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Abstract. We consider the problem of realizing tight contact structures on
closed orientable three-manifolds. By applying the theorems of Hofer et al., one
may deduce tightness from dynamical properties of (Reeb) 
ows transverse to
the contact structure. We detail how two classical constructions, Dehn surgery
and branched covering, may be performed on dynamically-constrained links in
such a way as to preserve a transverse tight contact structure.

1. Contact geometry and dynamics

For a more thorough treatment of the basic de�nitions and theorems related to
the geometry and dynamics of contact structures see, e.g., [1].

A contact structure � on a 3-manifoldM is a totally non-integrable 2-plane �eld
in TM . More speci�cally, at each point p 2 M we have a 2-plane �p � TpM that
varies smoothly with p, with the property that � is nowhere integrable in the sense
of Frobenius: i.e., there exists (locally) a de�ning 1-form � (whose kernel is �) such
that � ^ d� 6= 0. If � is globally de�ned, � is called orientable and � a contact
1-form for �. We adopt the common restriction to orientable contact structures.

The interesting (and di�cult) problems in contact geometry are all of a global
nature: Darboux's Theorem (see, e.g., [23, 1]) implies that all contact structures
are locally contactomorphic, or di�eomorphic preserving the plane �elds. A similar
result holds for a surface � in a contact manifold (M; �) as follows. Generically,
Tp� \ �p will be a line in Tp�: This line �eld integrates to a singular foliation ��

called the characteristic foliation of �. One can show, as in the single-point case of
Darboux's Theorem, that �� determines the germ of � along �.

There has recently emerged a fundamental dichotomy in three dimensional con-
tact geometry. A contact structure � is overtwisted if there exists an embedded
disk D in M whose characteristic foliation D� contains a limit cycle. If � is not
overtwisted then it is called tight. Eliashberg [6] has completely classi�ed over-
twisted contact structures on closed 3-manifolds | the geometry of overtwisted
contact structures reduces to the algebra of homotopy classes of plane �elds. Such
insight into tight contact structures is slow in coming. The only general method
for constructing tight structures is by Stein �llings (see [14, 7]) and the uniqueness
question has only been answered on S3 [8], T 3 [13, 20], most T 2-bundles over S1

[13], and certain lens spaces L(p; q) [10].
Thus we have the fundamental open question: does every 3-manifold M admit

a tight contact structure? Martinet [22] and Thurston and Winkelnkemper [26]
have used surgery techniques to show that all closed 3-manifolds admit contact
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structures. However, their constructions do not yield tight contact structures. The
current state of a�airs is to be found in a recent theorem of Eliashberg and Thurston
[9], who show how to perturb taut foliations into tight contact structures. Then,
the theorems of Gabai [12] imply that any closed orientable irreducible 3-manifold
with nonzero second Betti number �2 supports a tight contact structure.

The outline of this paper is as follows: the remainder of this section consists
of dynamical preliminaries and a recollection of the striking work of Hofer et al.
concerning Reeb �elds. We proceed in x2 to carefully modify the well-known con-
struction of Dehn surgery to preserve a tight contact structure when surgering over
certain links. In x3, we turn to the procedure of branched covering and again
show how to perform this construction in such a way as to preserve a tight contact
structure. In both cases, the link that the surgery / branching is performed on
is constrained by the associated dynamics; thus, unfortunately, only certain tight
manifolds are obtained by our methods. In particular, we do not surpass the exist-
ing theorems of Eliashberg and Thurston. However, this marks the �rst examples
of proving tightness of surgered contact structures without means of Stein �lling.
It is unknown whether the structures we construct are Stein �llable in general.

1.1. The dynamics of Reeb 
ows. A contact 1-form � carries more geometry
that does its contact structure � = ker�: In particular, given a contact form � there
is a vector �eld X uniquely determined by �(X) = 1 and d�(X; �) = 0. The vector
�eld X is called the Reeb vector �eld [25], and it encapsulates the \extra geometry"
� carries, since the Reeb �eld is characterized by the properties of being transverse
to � and preserving the 1-form �. In his recent work on the Weinstein conjecture
[17] Hofer has found deep connections between the dynamics of the Reeb vector
�eld X and the tightness of �:

Theorem 1.1 (Hofer [17]). Let � be an overtwisted contact structures on the closed
3-manifold M . Then the 
ow of the Reeb vector �eld associated to any contact 1-
form generating � has at least one closed orbit of �nite order in �1(M):

This can be re�ned by considering the dynamics of the closed orbits. Following
the standard usage [19], a periodic orbit in a Hamiltonian 
ow is either degenerate
or nondegenerate, depending on whether the spectrum associated to the linearized
return maps for the orbits contains, or excludes respectively, one. The nondegen-
erate periodic orbits are either elliptic or hyperbolic, depending on whether these
eigenvalues are on the unit circle or not respectively.

Theorem 1.2 (Hofer, Wyzocki, and Zehnder [18]). Let � be an overtwisted con-
tact structure on the closed 3-manifold M . Then if the 
ow of the Reeb vector �eld
associated to a contact 1-form generating � has no degenerate periodic orbits, then
there exists at least one closed hyperbolic orbit of �nite order in �1(M):

The proofs of the above theorems are highly nontrivial, relying primarily on
Gromov's theory of pseudoholomorphic curves [16].

2. Dehn surgery on tight contact structures

The operation of Dehn surgery is a very e�cient way of constructing closed
orientable three manifolds. A classical theorem in 3-manifold topology asserts that
any closed orientable three-manifold is obtainable via surgery on a link in S3 [27, 21].
In this section, we show how to preserve tightness under certain circumstances.
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2.1. Dehn surgery. The object of Dehn surgery on a three-manifold is to drill
out a solid torus, and replace this with another solid torus inserted with \twists."

Let 
 denote a simple closed curve in M3 having tubular neighborhood N dif-
feomorphic to D2�S1, with 
 as f0g�S1. Choose cylindrical coordinates (�; �; �)
on N such that the boundary curves m = f(1; �; 0)g and ` = f(1; 0; �)g correspond
respectively to a meridian and a longitude of N . The meridional curve is canoni-
cally de�ned, whereas the choice of the longitudinal curve depends on the framing
of the coordinate system. Denote by 	 : @N ! @N the di�eomorphism

	

�
�
�

�
=

�
p s
q t

��
�
�

�
;(2.1)

where p; q; s; and t are integers satisfying pt� qs = 1. The p=q Dehn surgery of M
along 
 is performed by removing N from M and regluing it via 	,

M
(p=q) :=M nN
[
	

N;(2.2)

resulting in the new manifold M
(p=q) (completely determined by 
; p and q).

2.2. Model Contact Structures on S1 �D2. When performing Dehn surgery
we will need to keep track of the Reeb vector �eld in order to use Hofer's theorem to
conclude our surgered manifold is tight. This is done by constructing model contact
forms on S1 � D2. To this end, for any �xed r > 0 we de�ne the Hamiltonian

function H(x) := (x21 + y21) +
1
r2 (x

2
2 + y22) on R

4
; where x := (x1; y1; x2; y2). The

1-form � := 1
2 (x1 dy1� y1 dx1+x2 dy2� y2 dx2), restricts to a tight contact 1-form

�̂ on Ŝ = H�1(1) [3]. We set S := f(x1; y1; x2; y2)jx21+y21+x22+y22 = 1g and de�ne
the map  : S ! Ŝ : x 7! x=

p
H(x). Thus we obtain the tight contact structure

�H :=  �(�̂) on S. One may easily check that �H = 1
H(x)�:

Choose coordinates 0 � � < 2� on S1 and polar coordinates (�; �) on D2: In
these coordinates we de�ne a map

f : S1 �D2 ! S : (�; (�; �)) 7! (sin � ei�; cos � ei�):(2.3)

We de�ne our distinguished contact forms on S1 �D2 as �r := f�(�H); which in
the above coordinates is

�r =
1

(sin2�+ 1
r2 cos

2�)
(sin2� d� + cos2� d�):(2.4)

It is now simple to check

1. For a �xed � we get a torus T� in S1 � D2 by letting � and � vary. The
characteristic foliation on T� is by lines with slope � tan2 �.

2. The Reeb vector �eld of �r is tangent to the tori T� and has slope 1
r2 inde-

pendent of �:

2.3. Tight surgery. It is possible to perform Dehn surgery on a contact manifold
and obtain a new contact manifold [22]; however, without great care the contact
structure thus constructed will be overtwisted. Using Stein �llings, Eliashberg
[7] and Gompf [14] have shown how to build tight contact structures by certain
surgeries on any knot in Stein �llable 3-manifolds (actually symplectically semi-
�llable would su�ce, cf. [28]). In this section we show how to obtain a tight
manifold by performing any surgery on a certain knot (e.g., the unknot in S3).
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Remark 2.1. To illustrate the di�culties in this type of construction consider the
following situation originally described to the authors by Maker-Limanov. Let 
 be
a closed transversal curve in S3 (equipped with its standard contact structure). We
can �nd a neighborhood of 
 that is contactomorphic to S1 �D2 with the contact
structure ker(d�+ �2d�), where� is the angle coordinate on S1 and (�; �) are polar
coordinates on D2. Suppose that this neighborhood is large enough to include
the torus T formed by setting � =

p
2: Now perform �2=1 Dehn surgery on 
 by

cutting and pasting a solid torus not intersecting T: The characteristic foliation
on T is by (�2; 1) curves, thus they bound disks in the surgered manifold. Since
the characteristic foliation of T has no singularities, it is not hard to �nd a disk
with one of these (�2; 1) curves as a limit cycle on its boundary. Thus the contact
structure one obtains is overtwisted. When surgering tight contact structures one
must be careful to perform surgery on su�ciently \large" tori.

Theorem 2.2. On S3 with the (unique) tight contact structure, there exist tight
(p; q)-Dehn surgeries on the unknot for arbitrary p; q.

Proof: For some irrational r > 0, consider the contact form �H on S3 de�ned
in x1.2. The Reeb �eld associated to �H has precisely two periodic orbits, both of
which are elliptic. On a neighborhood of each of these closed orbits, the contact
form appears as in Equation (2.4); hence, the Reeb 
ow lies on invariant tori. We
will remove an invariant neighborhood of one of the periodic orbits, 
, and glue in
a solid torus using 	 (from Equation (2.1)), thus performing a p=q Dehn surgery
on the unknot 
.

Place coordinates (�; (�; �)) on S1�D2 as in Section 2.2. Recall that for �xed �
the torus T� in S

1�D2 has as its characteristic foliation lines of slopem� = � tan2 �,
and the Reeb vector �eld is tangent to T� with slope 1

r2 : Pulling �r back by 	 we

obtain a contact structure on a neighborhood of the boundary in S1 � D2 with
characteristic foliation on each T� of slope

n� = �
�
pm� � q

sm� � t

�
(2.5)

and Reeb vector �eld tangent to T� with slope

r = �
�
p� qr2

s� tr2

�
:(2.6)

It is easy to check that given p and q one can �nd s; t; r and � 2 [0; �2 ) such that

pt � qs = 1; r > 0, and n� < 0: Now let N = S1 � D2, where the � variable is

restricted to lie in the interval [0; tan�1
p
(n�)]; and let �1=

p
r be the model contact

form constructed in x2.2. One can now construct a map � from a neighborhood of
the boundary of (N;�1=

p
r) to a neighborhood of the boundary of (S1�D2;	��r)

that preserves the contact form (to arrange this, make the map the identity on
the invariant tori and reparametrize in the � direction so that the characteristic
foliations on tori and the direction of the Reeb vector �eld are preserved). One
may then use 	 � � to glue (N;�1=

p
r) to (S3 n (S1 �D2); �r). This contact form

has a Reeb �eld with neither degenerate nor hyperbolic periodic orbits; hence it is
tight by Theorem 1.1

Remark 2.3. Recall the lens space L(p; q) is obtained from S3 by performing �p=q
Dehn surgery on an unknot. It has been known for a long time that all lens spaces
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admit tight contact structures. Our interest in this theorem is the novel way of
proving that these contact structures are tight | using dynamical properties of the
Reeb vector �elds to detect subtle geometric information. This is the �rst \surgery"
construction of tight contact structures that does not rely on Stein �lling.

Remark 2.4. It is not hard to compute the Euler class of the contact structure � con-
structed in this example: let D be the 2-skeleton of the natural CW-decomposition
coming from the surgery (which follows since we are surgering an unknot). Then,
using as the generator of H2(L(p; q);Z) the cochain that evaluates to one on D, the
Euler class of � is e(�) = q+1. This follows from the formula for the Euler class in
[10], given that the characteristic foliation on D has exactly one singular point (as
can be seen using the local models). When p is even, there is a re�nement of the
Euler class de�ned in [14] which may be likewise computed (see [10] for a precise
statement). We note that in every case considered, this Euler class can be realized
by a tight contact structure that can be Stein �lled | it is unknown whether this
is true in general.

Remark 2.5. In the above proof we never speci�cally addressed the problem of
surgering on \su�ciently large tori" discussed in Remark 2.1. It is an interesting
exercise to see that if one chooses s; t; r and � so that r > 0 and n� < 0; then a
su�ciently large torus is being surgered.

3. Branched covers and tight contact structures

Another way of building all three-manifolds is via branched covers over knots
and links. In this section, we show how one may perform tight branched coverings
of 3-manifolds along closed orbits of a suitable Reeb 
ow.

3.1. Branched covers over links. To branch over a knot, one removes a neigh-
borhood of the knot, takes an n-fold cover of the complement, and then �lls in the
tube(s) in such a way that the cross-sectional map in the meridional direction is
the m-fold singular cover of the disc D � C given by z 7! zm. More speci�cally, let

 := f
ign1 denote an n-component link in M3. Denote by N a tubular neighbor-

hood of 
 and by E := M nN the exterior of N . For any subgroup G < �1(E) of
�nite index, there is a well-de�ned compact cover p :MG ! E withMG. Denote by
fTig the collection of boundary components of MG, each di�eomorphic to a torus.
The cover p restricts to pi := pjTi

on each torus.
Each boundary component of E is a torus which may be �tted with a meridian

in such a way that each pi lifts this to a meridian for Ti via an mi-fold cover. We
may then construct ~M by �lling in the Ti's with S

1 �D2's sending fpt.g� @D2 to
the meridian. After choosing a longitude for all the tori, each pi can be represented
as pi(�; �) = (m� + k�; l�), where � and � are the meridional and longitudinal
coordinates, respectively, and m = mi; k and l are integers. If we extend each
pi : T

2 ! T 2 to a map pi : D
2 � S1 ! D2 � S1 via (�; �; �) 7! (�;m� + k�; l�),

then the branched cover of M over 
 via G is de�ned to be ~M with projection

~p : ~M !M

�
p on MG

pi on each D2 � S1
(3.1)

Note the above projection map is not a smooth map since the pi are not smooth
at � = 0: One could also de�ne the pi's so that they are smooth: (�; �; �) 7!
(�2;m�+ k�; l�). In this case, however, dpi = 0 at � = 0:We will make use of both
the smooth and non-smooth versions in the following section.
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3.2. Tight branching over elliptic orbits. In [15], Gonzalo demonstrates lift-
ing contact structures via a branched covering, and in this way also constructs
contact structures on all closed orientable 3-manifolds. There is no indication of
tightness of such structures. In general, taking the (unbranched) cover of a tight
contact manifold can yield overtwisted contact manifolds [14] | so much more so
for branched coverings.

We begin by showing how one can branch over certain elliptic periodic orbits in
a Reeb �eld to obtain tight contact structures. We say a periodic orbit 
 in the
Reeb 
ow of a contact form � is locally integrable at 
 if there exist a neighborhood
N of 
 and (smooth) coordinates (�; �; �) such that the Reeb �eld takes the form
a(�) @@�+b(�)

@
@� . These are precisely the action-angle coordinates from an integrable

two degree-of-freedom Hamiltonian system, restricted to an energy surface.

Theorem 3.1. Let � be a contact 1-form on (M; �) such that the associated Reeb
vector �eld X either (1) supports no closed orbits of �nite order in �1(M); or
(2) supports no degenerate orbits and no hyperbolic orbits of �nite order in �1(M):
Moreover, assume that X admits a link of locally integrable periodic orbits 
. Then,
any branched cover ~p : ~M !M over 
 has a tight contact structure �p which is the
lift of � outside of a neighborhood of 
.

Proof: We assume without loss of generality that 
 is a single-component link.
In order to pull back the form � to a smooth contact form on the branched cover,
we need to ensure that the form can be made locally �-equivariant.

Case 1: If the Reeb �eld X has degenerate periodic orbits near 
, then we may
perturb the contact form as follows. Near any transverse loop such as 
, there
exist coordinates for which the contact structure is the kernel of d� + �2d� [1,
Thm. 8.3]. In these coordinates, � is of the form f(�; �; �)(d� + �2d�) for some
positive function f . To remove the �-dependence of � near 
, Taylor-expand f as
f = f0(�; �)+ f(�; �; �), where f is O(�). Then, choose a bump function �(�) with
support on N attaining the value 1 on a very small neighborhood of � = 0, and
consider the form � := g(�; �; �)(d�+ �2d�), where g := (f0 + (1��)f). Since f is
O(�), the fact that f > 0 implies that g > 0, and, hence, that � is contact.

The Reeb �eld Y for � may have a very di�erent periodic orbit structure from
X . Since 
 is locally integrable, the orbits of Y are bound by invariant tori outside
of a very small neighborhood. Hence, every closed orbit of Y near 
 is a multiple
of 
 in �1(M). It follows from hypothesis that 
 is of in�nite order in �1(M),
so it su�ces to show that this multiple is always nonzero. To do this, note that
the @

@� -component of Y is given by (2g + �g�)=2g
2. It su�ces to show that the

numerator is nonzero on N . The �rst term, 2g, is strictly positive. The second
term, �g�, may be made small through choice of neighborhood and �, and hence
does not overpower the (nonzero) 2g term. Thus every periodic orbit of Y is also
in�nite order in �1.

We may now branch since � has the local normal form � = f0(�; �)(�
2d� + d�).

Pulling � back by the non-smooth covering map pi yields the local form

~� = mf0(�; l�)�
2 d� + (k f0(�; l�)�

2 + l f0(�; l�)) d�;(3.2)

on the branched cover. This form clearly extends over � = 0, since � was a smooth
form. Thus ~� is a well-de�ned 1-form on ~N which is a contact form since ~� ^
d~� = (2ml f20 )� d� ^ d� ^ d�. Moreover, since �nite-order closed orbits on ~M must
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project to �nite-order closed orbits on M , the Reeb �eld Y of ~� on ~M satis�es the
hypotheses of Theorem 1.1 and the contact structure �p = ker(~�) is tight.

Case 2: If, in contrast, there are no degenerate periodic orbits near 
, then we
may not perturb � to induce such. However, using the action-angle coordinates, we
have that X = a(�) @@� + b(�) @

@� . Since there are no degenerate periodic orbits, a

and b are irrationally-related constants. In these coordinates, � takes on the form
� = f d� + g d� + h d�, where all the coe�cients f; g; and h are functions of all
three coordinates.

By the de�nition of X , one has that af+ bg = 1 and a(f��h�)+ b(g��h�) = 0.
By di�erentiating the former with respect to each variable, one can derive the
equations f� = �a

b f�, g� = �a
b g�, and h� = �a

bh�. These de�ne �rst-order PDEs
on N , and, in particular, on the invariant tori which foliate N . It is clear that the
solutions to the Reeb �eld are characteristics of the PDEs; however, these are dense
on the invariant tori since X has no degenerate closed orbits. Hence, f , g, and h
are constants on each torus � = c and these are all functions of �.

We thus have � of the form � = f(�) d� + g(�) d� + h(�)d�. Pulling � back by
the non-smooth covering map pi yields the local form

~� = mf(�) d� + (k f(�) + l g(�)) d�+ h(�) d�;(3.3)

on the branched cover. This form clearly extends over � = 0, since � is a smooth
form. Thus ~� is a well-de�ned 1-form on ~N which is a contact form since ~�^ d~� =
ml�^ d�. Hence ~p�� extends to a contact form on ~M . Moreover, since hyperbolic
closed orbits on ~M must project to (in�nite-order) hyperbolic closed orbits on M ,

the Reeb �eld of ~� on ~M satis�es the hypotheses of Theorem 1.2 and the contact
structure �p = ker(~�) is tight.

Example 3.2 (lens spaces). Consider the lens space L(p; q) with the contact form
� as constructed in Theorem 2.2. The Reeb vector �eld is an integrable �eld
with precisely two closed orbits, 
1 and 
2, which form the cores of a genus one
Heegaard decomposition. As these orbits are elliptic, we may apply case (2) of
Theorem 3.1. The covers of L(p; q) branched over 
1[
2 are of the form L(p; q0): it
is an instructive exercise to determine q0 for p; q and the branching data. It would
appear that we have found more tight contact structures on L(p; q0); however,
it can be demonstrated that these structures are all contactomorphic to the one
constructed in Theorem 2.2 (compute the Euler classes and then appeal to the
classi�cation in [10]).

Example 3.3 (the three-torus). The contact form � = (sin zdx+cos zdy)+ 1
2 (sinxdy+

cosxdz) has as its Reeb �eld (up to a nonzero rescaling)

X = 2 sin z
@

@x
+ (sin x+ 2 cos z)

@

@y
+ cosx

@

@z
:(3.4)

This 
ow arises in the study of steady inviscid 
uid 
ows [5]. As this is a level set of
an integrable Hamiltonian 
ow, it is simple to check that this vector �eld on T 3 has
no contractible closed orbits. The elliptic integral curves f(�=2; y; 0) : y 2 R=Zg
and f(��=2; y; �) : y 2 R=Zg are each a generator of H1(T

3) in the standard basis,
and are locally integrable orbits. By Theorem 3.1 branching over these curves yields
tight contact structures on surface bundles over S1.
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3.3. Tight branching over hyperbolic orbits. We now consider branching over
hyperbolic orbits. This is a little more delicate and we need to make stronger global
assumptions on the 
ow.

Theorem 3.4. Let � be a contact 1-form onM such that the associated Reeb vector
�eld X generates a structurally stable 
ow having no �nite-order closed orbits (e.g.,

an Anosov 
ow). Let 
 be any link of periodic orbits in the 
ow of X and ~M any

branched cover over 
. Then ~M has a tight contact form which is the lift of �
(outside of an arbitrarily small neighborhood of 
).

Proof: Consider a neighborhood N of a component 
i of 
: Using the smooth
branching map pull back �jN to a 1-form � on the cover ~N: This smooth form �
is a contact form o� of � = 0. Now set � := � + �u(�)�2d�, where u(�) is a bump

function with support on ~N attaining 1 near � = 0, and � is a small constant. It is
not hard to check that for small � the form � is a contact form on all of N . Note
� = 0 is still a periodic orbit of the Reeb �eld X for �.

The perturbation to the contact form, and hence the Reeb �eld, is equivariant
with respect to the branching map. Thus, away from � = 0, the Reeb �eld of �
pushes down to a perturbation of the Reeb �eld of �. Thus 
ow lines of the Reeb
�eld of � are mapped to 
ow lines of the perturbed �eld down stairs. Moreover,
since the Reeb �eld downstairs is structurally stable the perturbed �eld also has no
contractible orbits, implying the same for the Reeb 
ow of �.

Example 3.5 (pseudo-Anosov Reeb �elds). Let M be the unit tangent bundle of a
surface � having constant negative curvature. The geodesic 
ow on M is Anosov
[2], and preserves a transverse contact structure [24]. Let � denote the natural
contact form for which the 
ow is Reeb. We may apply Theorem 3.4 to (M;�)
to conclude: arbitrary branched covers over closed geodesics yield tight contact
manifolds. This construction gives many interesting manifolds.

Remark 3.6. The dynamics on the branched covers are no longer Anosov but can
be lifted so as to be pseudo-Anosov (see, e.g. [11]). This provides a curious set of
examples in light of the recent work of Benoist et al., who show in [4] a strong rigidity
among manifolds which admit an Anosov Reeb �eld. Namely, a Reeb �eld which is
Anosov with C1 splitting must be either a geodesic 
ow on a surface of constant
negative curvature, or a certain time-reparametrization of this 
ow, or the lifted

ow on an unbranched covering space of the unit tangent bundle. Our construction
shows that relaxing the Anosov condition to a pseudo-Anosov condition greatly
enlarges the class of 3-manifolds which admit such contact-preserving 
ows. This
presents an interesting problem in itself: Classify which closed 3-manifolds admit a
pseudo-Anosov Reeb 
ow with C1 splitting.
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