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Problems in Low Dimensional Contact Topology

John B. Etnyre and Lenhard L. Ng

During the 2001 Georgia International Topology Conference, two problem ses-
sions were held concerning contact geometry. The first was run by Emmanuel
Giroux and focused on problems in three dimensional contact topology; the second
was run by John Etnyre and focused on Legendrian knots and contact homology.
This article collects problems from the sessions, and adds some background. Sec-
tions 1 through 5 deal with three dimensional contact geometry, and Sections 6
through 10 deal with Legendrian knots.

We would like to thank the organizers of the Georgia Conference for running
the problem sessions and encouraging us to write this problem list. We would also
like to thank Ko Honda and Will Kazez, who took exceptional notes during the
problem sessions, and Josh Sabloff, who compiled a list of some of the problems
discussed here.

I. Three Dimensional Contact Geometry

In this section the reader is assumed to be familiar with the basic notions in
contact geometry, see [31], and 3-manifold topology, see [49].

1. Existence and types of contact structures

Question 1. Which 3-manifolds have tight contact structures, and what types
of tight contact structures do they admit?

This question breaks down into several subquestions, but first note that a tight
contact structure may be:

(1) weakly fillable (or weakly semi-fillable),
(2) strongly fillable (or strongly semi-fillable),
(3) holomorphically fillable (or holomorphically semi-fillable),
(4) universally tight, or
(5) virtually overtwisted.

Recall that a holomorphically fillable contact structure is also a strongly fillable
contact structure, and strongly fillable implies weakly fillable. Moreover, a weakly
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fillable contact structure is tight [19, 48]. It is known that there are tight contact
structures that are not weakly fillable [34] and weakly fillable contact structures
that are not strongly fillable (the first such examples were found by Eliashberg
[22] on the 3-torus, see also [15]). However, on homology spheres we know that
weakly fillable structures must also be strongly fillable [69]. For a more thorough
discussion of the notions of fillability and their relations, see [28].

Tight

∪ 6 |
Weakly symplectically semi-fillable % Strongly symplectically semi-fillable

∪? ∪?
Weakly symplectically fillable % Strongly symplectically fillable

∪?
Holomorphically fillable

If a contact structure is fillable, it is interesting to consider the number and type
of fillings. In particular:

Question 2. Do there exist only finitely many (strong or weak) fillings (X4, ω)
of a fixed (M3, ξ), up to blowup and blowdown?

Actually, it is not too hard to show there are always infinitely many strong
fillings if we allow the fundamental group of X to vary [74]. So it is most interesting
to consider this question when X is required to be simply connected.

The main technique used to show a contact structure is not fillable is Seiberg-
Witten theory. This technique was initiated by Lisca [58] and only applies to
manifolds with positive curvature. It would be exciting to find other methods for
showing that a contact structure is not fillable.

Question 3. How can one determine if a contact structure is fillable?

It is obvious that universally tight and virtually overtwisted contact structures
form disjoint sets, but it is not clear if all tight contact structures must fall into
one of these sets. For any 3-manifold with a residually finite fundamental group,
it is known (and not hard to prove) that any tight contact structure is either
universally tight or virtually overtwisted. Recall that a group G is residually finite
if every nontrivial element of G is in the complement of some finite index normal
subgroup of G. Of course, it is conjectured that all 3-manifolds have residually finite
fundamental groups.

There are no known connections between a tight structure being fillable (in any
sense) and being universally tight or virtually overtwisted.

Question 4. Are universally tight contact structures fillable?

It is known that the converse is not true. An easier question might be the following.

Question 5. If ξ is a universally tight contact structure on M , is there some
finite cover of M in which the pulled-back contact structure is fillable?

We recall that the Poincaré homology sphere with the nonstandard orientation
−P does not admit a tight contact structure [32]. Moreover, any tight contact
structure on the connected sum M#N can be decomposed into a tight contact
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structure on M and a tight contact structure on N [8]. Thus any 3-manifold of
the form M#(−P ) does not admit any tight contact structure, so when discussing
existence of tight contact structures, we will always consider irreducible 3-manifolds.

If one believes the conjectured picture of 3-manifolds coming from Thurston’s
Geometrization conjecture, then the main question breaks into two:

Question 6. Do all hyperbolic manifolds admit a tight contact structure? What
type of tight structures do they support?

Question 7. Which Seifert fibered spaces admit tight contact structure? Which
are fillable? Which are universally tight or virtually overtwisted?

Eliashberg and Thurston [26] have shown that a Reebless foliation may be
perturbed into a tight (in fact, weakly semi-fillable and universally tight) contact
structure. Moreover, Gabai [40] can construct such a foliation on any irreducible
3-manifold with b1 ≥ 1. Thus, when considering the above questions, one can focus
on rational homology spheres, or consider strong fillability or virtually overtwisted
contact structures.

Gompf [46] has constructed strongly fillable contact structures on many Seifert
fibered spaces. Given the above results, here is our main concern: Let Σ(α1
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β3

)

be a Seifert fibered space over S2 with three singular fibers with invariants α1
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;

then there is a strongly fillable contact structure on Σ(α1
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) if e0 6= −1, where

e0 =
∑3

i=1b−
αi

βi

c and bxc is the greatest integer less than or equal to x. Moreover,

Gompf can also construct fillable contact structures on many Seifert fibered spaces
with e0 = −1; see [46].

The only manifold currently known not to admit a tight contact structure is
−P , which is a Seifert manifold over S2 with invariants − 1

2 , 1
3 , 1

5 .
There are several other manifolds that do not admit weakly fillable contact

structures. In [58, 59], Lisca has shown that the Seifert manifolds with invariants
(− 1
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4 ), (− 1

2 , 1
3 , 1

3 ) do not admit weakly fillable contact structures. It
would be very interesting to know:

Question 8. Do the Seifert manifolds with invariants
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admit tight contact structures at all?

It is believed, at least by some, that these manifolds do admit tight contact
structures. This result would be particularly interesting, because then these would
be the first known manifolds admitting tight contact structures but not admitting
any fillable structures.

As for hyperbolic manifolds, very little is known about the existence of tight
contact structures. There are no known constructions of contact structures in terms
of hyperbolic structures. It was once conjectured that all hyperbolic manifolds
admit taut foliations. If this were true, we could perturb them into tight contact
structures, but it has recently been shown that there are hyperbolic 3-manifolds
without taut foliations [6, 70]. It is still possible, however, that all hyperbolic
manifolds admit a tight contact structure.

Another important question is:

Question 9. Do all Haken manifolds admit a tight contact structure?
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Any manifold with b1 ≥ 1 is known to be Haken, and from the work of Eliashberg-
Thurston [26] and Gabai [40], it is known that these manifolds admit semi-fillable,
universally tight contact structures; see also [54] for a proof that avoids foliation
theory. Thus our main interest here again is rational homology spheres.

2. Uniqueness and classification

Of course the main problem here is:

Problem 10. Classify tight contact structures on all 3-manifolds.

Currently contact structures are classified on the following manifolds:

(1) S3, S2 × S1 [20]
(2) Lens spaces [30, 43, 50]
(3) Torus bundles [43, 51]
(4) Circle bundles [44, 51].

The classification is also known on some Seifert fibered spaces. For example,
#Tight (Σ(2, 3, 5)) = 0 or 1, depending on orientation, where Tight (M) denotes
the set of tight contact structures up to isotopy. See [41] for further results on
Seifert fibered spaces.

A specific problem whose resolution would have great importance for the clas-
sification of contact structures is:

Problem 11. Classify tight contact structures on Σ×[0, 1], where Σ is a surface
of genus g > 1.

In [55], Honda, Kazez, and Matić classify tight contact structures on Σ× [0, 1],
when the relative Euler class of the contact structure is extremal, e(ξ)(Σ) = ±(2g−
2), and some mild conditions hold on the dividing curves. It seems much more
difficult to understand the situation when the Euler class is not extremal.

This problem has relevance to the classification of tight contact structures on:

(1) surface bundles over circles,
(2) 3-manifolds with Haken decompositions, and
(3) general 3-manifolds.

The application of Problem 11 to surface bundles is obvious: given a tight contact
structure on a surface bundle, split it along a convex fiber; the result is Σ×[0, 1], and
the dividing curves (or characteristic foliation) on the boundary components are
related by the monodromy of the bundle. Now if one could normalize the dividing
curves on a surface fiber, then one could apply the solution to Problem 11 to obtain
an upper bound on the number of tight contact structures on the surface bundle.
To get a lower bound, one could use Legendrian surgery and “state transition,” see
[52].

A Haken decomposition of a 3-manifold is a way of successively cutting the man-
ifold along incompressible surfaces until one arrives at a disjoint union of three-balls.
Haken decompositions have been very useful in studying manifolds that support
them [40, 75]. Honda, Kazez, and Matić [54] have used these decompositions to
construct tight contact structures on manifolds with b1 ≤ 1. The hardest step in
this process is understanding the first cut. This would be greatly facilitated by
answering Problem 11; it might then be possible to generalize the results of [54].
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To study a general 3-manifold, one can use Heegaard decompositions. Any
3-manifold can be obtained by gluing two handlebodies together; such a represen-
tation of a 3-manifold is called a Heegaard decomposition. These decompositions
have been very useful in studying 3-manifold topology (e.g., branched covers, Cas-
son invariants, . . . ). So to understand tight contact structures on a 3-manifold, one
might first want to consider:

Problem 12. Classify tight contact structures on handlebodies.

For handlebodies of genus 1, this has been done [43, 50]. Using techniques from
[50], it is not hard to give an upper bound on the number of tight contact struc-
tures on a handlebody with fixed dividing curves on its boundary, but an actual
classification seems difficult. If one could solve this problem, then to understand
tight structures on an arbitrary 3-manifold, one would have to understand how to
glue together tight structures on the handlebodies. Honda has developed a method
called “state transition” for gluing tight contact structures together. In trying to
implement this method, a solution to Problem 11 would be helpful.

Short of a complete classification, we can ask more specific questions. For
example, we can start with the following motivational question.

Question 13. Which manifolds admit only finitely many tight contact struc-
tures?

In [9, 53], it has been shown that any closed oriented irreducible toroidal 3-manifold
admits infinitely many universally tight contact structures. Moreover, it has re-
cently been announced, by Colin, Giroux, and Honda, that any closed oriented
atoroidal 3-manifold admits only finitely many tight contact structures (for this
statement, it is important to keep in mind that 0 is a finite number!). In light of
these results, the above question, as stated, has been answered; however, there are,
of course, many interesting refinements of this question. Foremost among them is:

Question 14. Do all 3-manifolds admit only finitely many virtually overtwisted
contact structures?

In [9, 53], the infinity of universally tight contact structures were constructed
by first constructing one special universally tight contact structure, in which the
incompressible torus T has a neighborhood contactomorphic to (T × (−1, 1), ξ1),
where

ξn = ker(sin(2πnz)dx + cos(2πnz)dy),

x, y are coordinates on T , and z is the coordinate on (−1, 1). Then one ob-
tains infinitely many tight contact structures by replacing (T × (−1, 1), ξ1) with
(T × (−1, 1), ξn). Intuitively, one is making the contact structure twist more near
T. When doing this, one must prove that all the contact structures obtained are uni-
versally tight, and that they are different. To prove tightness, it is important that
we begin with a special tight contact structure. To conclude that there are infin-
itely many different tight contact structures, one needs to know that the “twisting
along T is finite.” This “twisting” is measured in [9, 11] using an invariant called
the torsion of T (see below), and in [53] using the twisting of various Legendrian
knots transverse to T . In any event, it is not clear that a similar construction can
be performed on virtually overtwisted contact structures.

The torsion of a torus T in a contact manifold (M, ξ) is the largest n for which
(T × (−1, 1), ξn) can be contact embedded in M so that T × {0} is isotopic to T ;
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if no such ξn can be embedded, the torsion is defined to be 0. We would like to
answer the following questions.

Question 15. Are there only finitely many contact structures with minimal
torsion?

Question 16. Is torsion always finite in a tight contact structure?

For example, if we drop the hypothesis that the torus is normal in Colin’s theorem
[9], does an arbitrary tight ξ have finite torsion? Note that for the infiniteness
theorems of Colin and Honda-Kazez-Matić, which rely, more or less, on torsion
being finite, the contact structures constructed are very special. We can also ask:

Question 17. How are torsion and fillability related?

In many specific examples (e.g., the tight contact structures on T 3), we know that
only the tight contact structures with minimal torsion are strongly fillable, while
the rest are only weakly fillable [22]. Is this always the case? Specifically, we ask:

Question 18. Can large torsion sometimes imply no filling?

When studying 3–manifolds one usually decomposes them in various ways.
First, since any orientable 3–manifold has a unique prime decomposition, one usu-
ally restricts to irreducible manifolds. One may also do this when considering tight
contact structures since for a connected sum M1#M2, we know Tight (M1#M2) =
Tight (M1) × Tight (M2); see [8]. Next, a 3–manifold is usually decomposed along
incompressible tori. Specifically, given an irreducible orientable 3–manifold M ,
there is a collection of incompressible tori T1, . . . , Tk such that the components of
M \ ∪Ti are atoroidal or Seifert fibered; moreover, this collection is unique if it is
minimal with respect to this property. These tori give the Johannson-Shalen-Jaco
(JSJ) decomposition of M.

Question 19. Is there a contact JSJ decomposition?

More explicitly, suppose that T1, . . . , Tk is a minimal system of tori given by the JSJ
decomposition. Can we classify contact structures on M if we have a classification
on the pieces of M \ (∪Ti)?

A related question is:

Question 20. Suppose two embeddings (T 2 × I, ξi) ⊂ (M, ξ) are smoothly
isotopic and maximal. Are they necessarily contact isotopic?

3. Convex contact structures and open book decompositions

A vector field v on a contact manifold (M, ξ) is called a contact vector field
if the flow of v preserves ξ. The contact structure ξ is called convex if there is a
gradient like contact vector field on M. Recently Giroux has proved (using ideas
from [42]) that any contact structure on a closed 3-manifold is convex. This gives
us another tool to study contact structures.

Question 21. How are properties like fillability and virtual overtwistedness
reflected in convex vector fields associated to a given contact structure?

For example:

Question 22. Does the dynamics of the flow of a contact vector field say
anything about the contact structure?
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Giroux [45] has provided an interesting approach to Question 21. Recall that an
open book decomposition of a closed 3-manifold M is a fibration of the complement
of a link L, called the binding of the open book. If F is the fiber of the fibration
of M \ L, then M \ L is obtained from F × [0, 1] by gluing F × {1} to F × {0}
by a diffeomorphism φ : F → F called the monodromy. Following Thurston and
Winkelnkemper [76], one can find a 1-form λ on F such that dλ is a volume form
on F. Then α = dt+ t ·λ+(1− t) ·φ∗λ, t ∈ [0, 1], is a contact form on F × [0, 1] that
descends to a contact form on M \ L, and it is not hard to extend α over M. The
contact structure ξ = kerα is said to be adapted to the open book decomposition.
Giroux has shown how to construct a contact vector field on (M, ξ) that is transverse
to the fibers of the open book. Thus from an open book decomposition, one gets
an adapted convex contact structure. Moreover, given a convex contact structure,
Giroux can construct an open book decomposition to which the contact structure
is adapted. Hence there is a one-to-one correspondence between convex contact
structures and open book decompositions.

Generalizing work of Loi and Piergallini [62] (see also [2, 63, 66]), Giroux can
show that a contact structure is Stein fillable if and only if it is adapted to an open
book decomposition whose monodromy is a product of positive Dehn twists. Thus
we can refine Question 21 to:

Question 23. What conditions on the link or monodromy map of an open
book decomposition imply that the adapted contact structure is tight? (Weakly or
strongly) symplectically fillable? Universally tight? Virtually overtwisted?

Fix M and a contact structure ξ. Let B(ξ) be the set of all open book decom-
positions to which ξ is adapted. Let g(ξ) = min{genus(F )}, where the minimum is
taken over all fibers F of fibrations in B(ξ).

Question 24. Can g(ξ) be effectively computed for any class of contact struc-
tures? If so, is it an effective invariant of the contact structure? Is it related to
any properties of ξ?

Question 25. What is the minimum of g(ξ) over all tight structures (or over
all universally tight structures, etc.) on M?

We also ask:

Question 26. Can the contact homology or symplectic field theory [25] of a
contact structure be computed in terms of an adapted open book decomposition?

Since a contact structure can be reconstructed from an adapted open book decom-
position, it is clear that contact homology can be computed from the open book
data. We would like to see an effective algorithm that takes dynamical information
about the monodromy (and/or topological information about the binding) of the
open book decomposition and outputs the contact homology.

Open book decompositions have been used to study the topology of 3-manifolds
for quite some time now. So we end this section with a very open ended problem.

Problem 27. Find purely topological applications of Giroux’s correspondence
between convex contact structures and open book decompositions.

Though answering this problem might seem overly optimistic, Giroux and Goodman
[45] have been able to answer some longstanding questions about fibered links using
this machinery.
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Figure 1. Legendrian surgery on the lighter curves on the left can
yield a virtually overtwisted contact structure. The darker curve
bounds an immersed disk, as shown on the right, with respect to
which its twisting number is 0.

4. Contactomorphisms

There is very little known concerning the group of contactomorphisms of a
given contact structure.

Problem 28. Given a contact structure ξ on M, understand the group Diff (M, ξ)
of contactomorphisms of ξ.

Several interesting subproblems are:

Problem 29. Compute π0(Diff (M, ξ)).

Problem 30. Study the inclusion map from Diff (M, ξ) to Diff +(M), the group
of orientation-preserving diffeomorphisms.

For S3 with the standard tight contact structure, this map is an isomorphism on
the π0 level. What can one say about higher homotopy groups? The inclusion is
not surjective on π0 for tight contact structures on T 3, since a preferred direction
of “twisting” is picked out by a contact structure. We also know that for (T 3, ξn),
the kernel of the inclusion on π0 contains at least n elements.

Problem 31. Compute Diff (M, ξ) when ξ is overtwisted.

Eliashberg’s work in [17] should be very helpful here, but there are technical hy-
potheses in most of the theorems in [17] which make it difficult to address this
problem directly. In [16], it has been shown that π0 for an overtwisted contact
structure contains at least two elements. In order to address Problem 31 using
[17], one might first want to consider the following.

Question 32. Does there exist an overtwisted contact structure with two over-
twisted disks which are not contact isotopic?

Note that Eliashberg’s theorem does not state that homotopy classes of plane fields
are in one-to-one correspondence with overtwisted contact structures; this is only
true at the π0 level.

5. Miscellaneous

Gompf [46] has shown that if a contact structure is obtained from Legendrian
surgery on a Legendrian knot as in Figure 1, and the immersed disk on the left of
Figure 1 lifts to an embedded disk in a finite cover, then the contact structure is
virtually overtwisted. The reason is that there is a Hopf-like unknot bounding an
immersed overtwisted disk that can be unwound in a cover.
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Question 33. Can we always find such an immersed disk in a virtually over-
twisted contact structure?

If the virtually overtwisted phenomenon could be sufficiently well understood,
one could try to address the following question.

Question 34. Given a virtually overtwisted contact structure, is there some
procedure to find an associated universally tight structure?

Said another way, are all contact structures obtained from universally tight contact
structures via some surgery-type construction?

When we perform a Lutz twist on a contact structure, a tube of overtwisted
disks is produced. This raises the natural question:

Question 35. Can an overtwisted disk always be completed to an overtwisted
tube?

This is unlikely, given the fact that −P does not support a tight contact struc-
ture. However, perhaps the putative overtwisted tube is only immersed, while each
overtwisted disk is actually embedded.

Question 36. If a contact structure has an overtwisted tube, is there an un-
Lutz-twist which yields a tight structure?

II. Legendrian Knots

Please refer to the article by Etnyre [31], elsewhere in this volume, for intro-
ductory definitions concerning Legendrian and transverse knots. Unless otherwise
stated, the ambient contact manifold is assumed to be (S3, ξstd). Sections 6 through
8 deal with the problem of classifying Legendrian and transverse knots; Sections 9
and 10 address applications of these knots to contact geometry and topology.

6. Examples

If K is a topological knot type in any contact 3-manifold, let L(K) denote the
set of Legendrian knots of type K. The main problem in Legendrian knot theory
is the following.

Problem 37. Given K, classify the Legendrian knots in L(K) up to Legendrian
isotopy.

In the case (S3, ξstd), recall that there are two “classical invariants” of Legen-
drian knots, tb and r. A knot type is called Legendrian simple if two Legendrian
knots of this type with equal classical invariants must be Legendrian isotopic. For
Legendrian simple knots, classification is concluded by calculating precisely which
values of (tb, r) can be achieved.

All of the prime knot types which we can presently classify are Legendrian
simple:

(1) the unknot in any tight contact structure [24]
(2) torus knots in any tight contact structure [33]
(3) the figure eight knot in (S3, ξstd) [33].
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S+

−S

Figure 2. Stabilization of a Legendrian knot replaces a segment
of the knot’s front (yz) projection with a zigzag as shown. There
are two different stabilizations S±, which change r by ±1.

We can also classify Legendrian knots in a non-prime knot type if we know the
classification for the prime summands [35]; see Section 7. Thus, in our discussions
below, we will usually restrict attention to prime knot types. In addition, for all of
the above knot types, any Legendrian knot which does not maximize tb in its knot
type can be obtained from a maximal-tb knot through the operation of stabilization,
which adds zigzags to the front (yz) projection of the knot; see Figure 2. (It is
straightforward to show that the stabilizations S± are well-defined operations up
to Legendrian isotopy.) The classification results of [33, 35], and probably future
classifications, rely on the powerful theory of convex surfaces developed by Giroux;
see Etnyre’s article [31].

Not all knot types are Legendrian simple, as we will see in Section 8. For
instance, the 52 knot shown in Figure 4 (a few pages hence) is not Legendrian
simple. (Here we use the usual knot terminology from, e.g., [71].)

We digress for a moment to discuss the situation of transverse knots. Call a
knot type transversely simple if all transverse knots in this knot type are completely
determined by their self-linking number. Using characteristic foliation techniques,
Eliashberg [21] showed that the unknot is transversely simple; similarly, Etnyre
[29] and Etnyre-Honda [33] have shown that torus knots and the figure eight knot
are transversely simple. Through a completely different approach, using braid
foliations, Birman and Wrinkle [5] have proved that all so-called exchange reducible
knots are transversely simple; by work of Menasco [64], these include all iterated
torus knots. Birman and Menasco [4] have adapted difficult results in braid theory
to construct families of knots which are not transversely simple.

Further results about transverse knots seem likely to arise from their connection
with Legendrian knots. Given an oriented Legendrian knot K, we obtain two
transverse knots K+ and K− by pushing the knot off of itself in a direction tangent
to the contact field so that the orientation induced on K+ and K− as transverse
knots agrees/disagrees with the orientation on K. (Note there is some discrepancy
in the literature as to the sign convention. The one given here seems natural
from many perspectives, but the other choice is also frequently used, e.g. in [3].)
Conversely, any transverse knot is transverse isotopic to a knot thus obtained.
Now if we denote by S± the operations of positive and negative stabilization on
Legendrian knots, then two transverse knots (K1)+, (K2)+ are transverse isotopic
if and only if the Legendrian knots K1, K2 are stably isotopic, i.e., Sn

−K1, S
n
−K2

are isotopic for some n ≥ 0; see, e.g., [27, 33]. It follows that classifying transverse
knots up to transverse isotopy is equivalent to classifying Legendrian knots up to
stable isotopy.
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In trying to attack the main Legendrian problem, we would like to mention
some particularly important subproblems.

Problem 38. Classify Legendrian knots in L(K), where

(1) K is a fibered knot;
(2) K is a hyperbolic knot;
(3) K is not Legendrian simple;
(4) K is any knot type in any overtwisted contact structure.

Here are some remarks about these subproblems.
Problem 38 (1): It is currently possible (though not likely) that prime fibered

knots are always Legendrian simple (for non-prime knots see below). We note that
the only fibered knots of genus 1 are the figure eight knot and the right- and left-
handed trefoil knots, and Legendrian knots in all of these knot types have been
classified. The next step is to look at genus 2 fibered knots. It is probable that the
techniques in [33] can be used in this situation (at least sometimes), but it seems
that some new ideas will be needed as the genus of the knot grows.

Problem 38 (2): We currently know very little about the Legendrian classifica-
tion of hyperbolic knots; so far, we only understand Legendrian figure eight knots.
As mentioned in Section 1, it would be very helpful to understand interactions be-
tween hyperbolic and contact geometry, and some clues to this interaction could
come from understanding some more Legendrian knots in hyperbolic knot types.
In particular, it would be great to have a Legendrian classification in a non-fibered
hyperbolic knot type. However, it might be easier to try knot types that are both
hyperbolic and fibered. W. Kazez has suggested looking at the knot 820; this is a
fibered hyperbolic knot whose holonomy seems to be interesting.

Problem 38 (3): There are currently no prime knot types K that are not Leg-
endrian simple for which we can classify L(K). The most obvious one to consider
is the 52 knot type.

Conjecture 39. There are exactly two Legendrian knots realizing the 52 knot
type with tb = 1 and r = 0. All other Legendrian knots realizing 52 are stabilizations
of these, and are determined by their tb and r.

Problem 38 (4): It is a surprising fact that much progress has been made to-
wards classifying Legendrian knots in tight contact structures, but little is known
about Legendrian knots in overtwisted contact structures. Call a Legendrian knot
K in an overtwisted contact structure loose if the contact structure on the com-
plement of L is overtwisted. It seems that most Legendrian knots in overtwisted
contact structures are loose, but there are also non-loose Legendrian knots [16]. If
two loose Legendrian knots have the same knot type and tb and r, then they are
Legendrian isotopic [16, 24]. Thus it would be interesting to know:

Question 40. For what contact manifolds and knot types K are all Legendrian
knots in L(K) loose?

For example, let ξ′ be the contact structure on S3 obtained from the tight contact
structure by applying one Lutz twist.

Conjecture 41. If ξ is any overtwisted contact structure on S3 besides ξ′,
then all Legendrian unknots are loose.
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Conjecture 42. Any Legendrian unknot in ξ′ with tb 6= 1 or r 6= 0 is loose,
and there are exactly two Legendrian unknots with tb = 1 and r = 0, one loose,
one not.

As a final remark, we note that any Legendrian knot that violates the Ben-
nequin inequality is automatically loose.

7. Structure Results

A prototypical structure result for Legendrian knots concerns connected sums.
Given two Legendrian knots L1 ∈ L(K1) and L2 ∈ L(K2), we can form their
connected sum L1#L2 in a standard way (see, e.g., [12]). In [35] it is shown that
connected sum of Legendrian knots gives a bijection

(

L(K1) × L(K2)

∼

)

−→ L(K1#K2),

where the equivalence relation ∼ is of two types:

(1) (L1, S±(L2)) ∼ (S±(L1), L2),
(2) (L1, L2) ∼ (L2, L1) if K1 = K2.

Thus we can classify L(K1#K2) in terms of L(K1) and L(K2). Using this result
and the classification of Legendrian negative torus knots, one may easily find non-
Legendrian-simple fibered knot types K for which we can completely classify L(K).

Virtually nothing is known about the structure of L(K) for general knot types
K. One important notion here is destabilizing a Legendrian knot, i.e., isotoping
it to become a stabilization of another Legendrian knot, and then removing the
stabilization; this raises tb by 1.

Question 43. Do all Legendrian knots destabilize until they reach the maximal
possible tb for their knot type?

It seems unlikely that the answer to this question is yes in general, but it is yes
for all knot types for which the question has been answered [33]. Question 43
is important since the method used in all current classification results is to show
Legendrian knots destabilize to maximal tb knots, and then to classify these. This
scheme would have real difficulties if the answer to the following question were yes.

Question 44. Is there a knot type with Legendrian representatives that do not
destabilize but have arbitrarily negative tb?

Give a knot type K, let K(p,q) be the (p, q)-cable of K; that is, a representative
of K(p,q) sits on the boundary of a tubular neighborhood of a representative of K
as a (p, q) curve. The techniques in [33] should allow one to address the following.

Problem 45. Classify Legendrian knots in L(K(p,q)) in terms of L(K).

In addition to connected sum and cabling, there are many other operations one
can perform on knots.

Question 46. What can one say about Legendrian knots that are in a knot
type obtained from

(1) Whitehead doubling or some other satellite construction?
(2) Murasugi sums?
(3) your other favorite topological abuse of knots?
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Figure 3. Basic move preserving tb and topological class, but not
necessarily Legendrian isotopy class.

For background on Legendrian satellites, see, e.g., [68]. It is plausible that White-
head doubling two non-isotopic Legendrian knots leads to non-isotopic Legendrian
knots; if the original knots have the same tb, then the doubles have the same tb
and r. Examples similar to the non-isotopic knots of Figure 4 can be constructed
by doubling unknots with the same tb but different r.

Here are some other interesting structural questions.

Question 47. How are the Legendrian knots in a knot type affected by crossing
changes of the knot type?

For example, is there a formula for how the maximal value of tb changes under
crossing changes?

Question 48. If K1 and K2 are topologically isotopic with the same tb, is
there a set of local moves which, along with Legendrian isotopy, will send K1 to
K2?

A basic move suggested by L. Ng is given in Figure 3. This move seems to suffice
in many examples. However, there are examples in which this is not sufficient, as
one can show using the characteristic algebra (see Section 8).

A result of Fuchs and Tabachnikov [39] states that two topologically iso-
topic Legendrian knots K1 and K2, with identical classical invariants, must have
Sn1

+ Sn2

− K1 and Sn1

+ Sn2

− K2 Legendrian isotopic for some n1, n2 ≥ 0. (Note that we
need both positive and negative stabilizations.) By considering Legendrian knots
that are topologically connected sums of negative torus knots, one sees that the
number of necessary stabilizations can be arbitrarily large [35], but one can ask:

Question 49. Are there bounds on the number of stabilizations necessary to
make two Legendrian knots isotopic, in terms of the topology of the knot type?

8. Legendrian invariants and contact homology

The first example of a knot type which is not Legendrian simple was produced
independently by Chekanov [12] and Eliashberg and Hofer [23]. As mentioned
before, the knot type is 52; the two non-isotopic Legendrian 52 knots with equal
classical invariants are shown in Figure 4.

The method used to distinguish between the two 52 knots is a new, powerful
invariant of Legendrian knots, motivated by the development of contact homology
[23], which applies Gromov’s holomorphic-curve techniques to contact manifolds.
This invariant takes the form of a differential graded algebra (DGA), a free non-
commutative unital algebra with a grading and differential; the homology of the
algebra is precisely the contact homology of S3 relative to the Legendrian knot (see
[36]).
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Figure 4. Example, due to Chekanov and Eliashberg-Hofer, of
two Legendrian knots, both of topological type 52 and with tb = 1
and r = 0, which are not Legendrian isotopic.

Although contact homology is difficult to compute in general, this relative
contact homology has a simple combinatorial formulation due to Chekanov [12];
in addition, it can be treated completely combinatorially, without reference to the
general theory of contact homology. Chekanov’s definition allows us to write down
the DGA invariant explicitly, given the knot diagram of a Legendrian knot. Two
Legendrian knots are then isotopic only if they have equivalent DGAs, under an
algebraic equivalence called “stable tame isomorphism.” The formulation of the
DGA has subsequently been refined in [36, 65, 67].

In practice, because of the difficulty of manipulating the DGA directly, ap-
plications have used simpler invariants derived from the DGA. The easiest are
Poincaré-type polynomials which calculate the graded dimension of linearizations
of the DGA. Chekanov used these polynomials to show that the knots in Figure 4
are not Legendrian isotopic. Along the same lines, it can be shown [12, 27] that
there exist knot types and tb and r for which there are arbitrarily many non-isotopic
Legendrian representatives.

A more involved DGA-derived invariant is the characteristic algebra [67]. This
can be used to answer (in the negative) the Legendrian mirror question of Fuchs
and Tabachnikov [39], which asks whether a Legendrian knot with r = 0 must nec-
essarily be Legendrian isotopic to its mirror, its image under the contactomorphism
(x, y, z) 7→ (x,−y,−z). Further applications of the characteristic algebra are given
in [67], including knots distinguished without using any sort of grading. It seems
possible that the characteristic algebra is also linked to topology.

Conjecture 50 (Ng). The abelianized characteristic algebra is a topological
invariant. More precisely, it depends only on K and tb.

Question 51. Fully understand the space of DGAs modulo stable tame iso-
morphism. In particular, are there other useful invariants which can be derived
from the DGA?
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Along these lines, it would be particularly nice to answer:

Question 52. If two DGAs have the same homology, are they stable tame
isomorphic?

Chekanov and Pushkar [13] have discovered another non-classical invariant of
Legendrian knots, using admissible decompositions of fronts. No applications of this
invariant are currently known, besides examples in which the Poincaré-polynomial
technique can already be used. In fact, the following seems possible; see [38] for a
result in this direction.

Conjecture 53. The Chekanov-Pushkar invariant can be deduced from Poincaré
polynomials for the corresponding DGA.

Analogues of the DGA theory can be derived for contact manifolds other than
(S3, ξstd).

Problem 54. Construct combinatorial relative contact homology theories for
Legendrian knots in other contact manifolds.

This has been done for the solid torus S1 × R2 with the standard tight contact
structure by Ng and Traynor, and, with more difficulty, for circle bundles over
closed orientable surfaces with a contact structure transverse to the fibers [73].
We note that for S1 ×R2, Traynor [77] has defined another non-classical invariant
for a particular class of links, using generating functions and algebraic topology;
mysteriously, for these links, all current calculations indicate that this invariant
coincides with a link-graded Poincaré polynomial derived from the DGA.

We now return to (S3, ξstd). One major remaining difficulty with the DGA
invariant is that it vanishes for stabilized Legendrian knots.

Problem 55. Are there useful contact-homology-type invariants for stabiliza-
tions?

This problem is of particular importance in trying to understand transverse knots;
see Section 6.

One possible approach to understanding invariants for stabilizations is to use
satellite constructions, which in many cases produce knots with nontrivial DGAs.
The simplest possible satellite, the Whitehead double, yields no interesting in-
variants for stabilizations [68], but more complicated satellites may encode useful
information.

Another possible approach is to apply the symplectic field theory of Eliashberg-
Givental-Hofer [25], which generalizes contact homology, to Legendrian knots.

Problem 56. Combinatorially understand the full symplectic field theory for
Legendrian knots.

The algebraic structure behind absolute symplectic field theory is somewhat well
understood [25], but this is far from the case for the relative symplectic field theory
needed for the Legendrian case. Here, the algebraic formalism has resisted several
attempts at a reasonable definition.

Given a Legendrian knot K in (M, ξ), there is a natural (tb(K) − 1) surgery
on K, called Legendrian surgery, which produces another contact manifold; see
[18, 46, 78] for background.



16 JOHN B. ETNYRE AND LENHARD L. NG

Problem 57. Let K be a Legendrian knot inside (S3, ξstd), and let (M, ξ) be
the Stein fillable contact structure obtained by performing Legendrian surgery on K.
Is there a way to calculate the contact homology of (M, ξ) from the DGA invariant
associated to K?

Though finding such a relation would be great, it seems unlikely that one can
determine the contact homology of (M, ξ) merely from the DGA of K; however, one
can almost certainly compute the contact homology of (M, ξ) from the information
which would define the symplectic field theory of K. Thus it is probably more
realistic to try to solve Problem 56 first before attacking this problem. As a possibly
simpler first step, we ask the following.

Question 58. If (M, ξ) in Problem 57 is obtained from a stabilized Legendrian
knot, does the contact homology of (M, ξ) have a simple form? (Is is almost trivial?
Does it equal the base field?)

9. Relation to contact geometry

We now turn from intrinsic properties of Legendrian knots to applications of
Legendrian knots to contact geometry. Bennequin [3] famously established the
existence of an exotic contact R3 by studying transverse unknots, and Legendrian
knots have played a similar role in distinguishing between contact structures on the
3-torus [56] and homology spheres [1]. In each case, one investigates what sorts of
Legendrian (or transverse) knots can be carried by the contact structure.

Problem 59. Distinguish other contact structures using Legendrian knots.

A more precise version of this problem might be given by the following question.

Question 60. Can tight contact structures ξ1 and ξ2 on the same manifold M
always be distinguished by finding a Legendrian knot of a certain tb (or twisting
number) and r which exists in one, but not in the other?

For example, the tight contact manifolds (T 3 = R3/Z3, ξn), n ∈ Z+, given by the 1-
forms αn = sin(2πnz)dx + cos(2πnz)dy, are distinguished by the maximal twisting
number among curves isotopic to x = y = const [56]. More generally, tight contact
structures on T 2 bundles over S1 are determined by their homotopy class of plane
field and by information about Legendrian knots [51].

It would be interesting to see if the Lisca-Matić examples [60] of contact struc-
tures can also be distinguished in this way. These are tight structures on the
Brieskorn sphere Σ(p, q, pqn−1), obtained by surgery on distinct Legendrian knots.
Via Seiberg-Witten theory, the contact structures are distinguished by the Chern
classes of Stein 4-manifolds which bound Σ(p, q, pqn−1). Could one use Legendrian
knot theory instead of Seiberg-Witten theory to distinguish these examples?

We next address the effect of Legendrian surgery on contact structures. It
is known [18] that Legendrian surgery on a knot in a fillable contact structure
produces another fillable structure.

Question 61. Does Legendrian surgery preserve tightness?

If we allow manifolds with boundary, the answer is no [52] (see also [10]). Nothing
is known for the closed case.
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Question 62. Consider two Legendrian knots K1, K2 with the same tb and
r which are not isotopic. Let (M, ξ1) and (M, ξ2) be the contact manifolds ob-
tained by performing Legendrian surgery on K1 and K2, respectively. Are ξ1 and
ξ2 necessarily isotopic?

One might like to begin working on this problem by considering the maximal tb
examples of the 52 knot.

Here are some final questions.

Question 63. Let K be a maximal tb Legendrian knot in (S3, ξstd). Is (S3 \
K, ξstd|S3\K) universally tight?

Question 64. If K has non-maximal tb but is not a stabilization (cf. Ques-
tion 43), is (S3 \ K, ξstd|S3\K) universally tight?

Though it is possible for the answers of these questions to be yes, that would be
quite amazing. More realistically, we can ask:

Question 65. If K is a maximal tb Legendrian knot in (S3, ξstd), is the Z-
cover of S3 \ K tight?

Understanding these questions could be helpful in addressing Question 61, as well
as providing a connection to the topology of the knot.

10. Relation to topology

Legendrian knot theory has deep connections with topology as well as with
contact geometry, principally through the information encoded in the Thurston-
Bennequin invariant of a Legendrian knot in (S3, ξstd). For a knot type K, let
tb(K) denote the maximal tb over all Legendrian knots of type K. This number is
finite; see the next paragraph.

Bennequin’s proof of the existence of an exotic contact structure on S3 reduces,
in modern terminology, to establishing that the unknot in (S3, ξstd) satisfies tb =
−1. His method extends to an upper bound on tb(K) for all K, in terms of the

genus of K. Since then, upper bounds for tb have been obtained in terms of the
slice genus, HOMFLY polynomial, and Kauffman polynomial; see [37] for a survey

of results. In particular, Rudolph [72] (q.v. [57, 60]) has shown that if tb(K) ≥ 0,
then K is not slice.

In this vein, consider the smooth knot concordance group C; this is a direct sum
of countably many Z, Z/2Z, and possibly Z/4Z factors. It is currently unknown
whether there are any, or even countably many, Z/4Z factors. One can see (at least
some of) the Z/2Z factors from the fact that amphichiral knots have order 2. The
result of Rudolph allows us to see some of the Z factors as well, through Legendrian
knot theory; if tb(K) ≥ 0, then K is of infinite order in C.

Question 66. Can we use Legendrian knots to improve or reprove other results
concerning slice knots?

See, e.g., [7, 61]. One might be able to prove results such as the following.

Conjecture 67 (Etnyre). A knot is either of order 2, or concordant to a knot
for which either it or its mirror has tb ≥ 0.

We can consider topological properties besides sliceness, as well.
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Problem 68. Relate Legendrian knot invariants to the Alexander module.

Questions 63, 64, and 65 are relevant to this problem. We also have the following
related problem; see [14] for a start.

Problem 69. Find relationships between Legendrian knot invariants and the
Alexander norm or Thurston norm.

It would also be illuminating to consider:

Problem 70. Understand more deeply the relation between L(K) and tb(K)
on the one hand, and the HOMFLY and Kauffman polynomials on the other.

According to Fuchs-Tabachnikov, there are no finite-type invariants of Legen-
drian knots besides tb, r, and standard topological finite-type invariants. Can one
extract non-finite-type topological knot invariants by looking at L(K)? In particu-
lar:

Question 71. Is tb a non-finite-type invariant?

One possible motivation for applying Legendrian knot theory to topological knot
theory is that Legendrian knots are very sensitive to mirroring; e.g., K and its
mirror can have vastly different tb.

Finally, showing that a Legendrian knot is determined by its complement
is somewhat easy, using Eliashberg’s classification of tight contact structures on
(S3, ξstd). However, the topological knot complement problem requires the ingenu-
ity of Gordon and Luecke [47].

Problem 72. Use Legendrian knot theory to reprove the topological knot com-
plement result.
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