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Abstract. In this article we show that in any dimension there exist infinitely many pairs
of formally contact isotopic isocontact embeddings into the standard contact sphere which
are not contact isotopic. This is the first example of rigidity for contact submanifolds in
higher dimensions. The contact embeddings are constructed via contact push-offs of higher-
dimensional Legendrian submanifolds.

1. Introduction

Transverse knots in contact 3–manifolds [29, 40] have proven themselves instrumental to
study the contact geometry of 3–manifolds. The first existence results for 3-dimensional
contact structures [49, 50] crucially used transverse knots, and they were responsible for the
birth of the tight and overtwisted dichotomy [5, 20]. In fact, the transverse knot theory
supported by a contact 3–manifold uniquely determines the contact structure [35].

The first instance of formally contact isotopic transverse knots, and thus smoothly isotopic
knots, which were not contact isotopic, was discovered by J.S. Birman and W. Menasco [6,
Theorem 3]. This continued with [31, Theorem 1.7] where it was shown that the (2, 3)-
cable of the (2, 3)-torus knot is not transversely simple. Techniques and results have since
developed [17, 55, 56, 58] yielding a wide range of applications and classifications results in
low-dimensional contact geometry [32, 34, 59].

Transverse knots in a contact 3–manifold are isocontact embeddings of the unique contact
(S1, ξst) into a contact 3–manifold. Accordingly, the theory of isocontact embeddings in the
higher dimension promises to be rich and fruitful for higher-dimensional contact topology.
The study of isocontact embeddings in higher dimensions has seen recent developments, in-
cluding [30, 33] for new results on isocontact embeddings into 5-dimensional contact manifolds
and [7, 12] for overtwisted isocontact embeddings.

The central question that has remained open, in dimension 5 and above, is does there exist
formally contact isotopic, isocontact embeddings which are not contact isotopic. The aim of
this article is to answer this question.

Theorem 1.1. Let (S2n+1, ξst) be the standard contact sphere, and (Y, ξ) the contact bound-
ary of (T ∗Sn, λst). Then there are two codimension-2 isocontact embeddings

i0, i1 : (Y, ξ) −→ (S2n+1, ξst),

such that i0 and i1 are formally contact isotopic and i0 and i1 are not contact isotopic.

Let us refer to an isotopy class of smooth embeddings as simple if any two isocontact embed-
dings in this smooth isotopy class, which are formally contact isotopic, are isotopic through
isocontact embeddings. In this language, Theorem 1.1 is the first example of contact non-
simplicity in higher dimensions. The three-dimensional case was first resolved by Birman
and Menasco in [6, Theorem 3] and [31, Theorem 1.7].
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Remark 1.2. The h-principle for isocontact embeddings [23, Theorem 12.3.1] shows that
formally isotopic contact embeddings in at least codimension-4 must be contact isotopic. In
this sense, Theorem 1.1 is sharp and the codimension-2 condition cannot be removed. �

The isocontact embeddings in Theorem 1.1 are obtained via a construction which we refer
to as the contact push-off of a Legendrian submanifold, defined in Section 3. This tech-
nique yields an interesting connection between the theory of higher-dimensional Legendrian
submanifolds [11, 18, 19] and the study of isocontact embeddings.

In short, given a Legendrian Λ ⊆ (Y, ξ) in a contact manifold (Y, ξ) there is a canonical
embedding of a neighborhood of the zero section of T ∗Λ into (Y, ξ) such that a contact form
for ξ restricts to the canonical 1-form on T ∗Λ. The boundary of this neighborhood is a
codimension-2 contact submanifold of (Y, ξ), which we refer to as the contact push-off of Λ.
In dimension 3, the contact push-off recovers the union of the positive and negative transverse
push-offs [29].

Theorem 1.1 is proven in three steps. First, we construct the isocontact embeddings i0
and i1 using the contact push-off of Legendrian submanifolds. Second, we develop higher-
dimensional contact surgery diagrams for the 2-fold contact branched covers of (S2n+1, ξst)
branched along the images of these isocontact embeddings. Finally, the theory of pseudo-
holomorphic curves, [9, Section 2] and [48, 69], allows us to distinguish the higher-dimensional
contact structures given by these contact surgery diagrams.

Remark 1.3. Theorem 4.1 proven in the course of the proof of Theorem 1.1 and Section 4
are of independent interest, providing an explicit computational mechanism to obtain contact
surgery diagrams for contact branch covers along contact push-offs. �

In addition to Theorem 1.1, we use the contact push-offs of non-isotopic higher-dimensional
singular Legendrian submanifolds in order to prove the following.

Theorem 1.4. Let (S2n+1, ξst) be the standard contact sphere. There exist infinitely many
non-simple classes of isocontact embeddings in (S2n+1, ξst).

In addition, should we assume the Legendrian surgery formula [8, Theorem 5.4] and the
well-definedness of the terms therein, the proof of Theorem 1.1 should yield infinitely many
formally isotopic contact embeddings of a given contact manifold into (S2n+1, ξst) which are
not contact isotopic. Thus, we state it as the following.

Conjecture 1.5. Let (S2n+1, ξst) be the standard contact sphere. There exist infinitely many
formally contact isotopic isocontact embeddings of (∂T ∗Sn, ξst) into (S2n+1, ξst) which are not
contact isotopic. �

Organization. The article is organized as follows. We begin with some background mate-
rial in Section 2. Section 3 gives a method to construct codimension-2 contact embeddings
into a given contact manifold via higher-dimensional Legendrian submanifolds. Section 4
studies contact surgery diagrams for the contact cyclic branched covers along these contact
submanifolds. Then Section 5 proves Theorem 1.1, and Section 6 proves Theorem 1.4.

Acknowledgements. We are grateful to Jo Nelson and Jeremy Van Horn Morris for useful
discussions. R. Casals is supported by the NSF grant DMS-1841913 and a BBVA Research
Fellowship. J. Etnyre is partially supported by the NSF grant DMS-1608684. �
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2. Preliminaries

In this section we introduce the basic preliminaries required for Section 3, Section 4 and the
proofs of Theorem 1.1 and Theorem 1.4. The reader is referred to [3, 40] for a good intro-
duction to the basics of contact topology, and [29] for the theory of 3-dimensional transverse
knots.

2.1. Formal isotopies. The condition for a smooth submanifold to be a Legendrian or a
contact submanifold of a given contact manifold (Y, ξ) can be sifted into two pieces, algebraic
topology and differential geometry. This is the tenet of the h-principle [23, 45] and allows us
to focus on the genuinely geometric, instead of homotopical, features of contact topology.

For instance, the fact that two smoothly isotopic Legendrian knots in (S3, ξst) with different
Thurston-Bennequin invariants [29, Section 2.6.1] are not Legendrian isotopic can be detected
with classical homotopy theory, and we thus consider it an algebraic topological matter, rather
differential geometric.

The notion of a formal Legendrian submanifold is formalized as follows.

Definition 2.1 ([23, 45, 52]). Let (Y, ξ) be a (2n + 1)-dimensional contact manifold and Λ
an n-dimensional smooth manifold. A formal Legendrian embedding of Λ into (Y, ξ) is the
data of the following commutative diagram

TΛ TY

Λ Y

Fs

π π

f

where s ∈ [0, 1], the map π is the canonical projection of a tangent bundle, and the pair
(f, Fs) satisfies the following two properties:

1. f is a smooth embedding and F0 = df ,
2. Fs is a fiberwise injective bundle map covering f for all s ∈ [0, 1], and
3. F1(TpΛ) is a Lagrangian subspace of ξf(p) ⊆ TY , for all p ∈ Λ. �

For instance, in the case of (Y, ξ) = (R3, ξst) the set of connected components in the space of
formal Legendrian knots is indexed by the smooth topological type of the knot, the rotation
number, and the Thurston-Bennequin invariant. This result and the higher-dimensional
analogues for stably parallelizable Legendrians in (Y, ξ) = (R2n+1, ξst) are discussed in [52,
Proposition A.2].

The formal avatar of a codimension-2 contact submanifold is described as follows.

Definition 2.2 ([23, 45]). Let M be a (2n−1)-dimensional smooth manifold, a pair (η, ω) is
said to be a formal (or almost) contact structure on M if η ⊆ TM a codimension-1 sub-bundle
and ω ∈ Ω2(Y ) a 2-form such that (η, ω) is a symplectic bundle.

Let (Y, ξ = kerα) be a (2n+1)-dimensional contact manifold, (M,η, ω) a (2n−1)-dimensional
formal contact manifold. A formal (iso)contact embedding of (M,η, ω) into (Y, ξ) is the data
of the following commutative diagram

TM TY

M Y

Fs

π π

f

where s ∈ [0, 1] and the pair (f, Fs) satisfies the following two properties:

1. f is a smooth embedding and F0 = df ,
2. Fs is a fiberwise injective bundle map covering f for all s ∈ [0, 1], and
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3. F1 induces a conformally symplectic map from (η, ω) into (ξ, dα). �

Equipped with Definition 2.2, two isocontact embeddings i0, i1 : (M, ξ) −→ (Y, ξ) are said to
be formally contact isotopic if there exists a family

it : (M, ξ) −→ (Y, ξ), t ∈ [0, 1],

of formal contact embeddings. The central theme of this article is to show that there exist
isocontact embeddings i0 and i1, and families of formal contact embeddings {is}s∈[0,1] which
cannot be deformed to a family of isocontact embeddings for all s ∈ [0, 1] relative to the two
given endpoints s ∈ {0, 1} = ∂[0, 1].

2.2. Legendrian submanifolds. In this article, we will consider Legendrian submanifolds
in a Darboux ball through by using their fronts [1, Section 3.1]. Consider the standard
contact structure

(R2n+1, ξst) =

(
R2n+1, ker

{
dz −

n∑
i=1

yi dxi

})
,

where (x1, y1, . . . , xn, yn, z) ∈ R2n+1 are Cartesian coordinates. The projection map

π : R2n+1 −→ Rn+1, (x1, y1, . . . , xn, yn, z) 7−→ (x1, . . . , xn, z)

is a Legendrian fibration and thus it can be used as a front projection [3, Chapter 5]. In
particular, any Legendrian submanifold Λ ⊆ (R2n+1, ξst) is determined by its front projection
π(Λ) ⊆ Rn+1. In this article any depiction of a Legendrian submanifold is a depiction of its
front. Fronts can also be used in more general contact manifolds, see [11, Section 2] for a
detailed discussion and proofs of their validity.

2.2.1. Legendrian stabilization. The operation of Legendrian stabilization has been known
for some time, and has been detailed in [19, Section 4.3], this operation is a crucial ingredient
in our construction of formally contact isotopic non-isotopic contact embeddings.

In order to describe this operation, consider the Legendrian Λ0 ⊆ R2n+1 whose front π0 is
given by the disjoint union of the graphs of the two constant functions 0 and 1.

0, 1 : Rn(x1, . . . , xn) −→ R(z).

This front is depicted in the left of Figure 1. In addition to the Legendrian Λ0, we consider
a second Legendrian whose front is described as follows.

Let M ⊆ Rn(x1, . . . , xn) be a bounded smooth submanifold and consider a smooth function

f : Rn(x1, . . . , xn) −→ R(z),

such that f ∼= 1.5 in a neighborhood Op (M), and f ∼= 0 away from Op (M). The Legendrian
ΛM ⊆ (R2n+1, ξst) is defined by having the Legendrian front πM given by the graph of the
function f and the function constant equal to 1. Figure 1 on the right depicted this front
πM in the case n = 2 and M = S1. The operation of Legendrian stabilization is the content
of the following definition.

Definition 2.3. Let Λ ⊆ (Y, ξ) be a Legendrian submanifold and let (B, ξst) ⊆ (Y, ξ) be
a Darboux ball such that the (Λ ∩ B,B) is contactomorphic to (Λ0, (R2n+1, ξst)). The M -
stabilization of the Legendrian Λ is the Legendrian submanifold obtained by replacing the
intersection (Λ ∩B,B) with (ΛM ,R2n+1). �

As (S2n+1, ξst) minus a point is contactomorphic to (R2+1, ξst), we can similarly define sta-
bilizations of Legendrian submanifolds in (S2n+1, ξst).

In the present article, we will use the following form of stabilization. Given Λ ⊆ (S2n+1, ξst),
a Darboux ball (B, ξst) and a front for Λ ∩B ⊆ (B, ξst), let V ⊆ Rn+1 be a neighborhood of
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Figure 1. On the left is the front projection of the Legendrian submanifold
Λ0 of R2n+1 with an embedded circle M on the lower sheet. On the right is
the resulting front ΛM after an M -stabilization along that circle.

a point on a cusp edge in this front projection. The stabilization of Λ along an S1 localized
U will be denoted by s(Λ).

The results from [19, Proposition 4.5] and [52, Appendix A] combine to establish the following

Lemma 2.4 ([19]). Let Λ ⊆ (S2n+1, ξst) be a Legendrian submanifold, then the stabilized
Legendrian s(Λ) ⊆ (S2n+1, ξst) is formally Legendrian isotopic to Λ.

In contrast to Lemma 2.4, pseudo-holomorphic invariants from symplectic field theory [19,
22], or those from microlocal sheaf theory [13, 64], prove that there exist Legendrians Λ such
that Λ is not Legendrian isotopic to the M -stabilization of Λ.

Finally, we shall use the following (non-standard) definition of a loose Legendrian, which will
feature in the discussion of flexible Weinstein manifolds.

Definition 2.5 ([15, 52]). A Legendrian submanifold Λ of (Y, ξ) is said to be loose if there
exists a Legendrian Λ′ such that Λ = s(Λ′). �

2.2.2. Legendrian connected sum. The statement of Theorem 4.1 describes the contact surgery
diagram of a contact branch cover in terms of the higher-dimensional Legendrian connected
sum of two Legendrian submanifolds. Let us include here the definition of the Legendrian
connected sum.

Let (Y, ξ) be a contact manifold and Λ1,Λ2 ⊆ (Y, ξ) two Legendrian submanifolds. For
the purposes of the present work, let us assume that there exist two disjoint Darboux balls
(B1, ξst) and (B2, ξst) respectively containing Λ1 and Λ2. Let (B, ξst) be the Darboux ball
obtained by taking the standard neighborhood of (B1, ξst) and (B2, ξst) connected with any
isotropic arc. The latter Darboux ball (B, ξst) allows us to consider Λ1 and Λ2 as Legendrians
in (R2n+1, ξst) such that there fronts in Rn+1(x1, . . . , xn, z) are separated by the hyperplane
{x1 = 0}.

Consider an arc γ ⊆ R2n+1 with endpoints in Λ1 and Λ2, and assume that its front projection
admits a tubular neighborhood whose boundary is Legendrian isotopic to the front projection
of the (n − 1)-dimensional standard Legendrian unknot in Rn times a linear interval. This
will be referred to as a standard tubular neighborhood, for their existence see [40].

Definition 2.6. Let Λ1,Λ2 ⊆ (Y, ξ) be two Legendrians and γ ⊆ Y an arc with endpoints
in Λ1 and Λ2 such that:

1.
◦
γ ⊆ Y \ Λ1 t Λ2, i.e. γ only intersects the Legendrians at the endpoints.

2. The points of intersection γ ∩ Λ1 and γ ∩ Λ2 belong to a cusp edge of the fronts of
Λ1 and Λ2.

The Legendrian connected sum of Λ1 and Λ2 along γ is the Legendrian Λ1#Λ2 ⊆ (Y, ξ) whose
front is obtained by removing the front projection of the neighborhoods Op (γ∩Λ1)∩Λ1 and
Op (γ∩Λ2)∩Λ2 and concatenating with the boundary of the standard tubular neighborhood
of γ. �
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The hypothesis that the points of intersection γ ∩ Λ1 and γ ∩ Λ2 belong to a cusp edge [1]
implies that the complement of Op (γ∩Λ1)∩Λ1 and Op (γ∩Λ2)∩Λ2 in the respective fronts
has boundary equal to the front of the (n−1)-dimensional standard Legendrian unknot, thus
making the concatenation with the standard tubular neighborhood well-defined.

Remark 2.7. In the articles [10, Section 4] and [18] the Legendrian connected sum is implicit
in the context of index 1 exact Lagrangian cobordisms, and thus Legendrian 0-surgeries. In
the classical theory of Legendrian singularities, this is the index one A2-perestroika [1, Figure
48]. �

Let Λ0,Λ1 ⊆ (Y, ξ) be two Legendrians, with Λ0 ⊆ (Y, ξ) loose. It follows from Definition 2.6
and the h-principle for loose Legendrians [52, Theorem 1.2] that the Legendrian connected
sum Λ0#Λ1 ⊆ (Y, ξ) is a loose Legendrian. This will be used in Section 5.

2.3. Weinstein Hypersurfaces. Let (W,λ) be a Liouville manifold, i.e. an exact symplectic
manifold (W,ω) with a choice of primitive λ, such that dλ = ω. The vector field Xλ, ω-dual to
λ is called the Liouville vector field, and in this article we assume that it is a complete vector
field. A Weinstein manifold is a Liouville manifold together with a Lyapunov function for Xλ.
The central feature of Weinstein structures is that the Lyapunov function gives a Legendrian
handlebody decomposition of W [24, 67], capturing the symplectic topology of (W,λ). In this
section we review the basic ingredients in the study of Weinstein hypersurfaces. The reader
is referred to [11, 14] and [21] for accounts on the general theory of Weinstein manifolds.

The notion of a Weinstein hypersurface of a contact manifold is introduced in [4, Definition
1.3], in the context of Liouville hypersurfaces, and further discussed by Y. Eliashberg as part
of a Weinstein pair in [21, Section 2.1].

Definition 2.8. Let (Y, kerα) be a contact manifold, a Weinstein hypersurface Σ ⊆ Y is a
codimension-1 submanifold such that (Σ, α|Σ) is compatible with a Weinstein structure of Σ.
�

Let (Σ, α|Σ) ⊆ (Y, kerα) be a Weinstein hypersurface, then (∂Σ, α|∂Σ) ⊆ (Y, ξ) is a contact
submanifold. The image of the isocontact embeddings in Theorem 1.1 are codimension-2
contact submanifolds bounded by a Weinstein hypersurface. There are many examples of
contact submanifolds that do not bound Weinstein hypersurfaces.

Given two Weinstein hypersurfaces Σ0,Σ1 ⊆ (Y, ξ), the Weinstein hypersurface sum

(Y, ξ)Σ0#Σ1(Y, ξ)

of (Y, ξ) along Σ0 and Σ1 is constructed in [4, Section 3]. This is the contact manifold
obtained by gluing the two contact complements

(Y \ Op (Σ0), ξ), (Y \ Op (Σ1), ξ)

along their boundaries ∂Op (Σ0) t ∂Op (Σ1). In order to perform a contact gluing along
a hypersurface in a contact manifold, we use the technology of convex hypersurfaces. In
short, Moser’s method [51, Section 4] shows that a Weinstein hypersurface has a contact
neighborhood of the form

(Σ× [−ε, ε], ker{α− dt}),

where t ∈ [−ε, ε] is a coordinate, see [4, Lemma 3.1]. This standard neighborhood can be used
to show that there exists a contact neighborhoodOp (Σ) with a canonical convex hypersurface
boundary ∂Op (Σ). Then the standard contact gluing along convex hypersurfaces is used to
build (Y, ξ)Σ0#Σ1(Y, ξ). We refer the reader to the work of E. Giroux [41, Section I] for
convex gluing in the three-dimensional case, and [4, Section 3.3] and [47, Section 2] for the
higher-dimensional theory.
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2.3.1. Cobordism description of Weinstein hypersurface sums. In this article, we shall use
the following result, stated in [4, Theorem 1.9]. We include our proof of the result as the

details are needed below. If (W,λ) is a Weinstein manifold, then we denote by (W (1), λ(1))
the Weinstein cobordism obtained by taking the product of (W,λ) with a 2-dimensional

Weinstein 1-handle (D1×D1, λst). We will momentarily provide more details for (W (1), λ(1))
and prove Proposition 2.9.

Proposition 2.9. Let (Y0, ξ0) and (Y1, ξ1) be two contact manifolds and

i0 : (W,λ) −→ (Y0, ξ0), i1 : (W,λ) −→ (Y1, ξ1)

be two Weinstein hypersurface embeddings. Then the Weinstein sum

(Y0, ξ)im(i0)#im(i1)(Y1, ξ)

is the convex boundary of the Weinstein cobordism obtained by attaching the Weinstein cobor-
dism (W (1), λ(1)) to the convex part of the symplectization of (Y0, ξ0)t (Y1, ξ1) along the two
embeddings of the Weinstein hypersurface (W,λ).

Furthermore, given a Weinstein handle decomposition of (W,λ) we can explicitly describe
the Legendrian attaching spheres for a Weinstein cobordism from (Y0, ξ0) t (Y1, ξ1) to the
Weinstein sum.

Remark 2.10. Technically, [4, Theorem 1.9] contains the first result in this direction, show-
ing that the Weinstein connected sum yields a Weinstein cobordism. However, [4] does not
provide an explicit description of the contact surgery diagram for the cobordism - though
some of the provided examples allude to how this is done in dimension 3 - and we need the
general improvement given by the proof of Proposition 2.9 and Section 4 for our results. �

Let (W,λ, ϕ) be a Weinstein manifold and H(1) = (D1 ×D1, λst, ϕst) a 2-dimensional Wein-
stein 1-handle [67, Section 3]. Specifically, consider the 1-form λst = 2s dt+ t ds where (s, t)
are coordinate on D1 × D1 and the Morse function ϕst = −s2 + t2. Endow the product
W × (D1×D1) with its natural Weinstein structure [14, Example 11.12.(3)] given by λ+λst

and ϕ + ϕst, and denote the resulting Weinstein manifold by (W (1), λ(1), ϕ(1)), and observe
that if v is the Liouville field associate to λ then v+ 2s ∂∂s − t

∂
∂t will be the Liouville field for

λ+ λst. The product structure induces the following decomposition of the smooth boundary
of (W (1), λ(1), ϕ(1)):

∂W (1) =
[
∂W × (D1 ×D1)

]
t
[
W × ((D1 × S0) t (S0 ×D1))

]
.

Let the piece (S0 × D1) ⊆ H(1) be the attaching region of the Weinstein 1-handle H(1), it
is endowed with the contact structure (J1S0, ξst) where S0 is the isotropic attaching sphere.

The Weinstein manifold (W (1), λ(1), ϕ(1)) can be understood as a Weinstein cobordism with
concave contact boundary (W × (S0 ×D1), ker(λ+ λst)), convex contact boundary

((∂W × (D1 ×D1)) ∪ (W × (D1 × S0)), ker(λ+ λst))

with corners along ∂W × ∂(D1 ×D1).

Proof of Proposition 2.9. The contact structure induced on each of the two connected com-
ponents of (W × (D1 × S0), ξst) by the Liouville form λ(1) is contactomorphic to the contac-
tization of the Weinstein structure (W,λ). Thus, in the hypothesis of Proposition 2.9 we can

identify the concave end of (W (1), λ(1), ϕ(1)) with contact neighborhoods of the two Weinstein
hypersurfaces im(i0) t im(i1) ⊆ (Y0, ξ0) t (Y1, ξ1).

In addition, given the Weinstein structure of the Weinstein handle model [67], we can identify

the remaining D1-direction in the Weinstein 1-handle H(1) with the symplectization Liouville
direction of the symplectization of the contact manifold (Y0, ξ0) t (Y1, ξ1). In this manner

we attach the Weinstein cobordism (W (1), λ(1)) to the symplectization of (Y0, ξ0) t (Y1, ξ1)
along (W,λ). Since the local model of a Weinstein sum is obtained by identifying the contact
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neighborhoods along the contactization direction we conclude that the Weinstein sum along
(W,λ) is equivalently obtained by exchanging the concave contact boundary W × ((S0×D1)

of the Weinstein cobordism (W (1), λ(1), ϕ(1)) by its convex contact boundary (∂W × (D1 ×
D1)) ∪ (W × (D1 × S0)).

Suppose now that (W,λ) is presented as a Weinstein handlebody, we shall show how to build
the symplectic cobordisms (W,λ) above from a piece of the symplectization of (Y0, ξ0) t
(Y1, ξ1) by attaching a Weinstein (k + 1)-handle for each k-handle in the decomposition of
(W,λ). The construction is described as follows.

Construction 2.11. Consider a Weinstein handle decomposition of W where handles are
attached in order of increasing index. Let hk1, . . . , h

k
ik

be the k-handles in the decomposition.

Denote Wk the union of all handles of index less than or equal to k, and recall that hk is
attached to ∂Wk−1 along an isotropic (k − 1)-sphere in ∂Wk−1. It should also be noted [67]
that the 1-form λ vanishes on the core disk Dk

i of hki and thus the image of Dk
i in Wk−1 will

be an isotropic submanifold of (Y0, ξ0) t (Y1, ξ1).

For each 0-handle h0
i the image of the core in Σ0 and Σ1 gives rise to two points in (Y0, ξ0)t

(Y1, ξ1), one point belonging to each component of this disjoint union decomposition. This
will be the attaching neighborhood of a Weinstein 1-handle for W . Assuming inductively we
have attached all the k-handles of W resulting in W k = ([0, 1] ×M) ∪ (D1 × D1 ×Wk−1)
where the components of S0 ×D1 ×Wk−1 have been glued to their images in Y0 and Y1 and
the upper boundary of the cobordism is (Y0, ξ0) t (Y1, ξ1) minus two copies of the standard
neighborhoods NWk−1

of the Wk−1, union D1×(∂(D1×Wk−1)). Notice that ∂(D1×Wk−1) is

a convex surface and the contact structure on D1×(∂(D1×Wk−1)) is simply an D1–invariant
neighborhood of ∂(D1 ×Wk−1).

Let us then explain how to attach the Weinstein (k+ 1)-handles. For each k-handle hki of W
we have its core Cki , its image in Y0 and Y1 gives rise to two isotropic disks in (Y0, ξ0)t(Y1, ξ1)
and the attaching sphere ∂Cki gives an isotropic annulus D1 × ∂Cki in D1 × (∂Wk−1). The

union of the disks and annulus will give an isotropic Sk in the upper boundary of W k and
the given trivializations of the conformal normal bundle to the Cki extend over D1 × ∂Cki .
We attach a Weinstein (k + 1)-handle to Wk along this sphere. �

Finally, the above construction does recover (W,λ) since the model for a Weinstein k-handle

times H(1) with the vector field and Liouville form from above is the model of a Weinstein
(k + 1)-handle, and the attaching isotropic sphere is precisely as indicated. �

2.3.2. Legendrian lifts. Let L ⊆ (Σ, α) be an exact Lagrangian in a Weinstein hypersurface
(Σ, α) ⊆ (Y, ξ), with primitive f : L −→ [−ε, ε] such that α|L = df . Consider the standard
neighborhood (Σ× [−ε, ε], ker{α− dt}), then

i : L −→ Σ× [−ε, ε] : p 7−→ (p, f(p))

is a Legendrian embedding. By definition, any Legendrian representative Λ ⊆ (Y, ξ) of the
isotopy type of the image im(L) is said to be a Legendrian lift of L ⊆ (Σ, α) into (Y, ξ).

The case where the primitive f ≡ 0 is identically zero is also of interest, as for the zero section
of a cotangent bundle, in which instance the Lagrangian submanifold itself is a Legendrian
submanifold, when regarded in (Y, ξ). We refer to [3, 11, Section 2] for discussions and details
on Legendrian lifts.

2.3.3. Flexible Weinstein Manifolds. Flexible Weinstein fillings are introduced in [14, Chap-
ter 11.8]. By definition [14, Definition 11.29], a 2n-dimensional Weinstein manifold is flexible
if it admits a Weinstein handlebody decomposition [11] such that all the critical n–handles
are attached along loose Legendrian spheres, as introduced in Definition 2.5 above. The only
currently available method to detect flexibility of a Weinstein manifold is to draw a Weinstein
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handlebody diagram [14, Section 2] exhibiting the loose charts for the attaching Legendrian
submanifold. This is the method used in [11, Section 4] to give many examples of affine
manifolds whose underlying Weinstein structure is flexible, and also the method we will use
in Section 5 to exhibit flexible Weinstein fillings.

2.4. Contact branched covers. The proof of Theorem 1.1 and Theorem 1.4 rely on the
understanding of higher-dimensional contact branched covers, which we review in this sec-
tion. The operation of a contact branched cover in 3-dimensional contact topology was first
introduced J. Gonzalo in [44], and contact branched covers in the higher dimension were
constructed by H. Geiges [39], as follows.

Let C ⊆ (Y, ker{α}) be a codimension-2 contact submanifold and p : Y (C) −→ Y a smooth
branched cover with branched locus C ⊆ Y . The local model for the smooth branched
covering along C is given by

P : Rn × C −→ Rn × C : (x, z) −→ (x, zn),

where C is locally identified as Rn × 0 ⊆ Rn × C. See [30, 61] for more details on smooth
branched covers. In this local model, the pull-back 1-form P ∗(α) is contact away from Rn×0
and it can be perturbed with compactly support to a contact form near Rn×0. In particular,
this contact local model can be glued to the global pull-back p∗(α), which is contact in the
complement of C ⊆ (Y, ker{α}).
The precise result reads as follows.

Theorem 2.12 ([39],[57]). Let (Y, ker{α}) be a contact manifold, C ⊆ (Y, ker{α}) a contact
submanifold and p : Y (C)→ Y a smooth branched cover with branch locus C.

Then there exists a contact structure ker{α1} on Y (C), unique up to contact isotopy, with a
path (αt) of 1-forms such that

- α0 = p∗α, αt is a contact 1-form for t ∈ (0, 1],
- d(∂tαt)|t=0 is a positive form on the normal bundle of the branched set p−1(C).

The contact manifold (Y (C), ker{α1}) in Theorem 2.12 is called the contact branched cover
of (Y, ker{α}) along the contact submanifold C.

2.5. Open book decompositions. In this article, we oftentimes describe contact manifolds
by using adapted open book decompositions as introduced by E. Giroux [42]. We describe
the basic features necessary for the present work, more details can be found in [16, 66] and
[40, Section 7.3].

Given a smooth manifold W with boundary and a diffeomorphism compactly supported in
the interior of W , ϕ ∈ Diffc(W ), we can consider its mapping torus

Tϕ = W × [0, 1]/ ∼,
where (x, 1) ∼ (ϕ(x), 0). The manifold Tϕ has boundary ∂W × S1, and we obtain a closed
manifold ob(W,ϕ) by gluing Tϕ to (∂W ) × D2 with the identity. The smooth manifold
ob(W,ϕ) is said to have an open book decomposition associated to the pair (W,ϕ) [61].

The main contact topology result we use is [42, Proposition 9], a higher-dimensional version
of the 3-dimensional construction of W. Thurston and H. Winkelnkemper, which states that
a Liouville manifold (W,λ) and a symplectomorphism compactly supported on the interior
of W , ϕ ∈ Sympc(W,dλ), determine a unique contact structure ξϕ on the smooth manifold
ob(W,ϕ), up to contact isotopy. See [40, Theorem 7.3.3] for a proof.

Let (Y, ξ) be a contact manifold. In the course of the article we will use the notation

(Y, ξ) = ob(W,ϕ),
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to indicate that the contact manifold (Y, ξ) is contactomorphic to (ob(W,ϕ), ξϕ), i.e. that ξ
is supported by the open book ob(W,ϕ) in the language of [40].

Example 2.13. Let (T ∗Sn, λst) be the standard Liouville structure on the cotangent bundle
T ∗Sn of the standard round n-sphere Sn. The square of the distance to the zero section is
a Lyapunov function for Xλst , and thus endows (T ∗Sn, λst) with a Weinstein structure [14,
Example 11.12.(2)].

Denote by τSn ∈ Sympc(T ∗Sn, dλst) the higher-dimensional Dehn twist along the zero section
Sn. This is the compactly supported symplectomorphism initially introduced in [2, Section
2] in the 4-dimensional case. The general definition can be found in [62, Chapter III.16.(c)]
and [16, Section 4.3], it is likely the best understood non-trivial symplectomorphism as of
the writing of this article.

The Milnor fibration construction [42] yields the contactomorphism

(S2n+1, ξst) = ob((T ∗Sn, λst), τSn).

In addition, the exact Lagrangian zero section Sn ⊆ T ∗Sn lifts to the standard Legendrian
unknot Λ0 ⊆ (S2n+1, ξst), we refer to the reader to [12] for details. �

2.5.1. Open Book Stabilization. Let (Y, ξ) = ob(W,ϕ) be an adapted open book decompo-
sition, the operation of stabilization of ob(W,ϕ) allows us to obtain a new open book also
compatible with (Y, ξ). This operation, which we now describe, was initially introduced in
[42], and see also [16, Section 4.3].

Given (Y, ξ) = ob(W,ϕ), consider a properly embedded Lagrangian disk D ⊆ (W,λ) with
Legendrian boundary ∂D ⊆ (∂W, ker{λ|∂W ). Perform a critical Weinstein handle attachment
[14, 67] along the Legendrian sphere ∂D ⊆ (∂W, ker{λ|∂W ), resulting in a Weinstein manifold
(W∂D, λ). The Lagrangian core of the Weinstein handle and the Lagrangian filling D ⊆
(W∂D, λ) glue along the Legendrian sphere ∂D ⊆ (∂W, ker{λ|∂W}) to form a Lagrangian
sphere S ⊆ (W∂D, λ).

Let τS denote the Dehn twist along this exact Lagrangian sphere S ⊆ (W∂D, λ), and ex-
tend the compactly supported symplectomorphic ϕ ∈ Sympc(W,dλ) by the identity to an
eponymous compactly supported symplectomorphism ϕ ∈ Sympc(W∂D, dλ). The open book
decomposition (W∂D, τS ◦ϕ) of the contact manifold ob(W∂D, τS ◦ϕ) is said to be the stabi-
lization of (W,ϕ) along the Lagrangian disk D ⊆ (W,λ).

The central property of this stabilization operation for contact open books is that it preserves
the contactomorphic type of the resulting contact manifold. This is the content of the
following:

Theorem 2.14 ([16, 42, 66]). The contact manifolds (ob(W,ϕ), ξϕ) and (ob((W∂D, τS ◦
ϕ)), ξτS◦ϕ) are contactomorphic.

The word stabilization appears in many related contexts. The open book stabilization de-
scribed above is the geometric operation printed in the contact boundary when a stabilization
of a symplectic Lefschetz fibration is performed [11]. (This is in turn equivalent to the sta-
bilization of a Weinstein handlebody with a critical cancelling pair [11, Section 2].) Thus
stabilizing symplectic Lefschetz fibrations and contact open books are equivalent. In addi-
tion, [12, Section 6] explains how the stabilization of a Legendrian submanifold introduced
in Subsection 2.2 is related to the stabilization of a contact open book, see also [28] for the
precursor to this in dimension 3.

Example 2.15. Consider the contact open book decomposition ob(T ∗Sn, τSn) in Exam-
ple 2.13. The cotangent fiber at any point is a Lagrangian disk D ⊆ (T ∗Sn, λst), and we can
perform a stabilization of ob(T ∗Sn, τSn) along this Lagrangian disk. The Weinstein manifold
is be the plumbing of two copies of T ∗Sn and the monodromy is the composition of two Dehn
twists, one along each of the two spherical zero sections.
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This stabilization can be performed iteratively by choosing the Lagrangian disk D to be a
cotangent fiber of the last copy of (T ∗Sn, λst) being plumbed, where the cotangent fiber is
chosen to be disjoint from the intersection created in the plumbing procedure [11, 66].

Figure 2. Weinstein handle diagrams for the 4 and 6 dimensional Ak singu-
larity (there are k Legendrian spheres in each figure).

Let (A2n
k , λst) be the symplectic plumbing of k copies of (T ∗Sn, λst) according to the Ak-

Dynkin diagram [62, Example 19.3(iii)], and especially [62, Section III.20]. The kth stabiliza-
tion of ob(T ∗Sn, τSn) as described above yields the contact open book decomposition

(S2n+1, ξst) = ob(A2n
k , ϕk), for all positive k

where ϕk is the composition of one Dehn twist along each of the zero sections. Figure 2
depicts a Legendrian handlebody presentation for the Weinstein manifolds A2n

k [11, 43].

These contact open book decompositions correspond to the symplectic Milnor fibration for
the Ak-isolated singularities

fk : Cn+2 −→ C : (z1, . . . , zn) −→ zk+1
1 + z2

2 + . . .+ z2
n,

the Weinstein manifold A2n
k being the Milnor fiber of the holomorphic map fk [2, 42]. �

3. Contact push-offs and formal isotopy classes

Transverse push-offs of 1-dimensional Legendrian knots Λ ⊆ (S3, ξst), [29, Section 2.9] and
[40, Section 3.1], are central in the study of transverse and Legendrian knot invariants [46, 56].
In this section we introduce the notion of a contact push-off of a Legendrian submanifold in
higher-dimensions, which gives rise to a wealth of codimension-2 isocontact embeddings in a
given contact manifold.

3.1. The contact push-off of Legendrian submanifolds. Let (Y, ξ) be a contact mani-
fold and Λ a smooth Legendrian submanifold. By the Weinstein neighbourhood theorem [40,
Proposition 2.5.5] there exists an open set Op (Λ) ⊆ (Y, ξ) containing Λ and a contactomor-
phism

(Op (Λ), ξ|Op (Λ)) ∼= (J1Λ, ξst),

which identifies Λ ⊆ Op (Λ) with the zero section Λ×{0} in the 1-jet space J1Λ = T ∗Λ×R.
Here ξst on J1Λ is given as the kernel of dz − λst where z is the coordinate on R and λst is
the canonical 1-form on the cotangent bundle T ∗Λ.

Let D∗(Λ) denote the unit disk bundle in the cotangent bundle of Λ, for an arbitrary fixed
Riemannian metric on Λ. The hypersurface (D∗(Λ), λst) ⊆ (J1(Λ), ξst) is a Weinstein hyper-
surface of the contact manifold J1(Λ), as defined in Subsection 2.3, and thus its boundary
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(∂(D∗Λ), λst|∂(D∗Λ)), is a contact submanifold of (J1(Λ), ξst). We denote this codimension–2
contact submanifold by

τ(Λ) := (∂(D∗Λ)× {0}, λst|∂(D∗Λ)) ⊆ (J1Λ, ξst),

and refer to the Weinstein hypersurfaceD∗Λ as the Weinstein neighborhood of Λ ⊆ (J1(Λ), ξst).

Definition 3.1. Let (Y, ξ) be a contact manifold and Λ a Legendrian submanifold. The
contact push-off of Λ in (Y, ξ) is the image of the contact submanifold

τ(Λ) = (∂(T ∗Λ)× {0}, ξst) ⊆ (J1Λ, ξst),

by a contactomorphism identifying a neighborhood of Λ with J1Λ:

(Op (Λ), ξ|Op (Λ)) ∼= (J1Λ, ξst).

The contact push-off is eponymously referred to as τ(Λ). �

Definition 3.1 in the 3-dimensional case asserts that the contact pushoff of a Legendrian knot
is defined as the transverse link given by the disjoint union of the positive and the negative
transverse push-offs [40, Section 3.1].

Remark 3.2. The positive and negative transverse push-off of a 1-dimensional Legendrian
knot Λ ⊆ (R3, ξst) do not independently determine the Legendrian isotopy type of Λ [27,
Theorem 2.1]. �

In line with this remark, we would like to include the following conjecture, which aims at
underscoring the role of contact push-offs for higher-dimensional Legendrian topology:

Conjecture 3.3. Let Λ0,Λ1 ⊆ (S2n+1, ξst) be two formally Legendrian isotopic smooth Leg-
endrian submanifolds such that τ(Λ0) and τ(Λ1) are contact isotopic. Then Λ0 and Λ1 are
Legendrian isotopic. �

3.2. Formal isotopy type. Let us address the formal contact isotopy type of contact push-
offs. First, the (formal) contact structure of τ(Λ) is induced by the almost complex, equiv-
alently symplectic, structure of the Liouville hypersurface (T ∗Λ, ω). Given a Legendrian
isotopy {Λt}, t ∈ [0, 1], with Λ0 = Λ, the almost complex structures on (T ∗Λt, ωt) would
produce in their boundaries a (formal) contact isotopy between τ(Λ0) and τ(Λ1).

In this article we are comparing Legendrians with respect to formal Legendrian isotopy, and
thus we need the effect of a formal Legendrian isotopy on the formal contact isotopy type of
its contact push-off.

Lemma 3.4. Let Λ0,Λ1 ⊆ (Y, ξ) be two Legendrian submanifolds. If Λ0 and Λ1 are for-
mally Legendrian isotopic, then τ(Λ0) and τ(Λ1) are formally contact isotopic as isocontact
embeddings.

The most direct proof for Lemma 3.4 is to define the formal contact push-off of a formal
Legendrian (f, {Fs}), extending Definition 3.1 to formal Legendrian embeddings. Lemma 3.4
then follows from the fact that the formal Legendrian type of (f, Fs) determines the formal
contact type of τ((f, Fs)).

Let (Y, ξ) be a (2n+1)-dimensional contact manifold with a choice of contact form ξ = ker(α)
and a Riemannian metric g. Let (Λ, f, Fs) be a formal Legendrian embedding into (Y, ξ). We
now construct the formal contact push-off in the following three steps.

First Step. There exists real rank-n subbundles Cs ⊆ TY , for s ∈ [0, 1], defined over the
Legendrian f(Λ), such that Cs ∩ Fs(TΛ) is the zero section, and C1 ⊆ ξ is a Lagrangian
subspace yielding the direct sum decomposition C1 ⊕ F1(TΛ) = ξ.

Let us prove this. First, consider a compatible complex structure J compatible with the
symplectic bundle (ξ, dα). Let us assume, without loss of generality, that v and Jv are
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g-orthogonal and the Reeb vector field of α is of unit g-length and g-orthogonal to the
hyperplane distribution ξ. Second, consider Fs(TΛ) −→ f(Λ) as a subbundle of TY |f(Λ) −→
f(Λ), and let Es ⊆ TY be the g-unit sphere bundle in the (n+ 1)-dimensional g-orthogonal
Fs(TΛ)⊥g ⊆ TY |f(Λ), which is a Sn-fiber bundle.

The Reeb vector field gives a section of E1, as we have chosen g such that the Reeb vector
field is of unit g-length, and there is no obstruction to extending this section of E1 to an
s-family of sections vs ∈ Γ(Es) for all s ∈ [0, 1]. Then the subbundles Cs ⊆ TY are defined
to be the g-orthogonals

Cs = (Fs(TΛ)⊕ span{vs})⊥g ⊆ TY,

to Fs(TΛ)⊕ span{vs} as a subbundle of TY .

Second Step. Let Ss(Λ, ε) ⊆ Cs be the subbundle of Cs of fiberwise spheres of g-radius
equal to ε, which is a fiber bundle over f(Λ) with fiber Sn−1. Then the (2n− 1)-dimensional
smooth manifold Ss(Λ, ε) smoothly embeds in a neighborhood Op (Λ) ⊆ (Y, ξ), for ε ∈ R+

small enough and s ∈ [0, 1].

In order to construct this embedding, it suffices to consider the exponential map expg of the
Riemannian metric g for the fiber bundle Cs. Since Fs : TΛ −→ TY is a monomorphism
and Cs ∩ Fs(TΛ) = {0}, this exponential maps embeds a small disk bundle Ds ⊆ Cs. In
particular, the sphere bundles Ss(Λ, ε) ⊆ Cs are embedded for small ε ∈ R+.

Third Step. There exists a formal contact structure (ηs, ωs) on Ss(Λ, ε), unique up to
homotopy, such that the above smooth embedding

Ss(Λ, ε) −→ Op (Λ),

is a formal contact embedding of (Ss(Λ, ε), ηs, ωs) into the formal contact manifold underlying
(Op (Λ), ξ|Op (Λ)).

This third step will consist of two parts, constructing the required formal contact structure
(Ss(Λ, ε), ηs, ωs) and showing that it admits a formal contact embedding.

First, let us focus on the existence of a formal contact structure (Ss(Λ, ε), ηs, ωs). For that,
note that the compatible almost complex structure J gives ξ = F1(TΛ) ⊕ C1 a complex
structure as a vector bundle, and since the vector bundles Fs(TΛ)⊕Cs are all homotopic to
F1(TΛ)⊕ C1, a natural complex structure Js is induced.

The tangent space of the image expg(Ds) of the exponetial map in the item above splits as

T (expg(Ds)) ∼= Fs(TΛ)⊕ Cs,
where this identification is canonical along the zero section of Ds ⊆ Cs, and induced by
the metric g elsewhere. In consequence, the tangent space to expg(Ds), for s ∈ [0, 1], have
complex structures by the paragraph above. Now, let ηs be the set of Js-complex tangencies
to Ss(Λ, ε), all of which are homotopic. This ηs defines the codimension-1 distribution in
T (Ss(Λ, ε)) in the data of a formal contact structure. Finally, we can choose a non-degenerate
2-form ωs compatible with the almost complex structure Js such that (ηs, ωs) is a formal
contact structure on Ss(Λ, ε), which can be taken to be independent of ε. This builds a
formal contact structure (Ss(Λ, ε), ηs, ωs).

Second, let us prove that the smooth embedding

(Ss(Λ, ε), ηs, ωs) −→ (Op (Λ), ξ|Op (Λ)),

is indeed a formal contact embedding. For that, consider the family of rank-2n vector bundles
Fs(TΛ) ⊕ Cs, for s ∈ [0, 1], as a homotopy from F0(TΛ) ⊕ C0 to ξ = F1(TΛ) ⊕ C1 ⊆ TY .
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This is a family of rank-2n vector bundles over the Legendrian f(Λ) with its endpoint ξ =
F1(TΛ) ⊕ C1, that is actually defined over all of Y . In consequence, we can extend the
homotopy of bundles Fs(TΛ) ⊕ Cs → f(Y ) to a homotopy of real rank-2n bundles ξs → Y ,
for s ∈ [0, 1], such that ξ1 = ξ. In addition, we extend the compatible almost complex
structures Js so that (ξs, Js), s ∈ [0, 1], is a homotopy of almost contact structures on the
smooth manifold Y , and we let Ψs ∈ End(TY ) be a homotopy of bundle maps such that
Ψs(ξs) = ξ0.

The formal contact submanifold (Ss(Λ, ε), ηs, ωs)→ (Op (Λ), ξ|Op (Λ)), is embedded through
the exponential map as discussed in the second step above, and it suffices to homotope
each rank-(2n − 2) symplectic bundle (ηs, ωs) ⊆ T (Ss(Λ, ε)) of Js-complex tangencies to a
symplectic subbundle of ξ.

The symplectic bundle ξ0 → Y is tangent to the 2n-dimensional manifold expg(D0) along the

formal Legendrian f(Λ), since it restricts to F0(TY )⊕C0. Thus, for small enough ε ∈ R+, the
two symplectic bundles ξ0 and T (expg(D0)) are C0-close and there exists a linear homotopy
of symplectic bundles between them. The image of η0 ⊆ T (expg(D0)) through this homotopy
is then a symplectic subbundle of ξ0. This completes the deformation for s = 0, showing that
(S0(Λ, ε), η0, ω0) formally contact embeds into (Op (Λ), ξ|Op (Λ)). The case of (Ss(Λ, ε), ηs, ωs)
then follows by composing the homotopy in the above with Ψs ∈ End(TY ). This concludes
the third step.

The three steps performed above yield the construction of the formal contact push-off of a
formal Legendrian embedding, summarized in the following:

Definition 3.5. Let (Y, ξ) be a contact manifold and (f, Fs) a formal Legendrian embedding.
The formal contact push-off τ(f, Fs) of the formal Legendrian embedding (f, Fs) is defined
to be the formal contact submanifold (S0(Λ, ε), η0, ω0) ⊆ (Y, ξ). �

The proof of Lemma 3.4 now goes as follows.

Proof of Lemma 3.4. Consider a formal Legendrian isotopy (ft, Fs,t), s, t ∈ [0, 1], between Λ0

and Λ1. The formal contact pushoffs τ(ft, Fs,t) yield a path of formal contact submanifolds
in (Y, ξ) which interpolate ambiently between the formal contact type of τ(Λ0) and the
formal contact type of τ(Λ1), thus proving that τ(Λ0) and τ(Λ1) are formally contact isotopic
isocontact embeddings. �

3.3. Singular Legendrians. In this section, we use singular Legendrian submanifolds to
construct further isocontact embeddings of codimension-2 smooth contact manifolds. Such
isocontact embeddings are obtained by generalizing Definition 3.1 to a class of singular Leg-
endrians Λ ⊆ (Y, ξ). This allows us to prove Theorem 1.4 and emphasize the generality in
which our methods apply. The reader interested in the proof of Theorem 1.1 can restrict
themselves to smooth Legendrians and proceed to Section 4 on the first reading.

Remark 3.6. Recent advances in symplectic topology [38, 54, 63], in combination with the
compactness theory of integral currents [36, 68], strongly indicate that there should exist a
Floer theory with singular boundary conditions. In particular, singular Legendrian subman-
ifolds in contact topology should potentially be on equal footing with smooth Legendrians.
This article hopefully begins to illustrate this. �

Let (W,λ, ϕ) be a 2n-dimensional Weinstein manifold [25, Section 1.12] and v its Liouville
vector field, defined by the equation ιvdλ = λ. Consider the time-t flow φt : W −→W of the
Liouville vector field, and its skeleton Sk(W ) = Sk(W,λ) ⊆ (W,λ), defined as the intersection

Sk(W ) = ∩t∈(0,∞)φ−t(W ).
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The existence of the adapted plurisubharmonic function ϕ ∈ C∞(W ) shows that the skele-
ton Sk(W ) is an isotropic complex [14, Chapter 11], but it can be readily thickened to a
Lagrangian CW complex [63, Section 2.1], and see also [21, Section 1].

Definition 3.7. Let (Y, ξ) be a (2n+1)-dimensional contact manifold and (W,λ, ϕ) ⊆ (Y, ξ)
a Weinstein hypersurface. The contact submanifold τ(W ) = ∂(W,λ, ϕ) ⊆ (Y, ξ) will be called
the contact push-off of the Legendrian lift Λ(W ) ⊆ (Y, ξ) of the exact Lagrangian skeleton
Sk(W ) ⊆ (W,λ, ϕ). The contact manifold τ(W ) will also be referred to as the contact
push-off of (W,λ). �

In Subsection 3.1 we have discussed the case in which (W,λ, ϕ) ∼= Op (Λ) where Λ ⊆ (Y, ξ) is
a smooth Legendrian submanifold. Then Definition 3.7 yields a smooth Lagrangian skeleton
and recovers Definition 3.1.

Remark 3.8. The emphasis on the skeleton Λ(W ) in Definition 3.7, instead of just con-
sidering (W,λ), is meant to align Definitions 3.1 and 3.7 and stress the connection between
Legendrian submanifolds and isocontact embeddings.

Instead of generalizing Lemma 3.4, we shall restrict ourselves to the case where the lemma can
be directly applied, as follows. Let Λ ⊆ (Y, ξ) a singular Legendrian submanifold, following
Definition 2.3 of a stabilization of a smooth Legendrian [19, 52], we define the Legendrian
stabilization of Λ as the Legendrian submanifold s(Λ) ⊆ (Y, ξ) obtained by performing one
stabilization along each of the smooth top-dimensional strata of Λ. This is well-defined since
stabilization is a local operation.

Lemma 3.9. Let (Y, ξ) be a contact manifold, (W,λ) ⊆ (Y, ξ) a Weinstein hypersurface
and p ∈ Sk(W,λ) a smooth point. There exists a Weinstein hypersurface (Wp, λp) ⊆ (Y, ξ),
homotopic to (W,λ) as a formal symplectic hypersurface, such that the Legendrian lift of
the skeleton Sk(Wp, λp) is obtained from Sk(W,λ) by a stabilization of the Legendrian lift of
Sk(W,λ) along the lift of the smooth point p.

Proof. The Weinstein hypersurface (Wp, λp) ⊆ (Y, ξ) is constructed in two pieces. The first
piece is the complement W \ A(p) of the basin of attraction A(p) of a small smooth neigh-
borhood Op {p} ⊆ Sk(W,λ), for the Liouville dynamical system defined by the Liouville field
Xλ. Thus (Wp, λp) is defined to coincide with W \ A(p), in the domain of definition of the
later. The second piece is the Weinstein neighborhood of the Legendrian connected sum of
the Legendrian lift of Op (p) ⊆ Sk(W,λ) with a (disjoint) stabilized Legendrian unknot s(Λ0)
embedded in a contact Darboux chart around p ∈ (Y, ξ). Since both pieces coincide along
the germs of their boundaries, they glue together to define (Wp, λp) [21].

Since the stabilization of a Legendrian is formally Legendrian homotopic relative to the
boundary of a small contact neighborhood [19], the argument in Lemma 3.4 above shows
that the Weinstein neighborhood of the stabilized Legendrian is formally homotopic, relative
to the boundary and as a symplectic hypersurface, to that of the non-stabilized Legendrian.
This implies that (Wp, λp) is formally homotopic, as a symplectic hypersurface, to (W,λ),
even relative to their common intersection in the complement W \ A(p) of the region being
stabilized. �

In Definition 3.7 we introduced the notion of the contact push-off of a singular Legendrian,
where in this singular case we always assume that the Legendrian is being presented as the lift
of the Lagrangian skeleton of a given Weinstein hypersurface. In this situation, Lemma 3.9
allows us to talk about the contact push-off of the stabilization of a given singular Legendrian.
This construction will be used in the proof of Corollary 1.5. Let us end this section with an
example.

The theory of arboreal singularities [54, 63] provides many interesting examples of singular
Legendrians Λ ⊆ (R2n+1, ξst), arising as the Legendrian boundaries of singular Lagrangian
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arboreal skeleta [63, Section 2.4]. Arboreal singularities can more directly be described by
using the following general class of singular Legendrians.

Example 3.10. Let f : Cn+1 −→ C be a holomorphic polynomial and let

(S2n+1, ξst) = ob((Wf , λf ), τf )

be the open book associated to the Milnor fibration of f [42, Section A]. The set-theoretical
union Lf ⊆ (Wf , λf ) of the Lagrangian vanishing cycles [62] constitute an exact Lagrangian
skeleton of the Weinstein page (Wf , λf ), and thus the Legendrian lift Λ(Lf ) ⊆ (S2n+1, ξst)
defines a singular Legendrian. In this case τ(Lf ) coincides with the contact binding

(∂Wf , λf |∂Wf
)

of the adapted contact open book [16, Section 4]. For instance, a simple class of singular
Legendrians is obtained in this manner by considering stabilizations of plane curve singular-
ities f : C −→ C to f : Cn+1 −→ C, in which case the closures of the smooth strata of the
Legendrian skeleta Λ(Lf ) are Sn-spheres, and these smooth strata meet only along ordinary
double points, thus topologically forming a plumbing graph of n-dimensional spheres. �

4. Contact surgery presentations of contact cyclic branched covers

Let (Y, ξ) be a contact manifold, Λ ⊆ (Y, ξ) a Legendrian submanifold, possibly singular, and
τ(Λ) its smooth contact push-off. The contact type of the contact branch covers of Λ ⊆ (Y, ξ)
along τ(Λ) is the invariant used to prove Theorem 1.1 and Theorem 1.4.

The main goal of this section is to construct a contact surgery presentation of the contact
n-fold cyclic branched covers of (Y, ξ) along τ(Λ), (Cn(τ(Λ)), ξn(τ(Λ)). In the 3-dimensional
case, the articles [46, 59] discuss contact surgery presentations for contact branched covers
along transverse knots, and the unpublished work [4, Section 7] contains part of the ideas we
develop in this section.

The techniques developed in Subsection 4.1 below provide a contact surgery presentation for

(Cn(τ(Λ)), ξn(τ(Λ))

in all dimensions and for all n ∈ N, and any n > 1 can be used to prove Theorems 1.1
and 1.5. For simplicity, we will only discuss the applications in the case of the cyclic 2-fold
branched covers. The main result from this section, proven in Subsection 4.2, used in the
proof of Theorem 1.1 is the following result.

Theorem 4.1. Let Λ ⊆ (S2n+1, ξst) be a Legendrian sphere and τ(Λ) its contact push-off.
The contact double branched cover of (S2n+1, ξst) along τ(Λ) admits a Weinstein filling ob-
tained by attaching a Weinstein (n+1)–handle to (D2n+2, λst) along the Legendrian connected
sum Λ#Λ in (S2n+1, ξst).

Theorem 4.1 also can be interpreted as a statement about the existence of a contact surgery
presentation of the contact double branched cover; more specifically the cover is obtained by
Legendrian surgery on Λ#Λ.

The statement of Theorem 4.1 implicitly identifies (S2n+1, ξst) as the contact boundary of
(D2n+2, λst). Theorem 4.1 is optimally absorbed with a visual diagram, as in the following
example.

Example 4.2. Consider a Legendrian sphere Λ ⊆ (S2n+1, ξst), we can assume after higher-
dimensional Reidemeister moves [11, Section 2] that its Legendrian front diagram has the
form shown in the upper left corner of Figure 3. Theorem 4.1 states that the contact dou-
ble branched cover of (S2n+1, ξst) along τ(Λ) bounds the Weinstein manifold obtained by
attaching a Weinstein (n+ 1)–handle to the Legendrian sphere in the upper right of Figure 3
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Figure 3. The Legendrian knot Λ is depicted in the upper left corner, where
the blue cylinder is any front diagram for a Legendrian tangle. The upper right
corner is a Legendrian handlebody presentation of a Weinstein filling for the
contact double branched cover of (S2n+1, ξst) along the contact push-off τ(Λ).
The lower row depicts the same Weinstein filling with the natural Weinstein
structure coming from our construction in Subsection 4.1. The lower row
simplifies to the upper right diagram via canceling Lagrangian handles, as we
explain in the proof of Theorem 4.1.

For instance, in the case of the Legendrian unknot Λ = Λ0 we obtain that the double
branched cover of (S2n+1, ξst) along the contact submanifold (τ(Λ0), ξst) = (∂(T ∗Sn), ξst) is
(∂(T ∗Sn+1), ξst). Indeed, this also can be proven by using that the algebraic double branched
cover of Cn+1 along the affine conic hypersurface Qn ⊆ Cn+1 is affine isomorphic to the affine
conic Qn+1 ⊆ Cn+2, and restricting to the contact boundaries at infinity [11]. �

The techniques developed in this section apply, in particular, to Weinstein handlebody di-
agrams and our statements on contact branched covers along the contact boundaries of
Weinstein hypersurfaces [14, 21] can be readily used to obtain new results for Weinstein
manifolds, such as the following.

Corollary 4.3. Let (W,λ) be a flexible Weinstein manifold, Λ ⊆ (∂W, λ|∂W ) a loose Legen-
drian submanifold and (R(Λ), λst) ⊆ (W,λ) its Weinstein neighborhood. The contact cyclic
branched cover of ∂W along ∂R(Λ) has a flexible Weinstein filling. �

The proof of Theorem 4.1 is given in Subsection 4.2 as a consequence of the mechanism that
describes a Weinstein handle presentation for a cobordism from copies of a contact manifold
to its cyclic branched covers, which we now introduce in the next subsection.

4.1. Contact cyclic branched covers. Let us start in the smooth category, where M is a
smooth manifold and Σ ⊆M is an embedded hypersurface with boundary B = ∂Σ. Consider
the morphism

ιΣ : π1(M \B) −→ Z : [γ] 7−→ |γ ∩ Σ|,
where γ ⊆ M \ B is a representative intersecting only the interior of Σ and such that the
intersections are transverse. The kernel of the composition pn ◦ ιΣ, where pn : Z → Zn is
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reduction modulo n, defines the subgroup ker (pn ◦ ιΣ) ⊆ π1(M \ B) and thus a covering
space of M \ B. The completion of this covering space to a branched cover Cn(B) over the
manifold M is called the n–fold cyclic branched cover of M along the submanifold B.

In Subsection 2.4 we discussed the basics of contact branched covers. If (Y, ξ) is a contact
manifold, B ⊆ (Y, ξ) a null-homologous contact submanifold, then the cyclic n–fold contact
branched constructed in Theorem 2.12 is denoted by (Cn(B), ξn(B)).

In line with the smooth setting, a Weinstein hypersurface (W,λ) ⊆ (Y, ξ) bounding (B, ξ)
can be used to construct (Cn(B), ξn(B)), as we now describe. Let (W,λ) be a Weinstein
domain and consider the stabilized Weinstein domain (W ×D2, λ+λst). The projection onto
the second factor restricted to the contact boundary (∂(W × D2), ker{λ + λst}) yields the
adapted contact open book decomposition

∂((W ×D2), ker{λ+ λst}) = ob((W,λ), id),

with page (W,λ) and monodromy the identity id ∈ Sympc(W,λ). Let (Wθ, λ) ⊆ ob((W,λ), id)
denote the interior of the page at angle θ ∈ S1, such that Wθ∩Wθ′ = ∅ for θ 6= θ′. We denote
by W ′θ the portion of Wθ that projects to ∂D2, that is Wθ with a small collar neighborhood
of the binding removed. Then the contact cyclic branched cover with (W,λ) as a Weinstein
(Seifert) hypersurface is described as follows.

Proposition 4.4. Let (Y, ξ) be a contact manifold and (W,λ) ⊆ (Y, ξ) a Weinstein hyper-
surface. The contact manifold (Cn(∂W ), ξn(∂W )) is contactomorphic to the Weinstein sum
of the contact manifold ob((W,λ), id) with n-disjoint copies of (Y, ξ) where the jth copy of
(Y, ξ) and ob((W,λ), id) are glued along a page in Y and W ′2πj/n ⊆ ob((W,λ), id).

Proof. Consider the symplectic Zn-action on (W ×D2, λ+ λst) given by

Zn × (W ×D2, λ+ λst) −→ (W ×D2, λ+ λst) : (e2πik/n;w, z) 7−→ (w, e2πik/nz),

where D2 is the unit disk in (C, λst). This action induces a contact Zn-action on the con-

tact boundary ob((W,λ), id), where e2πik/n ∈ Zn sends the Weinstein hypersurface W2πj/n ⊆
ob((W,λ), id) to the hypersurface W2π(j+k)/n, the index understood modulo 2π. The fixed
point set of this contact Zn-action is the contact binding (∂W, ξ) ⊆ ob((W,λ), id), and the
quotient contact manifold is contactomorphic to ob((W,λ), id). This expresses ob((W,λ), id)
as the contact n-fold cyclic branch cover of ob((W,λ), id) along the contact binding (∂W, ξ),
the crucial fact being that the nth power of the monodromy, being the identity, is (symplec-
tically isotopic to) itself.

In this framework, perform the Weinstein sum of the contact manifold ob((W,λ), id) with n
disjoint copies of (Y, ξ) glued along the n disjoint Weinstein hypersurfaces

W ′2πk/n ⊆ ob((W,λ), id),

for 1 ≤ k ≤ n, and extend the above Zn-action on ob((W,λ), id) to this contact manifold.

This is done in a natural manner, an element e2πik/n ∈ Z/nZ contactomorphically sends the
copy of (Y, ξ) glued along W ′2πi/n to the copy of (Y, ξ) glued along W ′2π(i+k)/n. The quotient of

this contact Z/nZ is now contactomorphic to the Weinstein sum of ob((W,λ), id) and (Y, ξ)
along the Weinstein surface (W,λ), where (W,λ) is any arbitrary page in ob((W,λ), id). The
fixed point set is still the contact binding in ob((W,λ), id).

The above paragraph expresses the Weinstein sum in the statement as the contact cyclic
n–fold branch cover of the Weinstein sum

ob((W,λ), id)(W,λ)#(W,λ)(Y, ξ),

with branch locus ∂W ⊆ ob((W,λ), id). Hence, in order to conclude Proposition 4.4 it suffices
to notice that this Weinstein sum is contactomorphic to (Y, ξ). Indeed, by the definition of an
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adapted open book [16, Section 4] the complement of the closure of a page W ⊆ ob((W,λ), id),
and thus (ob((W,λ), id) \ (W,λ), ξst), is contactomorphic to the contactization

(W × [0, 1], ker{λ+ ds})
of the Weinstein page (W,λ), which is the standard neighborhood of the Weinstein hypersur-
face (W,λ) discussed in Subsection 2.3. Thus the Weinstein sum above removes the interior
of a standard neighborhood of (W,λ) in (Y, ξ) and replaces it with a contactomorphic copy of
itself glued with the identity along the boundary. This concludes the required statement. �

Proposition 4.4 gives the following direct description of the cyclic n–fold contact branched
cover (Cn(∂W ), ξn(∂W )) of (Y, ξ) along the boundary of the Weinstein hypersurface (W,λ).
In a standard neighborhood (W × [−ε, ε], kerλ− ds) ⊆ (Y, ξ), for ε ∈ R+, consider the
Weinstein hypersurfaces Wk = W × {−δ + 2kδ/n} for 1 ≤ k ≤ n, where 0 < δ ≤ ε is
arbitrary but fixed.

Corollary 4.5. Let (Y, ξ) be a contact manifold and (W,λ) ⊆ (Y, ξ) a Weinstein hyper-
surface. The contact manifold (Cn(∂W ), ξn(∂W )) is contactomorphic to the (n − 1)-fold
Weinstein connected sum of (Y, ξ) with (n − 1) copies (Yk, ξ), 1 ≤ k ≤ (n − 1), where the
original (Y, ξ) is summed to (Yk, ξ) along (Wk, λ) ⊆ (Y,×) and (W,λ) ⊆ (Yk, ξ). �

In particular, Corollary 4.5 recovers [4, Theorem 1.20]. The description of (Cn(∂W ), ξn(∂W ))
in Corollary 4.5 follows from the proof of Proposition 4.4 since after Weinstein summing (Y, ξ)
to ob((W,λ), id) along (W,λ) and (W1, λ), the W2πk/n for 2 ≤ k ≤ n in ob((W,λ), id) become
the (k − 1) copy of W ⊆ (Y, ξ) under the identification of (Y, ξ) with the Weinstein sum
of (Y, ξ) and ob((W,λ), id). Note that we have included Corollary 4.5 for all n ∈ N for
completeness, the case n = 2 will suffice to prove Theorem 1.1.

4.2. Weinstein fillings. Let us establish the Legendrian handlebody presentation of the
Weinstein filling of the cyclic 2–fold branched cover in Theorem 4.1.

Proof of Theorem 4.1. First, let us apply Proposition 4.4 to the Weinstein neighborhood
(W,λ) ⊆ (S2n+1, ξst) of the given Legendrian Λ ⊆ (S2n+1, ξst), thus identifying the contact
Z2-cyclic branched cover (C2(τ(Λ)), ξ2(τ(Λ)) with the Weinstein sum of (S2n+1, ξst) with a
copy of itself along the Weinstein hypersurface (W,λ).

Second, we now follow the proof of Proposition 2.9 in the case of (W,λ) ∼= (T ∗Λ, λst). The
Proposition provides a (2n + 2)-dimensional Weinstein cobordism (X,λ) with concave end
the disjoint union of two copies of (S2n+1, ξstd) and convex end (C2(τ(Λ)), ξ2(τ(Λ)), the
Legendrian handle decomposition of which we now describe.

The Weinstein neighborhood (T ∗Λ, λst) of Legendrian sphere Λ ⊆ (S2n+1, ξst) has a Legen-
drian handlebody decomposition [11, Section 2] given by attaching a 2n-dimensional Wein-
stein n-handle to the disk (D2n, λst) along the Legendrian unknot Λ0 ⊆ (∂D2n, ker{λst|∂D2n}) ∼=
(S2n+1, ξst). The use of the Weinstein cobordism (W (1), λ(1)) in the proof of Proposition 2.9
dictates that the Weinstein cobordism (X,λ) is constructed from the symplectization of two
copies of (S2n+1, ξst) by first attaching a 2n-dimensional Weinstein 1-handle with attach-
ing isotropic sphere S0 ⊆ Λ t Λ ⊆ (S2n+1, ξst) t (S2n+1, ξst),where the inclusion induces
a bijection in the connected components. By construction of the contact connected sum
(S2n+1, ξst)#(S2n+1, ξst), the convex end of the Weinstein cobordism induced by attaching
this Weinstein 1-handle is contactomorphic to the contact connected sum.

In the identification of the convex boundary with (S2n+1, ξst)#(S2n+1, ξst), the two Legen-
drians Λ t Λ in the concave end become the Legendrian connected sum Λ#Λ, as defined in
Subsection 2.2.2. Indeed, the Weinstein 1–handle is attached to an isotropic S0 in Λ t Λ.
The Weinstein cobordism (X,λ) is obtained by attaching a (2n+ 2)–dimensional Weinstein
(n + 1)–handle along the Legendrian sphere Λ#Λ. Let us consider the Weinstein filling
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(D2n+2, λst) t (D2n+2, λst) of the concave end of (X,λ), thus completing (X,λ) to a Wein-
stein filling (X,λst). The Legendrian handlebody decomposition for (X,λst) induced by the
above construction has two Weinstein 0-handles, a unique Weinstein 1-handle and a unique
critical Weinstein handle. This is depicted in the lower row of Figure 3.

The statement of Theorem 4.1 now follows by modifying the above Legendrian handle decom-
position by applying a cancellation move [11, Proposition 2.21] to the canceling pair given
by one of the Weinstein 0-handle and the Weinstein 1-handle. �

5. Non-isocontact embeddings

Let us construct two isocontact embeddings using contact push-offs of Legendrian spheres in
(S2n+1, ξst). For the first embedding, consider the standard Legendrian unknot

Λ0 ⊆ (S2n+1, ξst).

It is defined, up to Legendrian isotopy, as the Legendrian sphere

Λ0 = {(x1, y1, . . . , xn+1, yn+1) ∈ R2n : y1 = . . . = yn+1 = 0} ∩ (S2n+1, ξst) ⊆ (R2n+2, λst),

where (x1, y1, . . . , xn+1, yn+1) are symplectic coordinates. The contact push-off τ(Λ0) defines
a contact embedding

i0 : (∂T ∗Sn, ξst) −→ (S2n+1, ξst).

For the second isocontact embedding, consider a Legendrian stabilization Λ1 := s(Λ0) of
Λ0 ⊆ (S2n+1, ξst). The contact push-off τ(Λ1) of this stabilized Legendrian unknot yields our
second contact embedding

i1 : (∂T ∗Sn, ξst) ⊆ (S2n+1, ξst).

Proof of Theorem 1.1. We must now show that these two isocontact embeddings i0, i1 :
(∂T ∗Sn, ξst) ⊆ (S2n+1, ξst), are formally contact isotopic but not contact isotopic, as stated
in Theorem 1.1. To show that i0, i1 are formally contact homotopic, we apply Lemma 2.4
to deduce that Λ and s(Λ), which then allows us to apply our Lemma 3.4, proving that the
isocontact embeddings i0 and i1 are formally contact isotopic.

Suppose now, by contradiction, that i0 and i1 are contact isotopic. Then the branched
double covers of (S2n+1, ξst) with branch loci τ(Λ0) and τ(Λ1) would be contactomorphic,
and hence have the same symplectic fillings. Thus Theorem 1.1 follows from the following
two propositions. �

Proposition 5.1. The contact manifold (C2(τ(Λ0)), ξ2(τ(Λ0)) admits the adapted contact
open book decomposition

(C2(τ(Λ0)), ξ2(τ(Λ0)) = ob((T ∗Sn−1, λst, τ
2
Sn−1)).

In particular, (C2(τ(Λ0)), ξ2(τ(Λ0)) does not admit a flexible Weinstein filling.

Proof. The standard contact (2n+ 1)-sphere admits [16, Section 4.3] the contact open book
decomposition

(S2n+1, ξst) = ob((T ∗Sn, λst), τSn−1)).

The Legendrian lift of the exact Lagrangian zero-section Sn ⊆ (T ∗Sn, λst) is Legendrian
isotopic to the Legendrian unknot Λ0 in (S2n+1, ξst), see for instance [11, Section 2]. In
consequence, the Weinstein page of the open book can be taken to be the Weinstein neigh-
borhood Λ0 ⊆ (S2n+1, ξst), and hence the binding of the open book is the contact push-off
τ(Λ0). This implies that (C2(τ(Λ0)), ξ2(τ(Λ0)) is the contact double branched cover of

(S2n+1, ξst) = ob((T ∗Sn, λst), τSn−1)),

branched along the contact binding. These particular contact branched covers admit a direct
contact open book decomposition. Indeed, one may readily verify that the contact k-cyclic
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branched cover of the contact manifold ob((W,λ), ϕ)) branched along the binding is supported
by the open book ob((W,λ), ϕk)), see [48, Section 4] and [57, Section 4] for details. In
particular, we conclude that (C2(τ(Λ0)), ξ2(τ(Λ0)) is supported by the contact open book
ob((T ∗Sn, λst), τ

2
Sn−1)), which proves the first statement in Proposition 5.1.

Regarding the second statement, (C2(τ(Λ0)), ξ2(τ(Λ0)) is a Brieskorn manifold, see for ex-
ample [57], and bounds a Brieskorn variety (V, ω). More specifically our contact manifold is
oftentimes called the contact Brieskorn sphere Σ(2, . . . , 2) in the literature [48, 57, 69] and the
filling is simply (T ∗Sn+1, λst). That this indeed fills our contact manifold can be deduced by
noting that (T ∗Sn+1, λst) admits a Weinstein Lefschetz fibration [11, Section 3] with Wein-
stein fiber (T ∗Sn, λst) and two critical points, whose vanishing cycles are each a copy of the
Lagrangian zero section Sn ⊆ (T ∗Sn, λst) in a regular fiber. Now the Lefschetz fibration
restricts to an open book on ∂T ∗Sn+1 that agrees with our given open book decomposition.

Kwon and van Koert [48, Theorem 1.2] computed that the symplectic homology of the
Brieskorn variety (V, ω) and showed, in particular, that it does not vanish

SH∗((V, ω);Z) 6= 0.

On the other hand, [69, Theorem 20] shows that if a contact manifold admits a flexible filling
then any Weinstein filling of that contact manifold will have vanishing symplectic homology.
This result, which initially used [8], also follows, independently, from the h-principle [26,
Section 6.2]. This follows from the arguments in the proof of Theorem 3.2 in [53]. �

Proposition 5.2. The contact structure (C2(τ(Λ1)), ξ2(τ(Λ1)) in the 2-fold contact branched
cover of (S2n+1, ξst) along τ(Λ1) admits a flexible Weinstein filling.

Proof. Theorem 4.1 implies that a Weinstein filling for our contact manifold

(C2(τ(Λ1)), ξ2(τ(Λ1)))

is obtained by attaching a Weinstein critical (n+ 1)-handle to (D2n+2, λst) along the Legen-
drian Λ1#Λ1 ⊆ (S2n+1, ξst). The Legendrian connected sum of two loose Legendrians is a
loose Legendrian, and thus the Weinstein filling is flexible. �

6. More pairs of non-isotopic contact submanifolds

The infinitely family of pairs of non-contact isotopic embeddings in Theorem 1.4 will be
constructed by studying the contact push-offs of a class of singular Legendrians and then
proven distinct just as we distinguished the two examples from our Theorem 1.1 in the
previous section.

6.1. An infinite family of non-isotopic isocontact embeddings. Let (A2n
k , λst, ϕst) be

the Weinstein manifold obtained as an Ak–linear plumbing of k copies of the Weinstein
manifold (T ∗Sn, λst, ϕst). See Figure 2 for a handle presentation. This manifold is known
as the 2n–dimensional Milnor fibre of the Ak singularity, see Subsection 2.5.1 above, and its
Lagrangian skeleton Sk(A2n

k ) ⊆ (A2n
k , λst, ϕst) consists of a linear Ak-plumbing [11, Section 3]

of Lagrangian n–spheres.

The standard contact sphere (S2n+1, ξst) admits the contact open book decomposition

(S2n+1, ξst) ∼= ob((A2n
k , λst, ϕst), τAk

),

where τAk
∈ Sympc(A2n

k , dλst) is the compactly supported symplectomorphism obtained by
composing, in any order, the symplectic Dehn twists [2, 62] along each of the k plumbed
zero-sections Sn ⊆ (T ∗Sn, λst, ϕst) in the Ak-Milnor fiber. Indeed, this is the k-fold stabi-
lization of the contact open book decomposition (S2n+1, ξst) = ob(D2n, id), as described in
Subsection 2.5.1, which by Theorem 2.14 is contactomorphic to (S2n+1, ξst). Alternatively,



22 ROGER CASALS AND JOHN B. ETNYRE

this can be seen by considering the Milnor fibration associated to the (n + 1)-dimensional
Ak-singularity [1, 11].

The contact push-off associated to the Weinstein hypersurface

(A2n
k , λst, ϕst) ⊆ ob((A2n

k , λst, ϕst), τAk
)

given by the page of this contact open book is the contact binding ∂(A2n
k , λst). This yields the

desired embedding of a Weinstein neighborhood of Sk(A2n
k ) ⊆ (A2n

k , λst, ϕst) in (S2n+1, ξst),
i.e. in the language of Section 3, τ(Sk(A2n

k )) = ∂(A2n
k , λst).

The two infinite families of isocontact embeddings are

ik0 : τ(Sk(A2n
k )) −→ (S2n+1, ξst),

ik1 : τ(s(Sk(A2n
k ))) −→ (S2n+1, ξst),

where s(Sk(A2n
k )) is the stabilized Legendrian lift of the Lagrangian skeleton Sk(A2n

k ), as
constructed in Section 3.

6.2. Distinguishing isocontact embeddings. Let us now proceed with the proof of The-
orem 1.4.

Proof of Theorem 1.4. Let n ∈ N be fixed and n ≥ 2. Following the strategy of the proof of
Theorem 1.1 in Section 5, we first note that Lemma 3.9 shows that ik0 and ik1 are formally
contact isotopic for all k ∈ N. Let us show that (ik0, i

k
1), with k ∈ N, is an infinite family of

pairs of non-isotopic contact embeddings in the standard contact sphere (S2n+1, ξst). There
are two steps:

- For a fixed k ∈ N, the isocontact embeddings ik0 and ik1 are not contact isotopic.
- For any two k, l ∈ N, ik0 is not contact isotopic to il0 nor il1.

Let us first address the second item by showing that the contact domains of ik0 and il0, and
thus also that of il1, are not contactomorphic. Consider the two cases, where n is either even
or odd. In the former case, n even, the smooth manifolds τ(Sk(A2n

k )) have (n − 1)st Betti
number

rk(Hn−1(τ(Sk(A2n
k )),Z)) = k − 1,

as proven in [60, Section 2] and thus the domains are not homotopy equivalent unless k =
l. In the later case, n odd, the contact domains can be diffeomorphic for different k, l ∈
N. Nevertheless, the mean Euler characteristic is a contact invariant in this case by [48,
Lemma 5.15], or [37, Corollary 2.2]. For k odd, they computed it to be

χm(τ(Sk(A2n
2s+1))) =

1

2

(n− 1)(2s+ 1) + 1

(n− 2)(2s+ 1) + 2
,

which is an injective function on k = 2s + 1 ∈ N, and thus the contact domains, for k
odd, are not contactomorphic. For k ∈ N even, k = 2s, the mean Euler characteristic is
χm(τ(Sk(A2n

2s+1))) = 1 by [48, Section 5]. In fact, for k even, the positive S1-equivariant
symplectic homologies of the Brieskorn fillings coincide. Thus, this is not enough to dis-
tinguish the contactomorphism type of the contact push-offs. Nonetheless, [65, Lemma 3.2]
shows that the full positive symplectic homology is a contact invariant if computed for a
Weinstein filling with vanishing first Chern class. Since c1(A2n

k , λst) = 0 for all k ∈ N, given
that (A2n

k , λst) is an affine hypersurface, the positive symplectic homology of the Brieskorn
Milnor fiber (A2n

k , λst) is a contact invariant of its convex boundary τ(Sk(A2n
2s )). The positive

symplectic homology of (A2n
2s , λst) is computed in [65, Theorem 3.1], where it is shown to be

distinct for different values of s ∈ N [65, Corollary 3.3]. This establishes the second item
above.

As in Section 5, we distinguish the two isocontact embeddings ik0 and ik1 in the first item
above by the contactomorphism type of their cyclic 2–fold branched covers, which in turn
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are distinguished by the existence — and lack thereof — of flexible Weinstein fillings. The
first item, and thus Theorem 1.4 follow from the following result. �

Proposition 6.1. Let n ≥ 2 and k ∈ N, and consider the two isocontact embeddings

ik0 : τ(Sk(A2n
k )) −→ (S2n+1, ξst),

ik1 : τ(s(Sk(A2n
k ))) −→ (S2n+1, ξst).

Then the cyclic 2–fold branched cover of (S2n+1, ξst) along im(ik0) does not admit a Weinstein
filling. In contrast, the cyclic 2–fold branched cover of (S2n+1, ξst) along im(ik1) does. �

The first statement in Proposition 6.1 is proven exactly as Proposition 5.1, since [48, The-
orem 1.2] and [69, Theorem 20] apply to all Weinstein fillings of Brieskorn manifolds. The
second statement follows from Theorem 4.1 by the same argument as in Proposition 5.2.
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