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 ABSTRACT 

Doctor of Philosophy Thesis 

LEGENDRIAN WHITEHEAD LINKS 

Ece Gülşah ÇOLAK 

Zonguldak Bülent Ecevit University 

Graduate School of Natural and Applied Sciences 

  Department of Mathematics 

Thesis Advisor: Prof. Dr. Yusuf KAYA 

 Thesis Co-Advisor: Prof. Dr. John B. ETNYRE 

December 2021, 85 pages 

In this thesis we classify Legendrian positive Whitehead links in 3S  with the standard tight 

contact structure, 3( ,ξ )stdS , up to Legendrian isotopy. By using the convex surface theory on 

contact 3manifolds we show how one can destabilize Legendrian positive Whitehead links 

in 3( ,ξ )stdS  until each component of it has Thurston-Bennequin number is 1 . We also show 

that there are two Legendrian representatives of the positive Whitehead link with maximal 

Thurston-Bennequin number, 2tb    and the same rotation number, 0r  . In addition to these, 

we show that the components can be interchanged by a Legendrian isotopy and the two different 

representatives of the positive Whitehead link with maximal Thurston-Bennequin number 

become the same after one single (positive or negative) stabilization. These results exhibit that 

Legendrian positive Whitehead links in 3( ,ξ )stdS are not Legendrian simple. 

Keywords: Contact structures, Legendrian knots, convex surfaces, bypass, Legendrian isotopy. 

Science Code: 403.04.01
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ÖZET 

Doktora Tezi 

LEGENDRE WHITEHEAD LİNKLERİ 

Ece Gülşah ÇOLAK 

Zonguldak Bülent Ecevit Üniversitesi 

Fen Bilimleri Enstitüsü 

Matematik Anabilim Dalı 

Tez Danışmanı: Prof. Dr. Yusuf KAYA 

   Tez Eş Danışmanı: Prof. Dr. John B. ETNYRE 

Aralık 2021, 85 sayfa 

Bu tez çalışmasında, standart tayt kontak yapılı 3 boyutlu 3S  küresi içerisindeki Legendre 

pozitif Whitehead linkleri Legendre izotopisi altında sınıflandırdık. Kontak 3manifoldlarda 

konveks yüzey teorisini kullanarak 3( ,ξ )stdS  içerisindeki Legendre pozitif Whitehead 

linklerinin her bir bileşeninin Thurston-Bennequin sayısının 1  olana kadar nasıl destabilize 

olabildiğini gösterdik. Ayrıca, 2tb    olacak şekilde maksimum Thurston-Bennequin sayısına 

sahip 0r   olacak şekilde aynı rotasyon sayılı positive Whitehead linkin iki tane Legendre 

temsilcisi olduğunu gösterdik. Bunların yanında linkin bileşenlerinin bir Legendre izotopi 

altında yer değiştirebileceğini ve maksimum Thurston-Bennequin sayısına sahip iki farklı 

temsilcinin tek bir stabilizasyon (pozitif veya negatif) altında aynı olduklarını ispatladık. Tüm 

bu sonuçlar, 3( ,ξ )stdS  içerisindeki Legendre pozitif Whitehead linklerinin yalın Legendre 

olmadığını göstermektedir.
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ÖZET (devam ediyor) 

Keywords: Kontak yapılar, Legendre düğümler, konveks yüzeyler, baypas, Legendre izotopi. 

Science Code: 403.04.01
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CHAPTER 1

INTRODUCTION

This thesis research lies in the areas of contact geometry, low-dimensional topology, and

the knot theory. The geometry of contact structures can be used to answer significant

problems in topology. In the other direction, topological methods have an important role

in contact geometry. Huygens’(1690) principle in geometric optics can be considered as

containing fundamental ideas of contact geometry, but contact structures on manifolds

were first introduced by Sophus Lie (1872), under the influence Felix Klein, for the study

of partial differential equations. Later, they arose again in the field of thermodynamics,

geometric optics, and control theory and contact geometry showed up as its own specific

field in the beginning of 1950s. More recently, they have been seen to have relations with

low-dimensional topology, which is why we are interested in considering Legendrian links

in 3−dimensional contact manifolds. These special subclasses of links, which have many

applications, have some certain properties regarding the contact structure and exhibit

the topology and geometry of the underlying 3−manifold. The main problem in the

Legendrian Link Theory is given a topological link type in a contact 3−manifold, to

classify Legendrian links in this link type up to Legendrian isotopy. Thurston-Bennequin

(tb) and the rotation number (r) invariants are two classical invariants for Legendrian

links.

Some work about the classification of Legendrian links has been established by Eliashberg

and Fraser (1995), [8], for Legendrian unknots, Etnyre and Honda (2001), [12], for Legen-

drian torus knots and figure eight knots in any tight contact manifold, Ding and Geiges

(2007), [5], for Legendrian cable links, Dalton (2008), [4], for Legendrian torus links, Et-

nyre, LaFountain and Tosun (2012), [14], for Legendrian cable of positive torus knots,

Etnyre et al. (2013), [15], for Legendrian positive twist knots, Tosun (2013), [30], for

Legendrian (p, q)−cable knots, Etnyre and Vertesi (2017), [13], for Legendrian satellites,

in the standard tight contact 3−sphere. Onaran (2018), [28], worked on Legendrian torus
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knots in Lens spaces and Geiges and Onaran (2020), [19], worked on Legendrian Hopf

links in any contact structure on contact 3−sphere. Classical invariants of Legendrian

links distinguish different classes of them, but two Legendrian links which have the same

classical invariants do not need to be Legendrian isotopic according to the Chekanov-

Eliashberg’s examples [2, 7]. In this thesis, our goal is to classify Legendrian positive

Whitehead Links in the standard tight contact 3−sphere.

Definition 1.1 AWhitehead Link is a combination of two projections of the unknot.

(a) (b)

Figure 1.1 a) A Link diagram of the positive Whitehead link (mirror of the Whitehead

link), b) A Link diagram of the (negative) Whitehead link.

We will denote the Whitehead link as W− and the mirror of Whitehead link as W+

because of the negative crossing and positive crossing in the diagram of the component

with crossings, respectively. The Whitehead link was known long ago, but named after

J.W.Whitehead, who employed this link in the construction of the Whitehead manifold

which is an open, contractible 3−manifold, that is not homeomorphic to R3.

Another diagram of the Whitehead link is represented as in Figure 1.2, which is topolog-

ically isotopic to W−.

Figure 1.2 Another link diagram of the Whitehead link.
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An upper bound on the tb invariant for Legendrian links in terms of the Kauffman poly-

nomials of the links was first observed by Lee Rudolph [27]. For concerned inequailty

related to bound on tb, some alternative proofs with different approaches were exhibited

in [3, 16, 17]. This inequailty states that tb is not bigger than the minimal degree in the

variable x of the Kauffman polynomial:

tb ≤ −max degxK.

We obtain from [21] that tb (W−) ≤ −5 for any Legendrian representation of W− since

the Kauffman polynomial of W− is given by

KW_ (x, y) = yx5 − 2x4 − (2y3 + 6y)x3 + (−y4 − y2 + 6 + y−2)x2

+(3y3 + 9y + 2y−1)x+ (y4 + y2 − 5− 2y−2)

−(y3 + 4y − 2y−1)x−1 + (2 + y−2)x−2.

Hence, we cannot realize W− with components consisting of Legendrian unknots with

maximal tb. This was first observed by Mohnke in [21].

Figure 1.3 illustrates Legendrian fronts of these two Whitehead links in the same knot

type, respectively, which have the same total tb and r. In this figure, the components

have different tb and r invariants: we have tb(M1) = −1, tb(M2) = −4 and tb(L1) = −3,

tb(L2) = −2.

Figure 1.3 Two fronts of Legendrian Whitehead links with maximal tb = −5.

The Kauffman polynomial gives only a trivial bound for the mirror of Whitehead link

W+. It can be represented as a Legendrian link of Legendrian unknots each of which has

tb = −1.

In general, very little is known related to realizing Legendrian links with given Legendrian

knot components and the restrictions on Thurston-Bennequin invariants. In this thesis,

we will try to find the complete classification of the Legendrian Positive Whitehead links
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by using the strategy in Chapter 3 and convex surface theory which we will consider in

Chapter 2. In Chapter 4, we will obtain the following results.

Theorem 1.1 (Classification Theorem) There are two Legendrian representatives of

oriented positive Whitehead link W+ with maximal Thurston-Bennequin number shown

in the Figure 1.4 and they become the same after a single (positive or negative) stabi-

lization. All other representatives destabilize to one of the maximal Thurston-Bennequin

number representatives and are determined by the Thurston-Bennequin number and the

rotation number. Moreover, the components shown in Figure 1.5 can be interchanged by

a Legendrian isotopy.

Figure 1.4 The two Legendrian representatives of W+ with maximal tb = −2 and

components both having tb = −1, r = 0.

The Classification theorem follows from the next 4 results.

Theorem 1.2 Given a Legendrian positive Whitehead link W+, then this link can be

destabilized until each component has tb = −1.

Theorem 1.3 There is a unique Legendrian representative ofW+ with maximal Thurston—

Bennequin number, tb = −2 if orientations are ignored. This representative has rotation

number r = 0.

Theorem 1.4 Given the Legendrian link L in the knot type W+ with tb = −2, the

components of L can be interchanged by Legendrian isotopy as indicated in Figure 1.5

taking orientations on the components into account.
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Figure 1.5 Legendrian isotopic two Legendrian W+ with tb = −2.

Theorem 1.5 There are two Legendrian representatives of positive Whitehead link W+

with maximal Thurston-Bennequin number shown in the Figure 1.4 and they become the

same after a single (positive or negative) stabilization.

Two key lemmas in the proof of these theorems are the following.

Lemma 1.6 Given any Legendrian L in the knot type W+ such that L = U1 ∪ U2, the

U2 component of L can be destabilized in the complement of U1 until it has tb = −1.

The dividing set on A mentioned in the next lemma is defined in chapter 4.

Lemma 1.7 When tb(U2) = −1 then we can assume the dividing set on A is in Figure

1.6.

Figure 1.6 The dividing curve on A when tb(U2) = −1.

The classification of the Legendrian negative Whitehead links is an important problem

too, which we work on for future research.
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CHAPTER 2

BACKGROUND

In this chapter, we review some of the definitions and theorems which are needed through-

out the thesis and mainly use the sources [10], [11], [18] and [29].

2.1 CONTACT STRUCTURES

Although contact structures are defined for odd-dimensional manifolds, we will only con-

sider contact structures on 3−manifolds.

Definition 2.1 A contact structure ξ on an oriented 3−manifold M is given by a field

of hyperplanes (i.e. a codimension−1 sub-bundle of the tangent bundle TM) which is

nowhere integrable. The pair (M, ξ) is called a contact 3−manifold.

Locally a hyperplane field can always be written as the kernel of a non-vanishing 1−form

α, i.e., for every point in M , there is a neighborhood U and a 1−form α defined on U

such that ξx = ker (αx) for all x ∈ U . The 1−form α satisfies the Frobenius integrability

condition α ∧ dα = 0 iff ξ is an integrable hyperplane field. From this point of view, ξ

is a contact structure on M if any locally 1−form α defining ξ satisfies α ∧ dα 6= 0. The

condition α ∧ dα 6= 0 (non-integrability) is independent of choosing α and implies that ξ

is not everywhere tangent to any surface along an open subset of the surface. So one may

think that the hyperplanes twist too much to be tangent to surfaces as is seen in Figure

2.1. If ξ is orientable, it is possible to write ξ = ker (α) globally.

Example 2.1 The standard contact structure on R3 is given by

ξst = ker (dz − ydx) = span

{
∂

∂y
,
∂

∂x
+ y

∂

∂z

}

with Cartesian coordinates (x, y, z) . The plane fields along xz−plane are all parallel to

xy−plane. We have a horizontal plane at the origin and as we move along the y−axis the
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planes twist around the y−axis in a left hand manner. Moving through the y axis from

origin to infinity the planes will make a π/2 twist.

Figure 2.1 The standard contact structure ξst on R3.

Definition 2.2 Two contact structures ξ0 and ξ1 on manifolds M0 and M1, respectively

are contactomorphic if there is a diffeomorphism f : M0 → M1 such that Tf (ξ0) = ξ1,

where Tf : TM0 → TM1 indicates the differential of f .

There are many contact structures on R3, but Darboux’s theorem says that all of

them locally look like (locally contactomorphic to) the standard contact structure. More

precisely, near any point, a contact form α on R3 can be expressed as dz − ydx by

means of a change of coordinates, i.e., a local diffeomorphism. This is the one important

difference between contact geometry and Riemannian geometry. If there are differences

between contact structures, then they must be found at the global level, like topological

invariants.

There are two types of contact structures on 3−manifolds. If there is a disk D ⊂ M

embedded such that TpD = ξp for ∀p ∈ ∂D then D is called an overtwisted disk and ξ is

called an overtwisted contact structure. If the contact structure is not overtwisted then

it is tight. The contact manifold (R3, ξst) is tight [1].

Example 2.2 The contact manifold (R3, ξot = ker (α = cos rdz + r sin rdθ)) with cylin-

drical coordinates is overtwisted, and D = {(r, θ, z) | z = 0, r ≤ π} is an overtwisted

disk. See Figure 2.2.
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Figure 2.2 The contact structure ξot on R3.

It follows from [1] that the contact structures ξst and ξot on R3 are not contactomorphic.

Example 2.3 The standard tight contact structure on 3−sphere S3 in R4 is given by

ξstd = ker (α = (x1dy1 − y1dx1 + x2dy2 − y2dx2) |S3) with Cartesian coordinates (x1, y1, x2, y2)

in R4. The contact structure on S3 with one point removed is contactomorphic to (R3, ξst).

For a proof of this contactomorphism, one can check [18].

Theorem 2.1 (Eliashberg 1992, [6]) There is a unique tight contact structure on S3 up

to isotopy.

Theorem 2.1 and Theorem 2.2 will be useful in proving there is a unique representation

of the link W+ with maximal tb.

Let Diff0 (S3) be the group of orientation-preserving diffeomorphisms of S3 that fix the

plane ξstd(p) where p is a fix point in S
3, and let Diffξstd be the group of diffeomorphisms

of S3 that preserve ξstd.

Theorem 2.2 (Eliashberg 1992, [6]) The natural inclusion of Diffξstd ↪→ Diff0 (S3) is

a weak homotopy equivalence.

From this, any contactomorphism of (S3, ξst) is contact isotopic to the identity. Specifi-

cally, we will use the fact that if there is a contactomorphism of (S3, ξst) taking a Legen-

drian link L to L′, then L and L′ are Legendrian isotopic.
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2.2 LEGENDRIAN KNOTS AND LINKS

We mainly use [10], [11], [18] and [29] in this section.

Definition 2.3 A Legendrian knot K in a contact manifold (M3, ξ) is an embedded

S1 that is always tangent to ξ : TpK ⊂ ξp, for p ∈ K. A Legendrian link is a disjoint

union of Legendrian knots.

We will represent Legendrian knots and links in (R3, ξst) via the front projection which is

Π : R3 → R2 : (x, y, z)→ (x, z).

The image, Π(K), of K, is called front projection of K. A Legendrian link will generi-

cally have an immersed front projection with semi-cubical cusps and no vertical tangen-

cies; conversely, any such projection can be uniquely lifted to a Legendrian link using

y = dz/dx which result in the fact that at each crossing the slope of overcrossing is

smaller than the undercrossing in the link diagram.

Example 2.4 Figure 2.3 illustrates front diagrams for Legendrian knots and links real-

izing the unknot and Hopf link.

(a) (b)

Figure 2.3 a) Front of a Legendrian unknot, b) Front of a Legendrian Hopf link.

Every knot type has a Legendrian realization. Two Legendrian knots K0 and K1 are

Legendrian isotopic if there is an isotopy through Legendrian knots between them;

and are ambient contact isotopic if there is a 1−parameter family φt, t ∈ [0, 1] of

contactomorphisms of the ambient contact manifold such that φ0 = id and φ1 (K0) = K1.

Theorem 2.3 The classification of Legendrian knots up to Legendrian isotopy in (S3, ξst)

is equivalent to the classification up to contact isotopy.
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Theorem 2.4 Two front diagrams represent Legendrian isotopic Legendrian knots if and

only if they are related by ambient isotopy in R2 and a sequence of moves shown in Figure

2.4.

Figure 2.4 Legendrian Reidemeister Moves, as well as the rotation of each by 180◦

around all the coordinate axes.

We will use Legendrian Reidemester moves for proving that two representations (sym-

metric with each other) of the Legendrian Whitehead Mirror are Legendrian isotopic.

The classical invariants of Legendrian knots are the topological knot type, theThurston-

Bennequin invariant tb(K), and the rotation number r(K). The Thurston-Bennequin

invariant tb(K) measures the twisting of contact planes around K with respect to the

framing induced by a Seifert surface (surface whose boundary isK). The rotation number

r(K) for oriented null homologous knots (bounds an embedded oriented surface) counts

the number of times the direction of K rotates around in a trivialization of the con-

tact planes on a Seifert surface for K. One can compute tb(K) and r(K) via the front

projection of K as follows:

tb(K) = writhe (Π (K))− 1

2
(number of cusps in Π (K)),

r(K) =
1

2
(number of down cusps − number of up cusps),

where writhe of Π (K) is the sum of the signs of the crossings of Π (K). Right and

left handed crossing, illustrated in Figure 2.5, contribute + and − to writhe of Π (K),

respectively.
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(a) (b)

Figure 2.5 a) A right handed crossing, b) A left handed crossing.

For a link L = K1 ∪K2, tb(L) = tb(K1) + tb(K2) + 2lk(K1, K2), where lk(K1, K2) is the

linking number of K1 and K2. In this thesis, tb(L) = tb(U1) + tb(U2) for any Legendrian

L in the link type W+ such that L = U1 ∪ U2 since lk(K1, K2) = 0. It does not depend

on the orientation of the components.

One can distinguish links which are not Legendrian isotopic from different value of the

invariants. Given a Legendrian knot K there is a way to get another Legendrian knot in

the same topological knot type, which is not Legendrian isotopic to K. This operation

is called stabilization, which corresponds to adding a zig-zag to the front projection of

the knot in (R3, ξst). If down cusps are added then it is a positive stabilization S+(K),

and if up cusps are added then it is a negative stabilization S−(K) (see Figure 2.6).

Figure 2.6 Stabilizations in the front projection.

Stabilizations for Legendrian knots can be defined in any contact manifold by Dar-

boux’s Theorem because stabilizations are done locally. It can be also noted that af-

ter stabilizations the classical invariants change as follows: tb (S±(K)) = tb(K) − 1 and

r(S±(K)) = r(K) ± 1. Hence, although the knot and its stabilization are in the same

topological knot type, they are not Legendrian isotopic. By stabilizing, one can obtain

an infinite number of Legendrian realizations of a knot in its knot type with arbitrarily

negative Thurston-Bennequin invariants.
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Lemma 2.5 Stabilization is a well-defined operation and S+(S−(K)) = S−(S+(K)).

Since the stabilization operation is well-defined it does not matter where the stabiliza-

tion is done. In the opposite direction, K destabilizes if there is a Legendrian knot

K ′ such that K = S±(K ′). In any tight contact structure there is an upper bound

on Thurston-Bennequin invariant coming from Bennequin Inequality [6] which says that

tb(K) + |r(K)| ≤ −χ (Σ), where Σ is a Seifert surface for K. Hence, it is not necessarily

easy to destabilize a knot while it is easy to stabilize. This led one to think about the

importance of finding the maximal Thurston-Bennequin invariant denoted by tb (K) of

Legendrian knots topological isotopic to K or simply written as maximal tb:

tb (K) = max {tb(K) | K ∈ L(K)} ,

where K denotes a topological knot type and L(K) denotes set of all Legendrian knots

in this knot type up to Legendrian isotopy. This is an invariant of the topological knot

type.

One can ask whether or not two knots in the same topological knot type are Legendrian

isotopic when they have same Thurston-Bennequin and rotation number. If this so, these

knots are called Legendrian simple. Determining when a knot is Legendrian simple is

one of the main problems of the Legendrian Knot Theory.

2.3 CONVEX SURFACE THEORY

We will introduce in this section the tools from convex surface theory to the study of

Legendrian links in the standard tight contact structure on S3. We mainly use [11], [12],

[15], [18], [22], [23] and [24] as a source to exhibit some definitions and theorems in convex

surface theory.

If Σ is a surface in (M, ξ) then ξ ∩ TΣ is a singular line field on Σ and may be integrated

to a singular foliation Σξ called the characteristic foliation. It is singular at points

where ξ = TΣ.

Characteristic foliations on surfaces in contact 3—manifolds are a very important tool for

the classification of contact structures on 3−manifolds.
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Theorem 2.6 (Giroux, [22]) Let Σ1 and Σ2 be closed surfaces in contact 3−manifolds

(M1, ξ1) and (M2, ξ2) (with ξ1, ξ2 cooriented), and φ : Σ1 → Σ2 a diffeomorphism with

φ(Σ1ξ1) = Σ2ξ2 as oriented characteristic foliations. Then there is a contactomorphism

ψ : N(Σ1) → N(Σ2) of suitable neighborhoods N(Σ1) and N(Σ2) of Σ1 and Σ2 with

φ(Σ1) = Σ2 and such that ψ|Σ1 is isotopic to φ via an isotopy preserving the characteristic

foliation.

From this theorem, the contact structure near a surface is determined by its characteristic

foliation; and to work with a foliation on a surface is easier than a whole contact structure.

A vector field υ in (M, ξ) is called contact if its flow preserves ξ, i.e. if ξ = kerα then

Lvα = fα, where f : M → R is a function on M . This condition is independent of the

choice of contact form α defining a given ξ. A surface Σ in (M, ξ) is convex if there

exists a contact vector field v transverse to Σ. Equivalently, Σ is convex exactly when

there is a neighborhood N = Σ× I in M such that ξ is invariant in the I-direction. The

dividing set of Σ is a family of disjoint embedded curves ΓΣ =
{
p ∈ Σ | v(p) ∈ ξp

}
, i.e.

ΓΣ is where ξ is tangent to I. The isotopy type of ΓΣ is independent of choice of v so the

dividing set is well defined up to isotopy. Let F be a singular foliation on an orientable

surface Σ. A multi-curve Γ is said to divide F if Γ is transverse to F , Σ�Γ is the disjoint

union of two (possibly disconnected) surfaces Σ+ and Σ− with ∂Σ+ and ∂Σ− = Γ, and

there is a vector field u and volume form ω on Σ so that u is tangent to F , ±Luω > 0 on

Σ±, and u|Γ points out of Σ+.

Theorem 2.7 (Giroux, [22]) Let Σ be an orientable surface in (M, ξ) with Legendrian

boundary (possibly empty). Then Σ is a convex surface if and only if Σξ has dividing

curves. Moreover, if Σ is convex ΓΣ will divide Σξ.

We define the twisting number twΣ(γ) of a closed Legendrian curve γ with respect to

the framing induced by Σ to be the number of counterclockwise (right) 2π twists of ξ

along γ, relative to Σ. In particular, if γ is a connected component of the boundary of a

compact surface Σ, TΣ gives a natural framing, and if Σ is a Seifert surface of γ, then

twΣ(γ) is the Thurston—Bennequin invariant tb(γ).

Theorem 2.8 (Giroux, [22]) Any closed surface is C∞−close to a convex surface.

We can perturb any closed surface by a C∞−isotopy so that the surface is convex. Later,

Kanda [23] proved that this result is true with another conditions as follows:
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Theorem 2.9 (Kanda, [23]) Any surface with Legendrian boundary satisfying twΣ(γ) ≤

0 for all boundary components γ of Σ may be C0 small perturbed near the boundary and

then C∞ small perturbed on the interior to make convex.

Let v be a contact vector field for (M, ξ) that is transverse to a surface Σ and let Γ be

the dividing curves on Σ. An isotopy F : Σ × [0, 1] → M of Σ is called admissible if

F (Σ× {t}) is transversal to v for all t.

Theorem 2.10 (Giroux Flexibility Theorem, [22]) Let Σ be a closed surface or a surface

with Legendrian boundary. Let Γ be the dividing set for Σξ and F be another singular

foliation on Σ divided by Γ. Then there is an admissible isotopy F : Σ× [0, 1]→M of Σ

such that F (Σ× {0}) = Σ, F (Σ× {1})ξ = F and the isotopy is fixed on Γ.

This theorem shows that dividing curves ΓΣ on a convex surface contains the important

information of a contact structure in a neighborhood of a convex surface, so we can focus

only the dividing set instead of whole characteristic foliation which will be very useful to

prove Theorem 4.1.

The following is Grioux’s criterion for determining which convex surfaces have neighbor-

hoods being tight:

Theorem 2.11 (Giroux’s criterion) If Σ 6= S2 is a convex surface (closed or compact

with Legendrian boundary) in (M, ξ) , then Σ has a tight neighborhood if and only if ΓΣ

has no homotopically trivial closed curves. If Σ = S2, Σ has a tight neighborhood if and

only if #ΓΣ = 1.

Therefore, we see that when ξ is tight and Σ 6= S2, then none of the dividing curves ΓΣ

bounds an embedded disk in Σ. From the Giroux’s Criterion, if Σ is a torus, ΓΣ will

consist of an even number 2n > 0 of parallel essential curves. On a convex torus Σ ,

we can choose a proper identification of Σ with R2/Z2 such that ΓΣ has even number

(2n) parallel essential curves (one can find a suitable parametrization for making these

curves’slope 0) and from Giroux Flexibility Theorem, the characteristic foliation Σξ has

2n curves of singularities (one in aech component of Σ�ΓΣ) which are called Legendrian

divides, and the rest of the leaves in Tξ is non-singular closed curves which are called

Legendrian ruling curves. We call such a convex Σ is in standard form. From Giroux
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Flexibility Theorem, any convex torus can be isotoped by an admissible isotopy into

standard form.

A standard neighborhood of a Legendrian knotK is a solid torus N(K) having convex

boundary with two dividing curves of slope 1/tb(K). We will usually take the boundary of

N(K) to be a convex torus in standard form. This neighborhood is uniquely determined

by K up to isotopy through such neighborhoods [24].

A useful formulation of Giroux Flexibility Theorem is called Legendrian Realization Prin-

ciple which is due to Kanda [23]:

Theorem 2.12 (Legendrian Realization Principle) Consider a closed curve C on a closed

convex surface or a convex surface Σ with Legendrian boundary. Assume C t ΓΣ and

every component of Σ�C nontrivially intersects ΓΣ. Then there exists an admissible

isotopy Ft = F (·,t) , t ∈ [0, 1] so that F0 = id, Ft (Σ) are all convex, F1 (ΓΣ) = ΓF1(Σ)

and F1(C) is Legendrian.

As a result, we can realize almost any curve as a Legendrian one.

Theorem 2.13 (Relative Convex Realization Principle, Kanda [23]) If γ is a Legendrian

curve in a surface Σ, and twΣ(γ) ≤ 0 then Σ may be isotoped relative to γ so that it is

convex. Moreover, if Σ is convex, then

twΣ(γ) = −1

2
#(γ ∩ ΓΣ).

Here #(γ ∩ ΓΣ) indicates the unsigned intersection number of γ and ΓΣ.

We will frequently need that a surface with Legendrian boundary can be made convex

fixing the boundary. From the theorem above we have the next lemma for Legendrian

knots.

Lemma 2.14 (Kanda [23]) If Σ has a single Legendrian boundary component ∂Σ = γ

(Σ is a Seifert surface), then Σ may be made convex if and only if tb(γ) ≤ 0. Moreover,

if Σ is convex, then

tb(γ) = −1

2
#(γ ∩ ΓΣ) and r(γ) = χ(Σ+)− χ(Σ−),

where Σ+ and Σ− are as in the definition of convexity.
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We will often use this formula for the Thurston-Bennequin invariant in the next chapters

to see how many times a component of the link intersect the dividing set.

We know describe a method for altering the dividing curves of a convex surface.

Definition 2.4 Let α be a Legendrian arc in a given convex surface Σ so that α intersects

ΓΣ in three points p1, p2, p3 (where p1, p3 are the end points of the arc). A bypass for Σ

(along α), see Figure 2.7, is a convex disk D with Legendrian boundary such that

1. D ∩ Σ = α,

2. tb(∂D) = −1,

3. ∂D = α ∪ β,

4. α ∩ β = {p1, p3} are corners of D and elliptic singularities of Dξ.

5. There are 3 elliptic singularities (p1, p2, p3) of Dξ alternating in sign and along β there

are singularities of the same sign of α ∩ β, alternating between elliptic or hyperbolic.

Figure 2.7 A piece of Σ, the dividing curves ΓΣ (red straight lines) and the bypass

disk D.

We call such an arc α on a surface Σ an attaching arc. Bypasses were first introduced in

[24]. The most basic property of bypasses is how a convex surface changes when pushed

across a bypass. Bypass attachment is very imporant operation in our work for obtaining

a destabilization of our link.

A properly embedded arc a ⊂ ΓΣ in Σ is called boundary parallel if the closure of one

of the components of Σ\a is a disk that contains no components of ΓΣ in its interior, in

other words, if a ⊂ ΓΣ cuts off a half-disk which has no other intersections with ΓΣ. One

may use the Legendrian realization principle to show that a boundary parallel dividing

curve (that is not the only dividing curve on Σ) will give a bypass for ∂Σ, because it

allows one to “bypass”some twisting as the following lemma indicates.
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Lemma 2.15 ([11]) If the dividing curves ΓΣ contain a boundary parallel arc, ΓΣ not

connected, γ is Legendrian, ∂Σ = γ and tb(γ) < 1 then γ can be destabilized.

Example 2.5 In Figure 2.8, the curves of green, pink, blue and red colour are dividing

curves on some surface and intersect the black curve which is ∂Σ eight times. By 2.14,

tb(∂Σ) = −1
2
#(∂Σ ∩ ΓΣ), we have tb(∂Σ) = −4. The red and green curves are boundary

parallel curves and so they assign a bypass for ∂Σ.

Figure 2.8 Boundary parallel curves (The green and the red one).

In the proofs in next chapters, we will find bypass in an annular region, so we need the

next proposition. A slight perturbation of a convex surface will not change the isotopy

type of the dividing curves, but moving the surface through a bypass may change the

isotopy type of the dividing curves as follows:

Theorem 2.16 (Honda [24]) Let D be a bypass for a given Σ along α ⊂ Σ. Inside any

open neighborhood of Σ ∪D there is a (one-sided) neighborhood N = Σ× [0, 1] of Σ ∪D

with Σ = Σ×{0} (if Σ is oriented, orient N so that Σ = −Σ×{0} as oriented manifolds)

such that ΓΣ is related to ΓΣ×{1} as shown in Figure 2.9.

(a) (b)

Figure 2.9 Result of a bypass attachment: (a) original surface Σ with attaching arc α,

(b) the surface Σ′ = Σ × {1}. The dividing curves ΓΣ and ΓΣ′ are shown

in red.
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Figure 2.9 shows the result when one attaches the bypass from the front, for attaching a

bypass from the back the orientation of [0, 1] in Theorem 2.16 needs to be changed. The

result of a bypass attachment from the back is the mirror of Figure 2.9.

We will mainly use Theorem 2.16 to alter the dividing curves with bypasses in order to

find a destabilization of each component of W+ in Theorem 4.1.

If a bypass exist then the others can be found by rotating the attaching arc of a bypass.

This is the concept of Lemma 2.17.

Lemma 2.17 ([25])Suppose that there is a disk D in a convex surface Σ which D ∩ ΓΣ,

α and α′ are as illustrated in Figure 2.10. If a bypass exists for Σ along an attaching arc

α from the front, then there exists also a bypass for Σ along an attaching arc α′ from the

front.

Figure 2.10 Bypass rotation.

The next lemma shows how the dividing sets of two convex surfaces which meet along a

Legendrian corner behave.

Lemma 2.18 ([24])(Edge Rounding Lemma)Let ΓΣ1 and ΓΣ2 be the dividing curves of

convex surfaces Σ1 and Σ2, respectively, and ∂Σ1 = ∂Σ2 is Legendrian. Assume Σ1 and Σ2

in R3 is modeled by {(x, y, z) : x = 0, y ≥ 0} and {(x, y, z) : y = 0, x ≥ 0} . Then we may

form a surface Σ3 from Σ = Σ1∪Σ2 (join along x = y = 0) by replacing in a small neigh-

borhood Nε of Σ1∩Σ2 with the intersection of Nε with
{

(x, y, z) : (x− δ)2 + (y − δ)2 = δ2
}
.

For a suitably chosen δ, the resulting surface Σ3 is a surface of class of C1 with dividing

curve as illustrated in Figure 2.11, but Σ3 can be smoothed by a small isotopy so that the

dividing curves are as shown in Figure 2.11.
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(a) (b)

Figure 2.11 Rounding a corner between two convex surfaces. a) Σ1 ∪ Σ2, b) Σ3. Red

lines are dividing curves.

While moving from Σ1 to Σ2, the dividing curves move up (down) if Σ2 is to the right

(left) of Σ1.
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CHAPTER 3

SOME CLASSIFICATION RESULTS

We give the known classification results of Legendrian unknot and twist knots in this

chapter.

From Lemma 2.5, if the following steps can be carried out then one can classify Legendrian

knots in a knot type K with a useful strategy:

1. All Legendrian knots in L(K) can be destabilized except those with maximal tb.

2. Classify Legendrian knots in L(K) with maximal tb.

3. Understand when Legendrian knots become the same under stabilization.

If K has a unique Legendrian representation with maximal tb then the last step in the

strategy is unnecessary.

In the next sections Figure 3.1, Figure 3.3 and Figure 3.4 is called the mountain range

associated to the knot type. Here, the numbers in the mountain range indicate the

number of Legendrian knots with corresponding invariants, if the number is 1 then there

is a unique Legendrian representative with these corresponding invariants. The lines

indicate positive stabilization if it has negative slope and indicate negative stabilization

if it has positive slope.

3.1 THE UNKNOT

Theorem 3.1 (Eliashberg and Fraser 1995, [8]) In any tight contact 3−manifold, two

oriented Legendrian unknots are Legendrian isotopic if and only if their Thurston-Bennequin

invariants and rotation numbers agree. All Legendrian unknots are stabilizations of the

unique one with tb = −1 and r = 0 (see (a) in Figure 2.3).
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Figure 3.1 Mountain range for Legendrian unknots.

We call then the unknot is Legendrian simple, because it is determined by its tb and r.

3.2 LEGENDRIAN NONSIMPLE KNOTS AND TWIST KNOTS

A twist knot is a twisted Whitehead double of the unknot which is shown as K = Km in

Figure 3.2. In this figure, there are m right-handed half twists in the box if m ≥ 0, and

|m| left-handed half twists if m < 0.

Figure 3.2 The twist knot Km.

It is suffi cient to classify Legendrian unknots only by checking their classical invariants.

Hovewer, it is not true that classical invariants always suffi ce to classify Legendrian knots.

If Legendrian knots in a given topological knot type are determined up to Legendrian

isotopy by their classical invariants then the knot type is said to be Legendrian simple;

otherwise it is Legendrian nonsimple. In 1997, Chekanov [2] gave the first example of a

Legendrian nonsimple knot type: K−4 = m (52) . In 2001, Epstein, Fuchs, and Meyer [9]

generalized the result by showing that there are at least n different Legendrian represen-

tatives with maximal tb of the twist knot K−2n with crossing number 2n + 1. In 2013,

Etnyre, Ng and Vertesi gave the complete classification of Legendrian representatives of

positive twist knots as follows:
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Theorem 3.2 (Etnyre, Ng and Vertesi 2013, [15] ) Let K = Km be twist knot of Figure

3.2 with m half twists. Classification of Legendrian twist knots in (S3, ξst) :

1. For m ≥ −2 even, there is a unique representative of Km with maximal Thurston—

Bennequin number, tb = −m − 1. This representative has rotation number r = 0,

and all other Legendrian knots of type Km destabilize to the one with maximal

Thurston—Bennequin number.

2. For m ≥ 1 odd, there are exactly two representatives with maximal Thurston—

Bennequin number, tb = −m − 5. These representatives are distinguished by their

rotation numbers, r = ±1, and a negative stabilization of the r = 1 knot is isotopic

to a positive stabilization of the r = −1 knot. All other Legendrian knots destabilize

to at least one of these two.

3. For m ≤ −3 odd, Km has (−m+ 1) /2 Legendrian representatives with (tb, r) =

(−3, 0). All other Legendrian knots destabilize to one of these. After any positive

number of stabilizations (with a fixed number of positive and negative stabilizations),

these (−m+ 1) /2 representatives all become isotopic.

4. For m ≤ −2 even with m = −2n, Km has n2/2 different Legendrian representa-

tions with (tb, r) = (1, 0). All other Legendrian knots destabilize to one of these.

These Legendrian knots fall into n/2 different Legendrian isotopy classes after any

given positive number of positive stabilizations, and n/2 different Legendrian isotopy

classes after any given positive number of negative stabilizations. After at least one

positive and one negative stabilization (with a fixed number of each), the knots all

become Legendrian isotopic.

This teorem is depicted in Figure 3.3. Since all numbers in the mountain ranges in

Figure 3.3 (a) and (b) are 1, these knot types are Legendrian simple. In addition, K−3 is

Legendrian simple.
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(a) (b)

(c) (d)

Figure 3.3 Legendrian mountain range for a) K2n (n ≥ −1), b) K2n−1 (n ≥ 1),

c) K−2n−1 (n ≥ 1), d) K−2n (n ≥ 1).

There are many works about the classification of Legendrian knots, but very little known

of Legendrian links. We can ask whether Legendrian Whitehead links are Legendrian

simple or not. We will answer it for Legendrian positive Whitehead links in the next

chapter.
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CHAPTER 4

THE PROBLEM: LEGENDRIAN WHITEHEAD LINKS

In the light of the classification of Legendrian positive twist knots stated in section 3.2,

we will give the complete classification of Legendrian positive Whitehead links by using

the strategy in Chapter 3 and the convex surface theory.

4.1 MAIN PROBLEM: LEGENDRIAN POSITIVE WHITEHEAD LINKS

(LEGENDRIAN WHITEHEAD MIRROR)

One of the components of the positive Whitehead link is a special case of the twist knot

Km. When m = 0, K0 is the one of the component of W+ which is a topologically the

unknot. See Figure 4.1. The link type W+ may be considered as W = O1 ∪O2, where O1

is taken as K0.

Figure 4.1 Positive Whitehead link W = O1 ∪O2 in the link type of W+.

We write a Legendrian representative of W as L = U1 ∪ U2 ∈ L (W+).

Recall, in this work, we aim to prove our main theorem.

Theorem 1.1 There are two Legendrian representatives of positive Whitehead link W+

with maximal Thurston-Bennequin number shown in the Figure 4.2 and they become

the same after a single (positive or negative) stabilization. All other representatives
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destabilize to one of the maximal Thurston-Bennequin number representatives and are

determined by the Thurston-Bennequin number and the rotation number. Moreover, the

components shown in Figure 4.3 can be interchanged by a Legendrian isotopy.

Figure 4.2 The two Legendrian representatives of W+ with maximal tb = −2 and

components both having tb = −1, r = 0.

This theorem follows from the following 4 results.

Theorem 1.2 Given a Legendrian positive Whitehead link W+, then this link can be

destabilized until each component has tb = −1.

Theorem 1.3 There is a unique Legendrian representative ofW+ with maximal Thurston—

Bennequin number, tb = −2 if orientations are ignored. This representative has rotation

number r = 0.

Theorem 1.4 Given the Legendrian link L in the link type W+ with tb = −2, the

components of L can be interchanged by Legendrian isotopy as indicated in Figure 4.3

taking orientations on the components into account.

Figure 4.3 Legendrian isotopic two Legendrian W+ with tb = −2.

Proof of Theorem 1.4 After we apply several Legendrian Reidemeister Moves (Theo-

rem 2.4), we obtain that they are Legendrian isotopic. See Figure 4.4. In the proof, we

draw U1 in black and U2 in blue.
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Figure 4.4 Legendrian isotopy interchanging the components.

�
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Theorem 1.5 There are two Legendrian representatives of positive Whitehead link W+

with maximal Thurston-Bennequin number shown in the Figure 4.2 and they become the

same after a single (positive or negative) stabilization.

Proof of the Theorem 1.5 By Theorem 1.3, we know that any maximal Thurston-

Bennequin number representative ofW+ is given as in Figure 4.2. In Figure 4.4 we obtain

that we are able to interchange the components ofW+ with maximal Thurston—Bennequin

number and reverse the orientations on the components by a Legendrian isotopy. In the

diagram, we see L = U1 ∪ U2 is Legendrian isotopic to L′ = U2 ∪ −U1, where −U1 is U1

with reversed orientation. By using the same Legendrian Reidemeister moves, we have

that −U1 ∪ −U2 is Legendrian isotopic to −U2 ∪ U1, U2 ∪ −U1 is Legendrian isotopic

to −U1 ∪ −U2 and −U2 ∪ U1 is Legendrian isotopic to U1 ∪ U2. Similarly, by using the

same Legendrian Reidemester moves, we have that U1 ∪ −U2 is Legendrian isotopic to

−U2 ∪ −U1, −U1 ∪ U2 is Legendrian isotopic to U2 ∪ U1, U2 ∪ U1 is Legendrian isotopic

to U1 ∪ −U2 and −U2 ∪ −U1 is Legendrian isotopic to −U1 ∪ U2. However, two oriented

Whitehead links U1 ∪ U2 and −U1 ∪ U2 are not Legendrian isotopic by [26]. Finally, we

have two equivalence classes of Legendrian positive Whitehead links with max tb = −2

and r = 0 as shown in Figure 4.2 via Theorem 1.3. Now, we will see that these two

representatives are Legendrian isotopic after a single (positive or negative) stabilization.

Let us positive stabilize U1. After we apply several Legendrian Reidemeister Moves

(Theorem 2.4) as seen in Figure 4.5, we obtain that St+(U1) ∪ U2 is Legendrian isotopic

to St+(−U1) ∪ U2.

Figure 4.5 St+(U1) ∪ U2 is Legendrian isotopic to St+(−U1) ∪ U2.
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It does not matter at what point the stabilization of U1 is done via Lemma 2.5. Hence,

when U1 is stabilized along two different points, the results are Legendrian isotopic. In the

proof, we draw U1 in black and U2 in blue. We conclude that St+(U1 ∪U2) is Legendrian

isotopic to St+(−U1 ∪ U2) while U1 ∪ U2 is not Legendrian isotopic to −U1 ∪ U2.

Now, let us negative stabilize U1. Using the relation St−(U1) = −St+(−U1) between the

negative and the positive stabilization of a knot we can take St−(U1) as the component

in black of the last link in Figure 4.5 with reversed orientation and we can obtain that

St−(U1) ∪ U2 is Legendrian isotopic to St−(−U1) ∪ U2 when we apply the Legendrian

Reidemeister moves in the reverse order of the moves in Figure 4.5. Hence, we conclude

that St−(U1∪U2) is Legendrian isotopic to St−(−U1∪U2) while U1∪U2 is not Legendrian

isotopic to −U1 ∪ U2. �

Now, here we prepare for the proof of Theorems 1.2 and 1.3, and get help from [15]. Let

S be the sphere shown in Figure 4.6. The Whitehead link W+ = O1 ∪ O2 is smoothly

isotopic to the union of K0 and B. Notice that K0 intersects C on S in four points that

divide K0 into four unknotted pieces. We label the points 1, 2, 3, and 4 as in Figure 4.6

and we see the closed curve B on S seperates the points 1, 2 from 3, 4 in the figure.

The sphere separates S3 into two balls Bin and Bout, such that: K0 intersects Bout in a

vertical 2—braid with two negative half-twists, which are denoted Kout = K0 ∩ Bout, and

K0 intersects Kin in a horizontal 2—braid, which we denote Kin = K0 ∩Bin.

Figure 4.6 Model of the knot K0.

Given a Legendrian representative L = U1∪U2 ofW+, there is a smooth isotopy φ : S3 →

S3 taking K0 to U1 and B to U2. The sphere S goes to φ(S) and we can assume that it is

convex by Theorem 2.8. We would like to show that each component Ui can destabilize
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to have tb = −1. For notational convenience, we will denote the image of S after the

isotopy by S, we will also think of U1 as K0 and U2 as B. Let tb(Ui) = −ni, i ∈ {1, 2}.

Lemma 1.6 The Legendrian knot B can be destabilized in the complement of K0 until

it has tb = −1.

Proof of Theorem 1.3 Given a Legendrian representative L = U1 ∪ U2 of W+ without

maximal tb. Destabilize B = U2 until tb = −1 from Lemma 1.6. Now since smoothly the

roles of U1 and −U2 can be interchanged by Theorem 1.4, we can arrange that U1 = B and

U2 = K0. Lemma 1.6 holds also when we take K0 with reversed orientation and we can

again apply Lemma 1.6 to destabilize U1 until it has tb = −1. �

To prove Lemma 1.6 we will now start to normalize the dividing curves on S. We can

consider a standard neighborhood N of K0 as a solid torus S1×D2 from the Legendrian

Standard Neighborhood Theorem and the boundary intersect S in four Legendrian un-

knots as seen in Figure 4.7. The boundary ∂N is convex with dividing set having two

parallel curves.

Figure 4.7 A model of N = N (U1).

Let P be the sphere with the interior of four disk removed P = S \N . Assume that U2

has been taken maximal so that tb(U2) = −n for some n > 0. Let N (U2) be a standard

neighborhood of U2 disjoint from U1. Set Q = (S3 −N (U2)). The manifold Q is a solid

torus S1 ×D2 having convex boundary with two dividing curves of slope −n. Here the

curve on the boundary of a solid torus with slope n indicates the curve pλ + qµ with
p
q

= n and λ, µ are elements of H2(∂N (U2) , Z) such that µ is a meridian of N (U2)

and λ is a longitude of N (U2) . Then, we can take λ as a meridian of Q and µ as a
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longitude of Q. We can assume the ruling curves on Q are meridional and choose two

disks as modelled in Figure 4.8, namely D1 and D2 in Q bounded by these ruling curves.

Precisely, ∂Q \ (∂D1 ∪ ∂D2) contains two annuli A1 and A2 so that A1 ∪D1 ∪D2 (after

rounding corners by Lemma 2.18) shows the sphere S.

Figure 4.8 A model for S.

We can isotop each Di such that a standard neighborhood N of U1 intersects Di along

two disks with Legendrian boundary being meridional ruling curves on ∂N and Di is

convex by Theorem 2.8. Let Pi = Di \ N. Accordingly Pi is a pair of pants with three

boundary components, that we label ci,1, ci,2, ci,3 so that ci,3 is the boundary component

contained in ∂Q and ci,1, ci,2 are ruling curves in ∂N. See Figure 4.9 for an illustration of

Pi.

Figure 4.9 A model for Pi.

The dividing curves of Pi, ΓPi = ΓP ∩Pi, intersects each of ci,1 and ci,2 exactly two times

and intersects ci,3 exactly 2n times. If ΓDi has more than two boundary parallel dividing

curves then ΓPi has at least one boundary parallel dividing curve along ci,3 and so U2 can

be destabilized in the complement of U1 by using this boundary parallel dividing curve to

form a bypass from Lemma 2.15. Since we have chosen that the maximal tb of U2 is −n,

Di can have at most two boundary parallel dividing curves and thus ΓPi can be depicted

in the next method as used in [15] and illustrated in Figure 4.10.
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There is a coordinate system on Di so that:

1. Di is the unit disk in the xy plane;

2. U1 ∩Di is {(0,±1/2)};

3. C ∩Di is the line segment x = 0;

4. Pi is the complement of small disks around (0,±1/2) in Di.

Let Ai,j be small annular neighborhoods of ci,j in Pi for i ∈ {1, 2}, j ∈ {1, 2, 3} and

let P ′i = Pi \ Ai,j. The dividing curves on ∂Q = ∂N (U2) intersect Di in 2n points by

Lemma 2.14 since U2 has been taken so that tb(U2) = −n. For n > 1, the dividing set

of P ′i can be considered to have n horizontal line segments in P
′
i , 2 of which in P ′i are

given by the lines y = ±1/2. If we consider an identification between the closure of Ai,3

and the annulus S1 × [0, 1] such that ΓPi ∩ (S1 × {0}) = {p1, ..., p2n}, which has equally

spaced points in ci,3 and ΓPi ∩ (S1 × {1}) = {p′1, ..., p′2n} , which is the corresponding set

to ΓPi ∩ (S1 × {0}), in the other boundary component of Ai,3, then in Ai,3, ΓPi comprise

of nonintersecting 2n segments which connect p1, ..., p2n to p′1, ..., p
′
2n in some (cyclically

permuted) order. Thus, the dividing curves in each Ai,j can be considered as the obvious

extension of the dividing curves in P ′i with some number of half-twists in Ai,1 and Ai,2

and some rigid rotation in Ai,3. In Figure 4.10 the light gray shaded region is P ′i , the

dark gray shaded region is Ai,3, the green shaded regions are Ai,1 and Ai,2, the union

of all shaded regions is Pi, the blue vertical line is C ∩ Pi, the red horizontal lines are

the dividing curves on Pi, ΓPi , and the dividing curves in Ai,j pass from ci,j to the other

boundary component of Ai,j.

Figure 4.10 The disk Di.
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After we round the corners of D1 ∪D2 ∪ A1 by Lemma 2.18, we define A as the annulus

A1 ∪ A1,3 ∪ A2,3. Since A1 is a part of ∂Q, ΓA1 = A1 ∩ Γ∂Q. There are 2n dividing

curves passing from one boundary component to the other. Let ΓA indicate the union of

these dividing curves. We can again choose a product structure S1× [0, 1] on the closure

of A such that has the length of S1 is 2n, ΓA ∩ (S1 × {0}) and ΓA ∩ (S1 × {1}) each

involves 2n equally spaced points, and ΓA connects these two sets of points through 2n

nonintersecting segments. From Giroux’s criterion, the dividing set on the 2−sphere S

in a tight contact structure must be connected, and thus the slope s of the curves in ΓA

must be relatively prime to n.

(a) (b)

Figure 4.11 a) The curves γ1, γ2, γ3, γ4 obtaining from the intersection of the white

annulus A and the green curve γ, b) The intersection of the white annulus

A and the green curve γ′. The 2−sphere S with P ′1 and P ′2 shaded.

Now, we describe curves γ and γ′ in S as shown in Figure 4.11 (a) and (b) on the left and

the right, respectively. The curve γ bounds a disk called Dout in Bout and γ′ bounds a

disk called Din in Bin, where Dout and Din are disjoint from U1. It can be assumed that

the intersection of the dividing curves of S and both γ and γ′ occurs only in A, and that

the intersection of the curve γ and A is the union of the arcs γ1, γ2, γ3 and γ4 as shown

in Figure 4.11. If γ is isotoped so that it intersects the P ′i in horizontal arcs, then using

the above identification of the closure of A with S1 × [0, 1], the slopes of γi can be taken

to be 2, 0, n, n− 2, respectively as illustrated in Figure 4.12. The curve γ′ intersects A

in two parallel linear arcs of slope 0.
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Figure 4.12 A model of the slopes of γi which are 2, 0, n, n− 2, respectively.

We can Legendrian realize γ and γ′, and makeDout andDin convex. In the case that tb (γ)

or tb (γ′) is not maximal, Dout or Din has at least two boundary parallel dividing curves

by Lemma 2.14 and thus there are at least two bypasses for S \N in the complement of

U1 by Lemma 2.15. Let c be the curve along which one of the bypasses is attached, which

we will use in the proof of the Claims 4.1-4.3. In case that γ′ bounds a disc in Bin, the

bypass is attached from the back and therefore the resulting dividing curve of S is the

mirror of the resulting dividing curve after attaching a bypass from the front. This can

be seen in Figure 2.9.

First of all, we will find the configuration of the dividing curves on S in the next lemma.

In order to prove this, we will use some results we have found in the proof of the Claim

4.3.

Lemma 1.7 When tb(U2) = −1 then we can assume the dividing set on A is in Figure

4.13.

Figure 4.13 The dividing curve on A having slope of 1 when tb(U2) = −1.

Proof of Theorem 1.2 We will use [15] as a guide to prove this theorem. Here we take

the Legendrian knotK0 to be U1 and the Legendrian knot B to be U2 as before. The stan-

dard model of K0 was illustrated in Figure 4.6. Let D = {(x, y, z) | x2 + z2 ≤ 1, y = 0}

be a convex disk in R3 ⊂ S3. Let’s take a standard neighborhood E of D in S3,

E = {(x, y, z) | x2 + z2 ≤ 1, y2 ≤ 1}. Let F be the complement of the interior of E
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in S3 with corners rounded (F = S3�E). We know from Theorem 1.2 that U2 destabi-

lizes in the complement of U1 until it has tb = −1. When tb(U2) = −1 and U2 does not

destabilize, we have obtained in proof of Theorem 1.2, the slope of the dividing set on

∂Bout can be made 1 (it is Lemma 1.7) and thus it looks like Figure 4.13, indicated by

the red curve. We want to prove that U1 ∩ Bout = U1out (can be taken as l′1∪ l′2 which

smoothly are as shown in Figure 4.15) is contactomorphic to two Legendrian arcs in F ,

namely l1 (left) and l2 (right) shown in Figure 4.14. The dividing curves on the boundary

of the ball (∂F ) in Figure 4.14 and the ones on ∂Bout in Figure 4.15 are diffeomorphic

curves under the diffeomorphism of the ball.

Figure 4.14 Model for a non-destabilizable tangle in Bout.

Figure 4.15 Model for the dividing set on ∂Bout.

We take product neighborhoods of l1 and l2, N1 = D2 × [0, 1] and N2 = D2 × [0, 1],

respectively. We can assume each Ni intersects with ∂F in two disks, each of which

intersects Γ∂F in an arc. We can also assume that ∂ (Ni ∩ ∂F ) can take as the union

of leaves of the characteristic foliation of ∂F and we can arrange that ∂Ni is convex by

Theorem 2.8.

H = F \ (N1 ∪N2) is a handlebody of genus 2 and the boundary of it is a surface with

corners. The manifold after cutting H along properly embedded two disks D1 and D2

which are denoted in Figure 4.16 is a 3−ball. The disks D1 and D2 are disjoint disks

satisfying that ∂Di ⊂ ∂H and Int (Di) ⊂ Int (H) for i ∈ {1, 2} (Int (Di) and Int (H)

indicate the interior of D1 and H, respectively). In Figure 4.16 we see the boundary of
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D1 in H with the green curve and D2 can be seen after reflecting the picture in a vertical

line. We can isotop H into H1 (H1 is a standardly embedded handlebody of genus 2 in

S3 on the left hand side in Figure 4.16) by isotoping the handles of H1 with N1 and N2

as illustrated in Figure 4.16. The disk D1
1 bounded by the green curve and D

1
2 bounded

by the curve reflected the green curve in a vertical line on the left hand side in Figure

4.16 (below) cut H1 into a 3−ball. Thus, we see where the disks D1 and D2 come from

isotoping the green curves from right to the left in Figure 4.16.

Figure 4.16 H1 is on the left hand side and the disk D1
1 in H

1 is bounded by the green

curve. H is on the right hand side and the disk D1 in H is bounded by the

green curve.

Now, we will try to find how the contact structure on H and H ′ are determined and then

we will prove the existence of a contactomorphism between F and Bout taking l1 ∪ l2 to

l′1∪ l′2 = U1out . A contact structure on a neighborhood N (∂H) of ∂H is determined by

the characteristic foliation on ∂H from Theorem 2.6. Thus, it can be found a bit smaller

handlebody Ĥ in H such that ∂Ĥ is included in N (∂H) and is obtained by rounding the

corners of ∂H. Let D̂i = Di∩ Ĥ. We can make D̂i convex and take Li to be a Legendrian

realization of ∂D̂i on ∂Ĥ by Theorem 2.12.

Figure 4.17 The red curves indicate the dividing curves.

The dividing set ΓD̂i can be determined according to how ∂D̂i intersect Γ∂Ĥ . There are

four points in the set of intersection of Li and the dividing set Γ∂Ĥ . See Figure 4.17.
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We observe that three of these points are in ∂Ni by noticing that ∂D̂i ∩ ∂Ni intersects

the dividing set effi ciently and one point x of these points is in ∂F . Thus we have

tb(Li) = −2 by Lemma 2.14 and as we are in a tight contact structure ΓD̂i is a collection

of two boundary parallel arcs. Furthermore, these two boundary parallel arcs on D̂i do

not straddle the point x. In order to prove this, let us suppose that one of these boundary

parallel arcs straddles x. In this case, the other dividing arc on D̂i gives a bypass attached

along ∂Ni. After we attach the bypass to ∂Ĥ, we have a genus 2−surface Σ and a curve

γ corresponding to Li on ∂Ĥ. The bypass attachment operation gives that the new curve

γ intersects the dividing arcs on Σ twice. One of the two dividing curves which does not

consist x does not intersect the γ after bypass attachment and γ intersects the dividing

set of Σ along only one dividing curve of ΓΣ. After compressing the surface Σ along a

meridional disk to Ni+1 for i ∈ {1, 2} with the form that N3 = N1, we have a convex

torus T (that is a genus 1− surface) on which γ sits. The curve γ does not bound a disk

in the torus T , it is an essential curve in T and bounds a disk in the complement of T .

Since γ intersects the dividing arcs on Σ along only one dividing curve of ΓΣ, it can be

isotoped to be disjoint from it. Hence γ can be Legendrian realized which results in an

unknot with tb = 0, but this is a contradiction since we are in a tight contact manifold.

The dividing set on D̂i has now been completely determined, and thus the contact struc-

ture on H is completely determined by the characteristic foliation on ∂H (and after

isotoping the boundary slightly, by Γ∂H) by Theorem 2.10. After we cut H along the

disks D1 and D2, and round the edges we get a connected dividing set on F .

Now, we lead our attention to the knot U1. We assume we have normalized U1, N a

neighborhood of U1, and the sphere S as before while preparing the proof of the main

theorem. Let l′1 (left) and l
′
2 (right) in Figure 4.15, be the Legendrian arcs which are

the components of U1 ∩ Bout and N ′1 and N
′
2 the components of N ∩ Bout. The set H ′ =

Bout\(N ′1∪N ′2) is a handlebody of genus 2 and the boundary of it is a surface with corners.

The manifold after cutting H ′ along properly embedded two disks D′1 and D
′
2 which are

denoted in Figure 4.18 is a 3−ball. D′1 and D′2 are disjoint disks satisying that ∂D′i ⊂ ∂H ′

and Int (D′i) ⊂ Int (H ′) for i ∈ {1, 2}. In Figure 4.18 we see the boundary of D′1 in H ′

with the green curve and D′2 can be seen after reflecting the picture in a vertical line. H
′

can be isotoped into H1 by isotoping the handles of H1 with N ′1 and N
′
2 as illustrated

in Figure 4.18. We see where the disks D′1 and D
′
2 come from while isotoping the green
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curves from right to the left in Figure 4.18. We can choose these two disks D′1 and D
′
2 as

shown in Figure 4.18.

Figure 4.18 H ′ and H are on the left and right hand side, respectively. The disk

D′1 in H
′ is bounded by the green curve on the left hand side.

A contact structure on a neighborhoodN (∂H ′) of ∂H ′ is determined by the characteristic

foliation on ∂H ′. Thus, it can be found a bit smaller handlebody Ĥ ′ in H ′ such that ∂Ĥ ′

is included in N (∂H ′) and is obtained by rounding the corners of ∂H ′. Let D̂′i = D′i∩ Ĥ ′.

We can make D̂′i convex and take L
′
i to be a Legendrian realization of ∂D̂

′
i on ∂Ĥ ′ by

Theorem 2.12.

Figure 4.19 The red curves indicate the dividing curves.

There are two points in the set of intersection of L′i and the dividing set Γ∂Bout . One of

these points being near N ′i can be assumed to be on N
′
i , the other one is on ∂Bout at

some point y. While the intersection on ∂Ĥ ′ is effi cient, the intersection on ∂(Bout\N ′i) (a

torus) is ineffi cient, the two intersection points in Figure 4.19 can be removed by isotopy.

Since the intersection is ineffi cient, if tb(L′i) ≤ −2 then we get bypass for ∂(Bout\N ′i),

but might be trivial bypass and trivial bypass does not change the dividing set [20]; if

tb(L′i) ≤ −3 then there are at least two bypasses on D̂′i and one of these will destabilize

L′i. Thus, if tb(L
′
i) ≤ −3 then there is a bypass for ∂Ĥ ′ ∩ ∂N ′i along D̂′i. This bypass on

D̂′i can be considered to be a bypass along the boundary of the disk bounded by K0 ([15],

Claim 4.6) and it might give a destabilization of U1.
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By Theorem 4.1, we can assume U1 and U2 have tb = −1. When tb(U1) = −1 and U1

does not destabilize then tb(L′i) = −2, or −1. When tb(L′i) = −2, we have the disallowed

bypass and the trivial bypass and since we are in a tight contact structure the bypass

attachment must be trivial. When tb(L′i) = −2, the trivial bypass does not effect the

dividing set and so L′i does not destabilize. Thus, we obtain that tb(L
′
i) is not −1. Hence

L′i intersects the dividing set for some point on ∂N
′
i apart from ∂Bout. Thus we may

assume tb(L′i) = −2. Γ
D̂′
i
is a collection of two boundary parallel arcs as we are in a tight

contact structure. These boundary parallel dividing curves do not straddle the point y.

Hence the dividing set on D̂′i has been determined, and thus the contact structure on H
′

is determined by the characteristic foliation on ∂H ′ (and after isotoping the boundary

slightly, by Γ∂H). After we cut H ′ along the disks D′1 and D
′
2, and round the edges we

get a connected dividing set on Bout.

We can thus find a diffeomorphism φ : Bout → F so that φ(Γ∂Bout) = Γ∂F , φ(l′i) =

li, φ(D′i) = Di. This diffeomorphism can be isotoped to be a contactomorphism in a

neighborhood of (∂F )∪l1∪l2 by Theorem 2.6. We also have determined the configuration

of the dividing curves on Di and D′i above. Consequently, we can isotop φ to be a

contactomorphism ψ from Bout to F taking l′1∪ l′2 = U1out to l1 ∪ l2 and a ruling curve on

∂Bout isotopic to B to the some on ∂F . Therefore l1 ∪ l2 is a non-destabilizable tangle in

Bout.

We know the dividing set on ∂Bout when U2 does not destabilize (Lemma 4.1) and we have

found the data about contact structure on Bout when both U1 and U2 does not destabilize.

We now look at the structure in Bin. The contactomorphism ψ from Bout to F in S3 can

be extended as a diffeomorphism to Bin. Because of the fact that unique tight contact

structure on the 3−ball up to isotopy by Theorem 2.1, we can isotop this diffeomorphism

considering Bout to a contactomorphism on Bin. U1in is a Legendrian 2−braid, and we

know that if there is not a destabilization of the 2−braid, then it is obtained by putting

two twists by [15]. Hence, we have a contactomorphism of S3 taking U1=U1in ∪ U1out

to the knot U ′1 in Figure 4.20, and U2 on ∂Bout to the knot U ′2 on ∂F . It follows that

given any L in the knot type W+ such that L = U1 ∪ U2 are contact isotopic to Figure

4.21 by Theorem 2.2. Since Legendrian isotopy in (S3, ξst) is the same as an ambient

contactomorphism from Theorem 2.3, these two links are Legendrian isotopic.

39



Figure 4.20 Legendrian knot U ′1 being Legendrian isotopic to U1.

Thus, when both U1 and U2 does not destabilize, there is a unique representative of the

link as shown in Figure 4.21 with maximal Thurston-Bennquin invariant tb = −2 and

rotation number r = 0 if orientations are ignored.

Figure 4.21 Legendrian positive Whitehead link with maximal tb.

In addition, after four Legendrian Reidemeister Moves (Theorem 2.4) we see that the link

in Figure 4.21 is Legendrian isotopic to the link U1 ∪ U2 shown in Figure 4.22.

Figure 4.22 Legendrian isotopy between two different legendrian front of the positive

Whitehead link W+ with maximal tb.

�
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The link is realized by two tb = −1 Legendrian unknots. The number of the representa-

tives will change when we take the orientations on this link in Figure 4.21 into account.

However, this is in the concept of Theorem 1.5.

The proofs of Lemma 1.6 and 1.7 both follow from the proofs of the following claims.

We here set the Legendrian class of W as L = U1 ∪ U2 ∈ L (W+), where W = O1 ∪ O2

in the knot type W+ with O1 = K0 and O2 = B. Let tb(Ui) = −ni, i ∈ {1, 2} . We will

check all the cases to understand when U2 destabilizes. In the rest of the work, red curves

indicates dividing curves ΓA and green curves indicates γ and γ′, respectively.

Claim 4.1 When n2 ≥ 4, U2 destabilizes.

Claim 4.2 When n2 = 3, U2 destabilizes.

Claim 4.3 When n2 = 2, U2 destabilizes.

Corollary 4.1 When tb(U2) = −1, the dividing set are in the forms of Figure 4.104 (b),

4.94 (a) and 4.96 (b) with slope −1, 0, 1, respectively.

We will need Giroux’s criterion theorem (Theorem 2.11) to detect bypasses for the next

proofs. In particular, we will eliminate the bypasses which make the dividing set is

disconnected in tight contact sphere.

Proof of Lemma 1.7 We have found as a corollary in searching the cases when U2

destabilizes (concept of Theorem 1.2) that when tb(U2) = −1 the dividing set is in the

form of either Figure 4.103 (b), 4.93 (a) and 4.95 (b) which we redraw in Figure 4.23.

The slope s of the dividing curves equals −1, 0 and 1 in Figure 4.23 (a), (b) and (c),

respectively.

(a) (b) (c)

Figure 4.23 The dividing curves on A when tb(U2) = −1.
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When s = 0, we see that the intersection of the dividing set on A and the curve γ in

green in Figure 4.24.

Figure 4.24 ΓA when s = 0.

If we attach a bypass along 3 − 4 − 5 and 6 − 1 − 2, then we would obtain a convex

sphere S with disconnected dividing set, contradicting tightness by Theorem 2.11. For

the attaching arcs 1 − 2 − 3, 2 − 3 − 4, 4 − 5 − 6 and 5 − 6 − 1 when there is a bypass

from the front, we also have a bypass on A along the arc 1′ − 2′ − 3′, 2′ − 3′ − 4′ and

5′ − 6′ − 1′, respectively from Bypass Rotation (Lemma 2.17) as shown in Figure 4.25.

After attaching the bypass along 1′ − 2′ − 3′, 2′ − 3′ − 4′, 4′ − 5′ − 6′ and 5′ − 6′ − 1′

we obtain that the resulting dividing curve are as seen in Figure 4.26 by Theorem 2.16

and the slope s of the dividing set on A increases by 1 in Figure 4.26. Hence, the new

dividing curve on A has slope of 1.

(a) (b)

(c) (d)

Figure 4.25 Getting a new bypass along a) 1′ − 2′ − 3′, b) 2′ − 3′ − 4′, c) 4′ − 5′ − 6′,

d) 5′ − 6′ − 1′ after using bypass rotation when s = 0.
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(a) (b) (c) (d)

Figure 4.26 The dividing set on A after attaching the bypass along a) 1′ − 2′ − 3′,

b) 2′ − 3′ − 4′, c) 4′ − 5′ − 6′, d) 5′ − 6′ − 1′ when s = 0.

Figure 4.26 (a) and Figure 4.26 (c) look different from Figure 4.26 (b) and Figure 4.26

(d), but they only differ by Dehn twists parallel to the inside boundary components.

When s = −1, we see that the intersection of the dividing set on A and the curve γ in

green in Figure 4.27.

Figure 4.27 ΓA when s = −1.

When we attach a bypass along the attaching arcs 2 − 3 − 4, 4 − 5 − 6, 7 − 8 − 9 and

9 − 10 − 1 , then we have the resulting dividing curves on A are as seen in Figure 4.28

by Theorem 2.16 and the slope s increases by 1. Hence, the new dividing curve on A has

slope of 0. When s = 0, we know the slope can increase by 1 as shown in Figure 4.26. If

we attach a bypass along the other attaching arcs then we would obtain a convex sphere

S with disconnected dividing set, contradicting tightness.

(a) (b) (c) (d)

Figure 4.28 The dividing set on A after attaching the bypass along a) 2 − 3 − 4,

b) 4− 5− 6, c) 7− 8− 9, d) 9− 10− 1 when s = −1.

�
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Proof of the Lemma 1.6 The proof follows from the proofs of the Claim 4.1, Claim

4.2 and Claim 4.3 which we will exhibit next. �
If a bypass along c from front destabilizes U2, then there is no need to check the bypasses

along c from back, or vice versa. However, we examined both of them in the following

proofs when doing case by case analysis. We find sometimes the bypass is on one side,

sometimes on the other side and sometimes both sides.

Proof of the Claim 4.1 Notice that if c ∩ (P ′1 ∪ P ′2) has one component, we meet with

the following situations for c in Figure 4.29 When we attach the bypass from the back,

the subcases for c ⊂ γ′ are the mirrors of the subcases for γ.

1 2 3 4

5 6 7 8

Figure 4.29 The 8 subcases if c ∩ (P ′1 ∪ P ′2) has one component when n2 ≥ 4.

In the case when n2 ≥ 4 or |s| > 7 there will be a bypass c along γ and along γ′. We need

to see how attaching it will affect the dividing curves on S. If c ∩ (P ′1 ∪ P ′2) = ∅, then

when attaching the bypass to A ⊂ S, we can destabilize U2 in the complement of U1. If

c∩(P ′1∪P ′2) has one component, the possibilities of c are shown in Figure 4.29. For s > 7,

we must consider the 1st, 2nd, 5th, and 6th configurations in Figure 4.29. If c is a subset

of γ we see that in cases 2 and 6 that the dividing set on S is disconnected after attaching

the bypass. This contradicts the tightness of the contact structure so such bypasses never

exist. In cases 1 and 5 we see that U2 destabilizes. If c is a subset of γ′ then in all cases

U2 destabilizes for some slopes and for the other slopes in cases 2 and 6 we see that U2

destabilizes. For s < −7 one can similarly see that either a bypass attachment leads to a

disconnected dividing set for S, and so does not exist, or destabilizes U2.

We are left to consider the case when n2 = 4 and s = 1, 2, 3, 5, 7,−1,−3,−5, or −7. We

will do a case by case analysis of these.
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1.1 Let s = 1.

1. Figure 4.30 illustrates a model of the case when n2 = 4 and s = 1 for γ.

Figure 4.30 A model of the case when n2 = 4 and s = 1 for γ.

All the cases when there could be bypasses c along γ in Figure 4.30 are represented as

the result of attaching bypass in Figure 4.31 (a) and (b). We see that U2 destabilizes in

all these cases. If we attach a bypass along 1− 2− 3 and 3− 4− 1, then we would obtain

a convex sphere S with disconnected dividing set, contradicting tightness. We meet the

subcase 7 for a bypass along 2 − 3 − 4 and 4 − 1 − 2 is the case when c ∩ (P ′1 ∪ P ′2) has

two components. After the destabilization we see below that the n2 becomes 3 and s is

−1 and 1, respectively.

(a) (b)

Figure 4.31 a) ΓA after bypass along the arc 2− 3− 4, b) ΓA after bypass along the arc

4− 1− 2.

2. Figure 4.32 illustrates a model of the case when n2 = 4 and s = 1 for γ′.
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Figure 4.32 A model of the case when n2 = 4 and s = 1 for γ′.

Only one case when there could be bypasses c along γ′ in Figure 4.32 is represented as

the result of attaching bypass in Figure 4.33. We see that U2 destabilizes in this case. If

we attach a bypass along 1− 2− 3 and 3− 4− 1, then we would obtain a convex sphere

S with disconnected dividing set, contradicting tightness. If we attach a bypass along

4− 1− 2, then we do not have a destabilization of U2. We meet the subcase mirror of 7

for a bypass along 2− 3− 4. After the destabilization we see that the n2 becomes 3 and

s is still 1.

Figure 4.33 ΓA after bypass along the arc 2− 3− 4.

1.2 Let s = 3.

1. Figure 4.34 illustrate a model of the case when n2 = 4 and s = 3 for γ.

Figure 4.34 A model of the case when n2 = 4 and s = 3 for γ.
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All the cases when there could be bypasses c along γ in Figure 4.34 are represented as the

result of attaching bypass in Figure 4.35 (a) and (b). If we attach a bypass along 1−2−3

and 3 − 4 − 1, then we would obtain a convex sphere S with disconnected dividing set,

contradicting tightness. It is clearly seen in Figure 4.35 that U2 was not destabilized since

it has tb = −5.

(a) (b)

Figure 4.35 a) ΓA after bypass along 2− 3− 4, b) ΓA after bypass along 4− 1− 2.

2. Figure 4.36 illustrates a model of the case when n2 = 4 and s = 3 for γ′.

Figure 4.36 A model of the case when n2 = 4 and s = 3 for γ′.

All the cases when there could be bypasses c along γ′ in Figure 4.36 are represented as

the result of attaching bypass in Figure 4.37 (a) and (b). We see that U2 destabilizes in

all these cases. If we attach a bypass along 1− 2− 3, 3− 4− 5, 4− 5− 6 and 6− 1− 2

then we would obtain a convex sphere S with disconnected dividing set, contradicting

tightness. We meet the subcase mirror of 7 for both situations. After the destabilization

we see that the n2 becomes 3 and s is 3.
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(a) (b)

Figure 4.37 a) ΓA after bypass along 2− 3− 4, b) ΓA after bypass along 5− 6− 1.

1.3 Let s = 5.

1. Figure 4.38 illustrates a model of the case when n2 = 4 and s = 5 for γ.

Figure 4.38 A model of the case when n2 = 4 and s = 5 for γ.

Some cases when there could be bypasses c along γ in Figure 4.38 are represented as the

result of attaching bypass in Figure 4.39 (a) and (b). We see that U2 destabilizes in all

these cases. If we attach a bypass along a curve 1− 2− 3, 2− 3− 4, 3− 4− 5, 5− 6− 7,

6− 7− 8, 7− 8− 9, 8− 9− 10, 9− 10− 11, 11− 12− 1 and 12− 1− 2 then we would

obtain a convex sphere S with disconnected dividing set, contradicting tightness. After

the destabilization along a curve 4− 5− 6 and 10− 11− 12 we see that the n2 becomes

3 and s becomes 3.
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(a) (b)

Figure 4.39 a) ΓA after bypass along 4− 5− 6, b) ΓA after bypass along 10− 11− 12.

2. Figure 4.40 illustrates a model of the case when n2 = 4 and s = 5 for γ′.

Figure 4.40 A model of the case when n2 = 4 and s = 5 for γ′.

Some cases when there could be bypasses c along γ′ in Figure 4.40 are represented as the

result of attaching bypass in Figure 4.41 (a) and (b). We see that U2 destabilizes in all

these cases. If we attach a bypass along 1−2−3, 5−6−7, 10−11−12, and 11−12−1,

then we would obtain a convex sphere S with disconnected dividing set, contradicting

tightness. If we attach a bypass along 2 − 3 − 4, 4 − 5 − 6 and 9 − 10 − 11 which are

the cases when c ∩ (P ′1 ∪ P ′2) has no components, then we would obtain a destabilization

of U2 and after the destabilization we would see that the n2 becomes 3 and s becomes

3. If we attach a bypass along 7− 8− 9 which is the subcase mirror of 8, 3− 4− 5 and

8 − 9 − 10 which are the cases when c ∩ (P ′1 ∪ P ′2) has no components, then we obtain

a destabilization of U2 and after the destabilization we see that the n2 becomes 2 and s

becomes 3. If we attach a bypass along 6−7−8 which is the subcase mirror of 7, then we

obtain a destabilization of U2 and after the destabilization we see that the n2 becomes 3

and s is still 5.
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(a) (b)

Figure 4.41 a) ΓA after bypass along 3 − 4 − 5, 7 − 8 − 9, and 8 − 9 − 10, b) ΓA after

bypass along 6− 7− 8.

1.4 Let s = 7.

1. Figure 4.42 illustrates a model of the case when n2 = 4 and s = 7 for γ.

Figure 4.42 A model of the case when n2 = 4 and s = 7 for γ.

Some cases when there could be bypasses c along γ in Figure 4.42 are represented as the

result of attaching bypass in Figure 4.43 (a), (b) and (c). We see that U2 destabilizes in

all these cases. If we attach a bypass along 5 − 6 − 7, 12 − 13 − 14, and 21 − 22 − 1,

then we would obtain a convex sphere S with disconnected dividing set, contradicting

tightness. If we attach a bypass along 7− 8− 9, 14− 15− 16, 19− 20− 21 which are the

cases when c ∩ (P ′1 ∪ P ′2) has no components, then we would obtain a destabilization of

U2 and after the destabilization we would see that the n2 becomes 2 and s becomes 3. If

we attach a bypass along 4− 5− 6, 11− 12− 13, and 22− 1− 2 which are the subcase

1, then we obtain a destabilization of U2 and after the destabilization we see that the n2

becomes 3 and s becomes 5.
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(a) (b) (c)

Figure 4.43 a) ΓA after bypass along 4 − 5 − 6, b) ΓA after bypass along 7 − 8 − 9,

14− 15− 16 and 19− 20− 21, c) ΓA after bypass along 22− 1− 2.

2. Figure 4.44 illustrates a model of the case when n2 = 4 and s = 7 for γ′.

Figure 4.44 A model of the case when n2 = 4 and s = 7 for γ′.

Some cases when there could be bypasses c along γ′ in Figure 4.44 are represented as the

result of attaching bypass in Figure 4.45 (a) and (b). We see that U2 destabilizes in all

these cases. If we attach a bypass along 1−2−3, 3−4−5, 5−6−7, 7−8−9, 8−9−10,

10− 11− 12, 12− 13− 14, and 14− 1− 2, then we would obtain a convex sphere S with

disconnected dividing set, contradicting tightness. If we attach a bypass along 2− 3− 4,

4 − 5 − 6, 9 − 10 − 11, and 11 − 12 − 13 which are the cases when c ∩ (P ′1 ∪ P ′2) has no

components, then we would obtain a destabilization of U2 and after the destabilization

we would see that the n2 becomes 3 and s becomes 5. If we attach a bypass along 6−7−8

and 13− 14− 1 which are the subcase mirror of 7, then we obtain a destabilization of U2

and after the destabilization we see that the n2 becomes 3 and s becomes 1.
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(a) (b)

Figure 4.45 a) ΓA after bypass along 2− 3− 4, b) ΓA after bypass along 6− 7− 8 and

13− 14− 1.

1.5 Let s = −1.

Figure 4.46 (a) illustrates a model of the case when n2 = 4 and s = −1 for γ and Figure

4.46 (b) illustrates a model of the case when n2 = 4 and s = −1 for γ′ which we do not

see any destabilization because of intersection number of ΓA and γ′.

(a) (b)

Figure 4.46 a) A model of the case when n2 = 4 and s = −1 for γ, b) A model of

the case when n2 = 4 and s = −1 for γ′.

All cases when there could be bypasses c along γ in Figure 4.46 (a) are represented as the

result of attaching bypass in Figure 4.47 (a), (b), (c) and (d). We see that U2 destabilizes

in all these cases. If we attach a bypass along 1 − 2 − 3 and 7 − 8 − 9 then we would

obtain a convex sphere S with disconnected dividing set, contradicting tightness. If we

attach a bypass along 5 − 6 − 7, 10 − 11 − 12, and 6 − 7 − 8 which are the cases when

c ∩ (P ′1 ∪ P ′2) has no components, then we would obtain a destabilization of U2 and after

the destabilization we would see that the n2 becomes 2 and s becomes −1 for 5− 6− 7,
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10 − 11 − 12 and n2 becomes 3 and s becomes −1 for 6 − 7 − 8. If we attach a bypass

along 3 − 4 − 5 which are the cases when c ∩ (P ′1 ∪ P ′2) has two components, then we

would obtain a destabilization of U2 and after the destabilization we would see that the

n2 becomes 2 and s is still −1. If we attach a bypass along 2− 3− 4 and 12− 1− 2 which

are the subcase 3, then we obtain a destabilization of U2 and after the destabilization we

see that the n2 becomes 3 and s is still −1. If we attach a bypass along 4 − 5 − 6 and

11− 12− 1 which are the subcase 4, then we obtain a destabilization of U2 and after the

destabilization we see that the n2 becomes 2 and s is still −1. If we attach a bypass along

8− 9− 10 which are the subcase 7, then we obtain a destabilization of U2 and after the

destabilization we see that the n2 becomes 3 and s is still −1. If we attach a bypass along

9− 10− 11 which are the subcase 8, then we obtain a destabilization of U2 and after the

destabilization we see that the n2 becomes 2 and s is still −1.

(a) (b) (c) (d)

Figure 4.47 a) ΓA after bypass along 2 − 3 − 4, b) ΓA after bypass along 8 − 9 − 10,

c) ΓA after bypass along 4 − 5 − 6, 5 − 6 − 7, 9 − 10 − 11, 10 − 11 − 12

and 11− 12− 1, d) ΓA after bypass along 12− 1− 2.

1.6 Let s = −3.

1. Figure 4.48 illustrates a model of the case when n2 = 4 and s = −3 for γ.

Figure 4.48 A model of the case when n2 = 4 and s = −3 for γ.
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Some cases when there could be bypasses c along γ in Figure 4.48 are represented as the

result of attaching bypass in Figure 4.49 (a), (b), (c) and (d). We see that U2 destabilizes

in all these cases. If we attach a bypass along 1− 2− 3, 3− 4− 5, 5− 6− 7, 6− 7− 8,

8− 9− 10, 9− 10− 11, 11− 12− 13, 13− 14− 15, 15− 16− 17, 16− 17− 18, 18− 19− 20,

19 − 20 − 21 then we would obtain a convex sphere S with disconnected dividing set,

contradicting tightness. If we attach a bypass along 2− 3− 4, 10− 11− 12, 12− 13− 14,

14−15−16, 17−18−19 which are the cases when c∩ (P ′1∪P ′2) has no components, then

we obtain a destabilization of U2 and after the destabilization we see that the n2 becomes

3 and s is still −3. If we attach a bypass along 4− 5− 6, 7− 8− 9, 20− 1− 2 which are

the subcase 3 and 14− 15− 16 which is the subcase 7, then we obtain a destabilization

of U2 and after the destabilization we see that the n2 becomes 3 and s is still −3.

(a) (b) (c) (d)

Figure 4.49 a) ΓA after bypass along 2 − 3 − 4, b) ΓA after bypass along 4 − 5 − 6,

c) ΓA after bypass along 7− 8− 9 and 20− 1− 2, d) ΓA after bypass along

14− 15− 16.

2. Figure 4.50 illustrates a model of the case when n2 = 4 and s = −3 for γ′.

Figure 4.50 A model of the case when n2 = 4 and s = −3 for γ′.

All the cases when there could be bypasses c along γ′ in Figure 4.50 are represented as the

result of attaching bypass in Figure 4.51 (a), (b), (c) and (d). We see that U2 destabilizes

in all these cases. If we attach a bypass along 3 − 4 − 5 and 6 − 1 − 2 then we would

obtain a convex sphere S with disconnected dividing set, contradicting tightness. If we
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attach a bypass along 2− 3− 4 and 5− 6− 1 which are the mirror of subcase 5, then we

obtain a destabilization of U2 and after the destabilization we see that the n2 becomes 3

and s is still −3. If we attach a bypass along 1− 2− 3 and 4− 5− 6 which are the cases

when c ∩ (P ′1 ∪ P ′2) has no components, then we obtain a destabilization of U2 and after

the destabilization we see that the n2 becomes 3 and s becomes −1.

(a) (b) (c) (d)

Figure 4.51 a) ΓA after bypass along 1 − 2 − 3, b) ΓA after bypass along 2 − 3 − 4,

c) ΓA after bypass along 4− 5− 6, d) ΓA after bypass along 5− 6− 1.

1.7 Let s = −5.

1. Figure 4.52 illustrates a model of the case when n2 = 4 and s = −5 for γ.

Figure 4.52 A model of the case when n2 = 4 and s = −5 for γ.

Some cases when there could be bypasses c along γ in Figure 4.52 are represented as the

result of attaching bypass in Figure 4.53 (a), (b), (c) and (d). We see that U2 destabilizes

in all these cases. If we attach a bypass along 1−2−3, 5−6−7, 10−11−12, 15−16−17,

19− 20− 21 and 24− 25− 26 then we would obtain a convex sphere S with disconnected

dividing set, contradicting tightness. If we attach a bypass along 6− 7− 8, 11− 12− 13

and 28 − 1 − 2 which is the subcase 3, then we obtain a destabilization of U2 and after

the destabilization we see that the n2 becomes 3 and s becomes −3.If we attach a bypass

along 7−8−9, 12−13−14 and 27−28−1 which is the subcase 4 and 21−22−23 which is

the subcase 8, then we obtain a destabilization of U2 and after the destabilization we see
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that the n2 becomes 2 and s becomes −3. If we attach a bypass along 20− 21− 22 which

is the subcase 7, then we obtain a destabilization of U2 and after the destabilization we

see that the n2 becomes 3 and s is still −5.

(a) (b) (c) (d)

Figure 4.53 a) ΓA after bypass along 6 − 7 − 8, b) ΓA after bypass along 7 − 8 − 9,

12 − 13 − 14, 21 − 22− 23 and 27 − 28 − 1, c) ΓA after bypass along

11− 12− 13 and 28− 1− 2, d) ΓA after bypass along 20− 21− 22.

2. Figure 4.54 illustrates a model of the case when n2 = 4 and s = −5 for γ′.

Figure 4.54 A model of the case when n2 = 4 and s = −5 for γ′.

One case when there could be bypasses c along γ′ in Figure 4.54 is represented as the

result of attaching bypass in Figure 4.55. We see that U2 destabilizes in this case. If we

attach a bypass along 2− 3− 4, 4− 5− 6, 5− 6− 7, 7− 8− 9, 9− 10− 1 and 10− 1− 2

then we would obtain a convex sphere S with disconnected dividing set, contradicting

tightness. If we attach a bypass along 1− 2− 3, 3− 4− 5, 6− 7− 8 and 8− 9− 10 which

are the cases when c ∩ (P ′1 ∪ P ′2) has no components, then we obtain a destabilization of

U2 and after the destabilization we see that the n2 becomes 3 and s becomes −3.

Figure 4.55 ΓA after bypass along 1− 2− 3.

56



1.8 Let s = −7.

1. Figure 4.56 illustrates a model of the case when n2 = 4 and s = −7 for γ.

Figure 4.56 A model of the case when n2 = 4 and s = −7 for γ.

Some cases when there could be bypasses c along γ in Figure 4.56 are represented as the

result of attaching bypass in Figure 4.57 (a), (b) and (c). We see that U2 destabilizes in

all these cases. If we attach a bypass along 8−9−10, 15−16−17 and 36−1−2 which are

the subcase 3, then we obtain a destabilization of U2 and after the destabilization we see

that the n2 becomes 3 and s becomes −5. If we attach a bypass along 26− 27− 28 which

is the subcase 7, then we obtain a destabilization of U2 and after the destabilization we

see that the n2 becomes 3 and s becomes −5.

(a) (b) (c)

Figure 4.57 a) ΓA after bypass along 8− 9− 10, b) ΓA after bypass along 15− 16− 17

and 36− 1− 2, c) ΓA after bypass along 26− 27− 28.

2. Figure 4.58 illustrates a model of the case when n2 = 4 and s = −7 for γ′.
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Figure 4.58 A model of the case when n2 = 4 and s = −7 for γ′.

Some cases when there could be bypasses c along γ in Figure 4.58 are represented as the

result of attaching bypass in Figure 4.59 (a), (b) and (c). We see that U2 destabilizes in

all these cases. If we attach a bypass along 4−5−6, 7−8−9, 11−12−13 and 14−1−2

then we would obtain a convex sphere S with disconnected dividing set, contradicting

tightness. If we attach a bypass along 1−2−3, 3−4−5, 5−6−7, 8−9−10, 10−11−12

and 12 − 13 − 14 which are the cases when c ∩ (P ′1 ∪ P ′2) has no components, then we

obtain a destabilization of U2 and after the destabilization we see that the n2 becomes 3

and s becomes −5. If we attach a bypass along 2− 3− 4 and 9− 10− 11 which are the

cases when c ∩ (P ′1 ∪ P ′2) has no components, then we obtain a destabilization of U2 and

after the destabilization we see that the n2 becomes 2 and s becomes −3. If we attach a

bypass along 6− 7− 8 and 13− 14− 1 each of which is the subcase mirror of 5, then we

obtain a destabilization of U2 and after the destabilization we see that the n2 becomes 3

and s becomes −5.

(a) (b) (c)

Figure 4.59 a) ΓA after bypass along 2 − 3 − 4 and 9 − 10 − 11, b) ΓA after bypass

along 6− 7− 8, c) ΓA after bypass along 13− 14− 1.
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Proof of the Claim 4.2 In the case when n2 = 3 and |s| > 5 there will be a bypass c

along γ and along γ′. We need to see how attaching it will affect the dividing curves on

S. If c∩(P ′1∪P ′2) = ∅, then when attaching the bypass to A ⊂ S, we can destabilize U2 in

the complement of U1. If c∩ (P ′1∪P ′2) has one component, the possibilities of c are shown

in Figure 4.60. For s > 5, we must consider the 1st, 2nd, 5th, and 6th configurations in

Figure 4.60. If c is a subset of γ we see that in cases 2 and 6 that the dividing set on S

is disconnected after attaching the bypass. This contradicts the tightness of the contact

structure so such bypasses never exist. In cases 1 and 5 there exists a bypass c along γ,

but we do not see a destabilization of U2 after bypass attachment. However, if c is a subset

of γ′ then in cases 2 and 6, U2 destabilizes for all slopes and also in cases 1 and 5 we have

a convex sphere with disconnected dividing set for some slopes and a destabilization of U2

for the other slopes. For s < −5 we must consider the 3rd, 4th, 7th and 8th configurations

in Figure 4.60. If c is a subset of γ′ we see that in cases 3 and 7 that the dividing set on S

is disconnected after attaching the bypass. This contradicts the tightness of the contact

structure so such bypasses never exist. In cases 4 and 8 there exists a bypass c along γ′ for

some slopes, but we do not see a destabilization of U2 after bypass attachment and there

does not exist any bypass for the other slopes for contradicting the tightness. However,

if c is a subset of γ then in cases 3 and 7, U2 destabilizes for all slopes and also in cases

4 and 8 we have a convex sphere with disconnected dividing set for some slopes and a

destabilization of U2 for the other slopes. To sum up, for s > 5, when we attach a bypass

c along γ′ we see that U2 destabilizes and for s < −5, when we attach a bypass c along

γ we see that U2 destabilizes.

We are left to consider the case when n2 = 3 and s = 1, 2, 4, 5,−1,−2,−4, or −5. We

will do a case by case analysis of these.

1 2 3 4

5 6 7 8

Figure 4.60 The 8 subcases if c ∩ (P ′1 ∪ P ′2) has one component when n2 = 3.
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2.1 Let s = 1.

1. Figure 4.61 illustrates a model of the case when n2 = 3 and s = 1 for γ.

Figure 4.61 A model of the case when n2 = 3 and s = 1 for γ.

All the cases when there could be bypasses c along γ in Figure 4.61 are represented as the

result of attaching bypass in Figure 4.62 (a) and (b). If we attach a bypass along 2−3−4

and 4 − 1 − 2, then we would obtain a convex sphere S with disconnected dividing set,

contradicting tightness. It is clearly seen that U2 was not destabilized since it has still

tb = −3 as seen in Figure 4.62 (a) and (b).

(a) (b)

Figure 4.62 a) ΓA after bypass along 1− 2− 3, b) ΓA after bypass along 3− 4− 1.

2. Figure 4.63 illustrates a model of the case when n2 = 3 and s = 1 for γ′.

Figure 4.63 A model of the case when n2 = 3 and s = 1 for γ′.

60



Only one case when there could be bypass c along γ′ in Figure 4.63 giving the destabiliza-

tion of U2 is represented as the result of attaching bypass in Figure 4.64 (a). If we attach

a bypass along 1 − 2 − 3 and 3 − 4 − 1, then we would obtain a convex sphere S with

disconnected dividing set, contradicting tightness. If we attach a bypass along 4− 1− 2,

then we do not have a destabilization of U2 as seen in the Figure 4.64 (b). We meet the

subcase mirror of 7 for a bypass along 2− 3− 4. After the destabilization we see that the

n2 becomes 2 and s is still 1.

(a) (b)

Figure 4.64 a) ΓA after bypass along 2− 3− 4, b) ΓA after bypass along 4− 1− 2.

2.2 Let s = 2.

1. Figure 4.65 illustrates a model of the case when n2 = 3 and s = 2 for γ.

Figure 4.65 A model of the case when n2 = 3 and s = 2 for γ.

All the cases when there could be bypasses c along γ in Figure 4.65 are represented as

the result of attaching bypass in Figure 4.66 (a) and (b). If we attach a bypass along

2−3−4 and 4−1−2, then we would obtain a convex sphere S with disconnected dividing

set, contradicting tightness. It is clearly seen that U2 was not destabilized as seen in the

Figure 4.66 (a) and (b).
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(a) (b)

Figure 4.66 a) ΓA after bypass along 1− 2− 3, b) ΓA after bypass along 3− 4− 1.

2. Figure 4.67 illustrates a model of the case when n2 = 3 and s = 2 for γ′.

Figure 4.67 A model of the case when n2 = 3 and s = 2 for γ′.

All the cases when there could be bypasses c along γ′ in Figure 4.67 are represented as

the result of attaching bypass in Figure 4.68 (a) and (b). We see that U2 destabilizes in

all these cases. If we attach a bypass along 2− 3− 4 and 4− 1− 2 then we would obtain

a convex sphere S with disconnected dividing set, contradicting tightness. If we attach a

bypass along 1− 2− 3 and 3− 4− 1 which are the mirror of subcase 7, then we obtain a

destabilization of U2 and after the destabilization we see that the n2 becomes 2 and s is

1.

(a) (b)

Figure 4.68 a) ΓA after bypass along 1− 2− 3, b) ΓA after bypass along 3− 4− 1.
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2.3 Let s = 4.

1. Figure 4.69 illustrates a model of the case when n2 = 3 and s = 4 for γ.

Figure 4.69 A model of the case when n2 = 3 and s = 4 for γ.

All the cases when there could be bypasses c along γ in Figure 4.69 are represented as

the result of attaching bypass in Figure 4.70 (a) and (b). If we attach a bypass along

a curve except 3 − 4 − 5 and 8 − 9 − 10, then we would obtain a convex sphere S with

disconnected dividing set, contradicting tightness. If we attach a bypass along 3− 4− 5

and 8− 9− 10 which are the cases when c∩ (P ′1∪P ′2) has no components, then we obtain

a destabilization of U2 and after the destabilization we see that the n2 becomes 2 and s

becomes 3.

(a) (b)

Figure 4.70 a) ΓA after bypass along 3− 4− 5, b) ΓA after bypass along 8− 9− 10.

2. Figure 4.71 illustrates a model of the case when n2 = 3 and s = 4 for γ′.

Figure 4.71 A model of the case when n2 = 3 and s = 4 for γ′.
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All the cases when there could be bypasses c along γ′ in Figure 4.71 are represented as the

result of attaching bypass in Figure 4.72 (a) and (b). If we attach a bypass along a curve

2−3−4 and 6−7−8, then we would obtain a convex sphere S with disconnected dividing

set, contradicting tightness. If we attach a bypass along 1− 2− 3 and 5− 6− 7 which are

the cases when c ∩ (P ′1 ∪ P ′2) has no components, then we obtain a destabilization of U2

and after the destabilization we see that the n2 becomes 2 and s becomes 2. If we attach

a bypass along 3− 4− 5 and 7− 8− 1 which is the subcase mirror of 7, then we obtain

a destabilization of U2 and after the destabilization we see that the n2 becomes 2 and s

becomes 3.

(a) (b)

Figure 4.72 a) ΓA after bypass along 3− 4− 5, b) ΓA after bypass along 7− 8− 1.

2.4 Let s = 5.

1. Figure 4.73 illustrates a model of the case when n2 = 3 and s = 5 for γ′.

Figure 4.73 A model of the case when n2 = 3 and s = 5 for γ′.

All the cases when there could be bypasses c along γ′ in Figure 4.73 are represented as the

result of attaching bypass in Figure 4.74 (a), (b), (c), (d) and (e). If we attach a bypass

along a curve 1− 2− 3, 2− 3− 4, 4− 5− 6, 5− 6− 7, 7− 8− 9, 9− 10− 11, 10− 11− 12,

and 11− 12− 1, then we would obtain a convex sphere S with disconnected dividing set,

64



contradicting tightness. If we attach a bypass along 3 − 4 − 5 and 8 − 9 − 10 which are

the cases when c ∩ (P ′1 ∪ P ′2) has no components, then we obtain a destabilization of U2

and after the destabilization we see that the n2 becomes 2 and s becomes 3. If we attach

a bypass along 6−7−8 which is the subcase mirror of 7, then we obtain a destabilization

of U2 and after the destabilization we see that the n2 becomes 2 and s is still 5. After

attaching a bypass along 12− 1− 2, we obtain the dividing curves as in Figure 4.74 (d)

and then if we attach again a bypass along i− j−a which is the subcase mirror of 7, then

we obtain a destabilization of U2 as seen in Figure 4.74 (e) and after the destabilization

we see that the n2 becomes 2 and s is still 5.

(a) (b) (c) (d) (e)

Figure 4.74 a) ΓA after bypass along 3 − 4 − 5, b) ΓA after bypass along 6 − 7 − 8,

c) ΓA after bypass along 8 − 9 − 10, d) ΓA after bypass along 12 − 1 − 2,

e) ΓA after bypass along i− j − a in (d).

2.5 Let s = −1.

Figure 4.75 (a) illustrates a model of the case when n2 = 3 and s = −1 for γ′ which we

do not see any destabilization because of intersection number of ΓA and γ′.Figure 4.75

(b) illustrates a model of the case when n2 = 3 and s = −1 for γ.

(a) (b)

Figure 4.75 a) A model of the case when n2 = 3 and s = −1 for γ′, b) A model of the

case when n2 = 3 and s = −1 for γ.
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All the cases when there could be bypasses c along γ in Figure 4.75 (b) are represented as

the result of attaching bypass in Figure 4.76 (a), (b), (c), (d), (e) and (f). If we attach a

bypass along a curve 1−2−3 and 6−7−8, then we would obtain a convex sphere S with

disconnected dividing set, contradicting tightness. If we attach a bypass along 5− 6− 7

which is the case when c∩ (P ′1 ∪P ′2) has no components, then we obtain a destabilization

of U2 and after the destabilization we see that the n2 becomes 2 and s is still −1. If we

attach a bypass along 2 − 3 − 4 and 10 − 1 − 2 which is the subcase 3, then we obtain

a destabilization of U2 and after the destabilization we see that the n2 becomes 2 and s

is still −1. If we attach a bypass along 3 − 4 − 5 and 4 − 5 − 6 which is the case when

c ∩ (P ′1 ∪ P ′2) has two components, then we obtain a destabilization of U2 and after the

destabilization we see that the n2 becomes 1 and s becomes −1. If we attach a bypass

along 8 − 9 − 10 which is the subcase 8 and 9 − 10 − 1 which is the subcase 4, then we

obtain a destabilization of U2 and after the destabilization we see that the n2 becomes 1

and s is still −1.

(a) (b) (c)

(d) (e) (f)

Figure 4.76 a) ΓA after bypass along 2 − 3 − 4, b) ΓA after bypass along 3 − 4 − 5

and 4 − 5 − 6, c) ΓA after bypass along 5 − 6 − 7, d) ΓA after bypass

along 7− 8− 9, e) ΓA after bypass along 8− 9− 10 and 9− 10− 1, f) ΓA

after bypass along 10− 1− 2.

2.6 Let s = −2.

1. Figure 4.77 illustrates a model of the case when n2 = 3 and s = −2 for γ.
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Figure 4.77 A model of the case when n2 = 3 and s = −2 for γ.

All the cases when there could be bypasses c along γ in Figure 4.77 are represented as the

result of attaching bypass in Figure 4.78 (a), (b), (c), (d) and (e). If we attach a bypass

along a curve 1− 2− 3, 2− 3− 4, 4− 5− 6, 6− 7− 8, 8− 9− 10, 9− 10− 11, 11− 12− 13

and 13− 14− 1, then we would obtain a convex sphere S with disconnected dividing set,

contradicting tightness. If we attach a bypass along 7− 8− 9 and 12− 13− 14 which is

the case when c ∩ (P ′1 ∪ P ′2) has no components, then we obtain a destabilization of U2

and after the destabilization we see that the n2 becomes 2 and s is −1. If we attach a

bypass along 3− 4− 5, 5− 6− 7 and 14− 1− 2 which is the subcase 3, then we obtain

a destabilization of U2 and after the destabilization we see that the n2 becomes 2 and s

is −1. If we attach a bypass along 10− 11− 12 which is the subcase 7, then we obtain a

destabilization of U2 and after the destabilization we see that the n2 becomes 2 and s is

−1.

(a) (b) (c) (d) (e)

Figure 4.78 a) ΓA after bypass along 3 − 4 − 5, b) ΓA after bypass along 5 − 6 − 7,

c) ΓA after bypass along 7 − 8 − 9, d) ΓA after bypass along 10 − 11 − 1,

e) ΓA after bypass along 14− 1− 2.

2. Figure 4.79 illustrates a model of the case when n2 = 3 and s = −2 for γ′.
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Figure 4.79 A model of the case when n2 = 3 and s = −2 for γ′.

All the cases when there could be bypasses c along γ′ in Figure 4.79 are represented as

the result of attaching bypass in Figure 4.80 (a) and (b). If we attach a bypass along

2−3−4 and 4−1−2, then we would obtain a convex sphere S with disconnected dividing

set, contradicting tightness. It is clearly seen that U2 was not destabilized since it has

still tb = −3 as seen in Figure 4.81 (a) and (b).

(a) (b)

Figure 4.80 a) ΓA after bypass along 1− 2− 3, b) ΓA after bypass along 3− 4− 1.

2.7 Let s = −4.

1. Figure 4.81 illustrates a model of the case when n2 = 3 and s = −4 for γ.

Figure 4.81 A model of the case when n2 = 3 and s = −4 for γ.
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All the cases when there could be bypasses c along γ in Figure 4.81 are represented as the

result of attaching bypass in Figure 4.82 (a), (b), (c), (d) and (e). If we attach a bypass

along a curve 1− 2− 3, 4− 5− 6, 8− 9− 10, 12− 13− 14, 15− 16− 17 and 19− 20− 21,

then we would obtain a convex sphere S with disconnected dividing set, contradicting

tightness. If we attach a bypass along 2 − 3 − 4, 3 − 4 − 5, 11 − 12 − 13, 13 − 14 − 15,

14− 15− 16, 18− 19− 20 and 20− 21− 22 which is the case when c ∩ (P ′1 ∪ P ′2) has no

components, then we obtain a destabilization of U2 and after the destabilization we see

that the n2 becomes 2 and s is still −2. If we attach a bypass along 3− 4− 5, 5− 6− 7

and 14−1−2 which is the subcase 3, then we obtain a destabilization of U2. If we attach

a bypass along 5−6−7, 9−10−11 and 22−1−2 which is the subcase 3, then we obtain

a destabilization of U2 and after the destabilization we see that the n2 becomes 2 and s

is still −3. If we attach a bypass along 10− 11− 12 and 21− 22− 1 which is the subcase

4, then we obtain a destabilization of U2 and after the destabilization we see that the n2

becomes 1 and s = −1. If we attach a bypass along 16 − 17 − 18 which is the subcase

7, then we obtain a destabilization of U2 and after the destabilization we see that the n2

becomes 2 and s is still −3. If we attach a bypass along 17− 18− 19 which is the subcase

7, then we obtain a destabilization of U2 and after the destabilization we see that the n2

becomes 1 and s = −1.

(a) (b) (c)

(d) (e)

Figure 4.82 a) ΓA after bypass along 5 − 6 − 7, b) ΓA after bypass along 9 − 10 − 11

and 22 − 1 − 2, c) ΓA after bypass along 10 − 11 − 12 and 21 − 22 − 1,

d) ΓA after bypass along 16−17−18, e) ΓA after bypass along 17−18−19.
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2. Figure 4.83 illustrates a model of the case when n2 = 3 and s = −4 for γ′.

Figure 4.83 A model of the case when n2 = 3 and s = −4 for γ′.

All the cases when there could be bypasses c along γ′ in Figure 4.84 (a) and (b). If we

attach a bypass along 2 − 3 − 4, 4 − 5 − 6, 6 − 7 − 8 and 8 − 1 − 2, then we would

obtain a convex sphere S with disconnected dividing set, contradicting tightness. If we

attach a bypass along 1− 2− 3 and 5− 6− 7 which is the case when c∩ (P ′1 ∪P ′2) has no

components, then we obtain a destabilization of U2 and after the destabilization we see

that the n2 becomes 2 and s is −1.

(a) (b)

Figure 4.84 a) ΓA after bypass along 1− 2− 3, b) ΓA after bypass along 5− 6− 7.

2.8 Let s = −5.

1. Figure 4.85 illustrates a model of the case when n2 = 3 and s = −5 for γ.

Figure 4.85 A model of the case when n2 = 3 and s = −5 for γ.
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Some cases when there could be bypasses c along γ in Figure 4.85 are represented as the

result of attaching bypass in Figure 4.86 (a), (b) and (c). If we attach a bypass along

6−7−8, 11−12−13 and 26−1−2 which is the subcase 3, then we obtain a destabilization

of U2 and after the destabilization we see that the n2 becomes 2 and s becomes −3. If we

attach a bypass along 19−20−21 which is the subcase 7, then we obtain a destabilization

of U2 and after the destabilization we see that the n2 becomes 2 and s becomes −1.

(a) (b) (c)

Figure 4.86 a) ΓA after bypass along 6 − 7 − 8, b) ΓA after bypass along 11 − 12 − 13

and 26− 1− 2, c) ΓA after bypass along 19− 20− 21.

2. Figure 4.87 illustrates a model of the case when n2 = 3 and s = −5 for γ′.

Figure 4.87 A model of the case when n2 = 3 and s = −5 for γ′.

All the cases when there could be bypasses c along γ′ in Figure 4.87 are represented as

the result of attaching bypass in Figure 4.88 (a), (b), (c) and (d). If we attach a bypass

along 3 − 4 − 5, 5 − 6 − 7, 8 − 9 − 10 and 10 − 1 − 2, then we would obtain a convex

sphere S with disconnected dividing set, contradicting tightness. If we attach a bypass

along 1− 2− 3, 2− 3− 4, 6− 7− 8 and 7− 8− 9 which is the case when c ∩ (P ′1 ∪ P ′2)

has no components, then we obtain a destabilization of U2 and after the destabilization

we see that the n2 becomes 2 and s becomes −3.
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(a) (b) (c) (d)

Figure 4.88 a) ΓA after bypass along 1 − 2 − 3, b) ΓA after bypass along 2 − 3 − 4,

c) ΓA after bypass along 6− 7− 8, d) ΓA after bypass along 7− 8− 9.

Proof of the Claim 4.3 In the case when n2 = 2 and |s| > 5 there will be a bypass c

along γ and along γ′. We need to see how attaching it will affect the dividing curves on

S. If c∩(P ′1∪P ′2) = ∅, then when attaching the bypass to A ⊂ S, we can destabilize U2 in

the complement of U1. If c∩ (P ′1∪P ′2) has one component, the possibilities of c are shown

in Figure 4.89. For s > 5, we must consider the 1st, and 3rd configurations in Figure

4.89. If c is a subset of γ we see that in all cases that the dividing set on S is disconnected

after attaching the bypass. This contradicts the tightness of the contact structure so such

bypasses never exist. If c is a subset of γ′ then we see that U2 destabilizes for all cases.

For s < −5 one can similarly see that either a bypass attachment leads to a disconnected

dividing set for S, and so does not exist, or destabilizes U2.

We are left to consider the case when n2 = 2 and s = 1, 3,−1, or −3. We will do a case

by case analysis of these.

1 2 3 4

Figure 4.89 The 4 subcases if c ∩ (P ′1 ∪ P ′2) has one component when n2 = 2.

Now, in the case when n2 = 2, we will do case by case analysis for the slopes s = 1, 3,−1

and −3, respectively as follows.

3.1 Let s = 1.

1. Figure 4.90 illustrates a model of the case when n2 = 2 and s = 1 for γ.
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Figure 4.90 A model of the case when n2 = 2 and s = 1 for γ.

All the cases when there could be bypasses c along γ in Figure 4.90 are represented as

the result of attaching bypass in Figure 4.91 (a) and (b). If we attach a bypass along

2−3−4 and 4−1−2, then we would obtain a convex sphere S with disconnected dividing

set, contradicting tightness. It is clearly seen that U2 was not destabilized since it has

tb = −3 as seen in Figure 4.91 (a) and (b).

(a) (b)

Figure 4.91 a) ΓA after bypass along 1− 2− 3, b) ΓA after bypass along 3− 4− 1.

2. Figure 4.92 illustrates a model of the case when n2 = 2 and s = 1 for γ′.

Figure 4.92 A model of the case when n2 = 2 and s = 1 for γ′.
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All the cases when there could be bypasses c along γ′ in Figure 4.92 are represented as

the result of attaching bypass in Figure 4.93 (a) and (b). If we attach a bypass along

1 − 2 − 3 and 3 − 4 − 1, then we would obtain a convex sphere S with disconnected

dividing set, contradicting tightness. If we attach a bypass along 2 − 3 − 4, then we

obtain a destabilization of U2 and after the destabilization we see that the n2 becomes 1

and s = 0. If we attach a bypass along 4− 1− 2, then we do not see a destabilization of

U2 since it has still tb = −2 as seen in the Figure 4.93 (b).

(a) (b)

Figure 4.93 a) ΓA after bypass along 2− 3− 4, b) ΓA after bypass along 4− 1− 2.

3.2 Let s = 3.

1. Figure 4.94 illustrates a model of the case when n2 = 2 and s = 3 for γ.

Figure 4.94 A model of the case when n2 = 2 and s = 3 for γ.

All the cases when there could be bypasses c along γ in Figure 4.94 are represented as

the result of attaching bypass in Figure 4.95 (a) and (b). If we attach a bypass along

1− 2− 3, 3− 4− 5, 4− 5− 6, 5− 6− 7, 7− 8− 1 and 8− 1− 2, then we would obtain

a convex sphere S with disconnected dividing set, contradicting tightness. If we attach

a bypass along 2 − 3 − 4 and 6 − 7 − 8 which is the case when c ∩ (P ′1 ∪ P ′2) has no

components, then we obtain a destabilization of U2 and after the destabilization we see

that the n2 becomes 1. In Figure 4.95 (a) and (b), s, the slope of ΓA becomes 1.
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(a) (b)

Figure 4.95 a) ΓA after bypass along 2− 3− 4, b) ΓA after bypass along 6− 7− 8.

2. Figure 4.96 illustrates a model of the case when n2 = 2 and s = 3 for γ′.

Figure 4.96 A model of the case when n2 = 2 and s = 3 for γ′.

All the cases when there could be bypasses c along γ′ in Figure 4.96 are represented as

the result of attaching bypass in Figure 4.97 (a), (b) and (c). If we attach a bypass along

1− 2− 3, 3− 4− 5, 4− 5− 6, 5− 6− 7, 7− 8− 1 and 8− 1− 2, then we would obtain

a convex sphere S with disconnected dividing set, contradicting tightness. If we attach

a bypass along 2 − 3 − 4 and 6 − 7 − 8 which is the case when c ∩ (P ′1 ∪ P ′2) has no

components, then we obtain a destabilization of U2.

(a) (b) (c)

Figure 4.97 a) ΓA after bypass along 2 − 3 − 4, b) ΓA after bypass along 4 − 5 − 6,

c) ΓA after bypass along 5− 6− 7.
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3.3 Let s = −1.

1. Figure 4.98 illustrates a model of the case when n2 = 2 and s = −1 for γ.

Figure 4.98 A model of the case when n2 = 2 and s = −1 for γ.

All the cases when there could be bypasses c along γ in Figure 4.98 are represented as

the result of attaching bypass in Figure 4.99 (a), (b), (c) and (d). If we attach a bypass

along 1− 2− 3 and 5− 6− 7, then we would obtain a convex sphere S with disconnected

dividing set, contradicting tightness. If we attach a bypass along 2− 3− 4 and 8− 1− 2

which are the subcase 2 and along 4− 5− 6, 6− 7− 8 which are the subcase 4, then we

obtain a destabilization of U2 and after the destabilization we see that the n2 becomes 1

and s = 0.

(a) (b) (c) (d)

Figure 4.99 a) ΓA after bypass along 2 − 3 − 4, b) ΓA after bypass along 4 − 5 − 6,

c) ΓA after bypass along 6− 7− 8, d) ΓA after bypass along 8− 1− 2.

2. Figure 4.100 illustrates a model of the case when n2 = 2 and s = −1 for γ′.

Figure 4.100 A model of the case when n2 = 2 and s = −1 for γ′.
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There does not exist any bypass c along γ′, so we can not use γ′ to destabilize U2.

3.4 Let s = −3.

1. Figure 4.101 illustrates a model of the case when n2 = 2 and s = −3 for γ.

Figure 4.101 A model of the case when n2 = 2 and s = −3 for γ.

If we attach a bypass along 4− 5− 6, 7− 8− 9, 13− 14− 15, 16− 1− 2 which are the

subcase 3 and along 8 − 9 − 10, 12 − 13 − 14 and 15 − 16 − 1 which are the subcase 4,

then we obtain a destabilization of U2 and after the destabilization we see that the n2

becomes 1 and s = −1.

2. Figure 4.102 illustrates a model of the case when n2 = 2 and s = −3 for γ′.

Figure 4.102 A model of the case when n2 = 2 and s = −3 for γ′.

All the cases when there could be bypasses c along γ′ in Figure 4.102 are represented as

the result of attaching bypass in Figure 4.103 (a) and (b). If we attach a bypass along

2− 3− 4, 3− 4− 5, 5− 6− 1 and 6− 1− 2, then we would obtain a convex sphere S with

disconnected dividing set, contradicting tightness. If we attach a bypass along 1− 2− 3

and 4 − 5 − 6 which is the case when c ∩ (P ′1 ∪ P ′2) has no components, then we obtain

a destabilization of U2 and after the destabilization we see that the n2 becomes 1 and

s = −1.
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(a) (b)

Figure 4.103 a) ΓA after bypass along 1− 2− 3, b) ΓA after bypass along 4− 5− 6.

After all, we classified the Legendrian Positive Whitehead links up to Legendrian isotopy

and see that this link type is not Legendrian simple because of the fact that there are

two Legendrian representatives with the maximal Thurston-Bennequin invariant and the

same rotation number.
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CHAPTER 5

FUTURE PLANS

The (Negative) Whitehead LinkW− is topologically isotopic to the link O1∪O2, with O1

being the twist knot Km when m = −1 and O2 be the topological unknot B illustrated

in Figure 4.7. See Figure 5.1. Take the Legendrian class of W− as U1 ∪ U2, such that U1

and U2 are a Legendrian representative of O1 and O2, respectively.

Figure 5.1 Whitehead Link W− (left) is isotopic to O1 ∪O2 (right).

We cannot realizeW− with components consisting of Legendrian unknots with maximal tb

since we have the inequality that tb (W−) ≤ −5 by [21] for any Legendrian representative

of W−. In Figure 1.3, we see two Legendrian representatives of the Whitehead link W−

with maximal tb such that the components have Thurston-Bennequin number −1 and −4

for one of the Legendrian respresentative of the link, and the components have Thurston-

Bennequin number −3 and −2 for the other one. One can ask whether each of these

two Legendrian representations of the Whitehead link W− with maximal tb are unique

representation or not. The other problem waiting an answer is a given Legendrian W−

say U1 ∪ U2, then this link can be destabilized until each component has tb equal to

−4,−3,−2, or −1. We have shown the following.

Proposition 5.1 A Legendrian realization of the (negative) Whitehead link W− may be

destabilized unless (tb(U1), tb(U2)) equals (−4,−1), (−3,−2), (−2,−3), or (−1,−4).

This proposition will be proven in a forthcoming paper.
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The other problems below whose answers we are looking for in future research are steps

for the classification of the Legendrian negative Whitehead links in (S3, ξstd) giving as a

conjecture below. The above proposition which we have proved is the other step for the

classification.

Problem 5.1 Let U1∪U2 be a Legendrian realization of the (negative) Whitehead linkW−

having maximal tb = −5 such that (tb(U1), tb(U2)) equals (−4,−1), (−3,−2), (−2,−3),

or (−1,−4). Is there a unique representation of each U1 ∪U2 with maximal tb = −5 for

each (tb(U1), tb(U2))?

Problem 5.2 Let U1 ∪ U2 be a Legendrian realization of the (negative) Whitehead link

W−. Can U1 be destabilized if U2 is stabilized once when (tb(U1), tb(U2)) = (−4,−1)?

Can U2 be destabilized if U1 is stabilized once when (tb(U1), tb(U2)) = (−3,−2)? If U2 is

stabilized so its rotation number is 0 then is there a Legendrian isotopy interchanging U1

and the stabilized U2.

To summarize for classification we should prove the next conjecture.

Conjecture 5.2 The Legendrian (negative) Whitehead link W− in (S3, ξstd) is Legen-

drian simple and every Legendrian representative of W− is a stabilization of one of

the links indicated in Problem 5.1 that is to one whose components have Thurston-

Bennequin invariant and rotation numbers (tb, r) either (−1, 0) and (−4,±1) or (−3, 0)

and (−2,±1).
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