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Abstract. In this paper we develop a method for studying tight
contact structures on lens spaces. We then derive uniqueness and
non-existence statements for tight contact structures with certain
(half) Euler classes on lens spaces.

1. Introduction

Contact geometry has recently come to the foreground of low di-
mensional topology. Not only have there been striking advances in the
understanding of contact structures on 3-manifolds [E4, Gi2, H], but
there has been signi�cant interplay with knot theory [R], symplectic
geometry [LM, Et2], 
uid dynamics [EG1], foliation theory [ET], and
Seiberg-Witten theory [KM]. In 1971 Martinet [M] showed how to
construct a contact structure on any 3-manifold. Several decades later
it became clear that contact structures fell into two distinct classes:
tight and overtwisted (see Section 2 for de�nitions). It is the tight
contact structures that carry signi�cant geometric information; where
as, Eliashberg [E1] has shown that the understanding of overtwisted
contact structures reduces to a \simple" algebraic question. Unfortu-
nately, Martinet's theorem does not, in general, produce tight contact
structures. The only general method for constructing tight structures
is by Stein �llings [G, E2] or perturbing taut foliations [ET]. These
techniques, however, leave the general existence question open. Even
less is known concerning the uniqueness/classi�cation question; it has
only been answered on S3; S1�S2 and RP 3 [E4] and T 3 (and most T 2

bundles over S1) [Gi2, K].
The purpose of this paper is to introduce some techniques for under-

standing tight contact structures. We apply them to the simplest class
of 3-manifolds: lens spaces. Recall lens spaces are 3-manifolds that
can be written as the union of two solid tori, or in other words, lens
spaces are Heegaard genus one manifolds. On these manifolds we are
able to derive some general uniqueness and non-existence statements
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in terms of the homotopy type of the contact structure. In particular,
in Section 4.2 we show:

Theorem 4.8. On any lens space L(p; q) there is at least one class in
H2(L(p; q)) realized by a unique tight contact structure and at least one
class that cannot be realized by a tight contact structure.

It has been known for some time that on any 3-manifold there are
only �nitely many elements in second cohomology that can be realized
by tight contact structures [E3]. This gives no restrictions for lens
spaces since the second cohomology of a lens spaces is a �nite group.
More recently Kronheimer and Mrowka [KM] have shown that only
�nitely many homotopy types of plane �elds can be realized by semi-
�llable contact structures. Since any semi-�llable structure is tight and
all currently known tight structures are semi-�llable, one is tempted to
conjecture that this is also true for tight contact structures. This would
restrict tight contact structures on lens spaces; it would not, however,
say that there are a �nite number of them. The techniques in this
paper show:

Theorem 4.10. There are only �nitely many tight contact structures (up
to isotopy) on any lens space.

Moreover, on some lens spaces we can give a complete classi�cation
of contact structures.

Theorem 4.9. Classi�ed up to isotopy:

1. If p = 0 then L(p; q) = S1�S2 and there is a unique tight contact
structure.

2. If p = 1 then L(p; q) = S3 and there is a unique tight contact
structure.

3. If p = 2 then L(p; q) = RP 3 and there is a unique tight contact
structure.

4. On L(3; 1) there are exactly two tight contact structures (one for
each non zero element in H2(L(3; 1);Z)).

5. On L(3; 2) there is exactly one tight contact structure (realizing
the zero class in H2(L(3; 2))).

In future work we plan to push the analysis of tight contact structures
on lens spaces further 1 as well as apply these techniques to 3-manifolds
with higher Heegaard genus.

1Added in proof: E. Giroux and K. Honda (independently) have recently an-
nounced a complete classi�cation of tight contact structures on lens spaces. Specif-
ically they are all obtained from Stein �llings and determined by their half-Euler
class.
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2. Contact Structures In Three Dimensions

In this section we brie
y recall some facts concerning contact geom-
etry in dimension three. For more details see [A] or [E4].
Let M be an oriented 3-manifold. A contact structure � on M is

a totally non-integrable 2-plane �eld in TM: We will only consider
transversely orientable contact structures (this is not a serious restric-
tion). This allows us to globally de�ne the plane �eld � as the kernel
of a 1-form �: Using the 1-form �; the Frobenius Theorem allows us
to express the non-integrability of � as � ^ d� 6= 0: Thus � ^ d� is a
volume form on M: Other 1-forms we could use to de�ne � will give
us di�erent volume forms but they will induce the same orientation
on M (since any other 1-form �0 that de�nes � must be of the form
f� where f : M ! R is a non-zero function). Thus � orients M and
we only consider contact structures � whose induced orientation agrees
with the orientation on M: (A similar analysis could be done when the
orientations disagree.)
Contact geometry presents interesting and diÆcult global problems;

however, Darboux's Theorem tells us that all contact structures are
locally contactomorphic. Two contact structures are contactomorphic
if there is a di�eomorphism of the underlying manifolds that sends one
of the plane �elds to the other. Furthermore, Gray's Theorem tells us
that a continuously varying family of contact structures are related by
a continuously varying family of contactomorphisms. We have similar
results near surfaces in M: If � is a surface in a contact manifold
(M; �) then generically Tp�\ �p will be a line in Tp�: Since a line �eld
is always integrable Tp� \ �p de�nes a natural singular foliation ��

associated to � called the characteristic foliation. As with Darboux's
Theorem determining a contact structure in the neighborhood of a
point, one can show that �� determines the germ of � along �: The
singular points of �� occur where �p = Tp�: Generically, singular points
of �� are either elliptic (if the local index is 1) or hyperbolic (if the local
index is �1). Notice that if � is oriented then we can assign signs to the
singular points of ��: A singular point p is called positive if �p and Tp�
have the same orientation, otherwise p is called negative. Moreover,
the orientations on � and � \orient" the characteristic foliation, so we
can think of the singular foliation as a 
ow. A very useful modi�cation
of �� is given by the Elimination Lemma (proved in various forms by
Giroux, Eliashberg and Fuchs, see [E5]).

Lemma 2.1 (Elimination Lemma). Let � be a surface in a contact 3-
manifold (M; �). Assume that p is an elliptic and q is a hyperbolic
singular point in ��, they both have the same sign and there is a leaf
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 in the characteristic foliation �� that connects p to q. Then there
is a C0-small isotopy � : � � [0; 1] ! M such that �0 is the inclusion
map, �t is �xed on 
 and outside any (arbitrarily small) pre-assigned
neighborhood U of 
 and �0 = �1(�) has no singularities inside U .

There has recently emerged a fundamental dichotomy in three dimen-
sional contact geometry. A contact structure � is called overtwisted if
there exists an embedded disk D in M whose characteristic foliation
D� contains a limit cycle. If � is not overtwisted then it is called tight.
Eliashberg [E1] has completely classi�ed overtwisted contact structures
on closed 3-manifolds: classifying overtwisted contact structures up to
isotopy is equivalent to classifying plane �elds up to homotopy (which
has a purely algebraic solution). As discussed in the introduction, much
less is known about tight contact structures. One of the main results
about tight contact structures, on which all the results in this paper
are based, is the following theorem of Eliashberg.

Theorem 2.2 (Eliashberg [E4], 1992). Two tight contact structures on
the ball B3 which induce the same characteristic foliations on @B3 are
isotopic relative to @B3.

A closed curve 
 : S1 ! M in a contact manifold (M; �) is called
transverse if 
0(t) is transverse to �
(t) for all t 2 S1: It can be shown
that any curve can be made transverse by a C0 small isotopy. Notice
a transverse curve can be positive or negative according as 
0(t) agrees
with the co-orientation of � or not. We will restrict our attention
to positive transverse knots (thus in this paper \transverse" means
\positive transverse"). Given a transverse knot 
 in (M; �) that bounds
a surface � we de�ne the self linking number, l(
), of 
 as follows: take
a non-vanishing vector �eld v in �j
 that extends to a non-vanishing
vector �eld in �j� and let 
0 be 
 slightly pushed along v. De�ne

l(
;�) = I(
0;�);

where I(�; �) is the oriented intersection number. There is a nice re-
lationship between l(
;�) and the singularities of the characteristic
foliation of �: Let d� = e� � h� where e� and h� are the number of
� elliptic and hyperbolic points in the characteristic foliation �� of �;
respectively. In [Be] it was shown that

l = d� � d+:

When � is a tight contact structure and � is a disk, Eliashberg [E4] has
shown, using the elimination lemma, how to eliminate all the positive
hyperbolic and negative elliptic points from �� (cf. [Gi1]). Thus in a
tight contact structure l(
;�) is always negative.
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3. Singular Foliations on the 2-Skeleton

The lens space L(p; q) is, by de�nition, the union of two solid tori
V0 and V1 glued together by a map � : @V1 ! @V0 which in standard
coordinates on the torus is given by the matrix�

�q p0

p r

�
;

where p0 and r satisfy �rq � pp0 = �1. (A standard basis is given by
�, the boundary of a meridianal disk, and �, a longitude for T 2 given
by the product structure on Vi and oriented so that � \ � = 1.) We
will also use a CW decomposition of L(p; q) obtained from V0 and V1
as follows: let C be the core curve in V0; x a point on C; D a disk
in L(p; q) that intersects V1 in a meridianal disk and whose boundary
wraps p times around C, and B = L(p; q) n D a 3-ball. Now L(p; q)
can be written as

fxg [ C [D [ B:

We call D the generalized projective plane in L(p; q): Note that if p = 2
so that L(p; q) is RP 3 then D is a copy of RP 2 � L(p; q): Given a
contact structure � on L(p; q) we would like to understand the char-
acteristic foliation, D�; on D: To this end we begin by isotoping C so
that it is transverse to �: Throughout this paper we will take V0 to
be a small standard neighborhood of the transverse curve C: We now
have the following proposition which says that � on all of L(p; q) is
determined by D�:

Proposition 3.1. Let L0 and L1 be two copies of L(p; q). Let �i be a
tight oriented contact structure on Li and Di the generalized projective
plane in Li, i = 0; 1. Assume that the 1-skeleton Ci of Di is transverse
to �i. If a di�eomorphism f : L0 ! L1 may be isotoped so that it takes
(D0)�0 to (D1)�1 then it may be isotoped into a contactomorphism.

Proof. A slight modi�cation of the standard proof that the charac-
teristic foliation on a surface determines the contact structure on a
neighborhood of the surface can be used to isotope f into a contac-
tomorphism in a neighborhood of D0: We can then use Eliashberg's
characterization of tight contact structures on the 3-ball, Theorem 2.2,
to isotope f into a contactomorphism on all of L0; since L0 n D0 is a
3-ball and f is already a contactomorphism in a neighborhood of its
boundary.

In the remainder of this section we derive a standard form for the
characteristic foliation on the two skeleton D � L(p; q) depending only
on the homotopy class of �:
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3.1. The Euler class and the Singular Foliation. We have already
arranged that C is transverse to �; thus, if V0 is a suÆciently small
tubular neighborhood of C; the curve 
 = @V0 \ D will also be a
transverse curve. It will be helpful to keep in mind that 
 is homotopic
to pC: We will interchangeably think of D as an embedded disk with
boundary 
 and the generalized projective plane in L(p; q) (note this
should cause no confusion since one uniquely determines the other).
As discussed in Section 2 the self-linking number l = l(
;D) of 
 is

related to the singularities of D�: We can also relate l = l(
;D) to the
homotopy class of �: To state this relation we must begin by recalling
the de�nition of a Z2-re�nement of the Euler class of �: The Euler class
e = e(�) is an even element ofH2(L(p; q);Z) = Zp: If p is odd then then
there is a unique element c inH2(L(p; q);Z) such that 2c = e: However,
if p is even then there are precisely two elements in H2(L(p; q);Z) that
can be thought of as half of e: We cannot naturally associate one of
these elements to �; however once a spin structure is �xed on L(p; q)
we can. Thus the Z2-re�nement �(�) of e(�) is actually a map

�(�) : Spin(L(p; q))! G;

where Spin(L(p; q)) is the group of spin structures on L(p; q) and G =
fx 2 H1(L(p; q);Z) : 2x = PD(e(�))g (PD means Poincar�e dual). For
a general discussion of this invariant see [G] and for an exposition of
spin structures see [GS].
Recall, if p is odd then L(p; q) has a unique spin structure and if

p is even there are precisely two and they may be distinguished as
follows: given a spin structure on L(p; q) there is a naturally induced
spin structure on L(p; q)� [0; 1] and one may ask if this spin structure
extends over a 4-dimensional 2-handle added to the curve C in L(p; q)�
f1g: One of the spin structures on L(p; q) will extend over a 2-handle
added with framing 0 and one will not. Note when p is odd �(�) is
determined by the element in H2(L(p; q);Z) that is half of e(�) thus we
refer to �(�) as the half-Euler class of �. In general, �(�) clearly re�nes
the Euler class since 2�(�)(s) = PD(e(�)) for any s 2 Spin(L(p; q)).
The map �(�) is one-to-one and for computational convenience we

shall actually de�ne it as a map from G to Spin(L(p; q)): For an alter-
nate de�nition and its relation to the one we give here, in particular
its well-de�nedness, see [G, Et1]. To de�ne �(�) let v be a vector �eld
in � with zero locus (counted with multiplicity) 2c where c is a smooth
curve in L(p; q). Note that the homology class of c is in G: The vector
�eld v gives a trivialization of � on L(p; q)n c and hence a trivialization
of TL(p; q) on L(pq) n c. This trivialization induces a spin structure on
L(p; q)n c, and �nally, since v vanishes to order two on c we can extend
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this spin structure over c to obtain a spin structure s0 on all of L(p; q).
The map �(�) will associate c and s0: Speci�cally we de�ne

�(�)(s0) = [c]:

We can now state the relation between l(
) and �(�):

Theorem 3.2. Let s0 be any spin structure on L(p; q): If p > 0 is
even, let s be the spin structure on L(p; q) that does not extend over a
2-handle attached to C with framing 0. Then

�(�)(s0) �D �
1

2
(�l(
) + q + p�(s; s0)) mod p;(1)

where �(s; s0) = 0 if s = s0 and 1 otherwise. If p is odd this formula
also holds if we always take �(s; s0) to be 1 when q is even and 0 when
q is odd.

Remark 3.3. When p is odd L(p; q) has a unique spin structure which,
when q is even, is not the structure s described in the theorem. This
explains then strange de�nition of �(s; s0) for odd p.

Remark 3.4. Note that in terms of the Euler class we get

e(�)(D) � (�l + q) mod p:(2)

This formula is easier to prove and would suÆce for p odd.

Proof. We begin by constructing a vector �eld w in �jD and use w
to compute the Euler class of �: Then we modify w to a vector �eld
whose zeros all have multiplicity two, thus allowing us to compute �:
OnD\V1 we let w be a vector �eld directing the characteristic foliation
D�: We cannot use the characteristic foliation to de�ne w on D \ V0
since it will not be well de�ned along C: But it is not hard to �nd a
vector �eld in �jD\V0 that agrees with w on �j@(D\V0) and has exactly q
zeros in V0: (If p is even this vector �eld will de�ne a spin structure in
a neighborhood of C that will not extend over a 2-handle attached to
C with framing 0.) When one uses w to compute the Euler class of �
one gets �l + q:

We now must coalesce the zeros of w into zeros with multiplicity two.
For simplicity assume that p is even since otherwise � is determined by
e and we are already done. We can also assume that we have canceled
all the negative elliptic points and positive hyperbolic points in D�;

thus there will be n + 1 elliptic points and n hyperbolic points (see
the remark following this proof). Writing down a model for D \ V0
one can explicitly write a vector �eld with q�1

2
zeros of multiplicity 2

and one zero of multiplicity 1. Moreover this vector �eld will agree
with w on C and @(D \ V0): Let v be this vector �eld on V0: The zero
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of multiplicity 1 in V0 will be connected by a leaf to an elliptic point
on D \ V1 and the other elliptic and hyperbolic points will all pair up
along stable separatrices of the hyperbolic points. It is now not hard to
explicitly write down a vector �eld in a neighborhood of the connecting
leaves of these pairs that agree with w outside the neighborhood and
has precisely one zero of multiplicity 2 on each seperatrix. This will
allow us to de�ne v on all of D: One can now extend v to all of L(p; q)
and as mentioned above the spin structure it induces is s: Thus we
have �(�)(s) � D � 1

2
(�l + q) mod p: The formula for the other spin

structure follows from general properties of � (see [G]).

Remark 3.5. Theorem 3.2 tells us that

l(
) = q � 2(�(�)(s) �D) + 2np:(3)

Recall, when � is tight l must be negative, limiting the possibilities
for n: Moreover we can cancel all the negative elliptic and positive
hyperbolic singularities from the characteristic foliation D�: Thus we
have

e+ + h� = �q + 2(�(�)(s) �D) + 2np:(4)

We also know that e+ � h� = 1 since we can use the characteristic
foliation D� to compute the Euler characteristic of the disk D: In the
remainder of this section we will simplify the characteristic foliation
more, eventually showing 0 < e+ + h� < 2p: Notice that this will
uniquely determine e+ and h�: (Again, when p is odd and q is even
one should use Equation (2) as discussed in Remark 3.4.)

3.2. Making Stars. The graph of singularities ofD� will be de�ned to
be the union of all singular points and stable separatrices (i.e. points
that limit to a hyperbolic singularity in forward time) in D�: When
talking of the graph of singularities we always assume that e� = h+ =
0: It is easy to see that the graph of singularities must be a tree, but
one can say much more.

Lemma 3.6. We can choose D so that the graph of singularities of D�

forms a star, i.e. there is one (e+ � 1)-valent elliptic vertex, (e+ � 1)
univalent elliptic vertices and exactly one hyperbolic singularity in the
interior of each edge (see Figure 1).

Proof. This is a special case of a lemma in [ML], though the proof there
seems to be incomplete. Some of the ideas below are also reminiscent
of ones appearing in Fraser's thesis [F], though in a di�erent setting.
We will show how to isotopeD to a diskD0 with transverse boundary

in @V1; whose graph of singularities relates to D's as shown in Figure 2.
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+ Elliptic Point

- Hyperbolic Point

ξ
D

Figure 1. Singularities on D:

Since the graph of singularities in D� must be a tree, a sequence of such
moves will clearly yield the conclusion of the lemma. Assume that part

Elliptic Singularity

Hyperbolic Singularity

Figure 2. Change in Graph of Singularities.

of the graph of singularities in D� is as shown on the left hand side of
Figure 2. LetDi be a subdisk ofD with transverse boundary containing
the graph of singularities inD�: Let U be a neighborhood, di�eomorphic
to an open ball, of Di in V1 and set Da = D\U: Now (U; �jU) is a tight
contact structure on R 3, so the classi�cation of contact structures on
R
3 [E5] implies there is a contactomorphism

f : (U; �jU)! (R 3; �0 = fdz + xdy = 0g):

In the following paragraph we show that there is a compactly supported
isotopy of f(Da) to D0

a so that (D0

a)�0 is related to D� as shown in
Figure 2. Then our desired disk is D0 = (D nDa) [ f�1(D0

a) (note the
two pieces �t together since the above isotopy was compactly supported
and the open disk f(Da) is properly embedded in R 3).
We now need to prove our claim concerning the compactly supported

isotopy of f(Da): To this end let � be a disk in the standard contact
structure on R

3 whose characteristic foliation is related to D� as in-
dicated in Figure 3 (creating such a disk is an easy exercise). Note
that the characteristic foliation on � is unstable. Speci�cally, if we
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Figure 3. Characteristic Foliation on �.

take a point p on the seperatrix connecting the two hyperbolic points
and push it up, respectively down, �� will look like the foliation indi-
cated on the right side, respectively left side, of Figure 2. For later use
we describe this isotopy in a standard model: let p be a point on the
seperatrix, � a segment of the seperatrix containing p; and in (R 3; �0)
let p0 be the point (1; 0; 0) and �0 the arc f(t; 0; 0) : 1

4
� t � 2g: Now

there is a neighborhood O of � di�eomorphic to an open three ball and
contactomorphic to a neighborhood O0 of �0 that does not intersect the
yz-plane in R 3: Denote this contactomorphism by g: Moreover, if we
take O and O0 suÆciently small we can assume that g takes O \ �
to the O0 \ (xy-plane); � to �0 and p to p0: One may now explicitly
see that slightly pushing p0 up or down (in the z-direction) will change
the foliation as claimed. If O0 is an � neighborhood of �0 (which we
may assume by shrinking O and O0) then choose a Æ << � and push
p0 up slightly by an isotopy supported in the Æ-ball around p0: Let �0

be the image of � under the corresponding isotopy. Below we will �nd
a compactly supported contactomorphism h : R 3 ! R

3 taking f(Di)
to �0 and a neighborhood N of f(Di) to a neighborhood N 0 of �0:

Assuming this for the moment we �nish the proof of the lemma. By
construction, h(f(Da)) has the same characteristic foliation as D: To
obtain the desired foliation we can isotope h(f(Da)) in O to a disk we
callD0

a so its characteristic foliation is as shown on the right of Figure 2
(this isotopy corresponds to pushing p0 down a little in O0).
The problem now is that D0

a may not be embedded if

K = h(f(Da nDi)) \ O 6= ;:

Consider K 0 = g(K) in our neighborhood O0 of p0 and by possibly
shrinking N and N 0 we can assume that g(N 0) is a Æ0 neighborhood of
g(�0 \O) where Æ0 << Æ: Finally take m to be the maximum z coordi-
nate in g(�0 \O) (though not essential we can assume that g(�0 \O)
di�ers from the xy-plane by a small symmetric bump with a unique
maximum m). Note that if Æ0 � m then D0

a will be embedded because
the isotopy from h(f(Da)) to D

0

a does not have to leave the neighbor-
hood N 0: So we assume that this is not the case. We can now choose a
function  : R ! R such that

1.  (z) = z outside [�Æ0; m];
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2.  (z) < 0 for z < m� Æ0;

3. 1
2
�  0(z) � 1 on [�Æ0; m� Æ0] and

4.  is strictly increasing.

With  in hand we de�ne a contactomorphism � : R 3 ! R
3 by

�(x; y; z) = (f 0(z)x; yf(z)): So �(K 0) clearly has the same character-
istic foliation as K 0 (in particular it is non singular) and agrees with
K 0 near the boundary of O0: Using properties 2. and 3. of  we see
that �(K 0) lies in O0 and below the xy-plane. Thus if we replace K 0 by
�(K 0) (and of course make the corresponding alteration to D0

a) then
we have eliminated all the possible self intersections of D0

a:

To �nish the proof we now need to show that there is a compactly
supported contactomorphism h : R 3 ! R

3 taking a neighborhood N
of f(Di) to a neighborhood N 0 of �0: Recall that as contact manifolds
R
3 = S3 n fqg; where S3 has its standard tight contact structure and

q is any point in S3: So we actually construct a contactomorphism of
S3 that �xes a neighborhood of q: Since f(Di) and �0 have identical
characteristic foliations we can �nd a di�eomorphism h of S3 �xing a
neighborhood of q; taking f(Di) to �0 and restricting to a contacto-
morphism on the neighborhoods N and U0 of f(Di) and q; respectively.
We may now isotop g into a contactomorphism on all of S3 (this eas-
ily follows from the proof of Eliashberg's classi�cation of tight contact
structures on B3 [E4] since g gives a map from the 3-ball S3 nN to the
3-ball S3 n g(N) preserving the characteristic foliation on their bound-
aries and restricting to a contactomorphism on the Darboux ball U0).

Remark 3.7. We now set up some notation that will be used through
the rest of the paper. Assume that we have already arranged that the
graph of singularities of D� is a star. If n + 1 is the number of ellip-
tic points in D� then there are n hyperbolic points which we denote
h1; : : : ; hn numbered anti-clockwise. We also label the n-valent elliptic
point e0 and the other elliptic points ei according to the hyperbolic
point with which they share a 
ow line. A point x on the 1-skeleton
C will break the boundary of D into p arcs, B1; B2; : : : ; Bp (also num-
bered anti-clockwise). Notice that as we traverse the boundary of D
anti-clockwise we will encounter both the end points of the unstable
separatrices (the ones not shown in Figure 1) leaving h1 then both leav-
ing h2 continuing in this fashion until we reach the end points coming
from hn. We label the end points of the unstable separatrices leaving
hi as h

a
i and hci so that hai is anti-clockwise of hci : Thus around the

boundary of D we see the points hc1; h
a
1; h

c
2; : : : ; h

c
n; h

a
n broken into p

sets by the intervals Bi:
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3.3. Simplifying Stars. So far we have arranged that the generalized
projective plane D has the following properties:

� the one skeleton of D is transverse to �;
� there are no negative elliptic and no positive hyperbolic singular-
ities in D�; and

� the graph of singularities in D� forms a star.

We can now get control of the number of branches in the graph of
singularities.

Lemma 3.8. If e+ > p then we can isotope D to D0 so that D0 is a
generalized projective plane in L(p; q) enjoying the above listed proper-
ties for D and e+(D

0) = e+(D)� p:

Proof. We know the singularities of D� form a star. Since we are as-
suming that e+ > p we know there are at least p edges in the star,
hence there are n � p hyperbolic points (one for each edge). Now us-
ing the notation of Remark 3.7 it is clear that if n > p then at least
one of the hyperbolic points, hi say, has both its unstable separatrices
exiting D through, say, Bj: This is also true when n = p: To see this
choose the point x on C so that hc1 is the closest point (in the anti-
clockwise direction) to x and lying in B1: Now if h1 is not the point we
are looking for then ha1 must be leaving D through B2 (or an interval
further anti-clockwise). If we continue in this fashion and none of the
points hi for i < p have their unstable separatrices leaving on the same
Bj then h

a
p and h

c
p must both lie in Bp; thus proving our claim.

Having found this hyperbolic point hi with both unstable separatri-
ces leaving D through Bj we now describe an isotopy of D which will
decrease e+ by p: Note that the unstable separatrices of hi separate a
disk � from D which contains exactly one elliptic point ei and has part
of its boundary on Bj and the other part is made from the unstable
separatrices of hi: We use this disk � to guide our isotopy. Essentially
we push (in an arbitrarily small neighborhood of �) the part of C that
intersects � across the unstable separatrices of hi: More precisely we
can write down an exact model of our situation in V0 and then isotope
the interval I = C \� to the boundary of V0 along � (see Figure 4).
Next we isotope I across the unstable separatrices of h. One can write
down a precise local model of � in which to do the isotopy. Note this
is not an isotopy through transverse knots, as the one above, but at
the end of the isotopy C will again be a transverse knot. To see what
happens to the rest of D we consider the case when p = 3, the case for
larger p being analogous. Near I we have � on one side of I and the
other two branches of D \ V0; which we label A1 and A2; fanning out
behind C (see Figure 5 (a)). We can assume that A1 meets I so that
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C C

(a) Before Isotopy (b) After Isotopy

Figure 4. Model for V0:

(b) After Isotopy(a) Before Isotopy

A

A

1 A1

2
A 2

Figure 5. A1 and A2 near C \ V0:

it and � form a smooth surface. When we push I across the unstable
separatrices of hi we will transfer hi and ei from � to A1: But the ori-
entation � inherits after the isotopy, i.e. as a subset of A1; is opposite
the orientation it originally inherited from D (to see this consider the
situation when p = 2 and we are dealing with a projective plane). We
will also have to drag part of A2 along with us through the isotopy
(the gray part in Figure 5), but notice that we can drag it so that it
is arbitrarily close to A1 (see Figure 5 (b)). Thus the characteristic
foliation on the part of A2 we dragged along is topologically equivalent
to the foliation just transferred onto A1; (since the foliation is struc-
turally stable). In particular, this means that we have added an elliptic
and a hyperbolic singularity to A2. After isotoping C we have a new
transverse curve C 0 and a new generalized projective plane D0. Using
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C 0 we also get a new Heegaard decomposition L = V 0

0 [ V
0

1 where V
0

0 is
a small tubular neighborhood of C 0.
We now claim that after canceling all the newly created negative

elliptic and positive hyperbolic points onD0 then the number of positive
elliptic points, e0+; is e+�p: To see this note D

0 will essentially look like
D with � removed in one place and p � 1 copies of it glued on along
subarcs of B2; : : : ; Bp (see Figure 6). The orientations on the copies of

D
D'

B

B

BB

1
B1

2

B
2

3

B3

4

B4

+e

-h

-e -e

-e +h

+h
+h

Figure 6. D and D0 when p = 4.

� in D0 will be opposite that of � in D. Thus D0

� has one less positive
elliptic point and one less negative hyperbolic point than D� but has
p� 1 more negative elliptic and positive hyperbolic points. Thus when
we cancel the negative elliptic and positive hyperbolic points from D0

�

we will have p fewer positive elliptic and negative hyperbolic point than
D� had.

Remark 3.9. Notice that the proof shows that, in a tight contact
structure, if one is already in a minimal con�guration, i.e. e+ � p; then
the unstable separatrices emanating from one hyperbolic point cannot
both leave D along the same arc Bi no mater which point x is used to
form the arcs Bi: This observation will be crucial in what follows.

4. Contact Structures on Lens Spaces

4.1. The Existence of Tight Contact Structures. The main tech-
nique for generating tight contact structures on 3-manifolds is to realize
the 3-manifold at the \boundary" of a Stein manifold [E3, Gr] (we will
think of our Stein manifolds as having boundaries), since the complex
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tangencies to the boundary induce a tight contact structure on the 3-
manifold. For our purposes the exact de�nition of Stein manifold is
unimportant (the curious reader is referred to [E2]) as the following
theorem gives a useful characterization of these manifolds. But �rst
we recall that a Legendrian knot in a contact 3-manifold (M; �) is a
curve 
 : S1 !M with 
0(t) in �t for all t 2 S

1: To a Legendrian knot

 bounding a surface � we can assign two invariants. The Thurston-
Bennequin invariant of 
; tb(
;�); is simply the integer given by the
framing induced on 
 by � (where � de�nes the zero framing). The
rotation number of 
; r(
); is de�ned as follows: pick a trivialization of
�j� and let T be a vector �eld tangent to 
. De�ne r(
;�) to be the
degree of T with respect to this trivialization. The following theorem
is implicit in Eliashberg's paper [E2]. For a complete discussion of this
theorem see the paper [G] of Gompf.

Theorem 4.1. An oriented 4-manifold X is a Stein manifold if and
only if it has a handle decomposition with all handles of index less than
or equal to 2 and each 2-handle is attached to a Legendrian circle 

with the framing on 
 equal to tb(
) � 1. Moreover, the �rst Chern
class c1(X) is represented by the cocycle

c =
X

r(
i)fhi
;

where the sum is over the knots 
i to which the 2-handles hi are attached
and fhi

is the cochain that is 1 on core of hi and 0 elsewhere.

One can use this to construct tight contact structures on every lens
space L(p; q) and compute their Euler class (since e(�) = c1(X)j@X).
To do this assume p and q are both positive (this is no restriction)
and let r0; r1; : : : ; rn be a continued fraction expansion of �p

q
: The

Kirby diagrams in Figure 7 both represent L(p; q) (for more on Kirby

r

r r r r
0

1 n-1 n2

-p
q

Figure 7. Two Kirby diagrams of L(p; q):

diagrams see [GS]) and the diagram on the right can easily be made
into an appropriate Legendrian link since all the surgery coeÆcients
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are integers less that 1. In general we can only use this construction
to construct one tight contact structure on L(p; q); but on L(p; 1) we
can do much better [E5]. If p is odd, then we can realize all non-zero
elements of H2(L(p; 1);Z) as Euler classes of a tight contact structure.
If p is even, then we can realize all non-zero elements of H2(L(p; 1);Z)
as \�(�)(s)" (where s is as in Theorem 3.2) of a tight contact structure.
We will see below that the \missing classes" above actually cannot be
the Euler class (half Euler class) of a tight contact structure.
In [EG2] it was shown that one can do any Dehn surgery on unknots

in S3 (and some restricted surgeries on other knots) to obtain tight
contact structures. Our main concern here is the existance of a tight
contact structure realizing a particular half-Euler class.

Theorem 4.2 ([EG2]). Let h be the 2-homology class determined by
h �D = 1

2
(q + 1) mod p: Any lens space L(p; q) admits a tight contact

structure with e(�) = 2h if p is odd and �(�)(s) = h if p is even.

4.2. Uniqueness and Non-Existence of Tight Contact Struc-

tures. We begin by considering when the half-Euler class of a tight
contact structure determines the structure.

Theorem 4.3. Let L(p; q); p > 0; be a lens space and �i, i = 0; 1, be
two tight contact structures on L(p; q). If

�(�i)(s
0) �D = �

1

2
(q + 1 + p�(s; s0)) mod p;(5)

for i = 0; 1, where s; s0 and � are as in Theorem 3.2, then �0 and �1
are contactomorphic.

Proof. When �(�i)(s
0) �D = 1

2
(q+1+p�(s; s0)) mod p we can use For-

mula 3 to see that l = �1+2np: Thus Lemma 3.8 allows us to arrange
for D�i to have exactly one singular point which will have to be a posi-
tive elliptic point. We can actually think of these isotopies as ambient
isotopies of L(p; q): Thus we have isotoped the identity map to one
which takes a generalized projective plane (in the domain lens space)
with simple characteristic foliation to a generalized projective plane (in
the range lens space) with simple characteristic foliation. We can fur-
ther isotope our map so that it preserves the characteristic foliation on
D: Thus Proposition 3.1 will produce the desired contactomorphism.
Every lens space L(p; q) has an orientation preserving di�eomor-

phism that acts on H2(L(p; q)) by multiplication by �1 [Bo]. This
allows us to reduce the �(�i; s

0) �D = �1
2
(q+1+p�(s; s0)) mod p case

to the one above.

Remark 4.4. Some lens spaces have other orientation preserving dif-
feomorphisms. Using these one might hope to �nd other homology
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classes supporting at most one tight contact structure; however, this
does not seem to work since these di�eomorphisms permute the spin
structures on L(p; q): So the action of the di�eomorphism on cohomol-
ogy coupled with the action on the spin structures conspire to prevent
us from generalizing the above theorem.

This theorem simpli�es when p is odd.

Corollary 4.5. Let L(p; q); p > 0; be a lens space and �i, i = 0; 1, be
two tight contact structures on L(p; q). If p is odd and

e(�i)(D) = �(q + 1) mod p;(6)

for i = 0; 1, then �0 and �1 are contactomorphic.

We can also prove that some cohomology classes cannot be realized
by any tight contact structure.

Theorem 4.6. Let � be a contact structure on L(p; q); p > 1: If

�(�)(s0) �D = �
1

2
(q � 1 + p�(s; s0)) mod p;(7)

where s; s0 and � are as in Theorem 3.2, then � is overtwisted.

Proof. We begin by assuming that � is tight and proceed to �nd an
overtwisted disk. In the �(�; s0) �D = 1

2
(q � 1 + p�(s; s0)) mod p case

we have have p elliptic points according to Lemma 3.2 and Remark 3.5.
Thus we can assume the graph of singularities of D� is a star with p�1
branches. Using the notation of Remark 3.7 we can choose a point x
on C so that hc1 is closest (anti-clockwise) to x and lying in B1: The
unstable seperatrix containing hc1 re-enters D after passing through
C in p � 1 arcs, which we denote a2; : : : ; ap: We now claim that ai
ends at ei�1 for i = 2; : : : (p � 1): To see this assume it is false and
let i be the smallest index for which ai does not end at ei�1: If ai
ends anti-clockwise of ei�1 then both hai�1 and hci�1 must be on Bi�1

contradicting Remark 3.9. See Figure 8. Now if ai is clockwise of ei�1
then hai�1; h

c
i�1; : : : ; h

a
p; h

c
p must lie in Bi [ : : : [ Bp [ B1 with no two

points coming from the same hyperbolic point lying in the same Bj:

There are not, however, enough B0

js for this; thus proving out claim.
Arguing in a similar fashion with the rest of the separatrices we

eventually see that the characteristic foliation must look like the one
shown in Figure 9. In this picture we can explicitly �nd an overtwisted
disk by canceling the singularities on the boundary of the shaded region
in Figure 9.
Finally, if �(�; s0) �D = �1

2
(q � 1 + p�(s; s0)) mod p then one uses

the di�eomorphism discussed at the end of the proof of Theorem 4.3
to reduce to the above case.
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e0

ei-1

ei-2 hi-1

hi-1

hi-1

hi-2

a

a

a 

c

i
B

B

i-1

i-1

i

Figure 8. Impossible Con�guration.

Figure 9. An Overtwisted Disk: dotted lines indicate
arcs in the characteristic foliation corresponding to the
continuation of unstable manifolds across C; e.g. the ai's.

Again we have a simpler statement when p is odd.

Corollary 4.7. Let � be a contact structures on L(p; q); p > 1: If p is
odd and

e(�)(D) = �(q � 1) mod p;(8)

then � is overtwisted.
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The above theorems do not provide a complete classi�cation of con-
tact structures on all lens spaces. The best general statement that can
be made is given in the following theorem.

Theorem 4.8. On any lens space L(p; q) there is at least one class in
H2(L(p; q)) realized by a unique tight contact structure and at least one
class that cannot be realized by a tight contact structure.

Currently, contact structures are classi�ed on L(p; q) only when p <
4:

Theorem 4.9. Classi�ed up to isotopy

1. If p = 0 then L(p; q) = S1�S2 and there is a unique tight contact
structure.

2. If p = 1 then L(p; q) = S3 and there is a unique tight contact
structure.

3. If p = 2 then L(p; q) = RP 3 and there is a unique tight contact
structure.

4. On L(3; 1) there are exactly two tight contact structures (one for
each non zero element in H2(L(3; 1);Z)).

5. On L(3; 2) there is exactly one tight contact structure (realizing
the zero class in H2(L(3; 1))).

The �rst three statements were proved by Eliashberg [E4]. All but
the �rst statement follow immediately from the theorems in this sec-
tion. It is an interesting exercise to directly prove 4. by just considering
D� and not resorting to the di�eomorphism used in Theorem 4.3. Note
that for all the examples mentioned in this theorem there is a unique
contact structure up to contactomorphism but this is not always the
case, as exempli�ed by L(4; 1) which has at least two tight contact
structures up to contactomorphism.

4.3. Finiteness Results. Though work of Kronheimer and Mrowka
[KM] indicates that tight contact structures exist in only �nitely many
homotopy classes of plain �elds, it is not, in general, known if any given
3-manifold has a �nite number of tight contact structures. There are
examples of manifolds with in�nitely many structures. For example
Giroux [Gi2] and Kanda [K] have shown that T 3 has in�nitely many
tight contact structures. To show there were in�nitely many structures
on T 3; essential use was made of incompressible tori in T 3: One might
hope that on atoroidal manifolds there are only �nitely many tight
contact structures. Thus lens spaces, being atoroidal, should have only
a �nite number of tight contact structures. This is indeed the case.
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Theorem 4.10. Any lens space admits only �nitely many tight contact
structures.

Proof. On L(p; q) there are between 1 and p� 1 positive elliptic singu-
larities. Once the number of positive elliptic singularities is determined
the entire characteristic foliation D� is determined by the cyclic order-
ing of the hci 's and h

a
i 's along C and the grouping of these points in the

Bi's. Since there are only a �nite number of ways to order and group
these points the proof is complete.

Remark 4.11. Re�ning the analysis in this proof of the structure of
the characteristic foliation on D one could derive a crude upper bound
on the number of tight contact structures on a given lens spaces.
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