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1. Introduction

Contact geometry has been seen to underly many physical phenomena and be related to many
other mathematical structures. Contact structures first appeared in the work of Sophus Lie on
partial differential equations. They reappeared in Gibbs’ work on thermodynamics, Huygens’ work
on geometric optics and in Hamiltonian dynamics. More recently contact structures have been
seen to have relations with fluid mechanics, Riemannian geometry, low dimensional topology and
provide an interesting class of subelliptic operators.

After summarizes the basic definitions, examples and facts concerning contact geometry this
article will proceed to discuss the connections between contact geometry and symplectic geometry,
Riemannian geometry, complex geometry, analysis and dynamics. The article ends discussing two of
the most studied connections with physics: Hamiltonian dynamics and geometric optics. References
for other important topics in contact geometry (thermodynamics, fluid dynamics, holomorphic
curves and open book decompositions) are provided at the end of the article.

2. Basic definitions and examples

A hyperplane field ξ on a manifold M is a codimension one sub-bundle of the tangent bundle
TM. Locally, hyperplane fields can always be described as the kernel of a 1-form. In other words,
for every point in M there is a neighborhood U and a 1-form α defined on U such that the kernel
of the linear map αx : TxM → R is ξx for all x in U. The form α is called a local defining form
for ξ. A contact structure on a (2n + 1) dimensional manifold M is a “maximally non-integrable
hyperplane field” ξ. The hyperplane field ξ is maximally non-integrable if for any (and hence every)
locally defining 1-form α for ξ the following equation holds

(1) α ∧ (dα)n 6= 0

(this means the form is pointwise never equal to 0). Geometrically the non-integrability of ξ means
that no hypersurface in M can be tangent to ξ along an open subset of the hypersurface. Intuitively
this says the hyperplanes “twist too much” to be tangent to hypersurfaces. See Figure 1. The pair
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Figure 1. The standard contact structure on R
3 given as the kernel of dz − ydx.

Figure courtesy of Stephan Schönenberger.
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(M, ξ) is called a contact manifold and any locally defining form α for ξ is called a contact form for
ξ.

Example 2.1. The most basic example of a contact structure can be seen on R
2n+1 as the kernel

of the 1-form α = dz −
∑n

i=1 yidxi where the coordinates on R
2n+1 are (x1, y1, . . . , xn, yn, z). This

example is shown in Figure 1 when n = 1.

Example 2.2. Recall that on the cotangent space of any n-manifold M there is a canonical 1-form
λ, called the Liouville form. If (q1, . . . , qn) are local coordinates on M then any 1-from can be
expressed as

∑n
i=1 pidqi so (q1, p1, . . . , qn, pn) are local coordinates on T ∗M. In these coordinates

(2) λ =

n∑

i=1

piπ
∗dqi,

where π : T ∗M → M is the natural projection map. The 1-jet space of M is the manifold J1(M) =
T ∗M×R and can be thought of as a bundle over M. The 1-jet space has a natural contact structure
given as the kernel of α = dz − λ, where z is the coordinate on R. Note that if M = R

n then we
recover the previous example.

Example 2.3. The (oriented) projectivized cotangent space of a manifold M is the set P ∗M of non-
zero covectors in T ∗M where two covectors are identified if they differ by a positive real number,
that is

(3) P ∗M = (T ∗M \ {0})/R+

where {0} is the zero section of T ∗M and R+ denotes the positive real numbers. If M has a metric
then P ∗M can easily be identified with the space of unit covectors. Thinking of P ∗M as unit
covectors we can restrict the canonical 1-from λ to P ∗M to get a 1-form α whose kernel defines
a contact structure ξ on P ∗M. (Though there is no canonical contact form on P ∗M the contact
structure ξ is still well defined.) Note that if M is compact then so is P ∗M so this gives examples
of contact structures on compact manifolds.

If α and α′ are two locally defining 1-forms for ξ then there is a non-zero function f such that
α′ = fα. Thus α′∧ (dα′)n = fn+1α∧ (dα)n is a non-zero top dimensional form on M and if n is odd
then the orientation defined by the local defining form is independent of the actual form. Hence
when n is odd a contact structure defines an orientation on M (this is independent of whether or
not ξ is orientable!). If M had a preassigned orientation (and n is odd) then the contact structure
is called positive if it induces the given orientation and negative otherwise. One should be careful
when reading the literature as some authors build positive into their definition of contact structure,
especially when n = 1. If there is a globally defined 1-form α whose kernel defines ξ then ξ is called
transversally orientable or co-orientable. This is equivalent to the bundle ξ being orientable when
n is odd or when n is even and M is orientable. We restrict ourselves to discussing transversely
orientable contact structures in the article.

Suppose that α is a contact form for ξ, then Equation (1) implies that dα|ξ is a symplectic form
on ξ. This is one sense in which a contact structure is like an odd dimensional analog of a symplectic
structure.

A submanifold L of a contact manifold (M, ξ) is called Legendrian if dim M = 2dim L + 1 and
TpL ⊂ ξp.

Example 2.4. A fiber in the unit cotangent bundle with the contact structure form Example 2.3
is a Legendrian sphere.

Example 2.5. Let f : M → R be a function. Then j1(f)(q) = (q, dfq, f(q)) is a section of the
1-jet space J1(M) of M, it is called the 1-jet of f. If s is any section of the 1-jet space then it is
Legendrian if and only if it is the 1-jet of a function.
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This observation is the basis for Lie’s study of partial differential equations. More specifically,
a first order partial differential equation on M can be thought of as giving an algebraic equation
on J1(M). Then a section of J1(M) satisfying this algebraic equation corresponds to the 1-jet of a
solution to the original partial differential equation if and only if it is Legendrian.

Recently, Legendrian submanifolds have been much studied. There are various classification
results in dimension three and several striking existence results in higher dimensions.

3. Local theory

The natural equivalence between contact structures is contactomorphism. Two contact structures
ξ0 and ξ1 on manifolds M0 and M1, respectively, are contactomorphic if there is a diffeomorphism
f : M0 → M1 such that f∗(ξ0) = ξ1. All contact structures are locally contactomorphic. In particular
we have the following theorem.

Theorem 3.1 (Darboux’s Theorem). Suppose ξi is a contact structure on the manifold Mi, i = 0, 1,
and M0 and M1 have the same dimension. Given any points p0 and p1 in M0 and M1, respectively,
there are neighborhoods Ni of pi in Mi and a contactomorphism from (N0, ξ0|N0

) to (N1, ξ1|N1
).

Moreover, if αi is a contact form for ξi near pi then the contactomorphism can be chosen to pull
α1 back to α0.

Thus locally all contact structures (and contact forms!) look like the one given in Example 2.1
above.

Furthermore contact structures are “local in time”. That is compact deformations of contact
structures do not produce new contact structures.

Theorem 3.2 (Gray’s Theorem). Let M be an oriented (2n + 1)-dimensional manifold and ξt, t ∈
[0, 1] a family of contact structures on M that agree off of some compact subset of M. Then there
is a family of diffeomorphisms φt : M → M such that (φt)∗ξt = ξ0.

In particular, on a compact manifold all deformations of contact structures come from diffeomor-
phisms of the underlying manifold. The theorem is not true if the contact structures do not agree
off of a compact set. For example there is a 1-parameter family of non-contactomorphic contact
structures on S1 × D2.

4. Existence and classification

The existence of contact structures on closed odd dimensional manifolds is quite difficult. How-
ever, Gromov has shown that contact structures on open manifolds obey an h-principle. To explain
this we not that if (M2n+1, ξ) is a co-oriented contact manifold then the tangent bundle of M can be
written ξ⊕R and thus the structure group of TM can be reduces to U(n) (since ξ has a conformal
symplectic structure on it). Such a reduction of the structure group is called an almost contact
structure on M. Clearly a contact structure on M induces an almost contact structure. If M is an
open manifold Gromov proved that the inclusion of the space of co-oriented contact structure on
M into the space of almost contact structures on M is a weak homotopy equivalence. In particular,
if an open manifold meets the necessary algebraic condition for the existence of an almost contact
structure then the manifold has a co-oriented contact structure.

Lutz and Martinet proved a similar, but weaker, result for oriented closed 3-manifolds. More
specifically, every closed oriented 3-manifold admits a co-oriented contact structure and in fact has
at least one for every homotopy class of plane field. There has been much progress on classify-
ing contact structures on 3-manifolds and here an interesting dichotomy has appeared. Contact
structures break into one of two types: tight or overtwisted. Overtwisted contact structures obey an
h-principle and are in general easy to understand. Tight contact structures have a more subtle, geo-
metric nature. In higher dimensions there is much less known about the existence (or classification
of) contact structures.
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5. Relations with symplectic geometry

Let (X,ω) be a symplectic manifold. A vector field v satisfying

(4) Lv ω = ω,

where Lvω is the Lie derivative of ω in the direction of v, is called a symplectic dilation. A compact
hypersurface M in (X,ω) is said to have contact type if there exists a symplectic dilation v in a
neighborhood of M that is transverse to M . Given a hypersurface M in (X,ω) the characteristic
line field LM in the tangent bundle of M is the symplectic complement of TM in TX. (Since
M is codimension one it is coisotropic and thus the symplectic complement lies in TM and is one
dimensional.)

Theorem 5.1. Let M be a compact hypersurface in a symplectic manifold (X,ω) and denote the
inclusion map i : M → X. Then M has contact type if and only if there exists a 1-form α on M
such that dα = i∗ω and the form α is never zero on the characteristic line field.

If M is a hypersurface of contact type, then the 1-form α is obtained by contracting the symplectic
dilation v into the symplectic form: α = ιvω. It is easy to verify the 1-form α is a contact from
on M. Thus a hypersurface of contact type in a symplectic manifold inherits a co-oriented contact
structure.

Given a co-orientable contact manifold (M, ξ) its symplectization Symp(M, ξ) = (X,ω) is con-
structed as follows. The manifold X = M × (0,∞) and given a global contact form α for ξ
the symplectic form is ω = d(tα), where t is the coordinate on R. (The symplectization is also
equivalently defined as (M × R, d(etα)).)

Example 5.2. The symplectization of the standard contact structure on the unit cotangent bundle
(see Example 2.3) is the standard symplectic structure on the complement of the zero section in
the cotangent bundle.

The symplectization is independent of the choice of contact from α. To see this fix a co-orientation
for ξ and note the manifold X can be identified (in may ways) with the subbundle of T ∗M whose
fiber over x ∈ M is

(5) {β ∈ T ∗
xM : β(ξx) = 0 and β > 0 on vectors positively transverse to ξx}

and restricting dλ the this subspace yields a symplectic form ω, where λ is the Liouville form on
T ∗M defined in Example 2.2. A choice of contact form α fixes an identification of X with the
subbundle of T ∗M under which d(tα) is taken to dλ.

The vector field v = ∂
∂t

on (X,ω) is a symplectic dilation that is transverse to M × {1} ⊂ X.
Clearly ιvω|M×{1} = α. Thus we see that any co-orientable contact manifold can be realized as a
hypersurface of contact type in a symplectic manifold. In summary we have the following theorem.

Theorem 5.3. If (M, ξ) is a co-oriented contact manifold, then there is a symplectic manifold
Symp(M, ξ) in which M sits as a hypersurface of contact type. Moreover, any contact form α for
ξ gives an embedding of M into Symp(M, ξ) that realizes M as a hypersurface of contact type.

We also note that all the hypersurfaces of contact type in (X,ω) look locally, in X, like a contact
manifold sitting inside its symplectification.

Theorem 5.4. Given a compact hypersurface M of contact type in a symplectic manifold (X,ω)
with the symplectic dilation given by v there is a neighborhood of M in X symplectomorphic to a
neighborhood of M × {1} in Symp(M, ξ) where the symplectization is identified with M × (0,∞)
using the contact form α = ιv ω|M and ξ = ker α.
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6. The Reeb vector field and Riemannian geometry

Let (M, ξ) be a contact manifold. Associated to a contact form α for ξ is the Reeb vector field
vα. This is the unique vector field satisfying

(6) ιvα
α = 1 and ιvα

dα = 0.

One may readily check that vα is transverse to the contact hyperplanes and the flow of vα preserves
ξ (in fact, it preserves α). These two conditions characterize Reeb vector fields; that is a vector
field v is the Reeb vector field for some contact form for ξ if and only if it is transverse to ξ and its
flow preserves ξ.

The fundamental question concerning Reeb vector fields asks if its flow has a (contractible)
periodic orbit. A paraphrazing of the Weinstein conjecture asserts a positive answer to this question.
Most progress on this conjecture has been made in dimension 3 where H. Hofer has proven the
existence of periodic orbits for all Reeb fields on S3 and on 3 manifolds with essential spheres
(that is embedded S2’s that do not bound a 3-ball in the manifold). Relations with Hamiltonian
dynamics are discussed below.

Recall, from Example 2.3, that a Riemannian metric g on a manifold M provides an identification
of the (oriented) projectivized cotangent bundle P ∗M with the unit cotangent bundle. Thought
of as a subset of T ∗M,P ∗M inherits not only a contact structure but also a contact form α (by
restricting the Liouville form). Let vα be the associated Reeb vector field. The metric g also
provides an identification of the tangent and cotangent bundles of M. Thus P ∗M may be thought
of as the unit tangent bundle of M. Let wg be the vector field on the unit tangent bundle generating
the geodesic flow on M.

Theorem 6.1. The Reeb vector field vα is identified with geodesic flow field wg when P ∗M is
identified with the unit tangent space using the metric g.

7. Relations with complex geometry and analysis

Let X be a complex manifold with boundary and denote the induced complex structure on TX
by J. The complex tangencies ξ to M = ∂X are described by the equation dφ ◦ J = 0, where φ is a
function defined in a neighborhood of the boundary such that 0 is a regular value and φ−1(0) = M.
The form L(v,w) = −d(dφ ◦ J)(v, Jw), for v,w ∈ ξ, is called the Levi form, and when L(v,w) is
positive (negative) definite then X is said to have strictly pseudoconvex (pseudococave) boundary.
The hyperplane field ξ will be a contact structure if and only if d(dφ ◦ J) is a non-degenerate
2-form on ξ (if and only if L(v,w) is definite). A well studied source of examples comes from Stein
manifolds.

Example 7.1. Let X be a complex manifold and again let J denote the induced complex struc-
ture on TX. From a function φ : X → R we can define a 2-form ω = −d(dφ ◦ J) and a symmetric
form g(v,w) = ω(v, Jw). If this symmetric form is positive definite the function φ is called strictly
plurisubharmonic. The manifold X is a Stein manifold if X admits a proper strictly plurisub-
harmonic function φ : X → R. An important result says that X is Stein if and only if it can be
realized as a closed complex submanifold of C

n. Clearly any non-critical level set of φ gives a contact
manifold.

Contact manifolds also give rise to an interesting class of differential operators. Specifically, a
contact structure ξ on M defines a symbol-filtered algebra of pseudodifferential operators Ψ∗

ξ(M),
called the “Heisenberg Calculus”. Operators in this algebra are modeled on smooth families of
convolution operators on the Heisenberg group. An important class of operators of this type are
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the “sum of squares” operators. Locally, the highest order part of such an operator takes the form:

(7) L =
2n∑

j=1

v2
j + iavα,

where {v1, . . . , v2n} is a local framing for the contact field and vα is a Reeb vector field. This
operator belongs to Ψ2

ξ(M) and is subelliptic for a outside a discrete set.

8. Hamiltonian dynamics

Given a symplectic manifold (X,ω) a function H : X → R will be called a Hamiltonian. (Only
autonomous Hamiltonians are discussed here.) The unique vector field satisfying

ιvH
ω = −dH

is called the Hamiltonian vector field associated to H. Many problems in classical mechanics can
be formulated in terms of studying the flow of vH for various H.

Example 8.1. If (X,ω) = (R2n, dλ), where λ is form Example 2.2, then the flow of the Hamiltonian
vector field is given by

q̇ =
∂H

∂p
, ṗ = −

∂H

∂q

A standard fact says that the flow of vH preserves the level sets of H.

Theorem 8.2. If M is a level set of H corresponding to a regular value and M is a hypersurface of
contact type then the trajectories of vH and of the Reeb vector field (associated to M in Theorem 5.1)
agree.

Thus under suitable hypothesis Hamiltonian dynamics is a reparametrization of Reeb dynamics.
In particular, searching for periodic orbits in such a Hamiltonian systems is equivalent to searching
for periodic orbits in a Reeb flow. Thus in this context Weinstein’s conjecture asserts a positive
answer to the questions: Does the Hamiltonian flow along a regular level set of contact type
have a periodic orbit? Viterbo proved the answer was yes if the hypersurface is compact and in
(R2n, ω = dα). Other progress has been made by studying Reeb dynamics, see the comments on
the Weinstein conjecture above.

9. Geometric Optics

In this section we study the propagation of light (or various other disturbances) in a medium
(for the moment we do not specify the properties of this medium). The medium will be given by
a 3-dimensional manifold M. Given a point p in M and t > 0 let Ip(t) be the set of all points to
which light can travel in time less than or equal to t. The wave front of p at time t is the boundary
of this set and is denoted Φp(t) = ∂Ip(t).

Theorem 9.1 (Huygens’ Principle). Φp(t + t′) is the envelope of the wave fronts Φq(t
′) for all

q ∈ Φp(t).

This is best understood in terms of contact geometry. Let π : (T ∗M \{0}) → P ∗M be the natural
projection (see Example 2.3) and let S be any smooth subbundle of T ∗M \ {0} that is transverse
to the radial vector field in each fiber and for which π|S : S → P ∗M is a diffeomorphism. The
restriction of the Liouville form to S gives a contact form α and a corresponding Reeb vector field
v. Given a subset F of M with a well defined tangent space at every point set

(8) LF = {p ∈ S : π(p) ∈ F and p(w) = 0 for all w ∈ Tπ(p)F}.

The set LF is a Legendrian submanifold of S and is called the Legendrian lift of F. If L is a generic
Legendrian submanifold in S then π(L) is called the front projection of L and Lπ(L) = L. Given
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a Legendrian submanifold L let Ψt(L) be the Legendrian submanifold obtained from L by flowing
along v for time t.

Example 9.2. Given a metric g on M, Fermat principle says light travels along geodesics. Thus
if S is the unit cotangent bundle then using g to identify the geodesic flow with the Reeb flow
one sees that light will travel along trajectories of the Reeb vector field. Given a point p in M
the Legendrian submanifold Lp is a sphere sitting in T ∗

p M. Huygens Principle follows from the
observation that Φp(t) = π(Ψt(Lp)).

Using the more general S discussed above one can generalize this example to light flowing in a
nonhomogeneous (i.e. the speed differs from point to point in M) and anisotropic (i.e. the speed
differs depending on the direction of travel) media.
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