We change the coordinate system of ∂V1 from F1 to F2
using φ from the previous section. Suppose that the dividing slope of V1 and V2 are n1/m1
and n2/m2 respectively. Then φ maps (mi , ni) 7→ (q′mi − p′ni ,−qmi + pni) for i � 1, 2. If
|qm1 − pn1 | , |qm2 − pn2 |, then the twisting numbers of the boundary components of A
are different. Thus by the Imbalance Principle [34], there is a bypass on A along one of the
boundary components, and we can thicken V1 or V2 using this bypass. Thus we can keep
thickening the Vi until |qm1 − pn1 | � |qm2 − pn2 |.

Recall if the dividing slope of V1 is s, then when a bypass is attached to ∂V1 the dividing
curves of the resulting torus will have slope s′ which is clockwise of s and the closest
point to q/p with an edge to s. Since we can start with V1 as a standard neighborhood
of a Legendrian knot with very negative Thurston-Bennequin invariant, the the possible
dividing will be slopes on ∂V1 will be

• (1, n) for n ≤ bq/pc,
• (m1 , n1) in the shortest path from bq/pc clockwise to q/p in the Farey graph.

Similarly, if ∂V2 has dividing slope s, then when a bypass is attached to ∂V2 the dividing
curves will have slope s′ which is anti-clockwise of s and the closest point to q/p with an
edge to s. So if we start with V2 being a standard neighborhood of a Legendrian knot with
very negative tb, the the possible dividing will be slopes on ∂V2 will be

• (m , 1) for m ≤ 0,
• (m2 , n2) in the shortest path from q/p clockwise to∞ in the Farey graph.

We denote (q/p)c by q′/p′ and (q/p)a by q′′/p′′ and recall that there is an edge in the
Farey graph between all three points (p , q), (p′, q′), and (p′′, q′′) (See Section 2.1). There are
three cases to consider when the dividing curves on A run from one boundary component
to the other.
Case 1: |q − pn| � |p − qm|. We begin by assuming that q − pn � p − qm. In [18], the first
author, LaFountain, and Tosun considered this case when m , n ≤ −1 and q − pn � p − qm,
and showed that the solutions are m � pk − 1 and n � qk − 1 for k ≤ 0. They determined
in these cases that the dividing curves on the boundary of C′ � V1 ∪ N(A) ∪ V2 had slope
sk � (pq − p − q)/(1 − k) (please note that the slope convention in [18] is the reciprocal of
the one used here). Thus C \ C′ is a thickened torus T2 × [0, 1]with a contact structure that
rotates from s clockwise to sk . In particular, there will be a torus in T2×[0, 1]with dividing
slope ∞, and this torus provides the desired decomposition of C. Notice that when k > 0
then m is positive, the formula for sk still holds and we can still find a torus of slope∞ in
C \ C′.

Now in the case that q − pn � qm − p, one can show that n and m will not satisfy the
conditions in the bullet point above.
Case 2: |qm1 − pn1 | � |p − qm| or |q − pn| � |pn2 − qm2 |. We will show that there is no
solution to these equations. Consider the first equation and the case when qm1 − pn1 �

p − qm. Let a0 � bq/pc , a1 , . . . , ak � q/p be a shortest path in the Farey graph from bq/pc ,
clockwise to q/p. As discussed in [3, Remark 2.13] we see that | qp • ai | < | qp • ai−1 |, and hence
the maximum value for qm1 − pn1 is q − a0p. If m ≤ −1, we have q − a0p ≥ qm1 − pn1 �
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p− qm ≥ p+ q, but we are taking p > 0 and so there is no solution to this equation. We will
deal with the case m � 0 in Case 3. Now consider the case that pn1 − qm1 � p − qm. One
may check that the left-hand side is negative, while the right-hand side is positive when
m ≤ −1 and again the case of m � 0 will be handled in Case 3.

For the second equation in the case that q − pn � pn2 − qm2, we can similarly argue that
the maximal value of pn2−qm2 is p and so for n < bq/pc we have p ≥ pn2−qm2 � q−pn >
p; and this contradiction shows that there is no solution to the second equation. We will
deal with the case of n � bq/pc in Case 3. We may dispense with the case q−pn � qm2−pn2
as above.
Case 3. |qm1 − pn1 | � |pn2 − qm2 |. We must have that qm1 − pn1 � pn2 − qm2, since
both the right and left-hand sides are positive. We will show that the only solution is
(m1 , n1) � (p′′, q′′) and (m2 , n2) � (p′, q′). Observe that if qm1 − pn1 � pn2 − qm2, then
(n1 + n2)/(m1 + m2) � q/p. We know from our choice of (p′, q′) and (p′′, q′′) that q � q′+ q′′

and p � p′ + p′′, so qp′′ − pq′′ � pq′ − qp′.
As above let a1 � bq/pc , a1 , . . . , ak � q/p be a shortest path in the Farey graph from
bq/pc clockwise to q/p and similarly b0 � q/p , . . . bl � ∞ be the shortest path from q/p
clockwise to ∞. Notice that q′′/p′′ � ak−1 and q′/p′ � b1. The path a0 , . . . , ak−1 , ak �

b0 , b1 , . . . , bl can be shortened to a single jump from bq/pc to ∞. In the process of short-
ening the path we first remove q/p � ak � b0 and the edges adjacent to it, and add the
edge from ak−1 to b1, we will then remove one of ak−1 or b1, the edges adjacent to the re-
moved vertex and add another edge in the Farey graph. Notice each vertex removed is
the Farey sum of the two adjacent vertices. Thus the size of the numerator and denomi-
nator of the vertices ai and b j get smaller as we move out from q/p. Thus we see that if
(m1 , n1) , (p′′, q′′) or (m2 , n2) , (p′, q′), then m1 < p′′ and n1 < q′′ or m2 < p′ and n2 < q′.
Thus m1 + m2 < p and n1 + n2 < q. But we observed above that (n1 + n2)/(m1 + m2) � q/p
which contradicts the fact that gcd(p , q) � 1, so we must have that (m1 , n1) � (p′′, q′′) and
(m2 , n2) � (p′, q′).

When the dividing slopes of V1 and V2 are q′′/p′′ and q′/p′, there are two dividing curves
on A, running from one boundary component to the other since we assume that there is
no 0-twisting vertical Legendrian curve in C.

Since φ maps (p′, q′) 7→ (0, 1) and (p′′, q′′) 7→ (1,−1), we can compute the boundary
slope of C under the coordinates C2 after rounding the edges of ∂V1 ∪ ∂N(A) ∪ ∂V2 to be

1
0 − 1 + 1

�
1
0
.

Now we use the coordinate change map ψ to compute the slope using Seifert coordinates
C1 of Tp ,q . Since ψ−1 maps (0, 1) 7→ (0, 1), the slope of ∂V1 ∪ ∂N(A) ∪ ∂V2 is∞ and we have
our desired splitting of the contact structure on C. �

Now we will consider negative (p , q)–torus knot with −q > p > 1.

Lemma 6.2. Consider the complement C of a negative (p , q)–torus knot. Consider the slopes
sk � (|pq | − |p | − |q |)/k with k ≥ 1 and gcd(|pq | − |p | − |q |, k) � 1. For any s > pq and
ξ ∈ Tight0(C; s) with s < (sa

k , sk], there is a contact structure ξ′ ∈ Tight0(C;∞) and a contact
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structure ξ′′ ∈ Tightmin(T2 × [0, 1]; s ,∞) such that ξ is isotopic to ξ′ ∪ ξ′′ under the natural
identification C � C ∪ (T2 × [0, 1]).

If s ∈ (sa
k , sk], then either ξ is as above or there is a contact structure ξ′k ∈ Tight0(C; sk) and

a contact structure ξ′′k ∈ Tightmin(T2 × [0, 1]; s , sk) such that ξ is isotopic to ξ′k ∪ ξ
′′
k under the

natural identification C � C ∪ (T2 × [0, 1]). Also, the contact structures ξ′k have the property that
any convex torus in C parallel to the boundary has dividing slope sk .

Remark 6.3. Notice that if s is an integer larger than pq then s < (sa
k , sk] for any k unless

s � |pq | − |p | − |q |. Thus all such integer values of s , |pq | − |p | − |q | are in the first case of
the lemma.

Proof. As in the positive case, if there is a 0-twisting vertical Legendrian in (C, ξ), then
we have the desired splitting. So we assume there is no 0-twisting vertical Legendrian
in (C, ξ). As in the proof of Lemma 6.1 we can take V1 and V2 to be neighborhoods of
Legendrian knots with very negative Thurston-Bennequin invariant and then consider the
annulus A in C between V1 and V2. We can make A convex and if the dividing curves on A
do not all run from one boundary component to the other, we may attach a bypass to ∂V1
or ∂V2. As argued in Lemma 6.1, we know that the dividing slope of ∂V1 is less than q/p
and of the form

• (1, n) for n ≤ bq/pc,
• (m1 , n1) where (m1 , n1) is in the shortest path from bq/pc clockwise to q/p in the

Farey graph.
The dividing curves of ∂V2 are greater than q/p but less than zero and of the form
• (m , 1) for m ≤ −1,
• (m2 , n2)where (m2 , n2) is in the shortest path from q/p clockwise to −1 in the Farey

graph.
When the dividing curves on A all run from one boundary component to the other, we

have three cases to consider.
Case 1. |pn − q| � |p − qm|. We must have that pn − q � p − qm, since both the right and
left-hand sides are negative. The solutions are m � −pk + 1 and n � qk + 1 for k ≥ 1. Now
change the coordinates using φ and we have (m , 1) 7→ (−pq′k − p′ + q′, pqk + p − q) and
(1, n) 7→ (−p′qk − p′ + q′, pqk + p − q). Now we round the edges of C′ � V1 ∪ N(A) ∪ V2
and its dividing slope will be

pqk + p − q
(−pq′k − p′ + q′) − (−p′qk − p′ + q′) + 1

�
pqk + p − q
−k + 1

and there will be 2 gcd(pqk + p − q , k − 1) dividing curves. Now using ψ−1 we can express
the slope under the Seifert coordinates C1; (−k + 1, pqk + p − q) 7→ (−k + 1, pq + p − q).
Relabel k − 1 as k, we have

−pq − p + q
k

�
|pq | − |p | − |q |

k
for k ≥ 0. If gcd(|pq | − |p | − |q |, k) � 1, we can identify ξ |C′ with an element of Tight0(C; sk).
The argument in of [18, Lemma 3.3] shows that any convex torus in C′ that is parallel to
∂C′ is contact isotopic to ∂C′ when gcd(|pq | − |p | − |q |, k) � 1. Now C \ C′ is T2 × [0, 1] and
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ξ on this thickened torus is an element of Tightmin(T2 × [0, 1]; s , sk). If s < (sa
k , sk], then as

shown in [18, Proposition 3.10], we may find bypasses for ∂V1 or ∂V2. We can continue to
thicken these tori until we again have the annulus A having no bypasses. In which case
we will be in Case 1, 2, or 3 again, but if in Case 1, the new dividing slope sk′ on ∂C′will be
larger than sk . We may continue as above, until either s ∈ (sa

k , sk], and we have a splitting
as in the theorem, or we are in Case 2 or 3.

If gcd(|pq | − |p | − |q |, k) > 1, ∂C′ will have more than two dividing curves. Then as
indicated in [18, Remark 3.8] and since ∂C has less dividing curves, we can thicken V1 and
V2 and as above come back to Case 1, 2, or 3 and eventually find the desired splitting.

We note that the contact structure on C obtained from taking a standard neighborhoods
V1 and V2 of knots with Thurston-Bennequin invariants −pk − 1 and −qk − 1 by attaching
an I invariant neighborhood N(A) of A will be a tight contact structure ξ′k such that any
convex torus in C parallel to the boundary has dividing slope sk . This follows an argument
identical to that of the proof of [18, Lemma 3.3].
Case 2. |q − pn| � |pn2 − qm2 | or |qm1 − pn1 | � |p − qm|. As in the proof of Lemma 6.1,
we can see there are no solutions to these equations.
Case 3. |qm1 − pn1 | � | − qm2 + pn2 |. As in the proof of Lemma 6.1, we can see that the
only solution is (m1 , n1) � (p′′, q′′) and (m2 , n2) � (p′, q′) and the boundary of V1∪N(A)∪V2
has 2 dividing curves with slope∞ after edge rounding. �

We will need to know more about the exceptional contact structures ξ′k ∈ Tight0(C, sk)
from Lemma 6.2.

Lemma 6.4. The contact structures ξ′k ∈ Tight0(C, sk) from Lemma 6.2 are universally tight and
remain so after gluing any amount of convex Giroux torsion on T2 × [0, 1] to (C, ξ′k).
Proof. To prove ξ′k is universally tight, we recall the proof of [18, Lemma 3.3]. This lemma
is about positive torus knots, but the same argument works for negative torus knots. First,
C has a |pq |-fold cover C̃ unwrapping the meridian |pq |-times which is diffeomorphic to
S1 × Σ where Σ is a Seifert surface for the (p , q)–torus knot. Using the similar argument in
[18, Lemma 3.3], one can show that the pullback contact structure ξ̃k on C̃ can be isotoped
so that the S1–fibers are all Legendrian with the twisting number (pq(k+1)+p−q) (relative
to the framing on the fibers coming from the product structure S1 × Σ).

Now one can show that any Legendrian knot in (C̃, ξ̃k) which is smoothly isotopic to a
S1–fiber of S1 × Σmust have the twisting number less than or equal to (pq(k + 1) + p − q).
This of course implies that the contact structure on C̃ is tight (recall if a contact structure
is overtwisted, there is no upper bound on the twisting number of any smooth knot type).
Any further finite cover of C̃ will be diffeomorphic to S1 × Σ′ for some surface Σ′ and the
S1–fibers can all be made to be Legendrian with some fixed twisting number. Thus we see
that they will also have to be tight. Since any finite cover of (C̃, ξ̃k) is tight, we see that
(C, ξ′k)must be universally tight.

We now show that (C, ξ′k) remains tight after one adds convex Giroux torsion. To this
end, let (C+ , ξ) be the contact structure on the complement of the maximal Thurston-
Bennequin invariant representative of Legendrian (p , |q |)–torus knot in (S3 , ξstd). Then
(C+ , ξ) is universally tight and it remains tight after convex Giroux torsion is added, see
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[22]. Moreover, its |pq |-fold cover C̃+ � S1 × Σ is also foliated by Legendrian curves with
twisting −(p + |q |). There is a further cover of C̃+ and C̃ such that they are both S1 × Σ
and both foliated by Legendrian curves with the same twisting number. This implies that
the contact structures on this common cover are isotopic (notice that one may cut S1 × Σ
open along some annuli to get a contact structure on a solid torus with a unique contact
structure, see the proof of [18, Lemma 3.3]). Now if one adds a basic slice to (C, ξ′k) and
an appropriate contact structure on T2 × [0, 1] to (C+ , ξ), then when pulled back to the
common cover, the contact structures will again be the same and hence (C, ξ′k)with a basic
slice attached will be universally tight. Since a basic slice is rotative, we can apply [38,
Theorem 4.7]) and say that adding convex Giroux torsion to (C, ξ′k) results in a universally
tight contact structure. �

Lemma 6.5. If L is a non-loose Legendrian (p , q)–torus knot in an overtwisted contact structure
on S3 with tb(L) < pq then L destabilizes.

Proof. The contact structure on the complement C � S3 \ N(L) will be in Tighti(C; tb(L))
for i ≥ 0. If i > 0, we can clearly destabilize L. (Recall, from the point of view of the
knot complement, a Legendrian knot destabilizes if you can find a convex torus parallel
to the boundary of the knot complement with dividing slope one larger than the tb of
the knot that separates off a basic slice from the complement.) If i � 0, a destabilization
of L would correspond to finding C′ ⊂ C, which is diffeomorphic to C such that ∂C′

is convex with dividing slope tb(L) + 1. If there is a 0-twisting vertical Legendrian in
C, we can clearly find such C′. Assume there is no 0-twisting vertical Legendrian in C.
For negative torus knots, the argument in the proof of Lemmas 6.2 shows that all contact
structures in Tight0(C; tb(L)) contain (C′, ξ′) or (C′, ξ′k), and the dividing slope of ∂C′ is∞
or sk > pq. For positive torus knots, the same argument in the proof of Lemma 6.1 works
and all contact structures in Tight0(C; tb(L)) contains some C′, whose boundary slope is∞
or sk < pq. It is known that all of these contact structures with boundary slope sk exist in
(S3 , ξstd), see [18, Section 3.1], and hence are not of concern. �

Lemma 6.6. Let n(p , q) be the number of tight contact structures on L(p ,−q)#L(q ,−p) and C the
complement of the (p , q)–torus knot. Then we have��Tight0(C;∞)

�� � n(p , q).

Proof. Recall that our model for C from Section 6.1 is V1 ∪ N(A) ∪ V2, that is the union of
two solid tori V1 and V2 and a neighborhood N(A) � A × [−1, 1] of an annulus. In the
proofs of Lemmas 6.1 and 6.2, we saw that any contact structure ξ ∈ Tight0(C,∞) either

(1) contains a 0-twisting vertical Legendrian curve, or
(2) pq > 0 and there is a subset C′ of C diffeomorphic to C such that C \ C′ is T2 ×
[0, 1], ξ |C′ is in Tight0(C, sk) and ξ |T2×[0,1] is in Tightmin(T2 × [0, 1];∞, sk) where
sk � (pq − p − q)/k and gcd(k , pq − p − q) � 1, and similarly for pq < 0, or

(3) ξ |V1 ∈ Tight(V1 , (q/p)a), ξ |V2 ∈ Tight(V2 , (q/p)c), and on N(A) is an I-invariant
neighborhood of a convex annulus A with two dividing curves.

Given ξ ∈ Tight0(C;∞), suppose that there exists a 0-twisting vertical Legendrian curve
in C. Then there is a copy C′ of C sitting inside C such that C \ C′ � T2 × [0, 1], ξ |C′ ∈
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Tight0(C; pq), and ξT2×[0,1] ∈ Tightmin(T2 × [0, 1];∞, pq). If all convex tori in C′ parallel to
the boundary have dividing slope pq, then ξ is overtwisted by Remark 6.14 below. If ξ |C′
contains tori parallel to the boundary with slopes different from pq, then by Lemmas 6.1
and 6.2, it contains C′′ with ∂C′′ having dividing slope ∞. Thus C \ C′′ will be a convex
Giroux torsion layer. That is ξ is not in Tight0(C;∞). So we know that (C, ξ) does not
contain a 0-twisting vertical Legendrian curve.

Now suppose that ξ is of the form given in Item (2), we will show that it is also of the
form given in Item (3) so that we will know that all ξ ∈ Tight0(C;∞) are of the form given
in Item (3). To this end we recall that there is an annulus A′ in C with boundary slope pq
curves on ∂C, such that if we remove a neighborhood of A′ from C we are left with V1 and
V2, see Section 6.1. We can assume the ruling curves on ∂C are pq curves and ∂A′ consists
of two ruling curves. Since the dividing slope of ∂C is ∞ we know that each component
of ∂A′ intersects the dividing set twice. Note that when we make A′ convex it must have
two dividing curves that each run from one boundary component to the other, since if not
we could Legendrian realize the core curve of A′ giving a 0-twisting vertical Legendrian
curve in C but we have already ruled this out above. Now consider cutting C along A′ and
rounding corners. The result will be the solid tori V1 and V2. Notice that the pq curve on
∂C with respect to the coordinate system C1 will become the q/p curve on V1 and V2 with
respect to the coordinate system F1; moreover, we know the dividing curves will intersect
the q/p curves at most two times. In fact, it must be two times, since if not we again could
Legendrian realize a 0-twisting vertical Legendrian curve in C. Thus we know that the
slope of the dividing curves has an edge in the Farey graph to the (p , q)-curve. We claim
that we can assume that the slope on ∂V1 is (q/p)a and on ∂V2 is (q/p)c . To see this suppose
that the slope is r on ∂V1, then inside of V1 we can realize tori with dividing slopes larger
than −∞ and less than r. Thus there is a torus in V1 parallel to the boundary with dividing
slope (q/p)a . Similarly we can take the dividing slope on ∂V2 to be (q/p)c . Now consider
the convex annulus A used in the proof of Lemma 6.1 that connects ∂V1 to ∂V2. We know
that the dividing curves on A must run from one boundary component to the other or else
we could Legendrian realized the core curve of A giving a 0-twisting vertical Legendrian
curve in C which we have ruled out above. Thus as in the proof of Case 3 in the proof of
Lemma 6.1 we see that the boundary of C′ � V1 ∪N(A) ∪V2 is convex with dividing slope
∞ and C \ C′ must be an I invariant contact structure on T2 × I.

So all the contact structures ξ ∈ Tight0(C;∞) are as described in Item (3). Thus the num-
ber of contact structures on Tight0(C;∞) is bounded above by the number of tight contact
structures on (V1; (q/p)a) times the number of tight contact structures on (V2; (q/p)c). Recall
that when discussing slopes on ∂V1 or ∂V2 we are using longitude-meridian coordinates
coming from V1 and as such V1 has lower meridian −∞ and V2 has upper meridian 0 (see
Section 2.2 for terminology). Thus as noted in Remark 2.8 we know

| Tight(Lq/p
∞ )| � | Tight(S∞; (q/p)a)| and | Tight(L0

q/p)| � | Tight(S0; (q/p)c)|.

From Section 2.2 we also know that L0
q/p � L(q ,−p) and Lq/p

∞ � L(p ,−q). Thus we see that

n(p , q) � | Tight(S∞; (q/p)a)| · | Tight(S0; (q/p)c)|
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is an upper bound on the number of contact structures on Tight0(C;∞).
We now show that n(p , q) is also a lower bound on the number of contact structures.

To this end we first consider a topological Dehn filling. That is if we glue a solid torus
S to C so that the meridian goes to a pq curve on ∂C then the result is L(p ,−q)#L(q ,−p).
The reason for this is that one can use two meridian disks in S to cap off the boundary
components of A′ to get a 2-sphere that will divide the resulting manifold into two pieces.
Once piece V′1 is V1 with a 2–handle h1 attached along the q/p curve and the other V′2 is V2
with a 2–handle attached h2 to V2 along the q/p curve (notice S minus the two meridian
disks can be thought of as two 2–handles, h1 ∪ h2). Now if one glues a 3-ball to each of
these pieces one gets the claimed lens spaces.

Now we return to contact geometry. Given a contact structure η ∈ Tight(V1 , (q/p)a)
and η′ ∈ Tight(V2 , (q/p)c) we can connect them with an I invariant contact structure on
N(A) � A × I to get a contact structure on C. We first show this is indeed tight. To this
end we Dehn fill C with the solid torus S as above. Notice that the solid torus glued in has
meridional slope pq and we are gluing it to a convex torus with dividing slope ∞. Thus
there is a unique tight contact structure on S with these boundary conditions. We claim this
contact structure on L(p ,−q)#L(q ,−p) is tight, and hence the one on C must have been too.
To see this notice that each of the 2-handles h1 and h2 can be thought of an an I-invariant
neighborhood of a meridian disk. So gluing a tight 3-ball to V′1 � V1 ∪ h1 is the same as
gluing a tight solid torus to V1 so that its meridian goes to the q/p curve, in other words
one gets the tight contact structure on L(p ,−q) determined by the path in the Farey graph
corresponding the the path determined by the contact structure η on V1. Similarly we get a
tight structure on L(q ,−p) determined by η′. Thus the contact structure on the Dehn filling
of C is indeed a tight contact structure on L(p ,−q)#L(q ,−p). Colin [4] showed there is a
one to one correspondence between tight contact structures on M1#M2 and pairs of contact
structures, one on M1 and one on M2. Thus the lower bound is n(p , q). �

Lemma 6.7. Let n(p , q) be the number of tight contact structures on L(p ,−q)#L(q ,−p) then for
the complement C of the (p , q)–torus knot and any integer n > pq, we have

| Tight0(C; n)| � 2n(p , q),
unless pq < 0 and n � |pq | − |p | − |q |, in which case we have

| Tight0(C; n)| � 2n(p , q) + 1.

Proof. We begin with positive (p , q)–torus knots. By Lemma 6.1 and the proof of Lemma 6.6
we know that for any n > pq and ξ ∈ Tight0(C; n) there is a subset C′ of C diffeomorphic
to C such that ξ |C′ ∈ Tight0(C;∞) and C \ C′ is T2 × [0, 1] and ξ |T2×[0,1] ∈ Tightmin(T2 ×
[0, 1]; n ,∞). Since Tightmin(T2 × [0, 1]; n ,∞) contains exactly two elements we see that an
upper bound on | Tight0(C; n)| is 2n(p , q).

We now show that the obvious map

Tight0(C;∞) × Tightmin(T2 × [1, 2]; n ,∞) → Tight0(C; n)
is injective and thus | Tight0(C; n)| � 2n(p , q). We first show that it is well defined, that
is given η ∈ Tight0(C;∞) and ζ ∈ Tightmin(T2 × [1, 2]; n ,∞) the contact structure η ∪ ζ
on C � C ∪ (T2 × [0, 1]) is in Tight0(C; n). Suppose that ζ is a positive basic slice. Recall



66 JOHN B. ETNYRE, HYUNKI MIN, AND ANUBHAV MUKHERJEE

in the proof of Lemma 6.6 we showed that the result of gluing a solid torus S to (C, η)
with meridional slope pq and extended η by the unique tight contact structure on S, was a
tight contact structure on L(p ,−q)#L(q ,−p). Notice that S is a standard neighborhood of a
Legendrian knot L in L(p ,−q)#L(q ,−p). If we stabilize L positively and let S′ be a standard
neighborhood of that knot, then S \ S′ is a positive basic slice ζ′ ∈ Tightmin(T2 × [0, 2]; pq +

1,∞). We may find a convex torus T � T2 × {1} in S \ S′ with two dividing curves of
slope n and this torus splits ζ′ into a ζ on T2 × [1, 2] and some other contact structure on
T2 × [0, 1]. Thus we see that η ∪ ζ is sitting in the contact Dehn filling of (C, η) which is
tight. Thus η ∪ ζ is tight. To see that it is actually in Tight0(C; n) we note that it cannot
contain a convex torus parallel to the boundary with dividing slope pq or else the contact
structure on L(p ,−q)#L(q ,−p) would not be tight. If ζ were a negative basic slice then we
could similarly show η ∪ ζ is in Tight0(C; n) by negatively stabilizing L.

To see that the above map is injective, we take η and η′ in Tight0(C;∞) and ζ and ζ′

are the two distinct elements in Tightmin(T2 × [1, 2]; n ,∞), say the first is the positive basic
slice and the second the negative one. We first note that η ∪ ζ and η′ ∪ ζ′ must be distinct
for any two η and η′ (even if they are the same). To do this we consider Dehn filling
C ∪ (T2 × [1, 2]) by a solid torus S′′ with meridional slope pq. When n > pq + 1, there are
two ways we can extend the contact structures over the added torus as a universally tight
contact structure (there is a unique contact structure on S′′when n � pq+1, we will discuss
this case below). One will have a positive basic slices ξ and the other will have all negative
ones ξ′. Suppose we choose the one with all positive basic slices, then on (T2 × [0, 1]) ∪ S′′

the contact structure ζ∪ ξ is tight and ζ′∪ ξ is overtwisted. But ζ∪ ξ is simply the unique
tight contact structure on the solid torus S from the previous paragraph. That is η ∪ ζ ∪ ξ
is a tight contact structure on C ∪ (T2 × [0, 1]) ∪ S′′ � L(p ,−q)#L(q ,−p) while η′ ∪ ζ′ ∪ ξ is
overtwisted. Thus η ∪ ζ and η′ ∪ ζ′ are distinct.

We are left to see that if η∪ ζ is isotopic to η′∪ ζ then η is isotopic to η′ (and similarly for
ζ′). This is clear since gluing S′′ with the contact structure ξ will result in the same contact
structures on L(p ,−q)#L(q ,−p) and these will also be the result of Dehn filling (C, η) and
(C, η′). From the proof of Lemma 6.6 we know that this implies η is isotopic to η′. (Notice
this argument also works when n � pq + 1.)

We must now see that η ∪ ζ and η ∪ ζ′ are not isotopic when n � pq + 1. This follows as
the relative Euler classes of these two contact structures evaluate differently on a Σ where
Σ is a minimal genus Seifert surface for the (p , q)–torus knot in C.

We now turn to the case of negative torus knots −q > p > 0. If n , |pq | − |p | − |q | then
the argument is identical to the above argument using Lemma 6.2, the proof of Lemma 6.6,
and Remark 6.3. When n � |pq | − |p | − |q | then we get the upper bound of 2n(p , q) + 1
since Lemma 6.2 gave an extra contact structure on this case. From Lemma 6.2 we know
that this extra contact structure ξ is tight and any convex torus parallel to the boundary
of C has dividing slope n. Thus ξ ∈ Tight0(C; n) and it is distinct from the other contact
structures since they all contain convex tori parallel to the boundary with dividing slope
∞. �
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Before our next result we establish some notation:

L(p , q) � {Legendrian realizations of (p , q)–torus knot with tb � pq in some contact

structure on S3 whose complement is tight without convex Giroux torsion}.

Lemma 6.8. Let m(p , q) � |Ti ght(S1 × D2; p/q)| · | Tight(S1 × D2; q/p)|. Then

|L(p , q)| � m(p , q).

Proof. We will try to understand contact structures on Tight0(C; pq). While we will not
quite get a classification of these, we will come close enough to identify all Legendrian
realizations of (p , q)–torus knots.

Recall from Section 6.1 that we can take V1 ∪ (S1 × P) ∪ V2 as a model for C and we will
use the notation established there for ∂(S1 × P) � T1 ∪ T2 ∪ T3 and the coordinates on the
Ti discussed there as well.

Since any ξ ∈ Tight0(C; pq) has dividing curves of slope pq on ∂C, we know they are
isotopic to S1 × {pt} ⊂ S1 × P. We can then use convex annuli between ∂C and ∂Vi to
thicken the solid tori Vi until they have dividing slope q/p.

The contact structure ξ on S1 × P has dividing curves on all boundary components
isotopic to the S1–fibers. We can make the ruling curves have ∞ slope and arrange them
for ∂P � {θ} × ∂P to be ruling curves and then make P convex. According to Lemma 2.21,
there is a unique contact structure on S1 × P up to isotopy (not fixing the boundary point-
wise). But notice that when V1 and V2 are glued back into S1 × P, the fact that the isotopy
did not fix T1 or T2 is irrelevant because the rotation of these Ti can be extended to the
interior by rotating the Vi’s. So the contact structure on C is uniquely determined, up to
isotopy (not fixing the boundary of C point-wise) by the contact structures on V1 and V2.
Now notice that when the neighborhood N of the (p , q)–torus knot is glued to ∂C, we
again do not need to be concerned about the fact that the classification above allowed ∂C
to move.

Thus when studying contact structures on C that come from the complement of non-
loose Legendrian (p , q)–torus knots, there is a unique tight contact structure on S1 × P that
we need to consider and a model for it comes from taking a neighborhood T2 × [0, 1] of a
convex torus with two dividing curves of slope q/p and then remove a neighborhood N
of a dividing curve on T2 × {1/2}. Now gluing V1 and V2 into this model, we see that an
upper bound on |L(p , q)| comes from the number of tight contact structures on V1 and V2.
Since the dividing slope on ∂V1 � ∂V2 is q/p we see that | Tight(V1)| � | Tight(S∞; q/p)| �
Tight(S1 × D2; q/p)| and | Tight(V2)| � | Tight(S0; q/p)| � | Tight(S1 × D2; p/q)| (see Sec-
tion 2.2 for notation about upper and lower meridians). This shows that m(p , q) is the
upper bound of |L(p , q)|. Now we will describe all the possible elements in L(p , q) and
find the lower bound.
Construction of contact structures on Tight0(C; pq). Consider a decorated Farey graph
(P1 , P2) representing q/p (see Section 2.3). Recall that the union of P1 ∪ P2 gives a contact
structure ξP1 ,P2 on S3 (it might or might not be the tight) and inside of it there is a convex
torus T with dividing slope q/p. Let LP1 ,P2 be a Legendrian divide on T. Below we will
show that LP1 ,P2 is in L(p , q) and all elements of L(p , q) can be constructed in this manner.
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We now claim that all of these Legendrian knots are indeed in L(p , q), that is the com-
plement of LP1 ,P2 is tight and has no convex Giroux torsion. This will follow by showing
that Legendrian surgery on LP1 ,P2 results in a tight contact structure. To see this, recall that
any LP1 ,P2 can be realized as a Legendrian knot shown in Figure 2, see Section 2.4. The
Legendrian surgery on LP1 ,P2 cancel one of the (+1)–surgery components and we obtain a
tight contact structure. From Lemma 2.20, we know that LP1 ,P2 and LP′1 ,P

′
2

have different
rotation numbers and thus are not Legendrian isotopic if (P1 , P2) , (P′1 , P

′
2). This gives the

lower bound of |L(p , q)| and completes the proof. �

Remark 6.9. The non-looseness of the knots in Lemma 6.8 is seen by showing that Legen-
drian surgery on them is tight, but we note that the proof of Proposition 7.5 can also be
applied here to show non-looseness using convex surfaces and state transition.

Referring to the construction of contact structure on Tight0(C; pq) above, each one will
be of the form ξP1 ,P2 where P1 is a minimal path in the Farey graph that goes from ∞
clockwise to q/p and decorate it so that it represents an element in Tight(S∞; q/p) and P2
is a minimal path from q/p clockwise to 0 and decorate it so that it represents an element
in Tight(S0; q/p). Recall from Section 2.3 that (A1 ,A3 , ...,A2n−1) and (B2 , B4 , ..., B2m) are the
subdivisions of P1 and P2 into continued fraction blocks, respectively (there is a similar
discussion when the indexing of the Bi is odd and the A j is even). Suppose i is even (odd
will be similar). We will call the paths P1 and P2 i-consistent if the signs of the decorations
on the paths in A1 , B2 , ...,Ai−1 , Bi are all the same and we call the paths i-inconsistent if
(P1 , P2) is (i − 1)-consistent but not i-consistent. If every decoration of (A1 ,A3 , ...,Ai−1) has
the same sign and every decoration of (B2 , ..., Bi) has the opposite sign, then the paths are
called totally i-inconsistent.

Lemma 6.10. Let ξ′P1 ,P2
∈ Tight0(C; pq) be the complement of LP1 ,P2 . In ξ′P1 ,P2

, all convex tori
parallel to ∂C have slope pq if and only if P1 and P2 are 2-consistent. Moreover, if P1 and P2 are
2-inconsistent, then there is a subset C′ of C that is isotopic to C and (ξ′P1 ,P2

)|C′ ∈ Tight0(C;∞).

Remark 6.11. Notice that by the proof of Lemma 6.6 any element in Tight0(C;∞) is de-
scribed by a pair of paths P′1 , P

′
2 where P′1 is a path from (q/p)a anti-clockwise to∞ and P′2

is a path from (q/p)c clockwise to 0. One can extend P′i to start at q/p and then add a ±
sign to one and a ∓ to the other edges added. This will result in two different 2-inconsistent
paths corresponding to the element in Tight0(C;∞) that give two elements in Tight0(C; pq)
described by 2-inconsistent paths. This observation, coupled with the above lemma im-
plies that the number of 2-inconsistent elements in Tight0(C; pq) is 2| Tight0(C,∞)|.

Proof. We first show that if P1 and P2 are 2-inconsistent, then we can find C′ such that
(ξ′P1 ,P2

)|C′ ∈ Tight0(C;∞). As discussed in Section 6.1 we write C as V1 ∪ (S1 × P) ∪ V2 and
use the notation there for ∂(S1×P) � T1∪T2∪T3 and the coordinates on the Ti given there
as well.

We can arrange that the ∂Vi are convex and the slope of the dividing curves on ∂V1 is
(q/p)a and the slope on ∂V2 is (q/p)c . Using the coordinates on Ti � ∂Vi coming from S1×P,
we see that the slope of the dividing curves on T1 , T2 , and T3 is −1,∞, and 0, respectively.
Moreover, there are convex tori T′i in S1×P parallel to Ti with dividing slope 0, for i � 1, 2.
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The thickened tori Ni cobounded by Ti and T′i are basic slices. Because the paths P1 and
P2 are 2-inconsistent, we know we can arrange these basic slices to have the same sign. To
see this, notice that Pi describes a contact structure on Vi and we took the outermost basic
slice and added it to S1 × P. By assumption we can arrange that the outermost basic slices
of V1 and V2 have opposite signs, but recall the contact structure on V2 is described as an
element of Tight(S0; q/p). Thus this outermost basic slice, when oriented as a basic slice
in S1 × P, has the same sign as the one coming from V1. Now Lemma 2.22 says there is a
convex annulus A going from a 0 slope ruling curve on T1 to a ruling curve on T2 that has
dividing curves running from one boundary component to the other. As in the proof of
Lemma 6.1, if we round the corners of T1∪T2∪N(A), the convex torus T � ∂(T1∪T2∪N(A))
will have dividing curves with∞ slope. The torus T is parallel to T3 � ∂C and again as in
the proof of Lemma 6.1, the dividing slope of T in Seifert coordinates is still∞. Thus T and
T3 cobound a thickened torus N that is a basic slice. So ξP1 ,P2 can be written as the union
of a contact structure on Tight0(C;∞) and a basic slice in Tight0(T2 × [0, 1]; pq ,∞).

By the proof of Lemma 6.6 we know that if there is a subset C′ of C such that (ξ′P1 ,P2
)|C′ ∈

Tight0(C;∞), then (ξ′P1 ,P2
)|C′ will be as described in the previous paragraph and hence P1

and P2 will be 2-inconsistent. Now the proof of Lemma 6.1 shows that for pq > 0, if ξP1 ,P2 is
a contact structure on Tight0(C; pq) and there is a torus T parallel to ∂C with slope different
from pq then there will be a subset C′ of C such that (ξ′P1 ,P2

)|C′ ∈ Tight0(C;∞) (since if T
has slope different from pq, then we can assume it has slope slightly larger than pq). Thus
P1 and P2 are 2-inconsistent. If pq < 0, then Lemma 6.2 says if ξ′P1 ,P2

is a contact structure
on Tight0(C; pq) and there is a torus T parallel to ∂C with slope different from pq then
either there will be a subset C′ of C such that (ξ′P1 ,P2

)|C′ ∈ Tight0(C;∞), or there will be a
subset C′′ that is isotopic to C and ∂C′′ is convex with dividing slope |pq | − |p | − |q |. In the
latter case, in C \ C′′ we can find a convex torus T with dividing slope |pq | − |p | − |q | − 1
and Proposition 7.22 below says that inside the component of C \ T that is not a thickened
torus, we can find a subset C′ such that (ξ′P1 ,P2

)|C′ ∈ Tight0(C;∞). So in either case, we
see again that P1 and P2 are 2-inconsistent. Thus we have that in ξP1 ,P2 there is a convex
torus parallel to ∂C have slope different from pq if and only if P1 and P2 are 2-inconsistent;
moreover, in this case there is a subset C′ of C such that (ξ′P1 ,P2

)|C′ ∈ Tight0(C;∞). �

We can also see that for almost all contact structures in Tight0(C;∞) any convex tori
parallel to ∂C will have dividing slope∞.

Lemma 6.12. If pq < 0, then for any contact structure on Tight0(C;∞), any convex torus parallel
to ∂C will have dividing slope ∞. If pq > 0, the same is true for all contact structures but two.
These contact structures are obtained from the complement of a standard neighborhood of Legen-
drian (p , q)–torus knots with maximal Thurston-Bennequin invariant in (S3 , ξstd) by adding a ±
basic slice in Tight0(T2 × [0, 1];∞, pq − p − q).

For context we recall that there is a unique maximal Thurston-Bennequin invariant Leg-
endrian (p , q)–torus knots when pq > 0, see [16].

Proof. Suppose pq < 0 and ξ ∈ Tight0(C,∞). If there is a convex torus in (C, ξ) parallel to
the boundary that has dividing slope s different from ∞ then it separates off a T2 × [0, 1]
where the contact structure rotates from ∞ to s, so there will be a convex torus parallel
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to ∂C with dividing slope n for some negative integer n. Now according to Lemmas 6.2
and 6.5 if n , |pq |− |p |− |q |, then there is another torus T that is parallel to ∂C, has dividing
slope ∞ or pq. If the slope of T is ∞, then T separates off T2 × [0, 1] that is a convex half
Giroux torsion layer, contradicting the fact that ξ ∈ Tight0(C,∞).

If the slope of T is pq, then by Lemma 6.10 it may happen that all convex tori fur-
ther from ∂C than T will have dividing slope pq. This happens when T separates C into
T2 × [0, 1] and C′ where ξ |C′ is in Tight0(C; pq) and corresponds to a pair of 2-consistent
decorated paths P1 , P2. In particular, ξ |′C is ξ′P1 ,P2

, which is the complement of LP1 ,P2 ⊂
(S3 , ξP1 ,P2). Thus (C, ξ) is the union of a basic slice in Tight(T2×[0, 1];∞, pq) and (C′, ξ′P1 ,P2

)
and by Lemma 6.13, ξ is overtwisted, contradicting that ξ ∈ Tight0(C,∞).

Now if pq > 0 and ξ ∈ Tight0(C,∞), then we can argue as above, using Lemmas 6.1
and 6.5, and see that if there are convex tori in C parallel to ∂C with slope different from∞
then there is one T with slope pq − p − q. In this case T separates C into T2 × [0, 1] and C′.
The contact structure restricted to the former space is simply a bypass with dividing slopes
∞ and pq − p − q. According to Case 1 of the proof of Lemmas 6.1 and [18, Section 3.1]
we see that ξ |C′ is simply the complement of the unique maximal Thurston-Bennequin
Legendrian representative L of the (p , q)–torus knot in (S3 , ξstd).

We now know the only possibilities for (C, ξ) to have a convex torus of slope different
from ∞, but need to prove that the contact structure described above is indeed tight and
so in Tight0(C;∞). But this was already proven in [22, Lemma 3.1]. �

The next two lemmas will show that 2-inconsistency also controls when one may attach
certain basic slices to a contact structure in Tight0(C; pq) and get a tight contact structure.

Lemma 6.13. Let ξ′P1 ,P2
be a contact structure on Tight0(C; pq) such that P1 and P2 are not totally

2-inconsistent. Gluing any basic slice in Tight0(T2 × [0, 1];∞, pq) to (C, ξ′P1 ,P2
) will result in an

overtwisted contact structure.

Remark 6.14. Note that Lemmas 6.10 and 6.13 show that if a contact structure in Tight0(C; pq)
has all convex tori parallel to ∂C having dividing slope pq, then adding a basic slice in
Tight0(T2 × [0, 1];∞, pq) to C will yield an overtwisted contact structure.

Proof. Let ξ be the contact structure on C resulting from gluing any basic slice in Tight0(T2×
[0, 1];∞, pq) to ξP1 ,P2 . We can decompose C as two solid tori V1 and V2 and S1 × P as in
Section 6.1 and arrange that the dividing slope of ∂V1 � T1 , ∂V2 � T2 , and ∂C � T3 is
(q/p)a , (q/p)c , and∞, respectively. Using the coordinates on Ti coming from S1×P, we see
the dividing slope on T1 , T2 , and T3 is −1,∞, and ∞, respectively. Now there is a convex
torus T′i in S1 × P parallel to Ti that has dividing slope 0. Let Ni be the thickened tori that
Ti and T′i cobound and set S1×P′ � (S1×P) \∪3

i�1Ni . Notice that ξ |N3 is the basic slice that
was added to ξP1 ,P2 . By the hypothesis that P1 and P2 are not totally 2-inconsistent paths,
we know that N1 and N2 can be taken to be basic slices with different signs, so one of them
has the same sign as N3 (recall, as in the proof of Lemma 6.10, a basic slice as seen in V2
has the opposite sign when seen as a basis slice in S1 × P).

Suppose that N1 and N3 have the same sign. By Lemma 2.22 we know that there is a
convex annulus A with boundary 0 sloped ruling curves on T1 and T3 and the dividing
curves on A run from one boundary component to the other. If we now cut (S1×P′)∪N1∪
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N2∪N3 along this annulus we will obtain T2×[0, 1]with one boundary component T2 and
the other boundary component having dividing slope

1
1 + 0 − 1

� ∞.

Since N2 contains a 0-twisting vertical Legendrian curve, T2×[0, 1] is a convex half Giroux
torsion layer and the union of this and V2 (which is contained in (C, ξ)) is overtwisted.

Similarly if N2 and N3 have the same sign then we write N2 as the union of two basic
slices N′2 and N′′2 where N′2 had dividing slopes −1 and 0. Now Lemma 2.22 again implies
the existence of a 0 sloped convex annulus A between T3 and one boundary component of
N′2 with dividing slope −1. The dividing curves on A run from one boundary component
to the other. As N′′2 has a similar annulus we can extend A to an annulus in (S1 ×P) ∪N1 ∪
N2∪N3 between T2 to T3. If we now cut (S1×P′)∪N1∪N2∪N3 along this annulus we will
obtain T2 × [0, 1] with one boundary component T1 and the other boundary component
having dividing slope

1
0 + 0 − 1

� −1

Again, this T2 × [0, 1] is a convex half Giroux torsion layer and the union of this and V1
(which is contained in (C, ξ)) is overtwisted. �

Lemma 6.15. Let (P1 , P2) be a totally 2-inconsistent pair of paths and ξ′P1 ,P2
∈ Tight0(C; pq).

Gluing one basic slice (T2 × [0, 1];∞, pq) to (C, ξ′P1 ,P2
) will result in a tight contact structure ξ

on C with ∞ dividing slope on ∂C, while gluing the other basic slice will result in an overtwisted
contact structure. Moreover, adding any amount of convex Giroux torsion to (C, ξ) will result in a
tight contact structure.

Proof. Given a contact structure ξ′P1 ,P2
as in the statement of the lemma, we know from

the proof of Lemma 6.10 that it is the union of a contact structure ξ′ ∈ Tight0(C;∞) and a
±-basic slice η± ∈ Tight0(T2 × [0, 1]; pq ,∞). Now let ζ± be the ±-basic slice in Tight0(T2 ×
[0, 1];∞, pq). Gluing ζ∓ to η± is overtwisted, we see that attaching one of the basic slices to
ξ′P1 ,P2

will result in an overtwisted contact structure. We will now see that gluing the other
results in a tight contact structure.

To be specific, suppose ξ′P1 ,P2
is the union of ξ′ and η−. We will show that gluing ζ−

and a convex Giroux torsion layer to it will result in a tight contact structure. Let ξ be the
contact structure resulting from this gluing. As usual, we consider (C, ξ) as the union of
two solid tori V1 and V2 and S1 × P. We will use the notation from Section 6.1 except that
we will use the coordinates on T1 and T2 coming from the longitude-meridian coordinates
on ∂V1 and the coordinates on T3 coming from the longitude-meridian coordinates on ∂C.
In particular, we can take the dividing curves on T1 to have slope (q/p)a , on T2 to have
slope (q/p)c and on T3 to have slope ∞. Moreover, we can thicken V1 and V2 so that the
slope of T1 and T2 become q/p, notice that in the coordinates on ∂Vi , i � 1, 2, coming from
S1 × P the slopes are 0. Honda [35, Lemma 5.1] showed that this P × I is universally tight
even after adding a universally tight rotative T2× I layer to Ti (with the correct sign). Thus
it is tight after we add convex Giroux torsion layer to T3. After we make P convex we
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obtain the dividing curves on P as shown in Figure 19 (see the proof of Lemma 7.25 how
to rule out other possibilities).

Let A′ be an annulus in S1 × P separating T1 from T2, such that the boundary is two
pq slope ruling curves on T3. See the first drawing of Figure 18. We can perturb A′ rel
boundary so that it becomes convex and the intersection between P and A′ is the Legen-
drian arc as shown in Figure 19. It is not hard to see that A′ contains 0-twisting Legendrian
curve, so we obtain two non-rotative layers N1 and N2 once we cut S1 × P along A′. By
Theorem 2.28, V̂1 :� V1 ∪ N1 and V̂2 :� V2 ∪ N2 are tight. By adding a sufficiently large
amount of convex Giroux torsion to T3, we can assume that V̂1 and V̂2 have a large number
of dividing curves.

T1 T2

T3

FIGURE 19. A dividing set on the pair of pants P. The blue arc is a Legen-
drian arc, which is the intersection of A′ and P.

Suppose (C, ξ) was not tight. Then we can smoothly isotope A′ so that it would be
disjoint from an overtwisted disk. We can then use isotopy discretization (Theorem 2.30)
to find a sequence of convex annuli A1 � A′,A2 , . . . ,An such that there is an overtwisted
disk in the complement of An and each Ai is obtained from Ai−1 by a bypass attachment.
We will inductively show that Ai is contained in an I-invariant neighborhood A × [1, 2],
where A is contact isotopic to A′ rel boundary. Then clearly C \ Ai is tight for all i and this
contradiction will establish the tightness of ξ.

Clearly A1 satisfies the inductive hypothesis. Now assume that Ai−1 satisfies the in-
ductive hypothesis. We know Ai is obtained by attaching a bypass to Ai−1. We assume
the bypass was contained in V̂ i−1

1 . The argument when the bypass is contained in V̂ i−1
2 is

almost identical, except for one issue that is discussed in Remark 6.18. By the inductive
hypothesis, Ai−1 is contained in an I-invariant neighborhood A × [1, 2]. Since A × {2} is
contact isotopic to A′ we know that C \ (A × {2}) consists of two solid tori contact isotopic
to V̂1 and V̂2, so we will think of C \ (A × {2}) as V̂1 ∪ V̂2. We know that Ai is contained in
V̂1 and Ai cuts C into two solid tori, one of them is contained in V̂1. Denote the boundary
of this solid torus by Ti . We need to find an annulus A′i inside of the solid torus bounded
by Ti and contact isotopic to A × {2}. When we do this, A′i and A × {2} will co-bound a
thickened annulus A × [1, 2] containing Ai on which the contact structure is I-invariant,
thus completing the inductive step.
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Since Ai−1 is contained in an I-invariant neighborhood A×[1, 2], the number of dividing
curves on Ai−1 is greater than or equal to the number of dividing curves on A × {2}. If the
number of dividing curves are the same, then Ai−1 and A × {2} are contact isotopic. We
claim that the number of dividing curves on Ai is also greater than or equal to the number
of dividing curves on A × {2}. To prove the claim, we only need to consider the case when
the number of dividing curves on Ai−1 is the same as the number of dividing curves on
A×{2} (since the number of dividing curves on Ai can only differ from those on Ai−1 by 2).
In this case, Ai−1 is contact isotopic to A × {2} and the torus Ti−1 is contact isotopic to ∂V̂1.
Label the dividing curves on ∂Ti−1 (and ∂V̂1) as shown in first drawing of Figure 15 (notice
that the annulus in the figure is equivalent to the horizontal annulus for V̂1 \ V1, which is
the subsurface of {θ} × P as shown in Figure 19). To proceed we note the following result
which will be established later.

Lemma 6.16. Suppose (P1 , P2) is totally 2-inconsistent. Then there exist no effective bypasses in
V̂1, except for the ones for p1.

Notice that Ai−1 contains all dividing curves of Ti−1 except for the one containing p1. By
Lemma 6.16, there is no effective bypass on Ai−1, so any bypass cannot reduce the number
of dividing curves on Ai−1 and this completes the claim. Thus the solid torus bounded by
Ti contains a solid torus V1 with two dividing curves of the same slope as the dividing
curves on Ti (which is the same slope as the dividing curves on ∂V̂1). Now V̂1 \ V1 and
V̂1 \ V1 are both non-rotative outermost layers and so by Theorem 2.27 we know that V1
and V1 are contactomorphic.

Now consider a horizontal annulus Â for the thickened torus bounded by Ti and ∂V̂1

that is isotopic to a subsurface of {θ} × P and then extend it to A, a horizontal annulus
for the thickened torus bounded by ∂V1 and ∂V̂1. We can make these annuli convex with
Legendrian boundary. By Theorem 2.26 and Lemma 6.16, the horizontal annulus A must
be disk equivalent to the horizontal annulus for V̂1\V1. Label the points where A intersects
the dividing curves on ∂V̂1 as shown in first drawing of Figure 15.

Notice that ∂V̂1 and Ti agree in a neighborhood of the dividing curve corresponding to
p1. From this we can see that the dividing set on Â does not have any bypasses for ∂V̂1.
This is because the only effective bypasses for ∂V̂1 in V̂1 are bypasses for p1, but since the
dividing curves corresponding to p1 is not moved when going from ∂V1 to Ti there is no
bypass here either. Notice this implies every dividing curve on Â that starts on Â ∩ ∂V̂1

must end on Â ∩ Ti . Now inside of A \ Â, we can find a closed curve parallel to ∂A
that intersects the dividing set the same number of times that A ∩ ∂V̂1 does. Legendrian
realize this curve and take a convex torus T parallel to Ti intersecting A in that curve. The
thickened torus between T and ∂V̂1 is an I-invariant neighborhood of ∂V̂1 containing Ti
(and hence Ai) (note this follows since both boundary components have the same number
of dividing curves and the horizontal annulus connecting them has all the dividing curves
running from one boundary component to the other). Again, since the dividing curves
corresponding to p1 is not moved when going from ∂V1 to T, we can fix the surface S �
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∂V1\A×{2} in the I-invariant neighborhood. This implies that A×{2} and T \S are contact
isotopic. This completes the inductive step. �

To prove Lemma 6.16, we need a preliminary observation. Lemma 6.16 and the follow-
ing lemma both apply to V̂2 once we use the mirror image of the first drawing in Figure 15.

Lemma 6.17. In V̂1, the only points which can have an effective bypass are p1 and pk+1. If there
exists an effective bypass for pk+1, then there exist length k − 1 nested bypasses for p1 which are
disjoint from a, possibly different, effective bypass for pk+1.

Proof. According to Theorem 2.26, any two horizontal annuli for V̂1 are disk-equivalent.
The first horizontal annulus for V̂1 is shown in Figure 19 and is obtained by cutting the pair-
of-pants along the blue Legendrian arc in the figure. So any other horizontal annulus for a
non-rotative outer layer in V̂1 will be disk equivalent to this one and all such possibilities
are shown in Figure 15. If there is an effective bypass for pi when i , 1, k + 1, then we
can attach it to reduce the number of dividing curves on ∂V̂1. We can then find further
bypasses to get a torus T with just two dividing curves of slope 0 (the same slope as the
dividing cures on ∂V̂1). Now we can find a horizontal annulus for the region between ∂V̂1
and T on which the original bypass sits. This annulus cannot be disk-equivalent to the one
for V̂1. Thus there is no effective bypass for pi when i , 1, k + 1.

Now suppose there is an effective bypass for pk+1. To find the claimed bypasses for p1

we will construct a meridian disk for V̂1 form the horizontal annulus shown in Figure 19.
To this end recall that the horizontal annulus is for the non-rotative layer V̂1 \ V1 and the
boundary of the meridian for V1 is a −p/q′ slopes curve in the coordinates on ∂P coming
from S1×P (we are using the change of coordinates φ from Section 6.1). We want to extend
this meridian to a meridian for V̂1 by using copies of the horizontal annulus H (which has
slope ∞). Smoothly we can do this by taking p copies of H, labeled H0 , . . . ,Hp−1, cutting
each of them p′ times by an arc running from one boundary component to the other and
then gluing one side of the cut on Hi to the other side of the cut on Hi+1 (with indices taken
modulo p). See the blue curves in Figure 20 (there p � 5 and p′ � 2). This will give an
annulus in V̂1 \ V1 that can be extended to a meridian disk for V̂1.

We will now perform the construction paying attention to the contact geometry. Con-
sider the torus T formed by taking the product of S1 with the blue arc on the left of Fig-
ure 15 and the black arc containing pk+1 and connecting the end points of the blue arc.
Notice that ∂V1 intersected with H is the inner circle in Figure 15 and we see that the re-
gion R bounded by T and ∂V1 is a thickened torus with an I-invariant contact structure
we denote the outer boundary component by ∂oR and the inner boundary component by
∂iR. We now take p copies of the convex horizontal annulus H shown on the left of Fig-
ure 15 and will perform the construction above, but the cutting and re-glueing of the annuli
will take place in a small neighborhood of a horizontal arc connecting pk+1 on H ∩ ∂V̂1 to
H ∩ ∂V1. In particular, we will modify our annuli in the region R where the contact struc-
ture is I-invariant. Let H′ � H ∩ R and we can assume this is a horizontal annulus for R.
In a neighborhood of the dividing curve corresponding to pk+1 the characteristic foliation
can be assumed to be as shown on the left of Figure 20
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FIGURE 20. The gray is an annular neighborhood of the dividing curve cor-
responding to pk+1, shown in red (the top and bottom of the rectangle are
identified). On the right we see the original annulus with a Legendrian di-
vide shown vertically and the horizontal curves are ruling curves. The blue
curves are the intersection of the copies of H′ with the region (they are also
ruling curves). The annulus can be isotoped relative to its boundary so the
foliation is as shown on the right hand side. Notice that the blue will now
be a single curve on ∂oR.

and the copies of H′ intersecting this region are also shown. By a small perturbation of
∂iR we can arrange the characteristic foliation to be as shown on the right of Figure 20.
Notice that the green curve (when extended to the rest of ∂oR by arcs in copies of H′∩∂oR)
is a p/p′ curve γ and can be assumed to agree with copies of H′∩∂oR outside of the region
shown in the figure. We can make this same perturbation to the torus making up the
inner boundary component of R. When we have done this to both boundary components
of R we can again assume that the contact structures is I-invariant on R and γ × I will
be an annulus. This annulus must have 2p dividing curves running from one boundary
component to the other and agrees with copies of H′ outside a small neighborhood of the
dividing curve corresponding to pk+1 times I. The copies of H′ already had 2p dividing
curves in the region where they agree with γ× I and so we can take these to be the dividing
curves on γ × I. Notice that on ∂oR we can glue copies of H \H′ to γ × I to get an annulus
Am for V̂1 \ V1 that can be extended by a meridian disk D′ for V1 to a meridian disk of V̂1.
By construction the dividing set on Am will be obtained from H taking a p-fold cover, the
dividing set on D′ will consist of p arc (of which we have no control).

A potential dividing set for the meridian disk D � Am ∪ D′ is shown in Figure 21. For
some configurations of dividing curves on D′we will immediately see a bypass for pk+1. If
this happens then we can take the bypass for pk+1 to be on this meridian disk and then the
length (k − 1) nested bypasses for p1 can be found on a parallel copy of the meridian disk.

We now suppose that there is not a bypass for pk+1 on D. By hypothesis there is an
effective bypass for pk+1 and as we did in the first paragraph of this proof, we can assume
that it is on some meridian disk for V̂1 and by sliding the boundary of this disk along
∂V̂1 we can assume that it has the same boundary os D. By the isotopy discretization
(Theorem 2.30), we obtain a sequence of disks D0 � D ,D1 , . . . ,Dn−1 ,Dn � D′ such that
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p1

p1
p1

p1

pk−1 pk−1

pk−1

pk−1

FIGURE 21. Some possible meridian disk for V̂1 constructed from horizon-
tal annuli. The shaded center region is D′. Here, p � k � 4.

Di+1 can be obtained by a single bypass attachment from Di . Then by the construction of
D, there is an integer j such that D j does not contain a non-nested bypass for pk+1 and D j+1
contains a non-nested bypass for pk+1.

Consider the maximal nested bypasses for p1. If one of these has length k − 1, then the
proof is done. This is because D j+1 is obtained from a single bypass attachment from D j ,
so we can make D j and D j+1 disjoint after perturbation. Then the bypass for pk+1 on D j+1
is disjoint from the bypasses on D j .

Recall that from the first part of the proof and our assumption that there is no bypass
for pk+1 on D j , we know that the only boundary parallel dividing curves (by which we
mean that it co-bounds with an arc in ∂D j a disk containing no other dividing curves) are
bypasses for p1. We also know from the construction of our meridian disk that there are
pk arcs in the dividing set and their end points are interlaced with the p copies of each
of the points pi . We claim that the combinatorics of arcs on a disk as described above
implies that one of the p1 must have nested bypass of length k − 1 and so the proof is
complete. To see this suppose that all of the nested bypasses for p1 on D j have length less
than k − 1. Consider a sub-disk D′j of D j such that the annulus D j \ D′j contains all of
the nested bypasses for the copies of p1 and the rest of the dividing curves just run from
one boundary component to the other. Since we are assuming all the nested bypasses for
p1 have length less than k − 1, there will still be at least 2p arc in D′j . Thus there will be a
boundary parallel arc γ on D′j . We can extend γ across the annulus D j \D′j and it will either

be boundary parallel on D j or not. If it is boundary parallel then it gives a bypass for ∂V̂1
along some pi with i , 1, which is a contradiction. But if the arc is not boundary parallel,
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then it will surround one of the nested bypasses for p1, but this is also a contradiction since
we said all the nested bypasses for p1 were outside of D′j . Thus p1 must have a nested
bypass of length at last k − 1, as claimed. �

We are now ready to proof Lemma 6.16.

Proof of Lemma 6.16. Suppose there is an effective bypass for pk+1. We claim that the sign
of this bypass is different from the sign of the first continued fraction block of V1 (it has the
single sign since (P1 , P2) is totally 2-inconsistent). To see this we first notice that the sign of
the bypass will agree with the sign of the region on the convex surface P between the two
horizontal dividing curves in Figure 19. (To see this we will always orient the attaching arc
of a such a bypass so that is passes the dividing curves corresponding to pk+1 in the same
direction that ∂H does. Now the co-orientation on a contact structure orients the dividing
curve corresponding to pk+1. The sign of a bypass is determined by whether or not the
orientation no the dividing curve agrees with the co-orientation on the bypass disk when
oriented as above and so is fixed by the contact structure and orientation on its attaching
arc.) We claim this sign must be opposite to the sign in the first continued fraction block of
V1. We assume this is not the case and derive a contradiction. We can do this by replacing
V1 and V2 in C with the universally tight solid tori whose sign of the first continued frac-
tion block is the same as V1 and V2, respectively. By Lemma 7.1, this is contactomorphic
(possibly co-orientation reversing) to the complement of the binding of an open book sup-
ported by (p , q)–torus knot with a convex Giroux torsion layer added. By Colin’s gluing
theorem, the contact structure is universally tight even after adding any amount of convex
Giroux torsion. Inside V1 we have another solid torus V′1 with dividing slope (q/p)a and
if we extend the convex pair of pants P across an annulus running between ∂V1 and ∂V′1
we will see a bypass on this annulus with sign given by the sign of the bypasses in the
first continued fraction block of V1. Since we are assuming that it is the same sign as the
region between the horizontal lines in Figure 19, we see that it will give a bypass for V2.
Attaching this bypass will result in a torus about V2 with dividing slope (q/p)a . Since there
are vertical ruling curves on A′ disjoint from the attached bypass, we can thicken this torus
further to have slope q/p. This gives a Giroux torsion layer in a solid torus so the contact
structure would be overtwisted, but we know that is not the case. So the sign of the region
bounded by the horizontal dividing curves in Figure 19 is opposite from the signs of the
first continued fraction block of V1.

We now return to the setting where V1 and V2 are given by any decorated pair of paths
that is totally 2-inconsistent. We still know that the sign of the region bounded by the
horizontal dividing curves in Figure 19 is opposite that of the signs in the first continued
fraction block of V1. Thus any effective bypass for pk−1 will have sign opposite as well.

From Lemma 6.17, we can find an effective bypass for pk+1 disjoint from the length
k − 1 nested bypasses for p1. Attach these nested bypasses to obtain a solid torus with two
dividing curves inside of V̂1, which is contactomorphic to V1 by Theorem 2.27. Thus we just
call this solid torus V1. While attaching the nested bypasses, we never modify the dividing
curve on ∂V̂1 passing through pk+1, so the bypass for pk+1 is also effective for V1. However,
the sign of the effective bypass for pk+1 is different from the sign of the first continued
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fraction block of V1. This is impossible since the sign of the first continued fraction block
is determined by the sign of effective bypasses in a solid torus. This contradiction implies
that there is no effective bypass for pk+1 in V̂1. Combining with Lemma 6.17, the only
effective bypasses in V̂1 are a bypass for p1. �

Remark 6.18. Lemma 6.16 and 6.17 also hold for V̂2 and the proofs are the same except
for a part of the proof of Lemma 6.17. Specifically, in that proof we used the fact that we
could find the bypass for V1 \ V′1 on P. This is because in the coordinates on ∂V1 coming
from S1 × P we see that the dividing slope on ∂V1 is 0 and on V′1 is∞. Thus the annulus in
V1\V′1 that extends P, which has slope∞, will contain a bypass for ∂V1. When we consider
V̂2 the relevant slopes on ∂V2 and ∂V′2 are 0 and −1, respectively. Thus we cannot find a
bypass for ∂V2 on an annulus of slope ∞. To proceed in this case we need to change the
section of S1 × P that we are using. Specifically, if we take {θ} × P and cut it along an arc
connecting ∂V1 ∩ P to ∂V2 ∩ P, we can then push one side of the cut along the S1 fibers
until it returns and is glued to the other side of the cut. Notice that if one pushed in the
correct direction, then the slope of this new section, call it P′, on ∂V2 is −1. Now running
the whole argument with S1 × P′ instead of S1 × P will prove the lemma for V̂2.

We now turn to contact structures on C with convex Giroux torsion.

Lemma 6.19. For any (p , q)–torus knot and integer k we have that

| Tightl(C; k)| � 2|(a1 + 1) · · · (am−1 + 1)| |(b1 + 1) · · · (bn−1 + 1)|
for any l ∈ 1

2N, where the ai and bi are defined in Section 1.2. This is the same as the number of
totally 2-inconsistent pairs of paths representing q/p.

Proof. We begin by considering Tightl(C; pq). Given a contact structure ξ ∈ Tightl(C; pq),
there is an embedding of a convex l Giroux torsion layer, i.e. there is an embedding of
T2×[0, 1] such that T2×{0} � ∂C and ξ restricted to T2×[0, 1] has convex l Giroux torsion.
Let C′ � C\T2×[0, 1] and ξ′ be ξ restricted to C′. Notice that (C′, ξ′) has no convex Giroux
torsion, otherwise (C, ξ) would have torsion larger than l. Thus ξ′ ∈ Tight0(C; pq) and the
contact structure on C \ C′ is T2 × [0, 1] with convex l Giroux torsion. By Lemma 6.13, the
pair of paths describing ξ′ must be totally 2-inconsistent. Theorem 2.4 says there are two
possibilities for the contact structure on T2×[0, 1], but by Lemma 6.15 we see that only one
can possibly result in ξ being tight. Thus for every element in ξ ∈ Tightl(C; pq) there is a
unique element ξ′ ∈ Tight0(C; pq) corresponding to a totally 2-inconsistent pair of paths
and a unique convex l Giroux torsion layer on T2 × [0, 1]. Moreover, given an element in
Tight0(C; pq) described by a totally 2-inconsistent pair of paths there is a unique convex l
Giroux torsion layer on T2 × [0, 1] that can be glued to it to give a tight contact structure.
Claim A: The convex Giroux torsion of this contact structure is exactly l.

Thus from above we see that | Tightl(C; pq)| is bounded above by the number of totally
2-inconsistent paths describing q/p.
Claim B: Adding convex l Giroux torsion to two distinct elements of Tight0(C; pq) results in
distinct contact structures.

We now know that | Tightl(C; pq)| is the number of totally 2-inconsistent paths describ-
ing q/p. We will prove these claims below, but finish the proof assuming they are true.
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To see that the number of such paths is given by the formula in the lemma we note that
the first continued fraction block in P1 must be all one sign and the first in P2 must be of
the opposite sign. Thus there are 2 possibilities for these two continued fraction blocks.
The number of possible decorations on the remainder of P1 is |(a1 + 1) · · · (am−1 + 1)| and
on P2 is |(b1 + 1) · · · (bn−1 + 1)|.

Now given k > pq we know by Lemma 6.7 and Remark 6.11 that for each ξ ∈ Tight0(C; k)
there is a unique 2-inconsistent path describing a contact structure ξ′ ∈ Tight0(C; pq) such
that ξ embeds in (C, ξ′). Thus we can clearly add convex Giroux torsion to ξ to get
an element in Tightl(C; k). Moreover, given any element in Tight0(C; pq) there will be a
unique element in Tight0(C; k) embedded in it. Thus | Tightl(C; k)| is the number of totally
2-inconsistent paths describing q/p.

Suppose that k < pq and if pq > 0 then assume k > pq − p − q. If ξ ∈ Tight0(C; k) then
we can glue in a solid torus to get a non-loose Legendrian knot in S3 and by Lemma 6.5
that knot must destabilize to a knot with tb � pq. In other words, there is a subset C′

of C such that ξ |C′ � ξ′ is in Tight0(C; pq). Now if ξ′ is described by a 2-inconsistent
pair of paths, then as above we see that we can add convex Giroux torsion to ξ to get an
element in Tightl(C; k). If the Legendrian corresponding to ξ cannot be destabilized to a
contact structure on Tight0(C; pq) corresponding to a totally 2-inconsistent pair of paths,
then after adding twisting to ξ so that the boundary slope is ∞ the contact structure will
be overtwisted by Lemma 6.13. Thus once again we see that | Tightl(C; k)| is the number
of totally 2-inconsistent paths representing q/p.

Finally, if pq > 0 and k ≤ pq − p − q, then we can make the same argument as above, ex-
cept notice that according to Lemma 6.12 two of the elements in Tight0(C; pq) correspond-
ing to totally 2-inconsistent paths contain a convex torus T with two dividing curves of
slope pq − p − q and the rest contain a convex torus T with two dividing curves of slope
∞ (and in both cases any torus further from the boundary have the same dividing slope).
Thus adding a contact structure on T2 × [0, 1]with dividing slopes k and pq on the bound-
ary to C with the first two contact structures will have convex 1/2 Giroux torsion, while
adding the same contact structure to the other contact structures will still have no convex
Giroux torsion. However, we can add a convex 1/2 Giroux torsion layer to these to get
contact structures on Tight1/2(C; k) and thus the count of such structures is still the same.
One can similarly argue for Tightl(C; k). �

Proof of Claim A. We begin with a specific example. Consider the pair of paths (P1 , P2)
representing q/p with all the signs of P1 positive and all the signs of P2 negative. From
Lemma 7.1 below, we know that when pq < 0, the contact structure ξP1 ,P2 is the one sup-
ported by the open book with binding the (p , q)–torus knot and when pq > 0, the contact
structure is obtained from the tight contact structure on S3 by a half Lutz twist.

Let ξl be the contact structure obtained from ξP1 ,P2 by performing an l-fold Lutz twist
on a transverse push-off of LP1 ,P2 for l ∈ 1

2N ∪ {0}. Similarly ξl can also be obtained from
the complement of LP1 ,P2 by attaching a T2 × [0, 1] with convex l Giroux torsion and then
a tight solid torus that is a neighborhood of a Legendrian knot Ll in ξl with tb � pq. In
[15, Section 5], it was shown that tor(Ll) � l. Let (C, ξ′l) be the contact structure on the
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complement of Ll . Clearly (C, ξ′l) has convex Giroux torsion l, but not l + 1. Thus we have
established the claim for the contact structure ξP1 ,P2 .

The key to proving ξl has Giroux torsion l from [15] is to consider a specific arc γ on a
Seifert surface for the torus knot and showing that in ξl the maximal twisting tw(γ) � −2l
where tw(γ) is defined to be the maximum of the twisting of the contact planes along
any Legendrian approximation of γ (with endpoints fixed) with respect to the framing
on γ coming from the Seifert surface. It is easy to see that tw(γ) ≤ −2l, but to show it
is exactly −2l one needs to use that the contact structure on the complement of the torus
knot is universally tight. Thus we can only apply this argument to the contact structure
considered above (for the universally tightness, see the proof of Lemma 7.1).

To prove Claim A for the other contact structures we proceed as follows. Recall that C
can be thought of as the union of two solid tori V1 and V2 and S1 × P (see Section 6.1). A
Seifert surface for the (p , q)–torus knot can be constructed by taking q meridian disks in
V1, p meridian disks in V2 and pq, 1-handles in S1 × P that connect the disks. The arc γ
above can be taken to be a co-core to one of these 1-handles and hence lives in S1 ×P. Also
recall there is an annulus A′ that has both boundary components on ∂C and when C is cut
along A′ one obtains two solid tori, one containing V1 and the other V2. The curve γ can
also be taken to be a curve on A′ and the framing given to γ by the Seifert surface is the
same as the one given by A′. Thus we can measure tw(γ) using the A′ framing.

Now since we are considering pairs of decorated paths P1 and P2 that are totally 2-
inconsistent, we know the contact structure on S1×P is contactomorphic to ξ±± and hence
(up to switching co-orientations on the contact planes) independent of the choice of totally
2-inconsistent pairs of paths. Now let ξ̃l be the result of attaching l convex Giroux torsion
to S1 × P along ∂C. We have that tw(γ) in ξ̃l is −2l. This is because it must be greater than
or equal to −2l by construction, but it cannot be larger than −2l since if it were, that would
contradict the fact that in ξ′l considered above we have that tw(γ) � −2l (recall that ξ̃l is a
subset of ξ′l).

Finally consider any totally 2-inconsistent pair of paths (P1 , P2). We can construct con-
tact structures ξ′l as above associated to ξP1 ,P2 and inside ξ′l we have the contact structures
ξ̃l on S1 × P. We can again consider tw(γ) in ξ′l and we again clearly have tw(γ) ≥ −2l.
Suppose tw(γ) > −2l. Then we can smoothly isotope the annulus A′ (relative to its bound-
ary), so that it contains a Legendrian realization of γ with twisting larger than −2l. As in
the proof of Lemma 6.15 we can use the isotopy discretization (Theorem 2.30) to get annuli
A1 � A′, . . .Ak such that A′ is our original annulus (that by construction contains a Leg-
endrian realization of γ with twisting −2l) and Ak contains a Legendrian realization of γ
with twisting larger than −2l, and Ai is obtained from Ai−1 by a bypass attachment. But
recall, in the proof of Lemma 6.15 we showed by induction that Ai is contained on S1 × P
with a contact structure contactomorphic to ξ̃l . This contradicts that tw � −2l in ξ̃l and
completes the proof of the claim. �

Proof of Claim B. Suppose that ξ and ξ′ are two contact structures on Tight0(C; pq) associ-
ated to totally 2 inconsistent pairs of decorated paths (P1 , P2) and (P′1 , P

′
2) representing q/p,

respectively, such that (P1 , P2) , (P′1 , P
′
2). Now let ξl and ξ′l be the result of adding convex
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l Giroux torsion to ξ and ξ′, respectively. We first note that by Claim A we know that ξl is
not contactomorphic to ξ′k if l , k, so we are left to see that ξl and ξ′l are distinct.

From Lemma 2.20, we know that rot(LP1 ,P2) , rot(LP′1 ,P
′
2
). Recall that the rotation number

is the relative Euler class of the contact structure evaluated on a Seifert surface of the knot.
Since adding full torsion does not change the relative Euler class and adding half torsion
changes the sign of the relative Euler class, we see that the relative Euler class of ξl and ξ′l
are distinct for all l ∈ 1

2N, thus proving Claim B. �

7. CLASSIFICATION OF NON-LOOSE TORUS KNOTS

In this section, we begin by identifying some special contact structures and their associ-
ated pairs of decorated paths, and end by proving that our algorithm from Section 3 really
does give a compete classification of non-loose Legendrian (p , q)–torus knots. To this end,
we first understand non-loose Legendrian torus knots without convex Giroux torsion. The
classification of these non-loose Legendrian torus knots hinges on the classification of such
knots with tb � pq. All others, except for the one when pq < 0 and tb � |pq | − |p | − |q |, will
either be stabilizations or destabilizations of these. The homotopy classes of overtwisted
contact structures where the non-loose Legendrian (p , q)–torus knots with tb � pq live
were determined in Section 2.5. In Section 7.2, we will see when the stabilizations of non-
loose knots with tb � pq stay non-loose and when stabilizations of two different non-loose
knots with tb � pq become equivalent. We then consider in Section 7.3 which non-loose
knots with tb � pq destabilize. In Section 7.4, we consider the extra non-loose Legendrian
when pq < 0 and tb � |pq | − |p | − |q |, and how they relate to the other non-loose Leg-
endrian knots. In the following section, we will determine the convex Giroux torsion of
these examples is zero (except in one case where it is a half). In Section 7.6 we consider
non-loose Legendrian knots with convex Giroux torsion in the complement and finally in
the last section we prove that our algorithm from Section 3 really does give a compete
classification of non-loose Legendrian (p , q)–torus knots.

7.1. Contact structures described by special pairs of decorated paths. It will be useful
to understand explicitly some of the contact structures associated with pairs (P1 , P2) of
decorated paths in the Farey graph for the (p , q)–torus knot. The first statement of the
following lemma was observed in [43] and previously for some negative torus knots in
[25], in terms of contact surgery diagrams.

Lemma 7.1. Let (P1 , P2) be a pair of paths representing q/p and decorated such that P1 has only
positive signs and P2 has only negative signs. We have the following:

(1) If pq < 0 then ξ±P1 ,±P2 is the contact structure ξ |pq |−|p |−|q |+1 and is supported by the open
book with binding the (p , q)–torus knot Tp ,q .

(2) If pq > 0 then ξ±P1 ,±P2 is the contact structure ξ−pq+p+q which is obtained from ξstd by
a half Lutz twist on the unique maximal self-linking number transverse representative of
Tp ,q in (S3 , ξstd).

Proof. Consider a contact structure ξ′P1 ,P2
∈ Tight0(C; pq), which is constructed by gluing

two solid tori together with contact structures determined by the decorated paths (P1 , P2)
and then removing a neighborhood of a Legendrian divide from the torus. Notice that
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when pulled back to the universal cover of C the solid tori will complete unwrap (that is
their pre-image under the covering map will be copies of the universal cover of the solid
tori). Thus for ξ′P1 ,P2

to be universally tight, each path can have only one sign. So there
are at most four universally tight contact structures. Moreover, if (P1 , P2) are not totally
2-inconsistent then Lemma 6.13 says adding Giroux torsion to (C, ξ′P1 ,P2

) will result in an
overtwisted contact structure; while by Lemma 6.15 if (P1 , P2) are totally 2-inconsistent,
then (C, ξ′P1 ,P2

) remains tight even after one adds Giroux torsion to it. Thus ξ±P1 ,±P2 are
the only two possible contact structures that are universally tight and remain tight when
Giroux torsion is added; in addition, Section 2.5 says ξP1 ,P2 and ξ−P1 ,−P2 are isotopic (since
they are homotopic as plain fields). In [22], the first author and Vela-Vick showed that
for a closed contact 3–manifold (M, ξ), the complement of a neighborhood of transverse
knot supporting (M, ξ) is universally tight, and after adding convex Giroux torsion to its
boundary, it remains tight. In Proposition 7.5, we will see that all the negative stabilizations
of LP1 ,P2 are non-loose and hence the transverse push-off of LP1 ,P2 has both these properties,
and it is the only Legendrian with these properties (the contact structure ξ−P1 ,−P2 also has
these properties, but the transverse push-off of L−P1 ,−P2 will be loose since a single negative
stabilization of it is loose, see Proposition 7.5 below). Thus ξP1 ,P2 is the contact structure
supported by Tp ,q when pq < 0. The d3-invariant can be computed from [33, Theorem 1.2]
or [1, Corollary 1.2] (note those papers consider the Hopf invariant, which in our context
is −d3).

When pq > 0, Tp ,q supports ξstd , but adding a half Lutz twist to ξstd along the maxi-
mal self-linking number representative of Tp ,q will also have these properties and contain
a non-loose Legendrian realization of Tp ,q with tb � pq and tor � 0. Thus the contact
structure must be ξP1 ,P2 . The d3-invariant changes by subtracting the self-linking num-
ber of the transverse knot [23, Proof of Theorem 4.3.1] thus we see the contact structure is
ξ−pq+p+q . �

We explicitly identify another contact structure on terms of decorated paths. This was
also observed in [43] in terms of contact surgery diagrams.

Lemma 7.2. Let (P1 , P2) be a pair of decorated paths in the Farey graph for the (p , q)–torus knot.
Suppose that the signs of all basic slices in P1 and P2 are the same, then ξP1 ,P2 � ξstd for pq < 0,
and ξP1 ,P2 � ξ1 for pq > 0.

Remark 7.3. If q/p < −2, then Lemma 7.2 remains true even if the basic slices in the last
continued fraction block in P2 have any signs.

Proof. When pq < 0, the last continued fraction block in P2 is n + 1, n + 2, . . . ,−1 for n �

bq/pc. Given the hypothesis on (P1 , P2), the concatenated path P1 ∪ P2 can be shortened
to n , n + 1, . . . ,−1 where each edge in the path has some sign (notice the edge from n to
n + 1 represents a basic slice since all of the edges that were shortened had the same sign).
Now extending this path by adding the edge from ∞ to n, we may think of this path as
describing a contact structure on the solid torus with lower meridian∞ and dividing slope
−1. According to Lemma 2.6, we know this contact structure is tight and by Theorem 2.5
it is unique. Now the path from 0 to −1 also represents the unique tight structure on this
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solid torus. The union of these two tight contact structures on the solid tori now gives the
tight contact structure on S3.

When pq > 0, the same argument shows that ξP1 ,P2 is obtained by gluing a solid torus
with lower meridian ∞ and dividing slope 1 to a solid torus with upper meridian 0 and
dividing slope 1. This is clearly the result of performing a half Lutz twist on the maximal
self-linking number unknot in the standard tight contact structure on S3 and hence ξ1. �

It will be useful to have an explicit description of ξ1 in terms of torus knots. This is
given in the following lemma, but we first need another description of ξ1 in terms of pairs
of paths. At the end of Section 2.3 we saw that ξ1 is also described by paths P′1 and P′2 such
that all the signs of the basic slices in P′1 are ∓, except the first one which is ± and all the
basic slices of P′2 are ±, except the first one which is ∓.

Lemma 7.4. For any positive (p , q)–torus knot Tp ,q , the contact structure ξ1 can be described as
follows. Let (C, ξ) be the complement of a standard neighborhood of the Legendrian representative
of Tp ,q with tb � pq − p − q in (S3 , ξstd). Attach a basic slice in Tightmin(T2 × [0, 1];∞, pq −
p − q) to (C, ξ) and then a basic slice in Tightmin(T2 × [0, 1]; pq ,∞) with the opposite sign to the
result. Finally glue the unique tight contact structure on a solid torus with meridional slope∞ and
dividing slope pq.

The final torus is a standard neighborhood of a non-loose (p , q)–torus knot with tb � pq that is
described by the pair of decorated paths (P′1 , P

′
2) where the first edge in P′1 is ± and all the others are

∓ while the first edge of P′2 is ∓ and all the others are ±.

Proof. Let ξ± be the contact structure which is the result of attaching a ±–basic slice to C
with dividing slopes ∞ and pq − p − q. Since we discussed that ξ1 � ξP′1 ,P

′
2

above, it is
sufficient to show that ξP′1 ,P

′
2

is the result of attaching a ∓–basic slice to ξ± with dividing
slopes pq and∞.

Since the basic slices in (P′1 , P
′
2) adjacent to q/p are of opposite signs, we may argue as

in the proof of Lemma 6.10 that ξP′1 ,P
′
2

may be factored into two solid tori V′1 and V′2 and
S1 × P, where P is a pair of pants. Also the contact structure on S1 × P admits a convex
annulus A running from ∂V′1 to ∂V′2 with two dividing curves that run from one boundary
component to the other. Moreover, the contact structure on V′1 is described by a path in the
Farey graph whose signs are all ∓ and the path for V′2 has all signs ±. Notice that adding
an I-invariant neighborhood of A to V′1 ∪ V′2 yields a manifold C′ that is isotopic to C and
∂C′ is convex with dividing slope ∞. Thus C \ C′ is T2 × [0, 1] and the contact structure
ξP′1 ,P

′
2

restricted to T2 × [0, 1]will be a basic slice with dividing slopes pq and∞. Below we
will see that the contact structure on C′ is ξ± discussed above and the basic slice has sign
∓.

Now consider the pair of paths (P1 , P2) representing q/p with P1 having all signs ± and
P2 having all signs ∓. From Lemma 7.1 we know that ξP1 ,P2 is obtained from performing
a half-Lutz twists on the maximal self-linking transverse representative of Tp ,q in ξstd and
then removing a solid torus with convex boundary having dividing slope pq. Notice that
this contact structure can be described by taking ξ± on C′ and then adding another basic
slice with dividing slopes pq and∞with sign ±.
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We note that ξP1 ,P2 can be decomposed into piece as we did for ξP′1 ,P
′
2
. In particular

inside (C, ξP1 ,P2)we see a submanifold C′ isotopic to C such that C \C′ is a basic slice with
dividing slopes pq and∞, and sign ±. Moreover, we see that ξP1 ,P2 and ξP′1 ,P

′
2

restricted to
C′ are the same since they are given by attaching a thickened annulus to V′1 and V′2 with
the same contact structures on them. Thus the only difference between ξP1 ,P2 and ξP′1 ,P

′
2

is
the sign of the bypass added, thus giving the desired result. (Notice that ξP1 ,P2 and ξP′1 ,P

′
2

cannot be the same contact structure since they are contact structures on the complement
of Legendrian knots with different rotation number, see Lemma 2.20.) �

7.2. Non-loose torus knots with tb ≤ pq. In this section we will classify non-loose (p , q)–
torus knots with tb ≤ pq that are stabilizations of the Legendrian knots LP1 ,P2 constructed
in the proof of Lemma 6.8 and determined by pairs of decorated paths. In Section 2.5 we
determined the homotopy class of plane fields that support such torus knots with tb � pq
and determining the rotation numbers of them. Here we will see how each of these non-
loose tb � pq torus knots generates a “wing" or a “diamond" and see how the wings
and diamonds for different tb � pq torus knots interact. This will lead to the desired
classification.

7.2.1. Wings for i-inconsistent paths. We now consider a pair of decorated paths (P1 , P2)
that is i-inconsistent for some i ≥ 2 that describe a (p , q)–torus knot. We assume here that
(P1 , P2) does not describe a positive torus knot in (S3 , ξ1) or a negative torus knot in the
tight contact structure ξstd . As above, see the beginning of this section or Section 2.3, we
break the truncated paths (P1 , P2) into the continued fraction blocks

(A2 , . . . ,A2n) and (B1 , B3 , . . . , B2m−1).

(we will only discuss this case here, with the case of (A1 , . . . ,A2n−1) and (B2 , . . . , B2m) being
analogous). Let sk be the slope in Ak or Bk which is farthest from q/p, Tk the convex torus
in V1 or V2 with two dividing curves of slope sk , and Lk a Legendrian ruling curve on Tk
of slope q/p. Finally set nk � |sk •

q
p |.

Proposition 7.5. If pq > 0 then we assume that the ambient contact structure is not ξ1 and if
pq < 0 we assume that the ambient contact structure is not ξstd . Given an i-inconsistent pair of
paths (P1 , P2) for q/p as above assume that i is even and all the the basic slices in the continued
fractions blocks A2 , . . . ,Ai−2 , B1 , . . . , Bi−1 are negative while some in Ai are positive. Then we
have Sni−1

+ (LP1 ,P2) is loose and any Legendrian Sk
+Sl
−(LP1 ,P2) for k < ni−1 and l ≥ 0 is non-loose.

Similarly, for Sni−1− (L−P1 ,−P2) is loose and any Legendrian Sk
+Sl
−(L−P1 ,−P2) for k ≥ 0 and l < ni−1

is non-loose. See Figure 22.
When i is odd, the same result holds if all basic slices in the continued fraction blocks A2 , . . . ,Ai−1,

B1 , . . . , Bi−2 are positive and some in Bi are negative.

We will call the set

W(LP1 ,P2) � {Sk
+Sl
−(LP1 ,P2) for k < ni−1 and l ≥ 0},

the wing of LP1 ,P2 , and similarly for L−P1 ,−P2 . We think of these as the non-loose Legendrian
knots generated by L±P1 ,±P2 . See Figure 22.
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When pq < 0 and tb < pq this proposition also follows from [43, Corollary 4.3], though
the structure of the wings was not made explicit. The result for the negative trefoil and
tb < −6 or equal to 5 was also established in [25].

ni−1

FIGURE 22. On the left is the wing W(LP1 ,P2) from Proposition 7.5. On the
right is the wing W from Proposition 7.10 generated from all the pairs of
paths compatible with (P1 , P2). Each integral point in the shaded region,
whose coordinates sum to be odd, is realized by a unique non-loose Legen-
drian knot with tor � 0. The peaks are at tb � pq and there are i − 1 peaks
(for an i-inconsistent path) each corresponding to a k-inconsistent pair of
paths (Pk

1 , P
k
2 ) compatible with (P1 , P2) for 2 ≤ k ≤ i and the distance be-

tween the peaks corresponding to (Pk
1 , P

k
2 ) and (Pk−1

1 , Pk−1
2 ) is 2n′k−1 (see the

proof of Proposition 7.10). Once one computes a rotation number of one of
the peaks using Lemma 2.19 the others are determined by the distance be-
tween the peaks. The wings for (−P1 ,−P2) are obtained by reflecting these
wings about a vertical line.

Remark 7.6. We will see in the proof below that stabilizations of the LP1 ,P2 become loose
because they can be put on a convex torus that allows the path P1 ∪ P2 to be shortened
merging two basic slices with opposite sign. This does not happen if ξP1 ,P2 is ξstd since
the ambient contact structure is tight. We will address the case when pq > 0 and ξP1 ,P2 is
ξ−pq+p+q at the end of this section and in Section 7.2.2 below we will see what is different
when pq > 0 and ξP1 ,P2 is ξ1.

We first observe the following results.

Lemma 7.7. With the notation above, the integers ni � |si •
q
p | start at 1 and are strictly increasing

(unless q/p � (2n + 1)/2 < 0 in which case n1 � n2).

Proof. The claim for q/p � (2n + 1)/2 < 0 can easily be checked, so we assume that we
have some other q/p. By Lemmas 2.10 and 2.11 we know that there is an edge from q/p
to s1 and there is not an edge between q/p and s2. Thus n1 � | qp • s1 | � 1 < | qp • s2 | � n2.
We now inductively prove the ni are strictly increasing. To this end we assume this has
been proven for i < j and establish that ni < n j . Recall, from Observation 2.13 we know
that there is an edge from s j−1 to s j and the minimal path from s j to s j−2 is given by v0 �
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s j , v1 , . . . , vk � s j−2, where vl � ls j−1 ⊕ s j for 0 ≤ l ≤ k. Then we have

s j−2 •
q
p
� (ks j−1 ⊕ s j) •

q
p

� (ks j−1 •
q
p
) + (s j •

q
p
).

Since (s j−1 •
q
p ) and (s j •

q
p ) have opposite sign and (s j−2 •

q
p ) and (s j •

q
p ) have the same sign,

we have

(5)

����s j−2 •
q
p

���� + ����(ks j−1) •
q
p

���� � ����s j •
q
p

���� ,
confirming that the ni are increasing. �

Lemma 7.8. Let (T2 × [0, 1], ξ) be a ± basic slice with dividing slopes si on T2 × {i}. Let L0 be a
Legendrian ruling curve of slope s1 on T2 × {0} and L1 a Legendrian divide on T2 × {1}. Then L0
is S±(L1). Moreover, if L′0 is a Legendrian divide on T2 × {0} and L′1 is a ruling curve of slope s0

on T2 × {1}, then L′1 is S∓(L′0).
Let s be a vertex in the Farey graph outside the interval [s0 , s1] for which there are vertices in the

Farey graph in [s , s0) with an edge to s1. If L′′i is a ruling curve of slope s on T2 × {i} then L′′0 is
Sk
±(L′′1 ) where k � |(s1 	 s0) • s |. Moreover, there is a similar statement when s is outside of [s0 , s1]

for which there are vertices in the Farey graph in (s1 , s] with an edge to s0, and with the roles of L′′0
and L′′1 interchanged as in the previous paragraph.

Remark 7.9. Notice that this lemma implies that, with the notation above the q/p-sloped
ruling curve Lk on Tk is Legendrian isotopic to Snk

+ (LP1 ,P2) if k is odd and Snk− (LP1 ,P2) if k is
even (since the sign of bypass will change if we consider the basic slice is from T2 × {1} to
T2 × {0}).

Proof. We will show how to build a solid torus in T2 × [0, 1] that is a regular neighborhood
of L1 and isotope L0 into this neighborhood so that it has a standard neighborhood with
dividing slope tb(L1) − 1. This will establish that L0 is a stabilization of L1 and the sign
of the stabilization is determined by the relative Euler class. That is, if A is an annulus in
T2 × [0, 1] with boundary L0 ∪ L1, then rot(L0) − rot(L1) is the relative Euler class of the
basic slice evaluated on A, which in turn is χ(A+) − χ(A−), where A± are the positive and
negative regions of A once it is made convex.

To construct the claimed solid torus, we take parallel copies Ti of T2 × {i} inside of
T2 × [0, 1] that are contact isotopic to the the respective boundary components. Clearly Li
still sits on Ti and we an take A be the annulus with boundary L0∪L1 sitting on T0∪T1. As
the twisting of each component of ∂A is non-positive, we can make A convex. We claim
that A can be chosen so that it has a single dividing curves, and it is an arc with both
boundary components on L0. Assuming this for the moment we complete our proof. Let
N � A × [−1, 1] be an [−1, 1]-invariant neighborhood of A � A × {0}. Notice that ∂N con-
sists of four parts, A−1 � A×{−1},A1 � A×{1}, L0×[−1, 1], and L1×[−1, 1]. The first 3 are
convex surfaces, with the first two having dividing set the same as A while the third hav-
ing dividing set being two arcs each running from one boundary component to the other.
We can round the two corners between the first three surfaces to get a convex annulus A′
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with one dividing curves isotopic to its center curve and intersecting L0 twice. Notice that
by choosing the correct dividing set on A to begin with, we can assume the characteristic
foliation of A′ has Legendrian boundary and each boundary component looks like a Leg-
endrian divide, by which we mean the boundary components are circles of singularities
in the foliation and near by the foliation is non-singular and transverse to the boundary,
moreover one boundary will be an attracting circle of singularities and the other will be
repelling.

We now have A′ ∪ (L1 × [−1, 1]) is a torus bounding a solid torus. We now consider
L1 × [−1, 1]. This has characteristic foliation given by L1 × {t} for t ∈ [−1, 1]. That is, it is
a pre-Lagrangian annulus and thus cannot be convex. But we build a standard model for
a neighborhood of L1 × [−1, 1]. Specifically, in R3/∼, where (x , y , z) ∼ (x + 1, y , z), with
the contact structure dz − y dx we find an open set around S � {(x , y , z) : y � 0, |z | ≤ 1}
that is contactomorphic to a neighborhood of L1 × [−1, 1] by a contactomorphism taking
S to L1 × [−1, 1] and a neighborhood of ∂A′ to constant z annuli with, say, positive y
coordinate. In this local model we can deform L1 × [−1, 1] by slightly pushing its interior
to have negative y coordinate. The characteristic foliation on this new annulus A′′ now has
Legendrian boundary and on the interior flow lines that spiral to one boundary component
in positive time and the other in negative time. We can finally slightly modify A′ in this
local model so that the orbits near ∂A′ � ∂A′′ spiral towards the boundary components in
the same way that those on A′′ do. In particular, A′ ∪ A′′ is not a convex torus with two
dividing curves. One is in the center of A′ and the other is in A′′. In addition, we see that L1
is isotopic to the Legendrian divides on A′∪A′′ and again, L0 sits on this torus intersection
one of the dividing curves twice. Let N be the solid torus bounded by A′ ∪ A′′. This is a
standard neighborhood of L1 and we see that L0 has contact twisting one less than L1 and
so when it is contact isotoped into the interior of N we see that it has a neighborhood as
claimed above.

We are now left to establish our claim concerning the dividing set on A. Notice that the
dividing curves of A intersect L0 twice and L0 zero times. Thus we know the dividing set is
as claimed, except that there might also be some closed dividing curves isotopic to the core
of A. We must show that A can be chosen so that this is not the case (one must be careful,
as there are choices for A where there are such closed curves). To this end, notice that given
the slopes s0 and s1 with an edge in the Farey graph connecting them, there will be exactly
two slopes that both have an edge to s0 and s1. One will be in [s0 , s1]while the other s will
be outside this interval. Let B be an annulus of slope s in T2×[0, 1]with boundary a ruling
curves on the T2 × {i}. We can make B convex and it must have exactly two dividing
curves running from one boundary component to the other. This is because, if not, we
could Legendrian realize the core curve in B with contact twisting 0 with respect to B. We
could then find a torus T parallel to the boundary of T2 × [0, 1] containing this curve so
that it also had twisting 0 with respect to T. This implies that T can be made convex with
dividing slope s, contradicting the fact that, as a basic slice, T2×[0, 1] is minimally twisting.
Thus the dividing curves are as claimed. Now we can Legendrian realize a curve γ on B
that runs from one boundary component to the other and has contact twisting 0, we can
moreover assume that one boundary component of γ is one L1 and the other is not on the
Legendrian divides on T2 × {0}. Now we can isotope T2 × {0}, keeping if fixed near ∂γ
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so that its ruling curves have slope s1. This allows us to take an annulus A from L0 to L1
that contains γ. The twisting of γ with respect to this annulus is still 0, so we can make
A convex relative to γ. Because the twisting of γ is 0 we see that it cannot intersect the
dividing curves of A. This implied that there can be no closed curves in the dividing set of
A and hence the dividing curves of A must be as claimed.

The proof for the analogous case with the Legendrian knots L′0 and L′1 is the same.
For the second statement, notice that the annulus A of slope s from T2 × {0} to T2 × {1}

with boundary ruling curves cannot have a boundary parallel dividing curve on T2 ×
{1}, since if there were we could attach a bypass to T2 × {1} and get a convex torus of
dividing slope outside of [s0 , s1] contradicting the minimal twisting of a basic slice. Thus
the dividing curves on A have some boundary parallel dividing curves on A∩(T2×{0}) and
the rest run across from one boundary component to the other. We can use the bypasses to
destabilize L′′0 and then isotope it to L′′1 . The signs of the destabilization are determined by
the sign of the bypass and then number has to be as indicated, otherwise there would be a
bypass on T2 × {1}. �

Proof of Proposition 7.5. From Lemma 7.8 we know that Li−1 is the same as Sni−1
+ (LP1 ,P2). No-

tice, by Observation 2.13, there is an edge in the Farey graph from si−1 to si . Thus the path
Ai , . . . ,A2 , B1 , . . . Bi−1 can be shortened. Since not all the signs of the basic slices in this
path are the same, the resulting contact structure on T2 × [0, 1] is overtwisted. That is we
have found an overtwisted disk in the complement of Sni−1

+ (LP1 ,P2).
Now we will show that L :� Sni−1−1

+ Sl
−(LP1 ,P2) for l ≥ 0 is non-loose. We can put L

on a convex torus T, which is contained in V2 with slope si−3 (not as a standard ruling
curve). To see this, notice that a ruling curve on T would be Sni−3

+ (LP1 ,P2) by Lemma 7.8 and
ni−3 < ni−1 by Lemma 7.7; thus any further stabilization can be put on T but not as a ruling
curve. Let S3 \ T � V′1 ∪ V′2. Clearly, V′1 and V′2 are tight as the paths in the Farey graph
describing them are either minimal or can be shortened to be minimal at vertices whose
adjacent edges have the same sign.

Suppose L is loose. Then there is an overtwisted disk in the complement of a standard
neighborhood N of L. Notice that T ∩ (S3 \ N) is an annulus A and there is a smooth
isotopy of A, rel boundary, to an annulus disjoint from the overtwisted disk. We can as-
sume that the boundary of A is Legendrian curves and perturb A to be convex. By isotopy
discretization (Theorem 2.30), there is a sequence of annuli A1 � A, . . . ,Ak such that Ak is
disjoint from the overtwisted disk and each A j is obtained from A j−1 by attaching a bypass.
Notice that the A j can be extended to tori T j containing L, which is just A j ∪ (T ∩N) (after
perturbation). Each T j is obtained from T j−1 by a bypass attachment in the complement of
L, and Tk is disjoint from the overtwisted disk.

Each T j breaks S3 into two solid tori V j
1 and V j

2 . By construction we know that V1
1 and

V1
2 are both tight. We will inductively prove that each V j

1 and V j
2 is tight and this will

contradict the fact that there is an overtwisted disk in the complement of Tk , thus showing
that there could not have been an overtwisted disk in the complement of N and that L is
non-loose.
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We recall that in the part of the path P1∪P2 between si−3 and si−2 consists of all negative
basic slices while the part between si−2 and si contains some positive basic slices (and
possibly some negative ones too).

We inductively assume that
• the slope t j−1 of the dividing curves on T j−1 is in (si , si−1),
• if t j−1 ∈ (si , si−2), then the contact structures on the tori are given by consistently

dividing the path P1∪P2, by which we mean shortening the path at vertices whose
adjacent edges have the same sign or dividing an edge into two edges of the same
sign.

Notice that this condition guarantees that the contact structures on V j−1
1 and V j−1

2 are tight
since the contact structures correspond to subdividing the path P1 ∪ P2 at t j−1 and when
doing this only the continued fraction blocks with the same sign can be shortened.

First, suppose t j ≥ t j−1. By the inductive hypothesis, t j ∈ (si , si−1] and we will show
that t j , si−1. Assume t j � si−1. Then the ruling curves on T j is Legendrian isotopic to
Sni−1
+ (LP1 ,P2) by Lemma 7.8 and any Legendrian curve on T j is a stabilizations of the ruling

curve. However, since L � Sni−1−1
+ Sl

−(LP1 ,P2), it cannot be a stabilization of the ruling curve
and t j , si−1.

Next, suppose t j < t j−1. By the inductive hypothesis, t j ∈ [si , si−1). Assume t j < si−2 and
the sign of the basic slice between T j−1 and T j is positive. Recall the proof of Lemma 7.7.
We labeled the vertices in Ai as v0 � si , v2 , . . . , vk � si−2 and vl � lsi−1 ⊕ si for 1 ≤ l ≤ k.
Also, from Equation (5), we have����vl •

q
p

���� � ����si •
q
p

���� − l
����si−1 •

q
p

���� .
Clearly this implies

(6)

����vl •
q
p

���� − ����vl+1 •
q
p

���� � ����si−1 •
q
p

���� .
Returning to our problem, the sign of the basic slice implies that t j−1 � vl+1 for some
0 ≤ l < k. This is because if v j−1 were between two vi then v j would also be between
them and the basic slice would have to be negative (since the basic slice between the two
vi are negative by our hypothesis on t j−1). Clearly t j ∈ [vl , vl+1] and by [3, Remark 2.13],
we have ����vl •

q
p

���� ≤ ����t j •
q
p

���� .
Thus combining it with Equation (6), we can conclude����si−1 •

q
p

���� � ����vl •
q
p

���� − ����vl+1 •
q
p

����
≤

����t j •
q
p

���� − ����t j−1 •
q
p

����
≤

����(t j 	 t j−1) •
q
p

���� .
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Therefore, the ruling curves on T j is Legendrian isotopic to Sk
+Sl
−(LP1 ,P2) for k ≥ ni and

l ≥ 0 by Lemma 7.8 and any Legendrian curve on T j is a stabilizations of the ruling curve.
However, since L � Sni−1−1

+ Sl
−(LP1 ,P2), it cannot be a stabilization of the ruling curve and

the basic slice cannot be positive. �

Let (P i
1 , P

i
2) be an i-inconsistent pair of paths that describes a (p , q)–torus knot and as-

sume it is not compatible with and (i + 1)-inconsistent pair of paths (see Section 2.5 for
terminology); moreover, if pq > 0 assume that the contact structure given by the paths
is not ξ1. As discussed in Section 2.5, we know that these paths are compatible with a
unique k-inconsistent pairs of paths (Pk

1 , P
k
2 ) for all k � 2, 3, . . . , i. Let LPk

1 ,P
k
2

be the Legen-

drian (p , q)–torus knots corresponding to the paths (Pk
1 , P

k
2 ). We know they are all in the

same contact structure and each generates a wing by Proposition 7.5. We will see that all
of these wings merge in the sense that when two Legendrian knots in different wings has
the same classical invariants then they are isotopic.

As above, see the beginning of this section or Section 2.3, we break the decorated paths
(Pk

1 , P
k
2 ) into their continued fraction blocks

(Ak
2 ,A

k
4 , . . . ,A

k
2n) and (Bk

1 , B
k
3 , . . . , B

k
2m−1).

Notice that the paths Ak
l and Bk

l in the Farey graph are independent of k, only the signs on
the edges vary with k.

We will assume that i is even but the discussion for i odd is entirely analogous. Since
the pair (P i

1 , P
i
2) is i-inconsistent, we can assume that all the basic slices in Ai

2 , . . . ,A
i
i−2,

B i
1 , . . . , B

i
i−1 have the same sign, say negative (the positive case being entirely analogous),

and Ai has some positive basic slices. In Section 2.3 we saw that one gets (P i−1
1 , P i−1

2 ) from
(P i

1 , P
i
2) as follows: the union of Ai

2 , . . . ,A
i
i−2, B i

1 , . . . , B
i
i−3 and all but the last basic slice

of B i
i−1 can be shortened to a single edge in the Farey graph, which will have a negative

sign, and that edge extends Ai
i to a longer continued fraction block. Thus we exchange

the positive basic slice in Ai
i with this new edge and the break the new edge back into its

previous edges, but now all having positive signs. Specifically, this means Ai−1
l � Ai

l and
B i−1

l � B i
l for all l > i, Ai−1

i agrees with Ai
i except one of the positive basic slices has turned

into a negative one, B i−1
i−1 consists of one negative basic slice and all the others are positive,

and finally Ai−1
l and B i−1

l all have only positive basic slices for l < i − 1. Continuing this
shuffling, one sees that the Ak

l and Bk
l for l < k will all have the same sign and the signs

are negative if k is even and positive is k is odd. See Figure 12.
As above let sk be the slope in Ai

k or B i
k which is farthest from q/p, Tk the convex torus

in V1 or V2 with two dividing curves of slope sk , and Lk a Legendrian ruling curve on Tk
of slope q/p. We also set nk � |sk •

q
p |.

Proposition 7.10. With the notation above, there is a fixed line of slope ±1 that contains the lower
edge of each wing WPk

1 ,P
k
2

and the union of the wings

W �

i⋃
k�2

WPk
1 ,P

k
2
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is coarsely Legendrian simple, i.e. any two Legendrian knots in W with the same tb and rot are
equivalent. See Figure 22

When pq < 0 and tb < pq this proposition also follows from [43, Corollary 4.3], though
the coarse Legendrian simplicity was not made explicit.

Proof. We begin with the Legendrian simplicity of W . Consider the contact structure ξP i
1 ,P

i
2
.

Let s′i−1 be the slope in Bi−1 closest to q/p with an edge to si−1 (that is, it is the slope of the
second to the last vertex in Bi−1). Let T′i−1 be the convex torus in V2 with two dividing
curves of slope s′i−1 and let L′i−1 be a ruling curve on T′i−1 with slope q/p. By Lemma 7.8
we know that

L′i−1 � S
n′i−1
+ (LP i

1 ,P
i
2
)

for n′i−1 � |s′i−1
• q

p | (since the sign of all basic slices in B1 , . . . , Bi−1 are negative). Now
consider two solid tori V′1 and V′2 that T′i−1 breaks S3 into, and the contact structure on V′1
is given by the path P1 followed by B i

1 ∪ · · · ∪ B i
i−3 followed by all but the last edge in Bi−1.

We can thus exchange the basic slices in the continued fraction block as discussed above.
Now it is clear that T′i−1 is also a torus in the contact structure ξP i−1

1 ,P i−1
2

and hence its ruling
curve is

L′i−1 � S
n′i−1− (LP i−1

1 ,P i−1
2
).

In other words, S
n′i−1
+ (LP i

1 ,P
i
2
) is Legendrian isotopic to S

n′i−1− (LP i−1
1 ,P i−1

2
). It is also the first time

a stabilization of LP i
1 ,P

i
2

could be isotopic to a stabilization of LP i−1
1 ,P i−1

2
. Moreover, it is clear

that any Legendrian knot in

W(LP i
1 ,P

i
2
) ∩W(LP i−1

1 ,P i−1
2
)

is a stabilization of L′i−1 and hence

W(LP i
1 ,P

i
2
) ∪W(LP i−1

1 ,P i−1
2
)

is coarsely Legendrian simple. One may now similarly show that W(LPk
1 ,P

k
2
)∪W(LPk−1

1 ,Pk−1
2
)

is coarsely Legendrian simple for all k, thus yielding the second part of the proposition.
We now consider the first statement that there is a fixed line which is the lower edge

of all the wings. Notice that the lower boundary of all wings contained in a line of slope
1 (or −1 for (−P1 ,−P1)) and this line is determined by how many positive stabilizations
make one of the LP l

1 ,P
l
2

loose. Now recall that LP i
1 ,P

i
2

becomes loose after exactly ni−1 posi-
tive stabilizations and LP i−1

1 ,P i−1
2

will be come loose after exactly ni−2 positive stabilizations.

Moreover, we just saw that S
n′i−1
+ (LP i

1 ,P
i
2
) is isotopic to S

n′i−1− (LP i−1
1 ,P i−1

2
). We claim that

ni−2 � ni−1 − n′i−1.

If this is true then it is clear that the line defining the lower edge of the wing of LP i
1 ,P

i
2

and
LP i−1

1 ,P i−1
2

will be the same, and the same argument works for all adjacent wings. It is not
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hard to see from the Farey graph that s′i−1 � si−1 ⊕ si−2. Since si−1 and si−2 are on opposite
sides of q/p, their intersection number with q/p will have opposite sign. Thus we have����s′i−1

•
q
p

���� � ����(si−1 ⊕ si−2) •
q
p

���� � ����si−1 •
q
p

���� − ����si−2 •
q
p

���� .
�

Proposition 7.11. With the notation above and in Proposition 7.10, let

W �

i⋃
k�2

W−Pk
1 ,−Pk

2
.

No Legendrian element in W is equivalent to an element of W .

Remark 7.12. In Section 7.7 below we will see that when pq < 0, W is disjoint from W and
hence W ∪W is coarsely Legendrian simple. However when pq > 0 W ∩W , ∅ and hence
W ∪W is not Legendrian simple.

Proof. Notice any element in W will become loose after a finite number of negative stabi-
lizations, while elements of W will stay non-loose after any number of negative stabiliza-
tions so no element in W can be equivalent to an element of W . �

7.2.2. Diamonds in ξ1 when pq > 0. Let (P1 , P2) be a pair of paths for that represent q/p with
pq > 0 and assume all the signs in the paths are the same, say negative. From Lemma 7.4
we know that ξP1 ,P2 is ξ1.

Proposition 7.13. Given P1 and P2 as above, the Legendrian knots Sk
±Sl
∓(L±P1 ,±P2) are non-loose

if and only if k < p and l < q.

We call the set
D(L±P1 ,±P1) � {Sk

±Sl
∓(L±P1 ,±P2) : k < p , l < q}

the diamond of L±P1 ,±P1 and think of these as the non-loose Legendrian knots generated
from L±P1 ,±P1 .

Proof. Notice that the path P1 starts at bq/pc goes clockwise in some number of jumps to
q/p and represents a tight contact structure on a solid torus with lower meridian ∞ and
convex boundary with dividing slope q/p. By Lemma 2.6 we can represent this contact
structure by the unique contact structure on the solid torus with convex boundary 0 and
then a contact structure on T2 × [0, 1] given by the path 0, 1, . . . , bq/pc followed by P1 and
the signs on the edges between 0 and bq/pc can be chosen arbitrarily. In particular we can
choose them to be negative (that is the same sign as the signs in P1 and P2). Thus inside
V1 we have a convex torus T0 with two dividing curves of slope 0 such that the path from
0 to q/p consists of all negative signs. Similarly, we have a convex torus T∞ of slope ∞
inside V2 and again the path from q/p to ∞ consists of all negative signs. Let L0 and L∞
be ruling curves of slope q/p on the tori T0 and T∞, respectively. By Lemma 7.8 we know
that L0 is Sq

−(LP1 ,P2) and that L∞ is Sp
+(LP1 ,P2). Notice that T0 separates S3 into two solid tori

one of which has meridional slope 0 and hence we see a dividing curve on T0 bounds an
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overtwisted disk in this solid torus and hence L0 is loose. Similarly L∞ is also loose. Thus
we see that Sk

+Sl
−(LP1 ,P2) is loose if either k ≥ p or l ≥ q.

Now if k < p and l < q, then the Legendrian knot Sk
±Sl
∓(L±P1 ,±P2) cannot be put on either

T0 or T∞ and the same isotopy discretization argument as in the proof of Proposition 7.5
shows that Sk

±Sl
∓(L±P1 ,±P2) is non-loose.

A similar argument establishes the result for L−P1 ,−P2 . �

Proposition 7.14. Given P1 and P2 as above, the union D′ � D(LP1 ,P2) ∪D(L−P1 ,−P2) is coarsely
Legendrian simple, that is, any two Legendrian knots in D′ with the same tb and rot are equivalent.
See Figure 23.

p

q

FIGURE 23. The union D′ of the diamonds associated with to completely
consistent paths describing q/p for pq > 0 is shown on the left. The peaks
occur at pq and the central valley occurs after stabilizing a peak q− p times.
The union of the diamonds of all pairs of paths compatible with the original
paths is shown on the right. Each integral point in the shaded region, whose
coordinates sum to be odd, is realized by a unique non-loose Legendrian
knot with tor � 0.

Proof. As argued in the proof of the previous proposition, inside V1 we find a convex torus
T1 with two dividing curves of slope 1. Let L1 be a ruling curve on T1 with slope q/p.
Lemma 7.8 tells us that L1 is Sq−p

− (LP1 ,P2).
Notice that T1 breaks S3 into two solid tori V′1 and V′2 each having two longitudinal

dividing curves, so there is a unique tight contact structure on each, the first described
by a path that goes from ∞ clockwise to 1 and the other going from 0 anti-clockwise to
1. As argued above we can break the first path into a path from ∞ to 0 and then 0 to 1.
The fist edge describes the unique tight contact structure on a solid torus with longitudi-
nal divides and the second edge can have any signs and here, we choose a positive sign.
Similarly for the second path we may subdivide the edges from 1 to bq/pc and then the
edges in P1 ∪ P2 that are from bq/pc to ∞ and we may assume that all the edges have a
positive sign. This shows that L1 also sits in the contact structure ξ−P1 ,−P2 and in particu-
lar is Sq−p

+ (L−P1 ,−P−2) and we see that Sq−p
− (LP1 ,P2) is Legendrian isotopic to Sq−p

+ (L−P1 ,−P2).
Since all other stabilizations of LP1 ,P2 and L−P1 ,−P2 with the same classical invariants are
stabilizations of Sq−p

− (LP1 ,P2) � Sq−p
+ (L−P1 ,−P2), the result follows. �
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As all the signs in all the paths P1 and P2 are the same, we can shorten P1 ∪ P2 to a
path going from bq/pc clockwise to∞. Inside the contact structure on T2 × [0, 1] described
by this path we can find a torus T with dividing slope dq/pe. Now T divides (S3 , ξP1 ,P2)
into two tight solid tori. One with lower meridian∞ and convex boundary of slope dq/pe
and the other with upper meridian 0 and convex boundary of slope dq/pe. So the first
solid torus has longitudinal dividing curves and hence there is only one possible contact
structure on it. Moreover, by Lemma 2.6 we may split this torus into one with boundary
slope bq/pc and basic slice with boundary slopes bq/pc and dq/pe and the sign of the basic
slice can be chosen arbitrarily. We choose the sign to be positive and then subdivide the
path to P1 ∪ P2 so that all the basic slices are positive except the last one in P2 going from
dq/pe to ∞ which is still negative. Denote the paths with the new signs by P2m−1

1 , P2m−1
2 .

Break the paths into their continued fraction blocks

(A2m−1
2 , . . . ,A2m−1

2n ) and (B2m−1
1 , . . . , B2m−1

2m−1)

as in Section 2.3. Then this new pair of paths is (2m − 1)-inconsistent (that is, maximally
inconsistent). We leave the almost identical case when the continued blocks in P2 have
even subscripts to the reader. As we saw in Section 2.3 we will now get k-inconsistent
pairs of paths Pk

1 , P
k
2 for k � 2, 3, . . . , 2m − 1 that are all compatible. Notice that all the

signs of the basic slices in P2
1 are negative, except the first one which is positive, and all the

basic slices of P2
2 are positive, except the first one which is negative.

Proposition 7.15. With the notation above, consider the V formed by the two rays starting at the
bottom vertex of D′, tangent to the lower boundary of D′, and with the top of the V at tb � pq.
Each pair of paths (±Pk

1 ,±Pk
2 ) constructed above gives a Legendrian knot L±Pk

1 ,±Pk
2

with tor � 0
and tb � pq, and stabilizations of it will remain non-loose exactly when the resulting Legendrian
has its classical invariants on or above the V described above. The set of non-loose stabilizations of
L±Pk

1 ,±Pk
2

gives the diamond D(L±Pk
1 ,±Pk

2
) of L±Pk

1 ,±P2
. The union

D � D′ ∪
2m−2⋃
k�2

D(L±Pk
1 ,±Pk

2
)

is coarsely Legendrian simple, i.e. any two Legendrian knots in D with the same tb and rot are
equivalent. See the right-hand side of Figure 23.

Proof. We first relate a stabilization of LP2m−1
1 ,P2m−1

2
and a stabilization of LP1 ,P2 . To this end,

we use the notation from the paragraph preceding the statement of the proposition and
notice that in the contact structure ξP1 ,P2 we see that inside of V2 there is a convex torus
Tdq/pe with two dividing curves of slope dq/pe. Let Ldq/pe be a ruling curve on Tdq/pe with
slope q/p. By Lemma 7.8 we know that Ldq/pe is isotopic to the result of positively stabilizing
LP1 ,P2 exactly | d q

p e •
q
p | times. As noted in the paragraph above, we also know that Tdq/pe

is a convex torus inside ξP2m−1
1 ,P2m−1

2
and from this we see that Ldq/pe is also the result of

negatively stabilizing LP2m−1
1 ,P2m−1

2
exactly | d q

p e •
q
p | times, thus all further stabilizations of

these knots will remain isotopic.
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Now just as in the proof of Proposition 7.5 we see that LP2m−1
1 ,P2m−1

2
positively stabilized

n2n � |s2n •
q
p | times is loose but stabilizing any fewer times remains non-loose (here,

2n � 2m − 2). Also, as in the proof of Proposition 7.10 we see that Sn2n−1
− (LP2m−1

1 ,P2m−1
2
) can

be negatively stabilized some number of times to agree with the left corner of D′. From
this we see that we get the diamond of LP2m−1

1 ,P2m−1
2

and when an element shares classical
invariants with D′ it is isotopic to the corresponding element of D′.

The diamonds for the other paths Pk
1 , P

k
2 follow from the same arguments as in Proposi-

tions 7.5 and 7.10 and the arguments above. �

7.3. Non-loose torus knot with tb ≥ pq. In this section, we will classify non-loose (p , q)–
torus knots with tb ≥ pq and tor � 0, which stabilize to LP1 ,P2 for some 2-inconsistent
(P1 , P2).

Proposition 7.16. Let (P1 , P2) be a 2-inconsistent pair of paths representing q/p. If pq > 0, then
we assume that (P1 , P2) are not ±(P′1 , P

′
2) in Lemma 7.4. Then LP1 ,P2 and L−P1 ,−P2 contribute an

infinite X, that is there are non-loose Legendrian knots Lk
− and Lk

+, for k ∈ Z with invariants

tb(Lk
±) � k and (Lk

±) � ±r0 ∓ k

for some r0, and such that
Si
±(Lk
±) � Lk−i

± and S∓(Lk
±) is loose.

See the left-hand side of Figure 24.

The classification of (p , np+1))-torus knots with tb � np2+p+1 and (p ,−(np−1))-torus
knots with tb � −np2 + p + 1 was also established in [25].

Remark 7.17. We will see in the proof that LP1 ,P2 is either Lpq
+ or Lpq

− and the other one is
L−P1 ,−P2 , so the two pairs produce the same knots Lk

±.

Remark 7.18. Notice that Lr0
+ and Lr0− both have rotation number zero, but are not equivalent

since they behave differently under stabilization.

Remark 7.19. From the paragraph before Proposition 7.15 we see that the excluded 2-
inconsistent pair of paths in the proposition is compatible with the pair of paths whose
signs are all the same and hence by Lemma 7.2 we know the contact structure is ξ1.

Proof. From Proposition 7.5 we get the Legendrian knots Lk
± for k ≤ pq with the desired

properties. We now recall that Lemma 6.10 says that there is a tight contact structure ξ
on the complement C of the (p , q)–torus knot that has convex boundary with two dividing
curves of slope∞ and no convex Giroux torsion such that adding a basis slice (T2×I , pq ,∞)
to (C, ξ) will result in the complement of a standard neighborhood of LP1 ,P2 . Suppose
this basis slice was negative. Then given any integer n > pq we can factor T2 × [0, 1]
into negative basic slices given by the path pq , . . . , n − 1, n ,∞ in the Farey graph. That is
there is a convex torus Tn in T2 × [0, 1] with two dividing curves of slope n. This torus
separates C∪T2×[0, 1] into two pieces, one, denoted Cn , is diffeomorphic to C and clearly
the complement of a Legendrian (p , q)–torus knot Ln

− with tb � n. Moreover, since the
complement of LP1 ,P2 � Lpq

− is obtained by attaching n − pq negative basic slices to Cn ,
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FIGURE 24. On the left are the Legendrian realizations of a (p , q)–torus knot
related to the 2-inconsistent pairs ±(P1 , P2) when (P1 , P2) , ±(P′1 , P

′
2) (see

Lemma 7.4). On the right we see the same when (P1 , P2) � ±(P′1 , P
′
2). For

each integral point on each of the lines on the left or on the infinite V on
the right whose entries sum to an odd integer, there is a unique non-loose
Legendrian, except that the crossing point of the X were there are exactly
two non-loose Legendrian knots.

we see that LP1 ,P2 � Sn−pq
− (Ln

−). Similarly, all the tori Tk for k ∈ [pq , n] ∩ Z give rise to
Legendrian knots Lk

− with the desired properties. Since n was arbitrary we see that we
have constructed Lk

− for any k ∈ Z. Notice that one attaches a positive basic slice to Cn with
dividing slopes n and n−1, then in the result we have a contact structure on T2×[0, 1] given
by the path ∞, n , n − 1 in the Farey graph and the signs on each edge are different. Since
the path can be shortened the contact structure is overtwisted. Thus a positive stabilization
of Ln

− is loose. So we have constructed Lk
− with the desired properties for all k. Similarly

we can get the Lk
+ from L−P1 ,−P2 . �

Proposition 7.20. Suppose that pq > 0 and let (P1 , P2) be the pair of decorated paths (P′1 , P
′
2) in

Lemma 7.4. The Legendrian knots LP1 ,P2 and L−P1 ,−P2 contributes an V of non-loose Legendrian
(p , q)–torus knots in ξP1 ,P2 . That is, there are non-loose Legendrian knots Lk

± for k > pq − r0,
where r0 � |R(Pq , P2)| (see Lemma 2.19), and Lpq−r0 in ξP1 ,P2 , with invariants

tb(Lk
±) � k , and rot(Lk

±) � (±pq ∓ r0) ∓ k

tb(Lpq−r0) � pq − r0 , and rot(Lpq−r0) � 0,
such that

S±(Li
±) � Li−1

± and S±(Lpq−r0+1
± ) � Lpq−r0 ,

and
S∓(Li

±) and S±(Lpq−r0) are loose.
See the right-hand side of Figure 24.

The classification for the right handed trefoil with tb � 7 was also established in [25].

Remark 7.21. Notice that LP1 ,P2 is either Lpq
+ or Lpq

− and the other one is L−P1 ,−P2 . So (P1 , P2)
and (−P1 ,−P2) determine the same V. Moreover, it is also clear that the Legendrian knots
in the V are determined by their tb and rot.
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Proof. The Legendrian knots Lk
± for k ≤ pq are given by Proposition 7.14 and those for

k > pq are founds exactly as in the proof of Proposition 7.16. �

7.4. The extra torus knot when pq < 0. By Lemma 6.7, when pq < 0 there exists one extra
contact structure ξe in Tight0(C; |pq | − |p | − |q |). If we glue a tight solid torus to C to obtain
S3, then the added solid torus is a standard neighborhood of a non-loose Legendrian knot
Le with tor � 0. We now study the properties of this extra Legendrian knot.

Proposition 7.22. Suppose pq < 0. Let (P1 , P2) be the paths describing a Legendrian LP1 ,P2 such
that the edges in P1 has only positive signs and the edges in P2 has only negative signs. Let ξp ,q be
the contact structure supported by the open book with binding the (p , q)–torus knot. We have the
following:

(1) The transverse push-off of LP1 ,P2 is the binding of an open supporting ξp ,q .
(2) d3(ξp ,q) � |pq | − |p | − |q | + 1.
(3) In ξp ,q , there are non-loose Legendrian knots Li

± , i ∈ Z such that
(a) tb(Li

±) � i , rot(Li
±) � ±(|pq | − |p | − |q |) ∓ i,

(b) Li
± � S±(Li−1

± ), S∓(Li
±) is loose, and

(c) Lpq
± � L∓P1 ,∓P2 .

(4) The extra Legendrian Le is in the contact manifold (S3 , ξp ,q) such that
(a) tb(Le) � |pq | − |p | − |q |, rot(Le) � 0, and
(b) S±(Le) � L |pq |−|p |−|q |−1

± .

Proof. Item (1) and (2) are the content of Lemma 7.1 and its proof, while Item (3) is Propo-
sition 7.16 except for the computation of the rotation numbers which will be done below.
So we are left to check Item (4).

In Lemma 6.2, we saw that when pq < 0, there is an extra contact structure ξe ∈
Tight0(C; |pq | − |p | − |q |) such that all convex tori parallel to ∂C have dividing slope |pq | −
|p | − |q |. Thus if we glue a solid torus to C and extent ξe (there is a unique way to do this)
then we get a Legendrian knot Le with standard neighborhood the glued in solid torus.
Clearly tb(Le) � |pq | − |p | − |q |. By Lemma 6.4, we also know that ξe is universally tight
and remains so after gluing any amount of convex Giroux torsion. Thus if ξ± is the result
of adding a ±-basic slice in Tightmin(T2 × [0, 1];∞, |pq | − |p | − |q |) to ξe , we know it is tight.
Moreover, we may factor ξ± into a contact structure ξ i

± ∈ Tight0(C; i) and a ±-basic slice
with slopes ∞ and i for i < |pq | − |p | − |q |. Clearly ξ i

± the complement of a non-loose
Legendrian knot L̃i

± and L̃i
± is a (|pq | − |p | − |q | − i)-fold ±-stabilization of Le . Notice that

L̃pq
± are non-loose Legendrian knots whose complements are universally tight and remain

so after adding any amounts of convex Giroux torsion. Thus by the proof of Lemma 7.1,
we know that L̃pq

± is equivalent to Lpq
± and thus all the L̃i

± for i < |pq | − |p | − |q | are equiv-
alent to Li

± by Lemma 7.16 (indeed we know there are only 2n(p , q) non-loose knots with
tor � 0 having these invariants and only one Li

± can stabilize to Lpq
± so L̃i

± must agree with
this Legendrian knot). Since we know that rot(Lpq

− ) � − rot(Lpq
+ ) we see that rot(Le) must

be zero. This establishes Item (4).
The computation of the rotation numbers for the Li

± now follows since we know the
rotation number of Le and how it relates to the Li

±. �
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7.5. The Giroux torsion of the examples above. In this section, we will see that all the
examples constructed in Section 7.2 have no convex Giroux torsion in their complement
unless pq > 0 and we are in ξpq−p−q , in which case some of the Legendrian knots have
convex half Giroux torsion.

Remark 7.23. For the Legendrian knots discussed in Section 7.3 and 7.4 that have tb ≥ pq
we already know they have no convex Giroux torsion in their complement because their
complements are in Tight0(C; n) for some n ≥ pq which by definition have no convex
Giroux torsion.

Proposition 7.24. Given a pair of decorated paths (P1 , P2), any non-loose stabilization of LP1 ,P2

has tor � 0, unless pq > 0 and (P1 , P2) is the one from Lemma 7.1. In the latter case, the non-loose
stabilizations of LP1 ,P2 will have tor � 0 if tb > pq − p − q, and tor � 1/2 if tb ≤ pq − p − q.

Proof. We consider three cases: first when (P1 , P2) is 2-inconsistent, but not totally 2-inconsistent,
then when (P1 , P2) is 2-consistent, and finally when (P1 , P2) is totally 2-inconsistent.

We deal with the first case. By possibly replacing (P1 , P2) by (−P1 ,−P2) if necessary,
we can assume that Sk

−(LP1 ,P2) is non-loose and S+(LP1 ,P2) is loose. (When we consider
the paths with opposite signs the role of ± stabilizations is reversed). Let (C, ξ) be the
complement of Sk

−(LP1 ,P2) and assume ξ contains convex half Giroux torsion. By Lemma 6.5
and Lemma 7.25, we can split C into C′ and T2 × [0, 1] where ξ |C′ ∈ Tight0(C; pq) and
ξ |T2×[0,1] has a convex Giroux torsion layer in it. Since ξ is tight and is obtained from ξ |C′
by attaching a convex Giroux torsion layer, we know that ξ |C′ must be associated to a
totally 2-inconsistent pair of paths (P′1 , P

′
2) by Lemma 6.13. Thus we can add an arbitrarily

amount of convex Giroux torsion to ξ |C′ and the result is still tight by Lemma 6.15. But
this, of course, implies that we can add an arbitrary amount of convex Giroux torsion to ξ
and the result is still tight, which contradicts Lemma 6.13. Thus Sk

−(LP1 ,P2) has tor � 0.
Now consider a pair of decorated paths (P1 , P2) that is 2-consistent. We note that (P1 , P2)

is compatible with a 2-inconsistent pair of paths (P′1 , P
′
2) that is not totally 2-inconsistent

(see Section 2.3). Moreover, Proposition 7.10 and 7.15 say that any stabilization of LP1 ,P2

can be further stabilized to be a stabilization of LP′1 ,P
′
2

and since the latter does not have
any convex Giroux torsion in its complement, neither does the former.

We are left to consider totally 2-inconsistent pairs of paths, and the proof of Lemma 6.19
gives the result in this case. �

7.6. Non-loose torus knots with convex Giroux torsion. We begin by noticing that all
non-loose torus knots have finite torsion.

Lemma 7.25. If L is a non-loose Legendrian torus knot, then tor(L) < ∞.

Proof. Suppose tor(L) , 0. Then we can stabilize or destabilize L and make tb(L) � pq. Let
C be the complement of L. As in Section 6.1, we can decompose C into V1 ∪ (S1 × P) ∪ V2
where P is a pair of pants and V1, V2 are solid tori. We use the coordinates system F2 from
Section 6.1 so that (a push-off of) L is considered as a 0-twisting vertical Legendrian curve
in S1 × P. Use this 0-twisting vertical Legendrian curve to thicken V1 and V2 so that their
dividing slopes become 0. Perturb T1, T2 and T3 so that ∂P is the ruling curves. After
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that, perturb P to be convex and there exist two possible dividing set on P as shown in
Figure 25.

We will first show that the dividing set shown in the first drawing of Figure 25 results
in an overtwisted contact structure. In the first drawing of Figure 25, we can find a bypass
for T2 and thicken V2 so that the dividing slope becomes∞. However, V! contains a convex
torus with slope (q/p)c measured in the coordinates system F1, which is ∞ measured in
the coordinates system F2. Thus V! contains a half convex Giroux torsion after thickening
and we can find an overtwisted disk in C.

Thus the dividing set on P should be the one shown in the second drawing of Fig-
ure 25. Choose a 0-twisting vertical Legendrian curve in S1 × P, which is in the I-invariant
neighborhood of T1. Then we can find a convex torus T which contains this curve and is
smoothly isotopic to T3, and its ruling curve sits on P and intersects the dividing curves at
two points as shown in Figure 25. Now cut S1×P along the torus T and we obtain a contact
structure on S1 × P with boundary slope 0 and the dividing set on P being as shown in the
first drawing of Figure 14. This T and T1 and T2 co-bound an S2×P and from Lemma 2.21,
we know that there exists unique tight contact structure on this S1 × P up to boundary
twisting. Let C′ be the union of this S1 × P and V1, V2. Then C is decomposed into C′ and
a finite convex Giroux torsion layer. Clearly, the contact structure on C′ is in Tight0(C; pq).
According to Claim A in the proof of Lemma 6.19, the number of convex Giroux torsion
added to a contact structure in Tight0(C; pq) is fixed, and there exist only finite number of
dividing curves on P, so it must be finite. �

FIGURE 25. Some possible dividing sets on the pair of pants P. The blue
curve is a Legendrian curve.

Proposition 7.26. Let L be any non-loose (p , q)–torus knot in (S3 , ξ) with tor(L) � n. Then there
is some pair of totally 2-inconsistent paths (P1 , P2) representing q/p such that the complement of
a standard neighborhood of L is obtained from the complement of a standard neighborhood of LP1 ,P2

by attaching a basic slice (T2 × [0, 1];∞, pq) and then attaching a convex (n − 1/2) Giroux torsion
layer, and finally a basic slice (T2 × [0, 1]; tb(L),∞). In particular, the complement of a standard
neighborhood of L is in a contact structure in Tightn(C; tb(L)) and any element in Tightn(C; tb(L))
gives a non-loose Legendrian knot with tor(L) � n.
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In addition, ξ � ξP1 ,P2 if n is an integer, or ξ is obtained from ξP1 ,P2 by a half Lutz twist on
the transverse push-off of LP1 ,P2 if n is a half integer (recall that by Proposition 7.5 either LP1 ,P2

or L−P1 ,−P2 remains non-loose after arbitrarily many negative stabilizations, we assume that it is
LP1 ,P2 that has this property).

Proof. This follows directly from Lemma 6.19 and its proof. �

7.7. Proof that the algorithm gives a complete classification. We will now show that the
algorithm from Section 3 does indeed give all non-loose torus knots.

We first consider non-loose Legendrian (p , q)–torus knots with tor � 0. We first note
that any such knot with tb � pq will be of the form LP1 ,P2 for some pair of decorated paths
(P1 , P2) representing q/p by Lemma 6.8. Moreover, if a non-loose Legendrian knot with
tor � 0 has tb < pq, then it will stabilize to one with tb � pq by Lemma 6.5. Thus we
know that it will be in a Wing or a Diamond of LP1 ,P2 for some decorated pair (P1 , P2) by
Propositions 7.5 and 7.15.

Now if a non-loose Legendrian (p , q)–torus knot with tor � 0 has tb � n > pq, then
its complement is in Tight0(C; n) and hence is a destabilization of some LP1 ,P2 for some
decorated pair of paths by Lemma 6.7, and moreover they must be 2-inconsistent by
Lemma 6.10. Thus we see that such a knot must be in an infinite X or V from Proposi-
tions 7.16 and 7.20.

These observations show that the classification algorithm in the generic case (Steps 1 and
3 of the algorithm) give the desired result except when pq > 0 and we are in the situation
where P1 has all one sign and P2 has all the other sign. The only things that might not
be immediately clear is the rotation numbers of Lpq

k ,±. However, those easily follow from
the computation of R(P1 , P2) for the 2-inconsistent paths according to Lemma 2.19, and
the proofs of Proposition 7.5 and Proposition 7.15 that indicates when compatible pairs
of decorated paths stabilize to become the same. In the excluded case, we will not have
an infinite X associated to LP1 ,P2 and L−P1 ,−P2 with tor � 0. Only the knots in the X with
tb > pq − p − q will have no convex Giroux torsion. Those with tb ≤ pq − p − q will have
convex half Giroux torsion by Proposition 7.24.

Remark 7.27. To see that the generic X-wings are as depicted in Figure 3, we need to see that
the crossing of the X is above pq when pq < 0 and otherwise is below pq. This is actually
clear by considering the inequalities in Theorem 1.19 (shown graphically in Figure 10).
Indeed, suppose the crossing of the X was below pq when pq < 0 then the top part of the X
would not fit through the allowable range when tb � 0 (we see that when tb � 0 we must
have rot between −|pq | + |p | + |q | and |pq | − |p | − |q |). We can similarly argue for pq > 0.

In the exceptional cases (Step 2), we first consider pq > 0. In this case, the above dis-
cussion shows that in ξ1, we have an infinite V together with some other diamonds. The
only thing to consider is the claimed values for the rotation numbers. To see this we first
consider the pair of paths (P1 , P2) with all signs the same. We saw in Proposition 7.14
that the diamonds associated to LP1 ,P2 and L−P1 ,−P2 have a common lowest vertex that has
tb � pq − p − q + 2. Now for the 2-inconsistent pairs of decorated paths that are compatible
with these paths, we see that they must be stabilized either strictly positively or strictly
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negatively to get to this lowest vertex (see Proposition 7.15). Thus we get the desired ro-
tation numbers for these two Legendrian knots and the rotation numbers for the others
follow from the proof of Proposition 7.15.

We now consider the exceptional case when pq < 0. Here the classification follows
directly from the above discussion and Proposition 7.22.

Finally, the classification of non-loose torus knots with convex Giroux torsion in their
complement follows directly from Proposition 7.26.

8. GENERAL RESULTS OF NON-LOOSE TORUS KNOTS

Theorem 1.1 claims that any Legendrian (p , q)–torus knot destabilizes if tb , pq except
for one with tb � |pq | − |p | − |q | when pq < 0 and some with tb � pq do but others do not.

Proof of Theorem 1.1. This follows directly from Lemma 6.5 and Lemmas 6.10 and 6.2. �

The parity of the d3-invariants of contact structures supporting non-loose torus knots is
given in Theorem 1.2 which we now prove.

Proof of Theorem 1.2. If (P1 , P2) are a pair of decorated paths such that ξP1 ,P2 supporting a
non-loose (p , q)–torus knot with tb � pq (and all contact structures supporting non-loose
torus knots have such a non-loose Legendrian knot), then we can draw a surgery diagram
for ξP1 ,P2 as described in Section 2.4 and then use Equation (3) to compute its d3-invariant.
Notice that in that equation the only term that depends on the decorations on (P1 , P2) is
c2. Recall that c is the vector of rotation numbers of the link in the surgery presentation of
ξP1 ,P2 and c2 is computed with the intersection pairing given by the linking matrix M of
the surgery diagram. The class c is a characteristic element of the pairing M (see the proof
of Corollary 3.6 in [9], where they show that c is related to c1 of a complex structure, which
is known to be characteristic by 9q where q is the number of (+1)-contact surgeries in the
diagram. Since q � 2 in our case we see c is characteristic). Now since the surgery diagram
presents S3 we know that M is unimodular, we know that c2 is congruent to the signature
of M modulo 8. Hence all the decorated paths (P1 , P2) have the same d3-invariant modulo
2.

Since for pq > 1 we know there are always non-loose LP1 ,P2 in ξ1, see Section 7.2.2, we
know that all d3-invariants of contact structures supporting non-loose Legendrian knots
with tor � 0 must have odd d3-invariants. Moreover, those with tor � n ∈ N will have
the same d3-invariants since full Lutz twists do not change the d3-invariant and those with
tor � (2n − 1)/2 will have even d3-invariants since half Lutz twists will change the d3-
invariant by the self-linking number of the transverse knot which is Lutz twisted about, see
Section 3.2, and we know these are all odd. We have a similar result for pq < 0 since there
is always some non-loose representative with tor � 0 in the contact structure ξ |pq |−|p |−|q |+1,
see Lemma 7.1. �

Theorem 1.3 details all the possible Legendrian knots with tor � 0 and tb > pq.

Proof of Theorem 1.3. This follows directly from the classification given in Section 7.7, or
more specifically Propositions 7.16, 7.20, and 7.22.
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We are left to show that all Li
±,k can be realized as a Legendrian knot in Figure 1. We

start with i � pq + 1. First, a simple Kirby calculus shows that L− and L+ are smooth
(p , q)–torus knots. See Figure 26 (if in the first figure of row two, the green curve is slide
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FIGURE 26. Various Kirby diagrams of a (p , q)–torus knot. As shown in
Section 2.4, in the upper left we see a contact surgery presentation for the
(p , q)–torus knot with tb � pq.

over the −1-framed curve, then the resulting diagram can be realized as a contact surgery
diagram in the top row of Figure 1). If we perform a Legendrian surgery on L± in the first
row of Figure 1, then we obtain tight L(p ,−q)#L(q ,−p). Thus tor(L±) � 0. Since S3

pq(Tp ,q) �
L(p ,−q)#L(q ,−p) and S3

m(Tp ,q) � S3
n(Tp ,q) for m , n, the smooth surgery coefficient on L±

(with respect to the Seifert framing) must be pq, which is tb−1. Thus tb(L±) � pq + 1.
Clearly there exist n(p , q) different L− and the same for L+. Now suppose some L− and
L+ are equivalent. This implies that the Legendrian surgery on them results in the same
contact structure. We can calculate the rotation numbers of these L± using the Formula (4).
Clearly, rot,M, lk are the same for both L±. The only difference is r0. Thus rot(L−) ,
− rot(L+), so they cannot be equivalent. Thus the first row of Figure 1 represents 2n(p , q)
non-loose torus knots with tb � pq + 1 and tor � 0. Since we have already established
that there are exactly 2n(p , q) non-loose Legendrian (p , q)-torus knots with tor � 0 and
tb � pq + 1, they must all be represented by a contact surgery diagram in Figure 1.

Now consider i � pq + m for m > 1. If we perform a Legendrian surgery on L± in
the second row of Figure 1, then we obtain Stein fillable contact manifolds and it is dif-
feomorphic to S3

pq+m−1(Tp ,q). Thus the smooth surgery coefficient on L± is pq + m − 1 and
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tb(L±) � pq + m. The Legendrian surgery on each L± produces n(p , q) different contact
structures distinguished by the Spinc structures on the Stein filling given by the surgery
diagrams in Figure 1 without the (+1)–surgery components, see [39, Theorem 1.2]. Finally,
each L− and L+ are not equivalent since we can calculate their rotation numbers as above
and they are different. Thus the second row of Figure 1 represents 2n(p , q) non-loose torus
knots with tb � pq + m and tor � 0. Since we now there are exactly 2n(p , q) (p , q)-torus
knots with tb > pq, except with pq < 0 and tb � |pq | − |p | − |q |, we have established the
theorem except in the exceptional case.

In the case that pq < 0 and tb � |pq | − |p | − |q |, we know there are 2n(p , q)+ 1 non-loose
Legendrian knots, the extra one we are denoting Le . We claim that none of the surgery
diagrams in Figure 1 give Le , given this we have completed the proof of Theorem 1.3. To
see this recall that S±(Le) is non-loose for either choice of stabilization, but for all the other
non-loose Legendrian knots with tb � |pq | − |p | − |q | one sign of stabilization will give
a loose knot, while the other will remain non-loose. So we will establish our claim by
showing that all the Legendrian knots in Figure 1 become loose after one stabilization of
the correct sign.

To this end consider the lower left diagram in Figure 1. Let S be a standard neigh-
borhood of a tb � −1 unknot that contains the bottom Legendrian unknot with contact
framing (+1) which we will call K. We can assume that L+ is contained in this neighbor-
hood too. We will show that the complement of S−(L+) in S is overtwisted and thus the
complement of S−(L+) in S3 is also overtwisted. Let S′ be a standard neighborhood of K in
S, notice that L+ sits on ∂S′ as a Legendrian divide. So S\S′ is a positive basic slice with di-
viding slopes −2 and −1. When we perform contact (+1) surgery on K we remove S′ from
S are replace it with a solid torus S−1 with lower meridian −1 and dividing slope −2, call
the result SK . Clearly SK is overtwisted, but when we remove S−1 from SK we get a tight
basic slice. Notice that S−1 is a standard neighborhood of L+ in SK (since it sits on ∂S−1 as
a Legendrian divide). If we negatively stabilize L+ in S−1 the result will have a standard
neighborhood with boundary slope −∞ (and lower meridian −1) and the complement of
the standard neighborhood in S−1 will be a negative basic slice with dividing slopes −∞
and −2. Thus the complement of this neighborhood in SK will be the union of a positive
basic slice with dividing slopes −2 and −1 and a negative basic slice with dividing slopes
−∞ and −2. Since the path from −∞ to −2 to −1 can be shortened and our basic slices have
opposite sign, we see that the complement of S−(L+) in SK is overtwisted as claimed. �

Remark 8.1. We note that according to our classification of non-loose Legendrian torus
knots we know that S±(L±)must be non-loose, but one can put the whole surgery diagram
in Figure 1 and S±(L±) on an open book and then (using a lantern relation) show that
Legendrian surgery on S±(L±) is supported by an open book with positive monodromy.
Thus it is tight and S±(L±) is non-loose.

Theorem 1.4 gives the number of non-loose Legendrian knots tor � 0 and tb � pq.

Proof of Theorem 1.4. From Lemma 6.8, we know that the number of Legendrian (p , q)–
torus knots with tight complement and tor � 0 and tb � pq is m(p , q). For pq > 0 there
are no such Legendrian knots in (S3 , ξstd) so in this case the number of non-loose such
knots is m(p , q). However, by [16], we know that there are 2dq/pe such knots in (S3 , ξstd)
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and hence we have the claimed number of non-loose Legendrian knots. The fact that they
come from the claimed surgery diagram was shown in Section 2.4. �

We discuss that there can be arbitrarily many peaks and deep valleys in Theorem 1.6.

Proof of Theorem 1.6. It is clear that one can choose q/p so that there are arbitrarily many
continued fraction blocks in P1 and P2 and that these blocks are arbitrarily long except for
the first one. According to Proposition 7.10 and 7.15, the result about the number of peaks
now follows by that we can choose i-inconsistent decorated pair of paths for arbitrarily
large i. According to the proof of Proposition 7.10, the depth of the valleys is determined
by the difference between the lengths of two continued fraction blocks Ai−1 and Bi , or Bi−1
and Ai , which we can make arbitrarily large. �

In Theorem 1.8 we give an upper bound on the number of overtwisted contact structures
supporting non-loose (p , q)–torus knots.

Proof of Theorem 1.8. Any non-loose Legendrian torus knot with tor � 0 is in a contact struc-
ture given by a 2-inconsistent pair of paths by the discussion in Section 2.3 and the clas-
sification given in Section 3. Moreover, there are 2n(p , q) of such pairs by Lemmas 6.7
and 6.10. Since (P1 , P2) and (−P1 ,−P2) give the same contact structures, we see an upper
bound is n(p , q) as claimed.

Now allow non-loose Legendrian knots with any convex Giroux torsion. According to
Proposition 7.26, the extra contact structures only come from totally 2-inconsistent pairs
of paths. According to Lemma 6.19, the number of totally 2-inconsistent pairs of paths is
twice what we want. Again, since (P1 , P2) and (−P1 ,−P2) give the same contact structures,
we see an upper bound in the formula is correct. �

We now establish Theorem 1.9 about the convex Giroux torsion in non-loose torus knot
complements.

Proof of Theorem 1.9. This directly follows from Lemma 7.25 and Claim A, B in the proof of
Lemma 6.19. �

We end by considering non-loose transverse knots by giving the proof of Theorem 1.10.

Proof of Theorem 1.10. As noted in the introduction the classification of transverse knots is
equivalent to the classification Legendrian knots up to negative stabilization, [16, Theo-
rem 2.10]. So any non-loose transverse knot will be the transverse push-off of non-loose
Legendrian knot. Suppose ξ supports non-loose Legendrian knots with a mountain range
given in Figure 3. Since we only need to consider Legendrian knots up to negative stabi-
lization, we only need to consider the bottom lower left of the figure. If the “wings" are
non-trivial (that is there is more than just an X in the mountain range) then none of the
Legendrian knots can have Giroux torsion (since the 2-inconsistent pair of paths associ-
ated to the X cannot be totally 2-inconsistent if it is compatible with a 3-inconsistent pair
of paths.) and we see the transverse push-offs of these Legendrian knots gives transverse
knots as in Item (1) of Theorem 1.10. If the mountain range has just an X, then it might
support non-loose knots with convex Giroux torsion or not. If there is no convex Giroux
torsion then we are in the case above, if there is convex Giroux torsion then we know for
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every point in the mountain range there are an infinite number of Legendrian knots with
different convex Giroux torsion in their complement. Their transverse push-offs will give
transverse knots as in Item (2) of the theorem. �
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[42] Irena Matkovič. Classification of tight contact structures on small Seifert fibered L-spaces. Algebr. Geom.

Topol., 18(1):111–152, 2018.
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