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SUMMARY

We study the effect of surgery on transverse knots in contact 3-manifolds by examining

its effect on open books, the Heegaard Floer contact invariant, and tightness in general. We

first compare surgery on transverse knots to that on Legendrian knots. We then show how

to give an open book decomposition for most admissible and all inadmissible transverse

surgeries on binding components of open books. We show that if we perform inadmissible

transverse r-surgery on the connected binding of a genus g open book that supports a tight

contact structure, then this operation preserves tightness if the surgery coefficient r is greater

than 2g − 1. We also give criteria for when positive contact surgery on Legendrian knots

will result in an overtwisted manifold. We explicitly show that all positive contact surgeries

on Legendrian figure-eight knots in (S3, ξstd) result in overtwisted contact manifolds. Some

results from this thesis have previously appeared in [8].

x



CHAPTER I

INTRODUCTION

On contact 3-manifolds, surgery on Legendrian knots is a well-storied affair, but much less

well-studied is surgery on transverse knots. In this paper, we will systematically study

transverse surgery and its effect on open book decompositions, the Heegaard Floer con-

tact invariant, and tightness. Along the way, we will see that many of the past results

for surgery on Legendrian knots become more natural when phrased in the language of

transverse surgery.

1.1 Admissible and Inadmissible Transverse Surgery

Ding and Geiges [9] show that any contact manifold can be obtained by contact surgery

on an oriented Legendrian link in S3 with its standard contact structure. Our first result

combines with a previous result of Baldwin and Etnyre [6] to extend this statement to

transverse surgery.

Theorem 1.1.1. Every contact 3-manifold (M, ξ) can be obtained by transverse surgery

on some oriented link in (S3, ξstd). In particular, a single contact (−1)−surgery (resp.

(+1)−surgery) on a Legendrian knot corresponds to admissible (resp. inadmissible) trans-

verse surgery on a transverse knot.

In the other direction, Baldwin and Etnyre [6] showed that for a large range of slopes,

admissible transverse surgery correspons to negative contact surgery on a Legendrian link

in a neighbourhood of the transverse knot, but that for certain slopes, admissible transverse

surgery was not comparable to any surgery on a Legendrian link. For inadmissible surgeries,

we show:

Theorem 1.1.2. Every inadmissible transverse surgery on a transverse knot corresponds to

a positive contact surgery on a Legendrian approximation.
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For contact surgeries on oriented Legendrian knots where the surgery coefficient has

numerator and denominator larger than 1, there is more than one choice of contact structure

for the surgery. These correspond to ways to extend the contact structure over the surgery

torus, and can be pinned down by choosing signs on bypass layers used to construct the

surgery torus. We show that inadmissible transverse surgery corresponds to the contact

structure ξ− obtained by choosing all negative bypass layers. Because of this, results that

have been proved with some difficulty in the Legendrian setting are shown to be more

naturally results about transverse knots and transverse surgery. As an example of this, we

reprove a result of Lisca and Stipsicz [48] (in the integral case) and Golla [32] (in the rational

case).

Corollary 1.1.3. For any Legendrian knot L and a rational number r > 0, let ξ−r (L) be the

contact structure obtained by choosing all negative signs on the bypasses for contact (+r)-

surgery on L. If L− is a negative stabilisation of L, then ξ−r (L) is isotopic to ξ−r+1(L−).

1.2 Open Book Decompositions

Given any 3-manifold, there is an open book decomposition (Σ, φ) describing it. Here Σ is

a surface with boundary and φ is an orientation preserving diffeomorphism of Σ fixing its

boundary. The manifold is reconstructed from Σ and φ as follows. The mapping torus of Σ

with monodromy φ is a 3-manifold with torus boundary components; a closed manifold is

now obtained by gluing in solid tori to the boundary components such that {∗ ∈ ∂Σ} × S1

bounds a disc and a longitude (the binding) is mapped to the boundary components of the

surfaces (the pages). We can define a contact structure on an open book decomposition

that respects the decomposition, turning the binding into a transverse link. Open books

support a unique contact structure up to isotopy, and thanks to work of Giroux [31], contact

structures are supported by a unique open book up to a stabilisation operation.

Baker, Etnyre, and van Horn-Morris [2] demonstrated that rational open books, ie. those

where push-offs of the boundary of the pages are non-integral cables of the binding compo-

nents (or more than one boundary component of a page meet the same binding component),

also support a unique contact structure up to isotopy. The curve that a page traces out on
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the boundary of a neighbourhood of the binding is calling the page slope. Baker, Etnyre, and

van Horn-Morris demonstrated that topological surgery on a binding component induces a

rational open book, and if the surgery coefficient is less than the page slope, then the in-

duced open book supports the contact structure obtained by admissible transverse surgery

on that binding component. We look at surgery on a binding component with coefficient

greater than the page slope and show the following.

Theorem 1.2.1. The open book induced by surgery on a binding component with coefficient

greater than the page slope supports the contact structure coming from inadmissible transverse

surgery on the binding component.

Compare this with Hedden and Plamenevskaya [34], who discuss the same construction

in the context of Heegaard Floer invariants. They track properties of the contact structure

induced by surgery on the binding of an open book. We can now identify the contact

structure they discuss as the one induced by inadmissible transverse surgery.

Construction 1.2.2. We construct explicit integral open books that support admissible

transverse surgery (less than the page slope) and inadmissible transverse surgery (with any

surgery coefficient) on a binding component of an open book.

1.3 Tight Surgeries

The Heegaard Floer package provided by Ozsváth and Szabó [54, 55] gives very powerful

3-manifold invariants, which are still being mined for new information. Ozsváth and Szabó

have shown [56] how a fibred knot gives rise to an invariant c(ξ) of the contact structure

supported by the open book induced by the fibration. They proved that the non-vanishing

of this invariant implies the contact structure is tight. Hedden and Plamenevskaya [34]

showed that the same set-up and invariant exists when the knot is rationally fibred, ie. it is

rationally null-homologous and fibred.

In light of Theorem 1.2.1, Hedden and Plamenevskaya proved that ifK is a fibred knot in

(M, ξ) supporting ξ, and the contact class of ξ is non-vanishing, then inadmissible transverse

r-surgery, for r ≥ 2g, where g is the genus of K, preserves the non-vanishing of the contact
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invariant. We extend this in two ways: first, we increase the range of the surgery coefficient

to allow r > 2g−1, and second, we replace the non-vanishing of the Heegaard Floer contact

invariant with the weaker condition of tightness.

Theorem 1.3.1. If K is an integrally fibred transverse knot in (M, ξ) supporting ξ, where

ξ is tight (resp. has non-vanishing Heegaard Floer contact invariant), then inadmissible

transverse r-surgery for r > 2g − 1 results in a tight contact manifold (resp. a contact

manifold with non-vanishing Heegaard Floer contact invariant).

Given a knot K ⊂ M , consider M × [0, 1], where K ⊂ M × {1}. Let g4(K) be the

minimum genus of a surface in M × [0, 1] with boundary K. When K ⊂ (M, ξ) is a non-

fibred transverse knot, and there is a Legendrian approximation L of K with tb(L) = 2g−1,

then we can conclude the following theorem. Since its proof is very similar to that of

Theorem 1.3.1, we omit it; note that this result can also be extracted from the proof of a

similar result of Lisca and Stipsicz for knots in (S3, ξstd) [45].

Theorem 1.3.2. If K is a null-homologous transverse knot in (M, ξ) with g4(K) > 0, where

ξ has non-vanishing contact class, and there exists a Legendrian approximation L of K with

tb(L) = 2g4(K)−1, then inadmissible transverse r-surgery on K preserves the non-vanishing

of the contact class for r > 2g4(K)− 1.

To put these results in context, Lisca and Stipsicz [48] have a similar result to The-

orem 1.3.2 for r ≥ 2g(K) surgery on transverse knots K ⊂ (S3, ξstd), where sl(K) =

2g(K) − 1. Mark and Tosun [51] generalise another result of Lisca and Stipsicz [45] to

reduce that to r > 2g4(K) − 1, where sl(K) = 2g4(K) − 1. We do not recover their re-

sults entirely, as they do not require that there exists a Legendrian approximation with

tb = 2g − 1 or tb = 2g4 − 1 respectively. In addition, Golla [32] can lower the surgery

coefficient to r ≥ 2τ(K) for knots in (S3, ξstd) with sl(K) = 2τ(K)−1 (along with requiring

other technical conditions), where τ(K) is the Heegaard Floer tau invariant; under a further

technical condition, he can lower the coefficient to r > 2τ(K)− 1. However, we also discuss

knots outside of S3, which the theorems of Lisca and Stipsicz, Mark and Tosun, and Golla
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do not. Hedden and Plamenevskaya’s [34] result does discuss knots outside of S3, and The-

orem 1.3.1 is a generalisation of their result. In particular, Theorem 1.3.1 does not require

non-vanishing of the contact invariant.

One might hope for an analogue of Theorem 1.3.1 for links, ie. that given an open book

with multiple boundary components supporting a tight contact structure, sufficiently large

inadmissible transverse surgery on every binding component might yield a tight manifold.

We construct examples to show that no such theorem can exist. In particular, we construct

the following examples.

Construction 1.3.3. For every g ≥ 0 and n ≥ 2, there is an open book of genus g with

binding a link with n components supporting a Stein fillable contact structure, where anytime

inadmissible transverse surgery is performed on all the binding components, the result is

overtwisted.

1.4 Fillability and Universal Tightness

Seeing that tightness and non-vanishing of the Heegaard Floer contact invariant is preserved

under inadmissible transverse surgery for large enough surgery coefficients, it is natural to ask

whether other properties are preserved. Other properties that are preserved under contact

(−1)-surgery are those of the various types of fillability: Stein, strong, or weak fillability.

Results of Eliashberg [13], Weinstein [62], and Etnyre and Honda [22] show that contact

(−1)-surgery preserves fillability in each of these categories.

Given a contact manifold (M, ξ), and a cover M ′ → M , there is an induced contact

structure ξ′ on M ′. We say (M, ξ) is universally tight if ξ is tight and the induced contact

structure on every cover is also tight; otherwise, we call the contact structure virtually

overtwisted. Since the fundamental group of a compact 3-manifold is residually finite (by

geometrization), universal tightness is equivalent to requiring that all finite covers of (M, ξ)

remain tight [35].

For large surgery coefficients, inadmissible transverse surgery adds a very small amount of

twisting to the contact manifold. One might therefore expect that a sufficiently large surgery

coefficient might preserve properties of the original contact structure, as in Theorem 1.3.1
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and several other prior results. However, using classification results of Honda [36] and

calculations of Lisca and Stipsicz [46], we construct examples of open books of all genera

that show that inadmissible transverse surgery does not in general preserve the property

of being universally tight, nor any of the fillability categories, even with arbitrarily large

surgery coefficient.

Construction 1.4.1. For every g, there is a transverse knot of genus g in a Stein fillable

universally tight contact manifold, where sufficiently large inadmissible transverse surgery

preserves the non-vanishing of the contact class, but where no inadmissible transverse surgery

is universally tight or weakly semi-fillable.

1.5 Overtwisted Surgeries

Lisca and Stipsicz [47] show that given a Legendrian L ⊂ (S3, ξstd) with tb(L) ≤ −2,

contact (+1)-surgery on L has vanishing Heegaard Floer contact invariant. It is natural to

ask whether these are overtwisted. We answer this question for a large class of knots, not

just in S3, leaving out only a finite set of (tb, rot) pairs for each knot genus g. A sample

result of this type is as follows.

Theorem 1.5.1. Let L be a null-homologous Legendrian in (M, ξ), where c1(ξ) is torsion,

with tb(L) ≤ −2 and |rot(L)| ≥ 2g(L) + tb(L), and let T be a positive transverse push-off

of L. Then inadmissible transverse (tb(L) + 1)-surgery on T is overtwisted. If rot(L) >

2g(L) + 1 + tb(L) (that is, if sl(T ) < −2g(L)− 1), then all inadmissible transverse surgeries

on T are overtwisted.

Note that inadmissible transverse (tb(L)+1)-surgery on T is equivalent to contact (+1)-

surgery on L. Using this and its generalisation to contact (+n)-surgery, we derive the

following corollary.

Corollary 1.5.2. For every genus g and every positive integer n ≥ 2, there is a negative

integer t such that if L is a null-homologous Legendrian knot of genus g and tb(L) ≤ t, then

contact (+n)-surgery on L is overtwisted.

6



Lisca and Stipsicz [47] show that all contact (+1)-surgeries on negative torus knots are

overtwisted. Our results allow for the following generalisation.

Corollary 1.5.3. All inadmissible transverse surgeries on negative torus knots in (S3, ξstd)

are overtwisted.

Note that using the above results, we cannot show that all inadmissible transverse surg-

eries on the Figure Eight knot in (S3, ξstd) are overtwisted. We obtain this result using

convex surface theory methods in Section 6.3.

Theorem 1.5.4. All inadmissible transverse surgeries on figure-eight knots in (S3, ξstd) are

overtwisted.

1.6 Knot Invariants

Given a knot typeK in a contact manifold (M, ξ), we can consider all regular neighbourhoods

of transverse representatives of K. We define the contact width of K be the supremum of

the slopes of the characteristic foliation on the boundary of these neighbourhoods. The

following follows from Theorem 1.3.1. Note that the contact width as first defined in [24] is

the reciprocal of our invariant, as is their convention for the slope of characteristic foliations.

Corollary 1.6.1. Let K be an integrally fibred transverse knot in a tight contact manifold

(M, ξ) such that the fibration supports the contact structure ξ. If the maximum Thurston–

Bennequin number of a Legendrian approximation of K is 2g − 1, then w(K) = 2g − 1.

We also extend an invariant of transverse knots defined by Baldwin and Etnyre [6], and

determine its value in certain cases.

1.7 Organisation of Paper

Section 2 contains a description of Legendrian and Transverse surgery, and proofs of The-

orem 1.1.1. Section 3 describes open book decompositions and, proofs of Theorem 1.1.2,

Corollary 1.1.3, Theorem 1.2.1, and the construction of open books supporting transverse

surgery on a binding component (Construction 1.2.2). Section 4 discusses Heegaard Floer

theory, proves Theorem 1.3.1 and Corollary 1.6.1, and discusses Construction 1.3.3. Section 5

7



discusses fillability, universal tightness, and Construction 1.4.1. Finally, Section 6 discusses

when the result of surgery can be proved to be overtwisted, and proves Theorem 1.5.1.
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CHAPTER II

CONTACT AND TRANSVERSE SURGERY

In this section, we will give a background to the contact geometric concepts used throughout

the paper. We will then describe contact and transverse surgery, and see that all contact

surgeries can be re-written in terms of transverse surgeries.

2.1 Background

We begin with a brief reminder of standard theorems about contact structures on 3-manifolds

which we will use throughout this paper. Further details can be found in [16,19].

2.1.1 Farey Graph

The Farey graph is the 1-skeleton of a tessellation of the hyperbolic plane by geodesic

triangles shown in Figure 1, where the endpoints of the geodesics are labeled. Our convention

is to use cardinal directions (specifically, North, East, South, and West) to denote points on

the circle. These names will always refer to their respective locations, even as the labeling

will move around. There is a standard labeling, shown in Figure 1, which is as follows: let

West be labeled ∞ = 1/0 and East be labeled 0. The third unlabeled point of a geodesic

triangle with two corners already labeled a/b and c/d is given the label (a + c)/(b + d).

We denote this Farey sum operation a/b ⊕ c/d. In the Southern hemisphere, by treating 0

as 0/1, labeling the corners of geodesic triangles using the Farey sum suffices to label each

endpoint of every geodesic with a positive number. Thus South gets labeled 1 = 1/1, and so

on. In the Northern hemisphere, we label with negative numbers by treating 0 as 0/(−1).

Thus North gets labeled −1 = 1/(−1), and so on. Every rational number and infinity is

found exactly once as a label on the Farey graph.

Remark 2.1.1. For notation purposes, we denote the result of the Farey sum of a/b and c/d

by a/b⊕ c/d. We also denote r ⊕ · · · ⊕ r, where there are n copies of r, as n · r. In general,

we use the ⊕ operation with two fractions even when they are not connected by a geodesic
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on the Farey graph. While in this case, there is no direct relation to operations on the Farey

graph, we note that if points labeled r and s are connected by a geodesic in the graph, such

that r is counter-clockwise of s and rs > 0, then n · r ⊕m · s is the label of some point in

between those labeled r and s and counter-clockwise of s.

Other labelings of the Farey graph can be created by labeling any two points connected

by a geodesic with 0 and ∞. We can then construct a labeling by an analogous process to

the above. In fact, this labeling is the result of a diffeomorphism applied to the hyperbolic

plane with the standard labeling, but we will not need that fact explicitly here.

Remark 2.1.2. If we consider each label as a reduced fraction in the obvious way (where the

denominator of a negative number is negative), then each fraction naturally corresponds to

a vector

p

q
↔

q
p

 .

The vectors corresponding to ∞ and 0, with which we started our labeling, constitute a

basis for Z2. Hence the vectors corresponding to the endpoints of any geodesic in the graph

form a basis for Z2.

2.1.2 Negative Continued Fractions

We can write any negative rational number r as a negative continued fraction (negative

because we are subtracting each successive fraction instead of the usual addition) in the

following form

r = a1 + 1−
1

a2 −
1

a3 −
1

· · · − 1
an

,

where ai ≤ −2 are integers. We have a1 + 1 so that other results are easier to state. We

denote this negative continued fraction as r = [a1 +1, a2, . . . , an]. Given any r, we can create

this decomposition by letting a1 + 1 = brc; we then set r′ = 1/(a1 + 1− r) = [a2, . . . , an], so

a1 = br′c, and so on.
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Figure 1: The Farey graph.
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Remark 2.1.3. If an = −1, then [a1 + 1, a2, . . . , an−1,−1] = [a1 + 1, a2, . . . , an−1 + 1].

2.1.3 Convex Surfaces

We introduce the basics of convex surfaces. More details can be found in [15].

A surface Σ (possibly with boundary) in a contact manifold (M, ξ) is called convex if

there exists a contact vector field v such that v is transverse to Σ. Here, a contact vector

field is a vector field whose flow preserves the contact planes. Using the contact vector field

v, it is not hard to see that convex surfaces have a neighbourhood contactomorphic to Σ×R

with an R-invariant contact structure, called a vertically-invariant neighbourhood of Σ.

Given a surface Σ in (M, ξ) and the characteristic foliation F on Σ induced by ξ, we say

that a multi-curve Γ on Σ divides F if

• Σ\Γ = Σ+ t Σ−,

• Γ is transverse to the singular foliation F , and

• there is a volume form ω on Σ and a vector field w such that

– ±Lwω > 0 on Σ±,

– w directs F , and

– w points out of Σ+ along Γ.

Theorem 2.1.4 (Giroux [30]). If Σ ⊂ (M, ξ) is an orientable surface, and its boundary (if

it is non-empty) is Legendrian, then Σ is a convex surface if and only if its characteristic

foliation has a dividing set.

Moreover, if in a standard neighbourhood of Σ the contact form is given by β + u dt,

where β is a 1-form on Σ, u : Σ → R is some function, and t is the coordinate in the R

direction, then the dividing set is given by

Γ = {x ∈ Σ|u(x) = 0}.

Giroux proved in [30] that convex surfaces are generic, in the following sense:
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Theorem 2.1.5 (Giroux [30]). A closed surface Σ is C∞-close to a convex surface. If Σ is

a surface with Legendrian boundary such that the twisting of the contact planes along each

boundary component is non-positive when measured against the framing given by Σ, then Σ

can be C0-perturbed in a neighbourhood of the boundary and C∞-perturbed on its interior to

be convex.

Given a convex surface Σ with dividing curves Γ, and any singular foliation F on Σ

divided by Γ, then Σ can be perturbed to a convex surface with characteristic foliation F .

In particular, this last statement shows that the contact structure in a vertically-invariant

neighbourhood of a convex surface is determined entirely by its dividing curves.

A properly-embedded graph G on a convex surface Σ is non-isolating if G intersects the

dividing curves Γ transversely, and each component of Σ\G has non-trivial intersection with

Γ.

Theorem 2.1.6 (Honda [35]). If G is a non-isolating properly-embedded graph on a convex

surface Σ, then there is an isotopy of Σ relative to its boundary such that G is contained

in the new characteristic foliation. If G is a simple closed curve, then the twisting of the

contact planes along L with respect to the framing on G given by Σ is equal to

tw(G,Σ) = −|G ∩ Γ|
2

.

This is commonly called the Legendrian realisation principle. In particular, a simple

closed curve in Σ that is non-separating can always be Legendrian realised on a con-

vex surface. If L is a null-homologous Legendrian knot bounding a convex surface, then

tw(L,Σ) = tb(L), and so tb(L) = −|L ∩ Γ|/2.

Giroux has shown that there are restrictions on dividing curves in tight manifolds. This

result is often called Giroux’s Criterion.

Theorem 2.1.7 (Giroux [30]). If Σ = S2 is convex, then a vertically-invariant neighbour-

hood of Σ is tight if and only if the dividing set Γ is connected. If Σ 6= S2, then a vertically-

invariant neighbourhood of Σ is tight if and only if Γ has no contractible components.

Given two convex surfaces Σ1 and Σ2 that intersect in a Legendrian curve L, Kanda [41]

and Honda [35] have shown that between each intersection of L with ΓΣ1 is exactly one
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intersection of L with ΓΣ2 , as in Figure 2. Honda further showed that there is a way to

“round edges” at L and get a new convex surface. The dividing set on the new surface is

derived from ΓΣi as in Figure 3.

22 JOHN B. ETNYRE

4. Distinguishing contact structures and the first
classification results

The power of convex surfaces is contained largely in Theorem 2.26 in
conjunction with the ability to transfer information from one convex surface
to another one meeting it along a Legendrian curve.

Lemma 4.1 (Kanda 1997, [6]; Honda 2000, [3]). Suppose that Σ and Σ′ are
convex surfaces, with dividing curves Γ and Γ′, and ∂Σ′ ⊂ Σ is Legendrian.
Let S = Γ ∩ ∂Σ′ and S′ = Γ′ ∩ ∂Σ′. Then between each two adjacent points
in S there is one point in S′ and vice verse. See Figure 10. (Note the sets

Figure 10. Transferring information about dividing curves
from one surface to another. The top and bottom of the
picture are identified.

S and S′ are cyclically ordered since they sit on ∂Σ′)

To prove this lemma one just considers a “standard model”. More specif-
ically, consider R

3/ ∼, where (x, y, z) ∼ (x, y, z + 1), with the contact struc-
ture ξ = ker(sin(2nπz)dx + cos(2nπz)dy. Let Σ = {(x, y, z) : x = 0} and
Σ′ = {(x, y, z) : y = 0, x ≥ 0}. Note both these surface are convex and the
boundary of Σ′ is a Legendrian curve in Σ. In Figure 10 we see the situation
for n = 2. The choice of n in this model is clearly determined by tw(∂Σ′,Σ′).
Lemma 4.1 clearly follows form considering this model.

Exercise 4.2. Show that the situation described in Lemma 4.1 can always be
modeled as described above.

Using this model it is also easy to see how to “round corners”.

Lemma 4.3 (Honda 2000, [3]). Suppose that Σ and Σ′ are convex surfaces,
with dividing curves Γ and Γ′, and ∂Σ′ = ∂Σ is Legendrian. Suppose Σ
and Σ′ are modeled as above with Σ = {(x, y, z) : x = 0, y ≥ 0}, then we
may form a surface Σ′′ from S = Σ ∩ Σ′ by replacing S intersect a small
neighborhood N of ∂Σ (thought of as the z-axis) with the intersection of N
with {(x, y, z) : (x − δ)2 + (y − δ)2 = δ2} For a suitably chosen δ, Σ′ will

Σ1

Σ2

Figure 2: Two convex surfaces intersecting in a Legendrian curve. This figure is reproduced
from [15, Figure 10]
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be a smooth surface (actually just C1, but it can then be smoothed by a C1

small isotopy which of course does not change the characteristic foliation)
with dividing curve as shown in Figure 11.

Figure 11. Rounding a corner between two convex surfaces.

Remark 4.4. Note this lemma says that as you round a corner then the
dividing curves on the two surfaces connect up as follows. Moving from Σ
to Σ′ the dividing curves move up (down) if Σ′ is to the right (left) of Σ.

4.1. Neighborhoods of Legendrian curves. We can now give a simple
proof of the following result which is essentially due to Makar-Limanov [14],
but for the form presented here see Kanda [6]. Though this theorem seems
easy, it has vast generalizations which we indicate below.

Theorem 4.5 (Kanda 1997, [6]). Suppose M = D2×S1 and F is a singular
foliation on ∂M that is divided by two parallel curves with slope 1

n (here slope
1
n means that the curves are homotopic to n[∂D2 × {p}] + [{q}× S1] where
p ∈ S1 and q ∈ ∂D2). Then there is a unique tight contact structure on M
whose characteristic foliation on ∂M is F .

Proof. To see existence simply consider a standard neighborhood of a Leg-
endrian knot or similarly consider the tori Ta in the proof of Lemma 3.8.

Suppose we have two tight contact structures ξ0 and ξ1 on M inducing F
as the characteristic foliation on ∂M. We will find a contactomorphism from
ξ0 to ξ1 (in fact this contactomorphism will be isotopic to the identity). Let
f : M → M be the identity map. By Theorem 1.1 we can isotop f rel. ∂M to
be a contactomorphism in a neighborhood N of ∂M. Now let T be a convex
torus in N isotopic to ∂M. Moreover we can assume that the characteristic
foliation on T is in standard form. We know the slope of the Legendrian
divides is 1

n and we choose the slope of the ruling curves to be 0. Let D
be a meridianal disk whose boundary is a ruling curve. We can perturb D
so that it is convex and using Lemma 4.1 we know that the dividing curves
for D intersect the boundary of D in two points. Moreover, since there
are no closed dividing curves on D (since the contact structure is tight, see

Σ1

Σ2

Figure 3: “Rounding edges” of intersecting convex surfaces. This figure is reproduced
from [15, Figure 11]

A special case of “rounding edges” at the intersection of two convex surfaces is when Σ2

is a bypass. This is when Σ2 is a disc with Legendrian boundary with tb = −1, such that

Σ1 ∩Σ2 is an arc α intersecting ΓΣ1 in three points, two of which are the endpoints of α; we

further require that the endpoints of α are elliptic singularities of the characteristic foliation

on Σ2. By the above discussion, the dividing set ΓΣ2 is a single arc with endpoints on α. By

Theorem 2.1.5, we can arrange for there to be a unique hyperbolic singularity on ∂Σ2 such
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that lies on α and is between the two points α∩ΓΣ2 . The sign of this hyperbolic singularity

is called the sign of the bypass.

Honda proved [35] that in a neighbourhood of Σ1∪Σ2, there is a one-sided neighbourhood

Σ1× [0, 1] of Σ1 such that Σ1×{0, 1} is convex, the dividing curves on Σ1×{0} are ΓΣ1 , and

the dividing curves on Σ1×{1} are ΓΣ1 changed along a neighbourhood of α as in Figure 4.

We say that the convex surface Σ1×{1} is obtained from Σ1 by a bypass attachment along

Σ2.

α
>

Figure 4: The result of performing a bypass on the dividing curves.

If Σ1 is a convex T 2 (resp. T 2\D2) with 2 parallel dividing curves, then we can choose the

characteristic foliation on Σ1 such that it is foliated by parallel curves that are not parallel

to the dividing curves, called ruling curves. Under these hypotheses, Honda proved [35] how

the slopes of the dividing curves change under bypass attachments along a ruling curve.

Denote the slope of curves parallel to ( qp ) by p/q, as in the Farey graph.

Theorem 2.1.8 (Honda [35]). Let Σ1 have two dividing curves of slope s and ruling curves

of slope r. Let Σ2 be a bypass attached to Σ1 along a ruling curve. Then the result Σ′1 of a

bypass attachment along Σ2 has two dividing curves with slope s′, where s′ is the label on the

Farey graph clockwise of r and counter-clockwise of s, and such that s′ is the label closest to

r with an edge to s.

Remark 2.1.9. If Σ2 is a bypass for Σ1 attached along the back of Σ1, then the bypass

attachment will change ΓΣ1 in a manner similar to Figure 4 but reflected in the vertical

axis. Theorem 2.1.8 will hold after reversing the words “clockwise” and “counter-clockwise”.

Bypasses are only useful if we can find them. To that effect, we have the Imbalance

Principle, which allows us to find bypasses on annuli.

15



Theorem 2.1.10 (Honda [35]). Let Σ and A = S1 × [0, 1] be two convex surfaces with

Legendrian boundary, such that Σ ∩ A = S1 × {0}. Then, if the twisting of the contact

planes along the boundary of A satisfies

tw(S1 × {0}, A) < tw(S1 × {1}, A) ≤ 0,

then there is a bypass for Σ along A, ie. some subsurface of A is a bypass for Σ.

In particular, if S1 × {1} sits on a convex surface Σ′, and

∣∣ΓΣ ∩
(
S1 × {0}

)∣∣ > ∣∣ΓΣ′ ∩
(
S1 × {0}

)∣∣ ,
then the hypotheses of Theorem 2.1.10 hold, and there is a bypass for Σ along A.

2.1.4 Classification of Tight Contact Structures

We will use the following classifications to help define contact surgery. The number of

distinct tight contact structures will correspond to possible choices in performing contact

surgery. We begin with some uniqueness results.

Theorem 2.1.11 (Eliashberg [14]). There is a unique tight contact structure on B3 with

fixed characteristic foliation on the boundary.

Theorem 2.1.12 (Kanda [41]). Fix a singular foliation on the boundary of M = S1 ×D2

that is divided by two dividing curves isotopic to the core of M . Then there is a unique tight

contact structure on M up to isotopy inducing this singular foliation on the boundary.

Consider the manifold (T 2 × I, ξ), with ξ tight. Let the two boundary components be

convex with two dividing curves each, with slopes s0 and s1. If s0 and s1 are labels on the

Farey graph connected by a geodesic, then the contact manifold is called a basic slice, or

a bypass layer. If not, then the manifold can be cut up into basic slices along boundary

parallel convex tori, following the path between s0 and s1 along the Farey graph.

Theorem 2.1.13 (Honda [35]). Fix a singular foliation on the boundary ofM = T 2×I such

that it is divided by two dividing curves on T 2 × {i} for i = 0, 1 each of slope si. There is a

diffeomorphism of the Farey graph such that s0 is sent to −1 and s1 to −p
q , with p > q > 0.
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Let [a1 + 1, a2, . . . , an] be the negative continued fraction expansion of −p
q . Then there are

exactly

|(a1 + 2)(a2 + 1) · · · (an−1 + 1)an|

minimally twisting tight contact structures on M (which means that on every convex torus

parallel to the boundary of M , the slope of the dividing curves is between s0 and s1).

Remark 2.1.14. If (T 2 × I, ξ) is a basic slice, then there are exactly two tight contact

structures up to isotopy. These can be distinguished by their relative Euler class, and after

picking an orientation, we can call them positive and negative basic slices; this orientation is

chosen such that when gluing a negative (resp. positive) basic slice to the boundary of the

complement of a regular neighbourhood of a Legendrian knot, the result is the complement

of a regular neighbourhood of its negative (resp. positive) stabilisation.

We can denote a choice of tight contact structure on T 2 × I with dividing curve slopes

s0 and s1 by a choice of sign (positive or negative) on each jump of the shortest path on

the Farey graph between s0 and s1. Note that distinct sign assignations can give isotopic

contact structures. We say that the path between s0 and s1 can be shortened if there is

a sequence of labels ci, ci+1, . . . , cj−1, cj on the path such that ci and cj are connected by

a geodesic on the Farey graph. If such a sequence exists, and if the signs on the jumps

ci → ci+1, . . . , cj−1 → cj are inconsistent, then after gluing the basic slices with boundary

slopes ck and ck+1 (for k = i, . . . , j − 1), we get a basic slice with boundary slopes ci and

cj , where the contact structure is not isotopic to either of the two tight contact structures

guaranteed by Remark 2.1.14, and thus the induced contact structure is overtwisted.

2.2 Contact Surgery

We take a moment here to give conventions for topological Dehn surgery on an oriented knot

K in a 3-manifoldM . Given any longitude λ on the boundary of a regular neighbourhood N

of K, and the meridian µ of K, we define the result Mp/q(K) of p/q-surgery on K to be the

result of removing the interior of N and gluing in a D2 × S1 (sometimes called the surgery

torus) such that the curves parallel to pµ + qλ on ∂(M\N) bound a D2 in D2 × S1. The

(surgery) dual knot to K from this surgery is the image of the core of D2 × S1 in Mp/q(K).
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Now, given a contact manifold (M, ξ) and a knot L in M , L is Legendrian if its tangent

vector always lies in ξ. All Legendrian knots in this paper are oriented.

The framework for surgery on Legendrian knots, termed contact surgery, arose out of

classic work of Eliashberg [13], with a modern description provided by work of Kanda [41]

and Honda [35]. This description of contact surgery is based on work of Honda [35].

Definition 2.2.1. In this paper, whenever surgery is performed in the contact category on

a Legendrian knot, we use the adjective “contact”, and in contact r-surgery, the r is with

respect to the contact framing; thus, contact (−1)-surgery is topologically Dehn surgery with

framing 1 less than the contact framing. In some contact geometry papers, parentheses are

used to distinguish surgeries with respect to contact framings from the standard topological

surgery notation. This paper does not make such a distinction; we will be using surgery

coefficients sufficiently complicated to warrant parentheses, and we do not wish to add

ambiguities by having parentheses have special meaning.

Given a Legendrian knot L ⊂ (M, ξ), we first remove a standard neighbourhood of

L, ie. a tight solid torus with convex boundary, where the dividing curves have the same

slope as the contact framing f (when L is null-homologous, f = tb(L)µ + λ, where µ is

a meridian and λ is the Seifert framing of L). To do contact r-surgery, where r is any

non-zero rational number, we first choose the shortest counter-clockwise path from 0 to r

in the Farey graph. Let the labels along this path be c1 = 0, . . . , ck = r. For each jump

c1 → c2, . . . , ck−2 → ck−1, we glue in a basic slice of either sign (+ or −), where the back

face of the basic slice corresponding to ci → ci+1 has dividing curves of slope f + ci and

the front face has dividing curves of slope f + ci+1. Finally, glue in a solid torus with

meridional slope f + ck and with dividing curves on the boundary of slope f + ck−1 (which

according to Theorem 2.1.12 has a unique tight contact structure up to isotopy). The result

is (Mf+r(L), ξf+r).

Contact surgery with negative (resp. positive) framing (relative to the natural contact

framing) is called negative (resp. positive) contact surgery (negative contact surgery is often

called Legendrian surgery in the literature). Note that many choices were made along the

way, and in general there is no well-defined contact surgery. When r = 1/m for some integer
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m 6= 0, however, there is a unique contact surgery. When r > 1 is an integer, there are two

possibilities, depending on the sign of the single basic slice used to perform the surgery. In

general, there are two preferred possibilities: one where all negative signs are chosen, and

one where all positive signs are chosen. We denote these two possibilities by ξ−r and ξ+
r .

When not otherwise indicated, contact r-surgery will refer to ξ−r .

We now describe Ding and Geiges’s algorithm [9] for converting a general contact surgery

diagram into one only involving contact (±1)-surgeries.

Construction 2.2.2. Let L be a Legendrian knot, r < 0 be a rational number, and let

[a1 + 1, a2, . . . , an] be its negative continued fraction decomposition. We define L1 ∪ · · · ∪Ln

as follows: L1 is a Legendrian push-off of L, stabilised |a1 +2| times, and Li is a Legendrian

pushoff of Li−1, stabilised |ai + 2| times, for i = 2, . . . , n. We perform contact (−1)-surgery

on each Li. This is equivalent to a contact r-surgery on L. The choice of stabilisation is

important, but we distinguish two natural choices: choosing all negative stabilisations gives

ξ−r , whereas choosing all positive stabilisations gives ξ+
r on Mtb(L)+r(L). These choices are

equivalent to choices of signs on basic slice layers involved in the surgery.

If r = p/q > 0, let n be a positive integer such that 1/n ≤ r < 1/(n − 1). We take n

push-offs of L, and do contact (+1)-surgery on them, and do contact r′-surgery on L, where

r′ = p/(q − np) < 0. Again, we have a choice of stabilisations for the contact r′-surgery,

and we label the two distinguished choices as above.

2.3 Transverse Surgery

Given a contact manifold (M, ξ) and a knot T in M , T is transverse if its oriented tangent

vector is always positively transverse to ξ (note that we require an orientation on T for this

to make sense). Work of Gay [28] and Baldwin and Etnyre [6] provide a natural set-up for

transverse surgery, building off of classic constructions of Lutz [49, 50] and Martinet [52].

Transverse surgery comes in two flavours: admissible (“removing twisting” near the knot)

and inadmissible (“adding twisting” near the knot). This description of transverse surgery

follows Baldwin and Etnyre [6].
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Definition 2.3.1. Given a transverse knot K ⊂ (M, ξ), a standard neighbourhood is con-

tactomorphic to S1×{r ≤ a} in (S1×R2, ξrot = ker(cos r dz+ r sin r dθ)) for some a, where

z is the coordinate on S1, K is identified with the z axis, and some framing of K is identified

with λ = S1 × {r = a, θ = 0}. The characteristic foliation on the torus {r = r0} is given by

parallel lines of slope − cot r0/r0 (ie. r0λ− cot(r0)µ, where µ is a meridian of K). Note that

there is not a unique r0 corresponding to a given slope. A neighbourhood of K is identified

with the solid torus Sna bounded by the torus

Tna = {r = r0 | r0 is the nth smallest positive solution to − cot r0

r0
= a},

for some slope a ∈ R ∪ {∞} and some positive integer n. To perform admissible transverse

surgery, we take a torus Tmb inside Tna , where m ≤ n and if m = n, then b < a. We remove

the interior of Smb from Sna , and perform a contact cut on the boundary. See Lerman [43]

and Baldwin and Etnyre [6] for details. This gives us a smooth manifold (Mb(K), ξmb ) with

a well-defined contact structure. To perform inadmissible transverse surgery, consider the

open manifold obtained by removing the knot K. We can take the closure of this manifold

to get one with torus boundary, and uniquely extend the contact structure so that along

the boundary, the characteristic foliation is given by curves of slope −∞, that is, meridional

slope (the minus sign is not strictly needed, but it serves as a reminder that the characteristic

foliations of nearby boundary-parallel tori have large negative slope). This is the inverse

operation of a contact cut. We then glue on a T 2 × I with a contact structure modeled on

ξrot above, such that the contact planes twist out to some slope b (we can add n half-twists of

angle π before stopping at b, and there is no restriction on b). After performing a contact cut

on the new boundary, we are left with the manifold (Mb(K), ξnb ). Unless otherwise stated,

we will assume n = 0 and omit n.

Remark 2.3.2. Although inadmissible transverse surgery is well-defined, the result of ad-

missible transverse surgery in general depends on the torus neighbourhood. For example,

Etnyre, LaFountain, and Tosun [26] show that the (2, 3)-torus knot in (S3, ξstd) has in-

finitely many distinct standard neighbourhoods which are not subsets of each other. It

can be shown that for each rational number 1
n+1 < r < 1

n , there are n distinct results of
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admissible transverse surgery.

Recall that Baldwin and Etnyre [6] showed that contact (−1)-surgery on a Legendrian

L is equivalent to an admissible transverse surgery on the positive transverse push-off of L.

We show the equivalent result for positive contact surgeries.

Proposition 2.3.3. Let L be a Legendrian knot in some contact manifold. Then the contact

manifold obtained via contact (+1)-surgery on L can also be obtained via an inadmissible

transverse surgery on a transverse push-off K of L.

Proof. Let L be a Legendrian knot in (M, ξ) and N a standard neighbourhood of L. We

will work in the contact framing, where µ is a meridian and λ is the contact framing. A

local model for N is a tight solid torus S obtained from S0 by perturbing the boundary to

be convex with dividing set consisting of two parallel curves of slope 0. We know that N

and S are contactomorphic, so we only need consider S.

Note that S is contactomorphic to S∪S′, where S′ is an I-invariant collar neighbourhood

of ∂S. Contact (+1)-surgery on L is performed by removing S from S∪S′ and gluing S back

in according to the map
(

1 1
0 1

)
. The resulting manifold is a tight solid torus whose dividing

curves have slope 0 and whose meridian has slope +1, when measured with respect to the

original contact framing. By Theorem 2.1.12, there is a unique tight contact structure on

such a solid torus up to isotopy.

Consider now a transverse push-off K of L in S. It suffices to show that inadmissible

transverse 1-surgery on K results in a tight solid torus contactomorphic to the one produced

by contact (+1)-surgery. Note that S is a standard neighbourhood forK. Consider the result

of inadmissible transverse 1-surgery on K in S. The new solid torus is a standard neigh-

bourhood of the dual knot, ie. the core of the surgery torus, and so it is tight. The boundary

is still convex, and the dividing curves still have slope 0 when measured with respect to the

original contact framing. The meridian has slope +1, and thus by Theorem 2.1.12, the tight

contact structure on the surgery torus coming from inadmissible transverse 1-surgery agrees

with that coming from contact (+1)-surgery.

Proof of Theorem 1.1.1. Ding and Geiges [9] showed that every contact 3-manifold can be
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obtained by contact (±1)-surgery on a link in S3. Combing Baldwin and Etnyre’s result [6]

with Proposition 2.3.3 gives us the result.

Remark 2.3.4. In Section 3, we will prove Theorem 1.1.2, showing that inadmissible trans-

verse surgery on a transverse knot agrees with contact r-surgery on a Legendrian approx-

imation, for some positive r. Our proof will be via open book decompositions, hence we

defer it until Section 3. However, one could prove it directly from the definition, considering

the signs of basic slices used to create the surgery torus in either instance.

Before we leave this section, we give a lemma that will be used throughout this paper.

Compare [9, Proposition 7], where they prove the corresponding result for surgeries on

Legendrian knots.

Lemma 2.3.5. Any inadmissible transverse r-surgery on a transverse knot K ⊂ (M, ξ) with

r > 0 can be obtained by an inadmissible transverse (1/m)-surgery on K followed by some

admissible transverse surgery on the surgery dual knot to K, where m is a positive integer

such that 1/m < r.

Proof. Say we wish to perform inadmissible transverse r-surgery including n half-twists; the

resulting contact manifold is (Mr(K), ξnr ). In performing inadmissible transverse (1/m)-

surgery on K with exactly n half-twists, we first remove K and take the closure, such

that the characteristic foliation on the boundary has leaves of slope −∞. We then glue

on a T 2 × I, where the contact structure rotates from having having leaves of slope −∞

through n half-twists and then beyond from a torus T1 with leaves of slope −∞ to the new

boundary T2, which has leaves of slope 1/m. There exists a boundary-parallel torus T3 with

characteristic foliation of leaves of slope r in between T1 and T2.

After performing a contact cut on the new boundary T2, the torus T1 bounds a standard

neighbourhood of the dual knot K ′ to K, contactomorphic to S0
a, for some rational number

a (in fact, it is not hard to see that a = −1/m, if we choose the same longitude for K ′ as for

K). In this contactomorphism, the image of T3 is T 0
b for some rational number b < a, and

it bounds S0
b . Thus, in performing admissible transverse b-surgery on K ′, we remove the

interior of S0
b , and perform a contact cut on the boundary. However, removing the interior

22



of S0
b leaves us with the same manifold as we would get by gluing a T 2 × I layer to the

complement of K in M that stopped at T3 instead of going out to T2. Thus, since the

contact cuts are these manifolds are the same, originally performing inadmissible transverse

r-surgery (with n half-twists) on K results in the same contact manifold as admissible

transverse b-surgery on K ′.

2.4 Euler class

We would like to calculate the Euler class of the contact structure after transverse surgeries.

We first set up some conventions. Using notation from Definition 2.3.1, for the slope of the

diving curves of T 1
p/q, if p/q < 0, we set p > 0 and q < 0. This makes sense, because on the

z-axis of our model neighbourhood, the co-orientation of the contact planes is the positive

direction on the z-axis, and on the torus we get from removing the z-axis, the oriented

characteristic foliation is given by positive meridians (ie. ∂/∂θ). Moving away from the

z-axis rotates the contact planes in a left-handed manner, so that the oriented characteristic

foliation is given by negative longitudes and positive meridians. When p/q = 0, we have

p = 0 and q = −1. For p/q > 0, we set p, q < 0. After we pass ∞ and look at T 2
p/q, when

p/q < 0 we have p < 0 and q > 0, and for p/q > 0 we have p, q > 0. Going further out repeats

this sequence. Similarly, when doing inadmissible transverse surgery, moving towards the

new boundary from the old boundary is the reverse process of that just described.

Theorem 2.4.1. Let K be a null-homologous transverse knot in a contact manifold (M, ξ).

The Poincaré dual of the Euler class of transverse (in)admissible p/q-surgery on K is

PD e(ξp/q(K)) = (s−1)[λK ]− (r− sl(K))[µK ] + PD e(ξ), where the expression is considered

as being in H1(Mp/q(K);Z), and sp− qr = 1.

Remark 2.4.2. This is independent of choice of r and s. Using alternate choices, r′ = r+ pn

and s′ = s+ qn for some n ∈ Z, gives a difference in the above formula of n(q[λK ] + p[µK ]),

which is a multiple of the meridian of the dual knot to K, and hence is 0 in H1(Mp/q(K);Z).

Proof. We first consider the case where p/q is an admissible slope, and we are doing ad-

missible transverse p/q-surgery. Let v be a section of ξ over M which is non-zero in Sa, a
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standard neighbourhood of K, for some a > p/q. We will construct a section of ξ in Sa\Sp/q

which is well-defined after doing a contact cut on the boundary. This will give us a section

of ξp/q(K) over Mp/q(K), which will allow us to calculate the Euler class of ξp/q(K).

Our construction is not explicit; instead, we define a section that we would like to have

on Tp/q, and with the section on Ta coming from v, we interpolate between the two by

calculating the relative Euler class of T 2 × I with these sections on the boundary. This

describes the zeroes of a generic section interpolating between the two boundary sections.

We compute the action of e(ξp/q, w) on an annulus which has boundary λ on the front

and back faces, and on an annulus which has boundary µ on the front and back faces, where

e(ξp/q, w) is the Euler class relative to w, the section on Tp/q to defined below. Since ξ on

Sa\Sp/q is trivialised by ∂/∂r, it suffices to compare the twisting of the vector fields on the

boundary of the annuli to ∂/∂r to compute the action of the relative Euler class.

Let λ, µ be the longitude and meridian for K giving the Seifert framing, and λ′, µ′ a

framing for the dual knot K ′. We have λ′ = rµ + sλ, and µ′ = pµ + qλ, for some r, s

satisfying sp− qr = 1. We choose this orientation so that λ′ · µ′ = 1 = λ · µ. This gives us

the matrix
( s q
r p

)
converting from the (λ′, µ′) basis to the (λ, µ) basis. This means that the

matrix
(
p −q
−r s

)
is the inverse map, so λ = pλ′ − rµ′ and µ = −qλ′ + sµ′.

In order for there to be a well-defined vector field after doing a contact cut on the

boundary, we want to define a section w of ξ on Tp/q that twists 0 times along λ′ and −1

times along µ′ (compare to the self-linking of µ in the following paragraph for justification),

relative to the trivialisation of ξ along Tp/q by the section ∂/∂r. This means that the twisting

of w relative to ∂/∂r along λ is r, and along µ is −s.

Since pushing off λ by ∂/∂r gives the Seifert framing, we know that the twisting of

v relative to ∂/∂r along λ on the front face is the self-linking sl(K). We also know that

that twisting along µ on the front face is −1. We can see this, because ∂/∂r gives the

Seifert framing for µ, using a meridional disk in M as the Seifert surface, and so we need to

calculate the self-linking of µ, which is −1, as indicated by the unique zero of ∂/∂r in the

Seifert surface (where it intersects K).

Since K is a positive transverse push-off of the Legendrian leaves of the characteristic
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foliation of each Tc, we see that reversing the direction gives us a negative sign on the relative

Euler class. Therefore, we calculate that the relative Euler class is −
(

( r
−s )−

(
sl(K)
−1

))
=(

sl(K)−r
s−1

)
. Since PDλ ·λ = 1 = −µ ·λ, and PDµ ·µ = 1 = λ ·µ, we know that the Poincaré

dual of the relative Euler class is (r − sl(K))[µ] + (s− 1)[λ].

After doing a contact cut on the back face and gluing the resulting solid torus back into

the manifold, we have a vector field w which is equal to v outside the standard neighbourhood

of the dual knot to K, and inside the standard neighbourhood has zeroes described by the

relative Euler class. The result follows.

If we are doing inadmissible transverse p/q-surgery, then the same proof will work, with

the following modifications. We extend v along the glued on T 2× I antisymmetrically, that

is, as −v. The twisting of −v with respect to ∂/∂r is the same as the twisting of v with

respect to ∂/∂r. We also still require the twisting of the section of ξ on the back with

respect to ∂/∂r along µ′ to be −1 and along λ′ to be 0. We can now see that the rest of the

calculations go through without change.
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CHAPTER III

OPEN BOOK DECOMPOSITIONS

In this section, we discuss what happens when we perform transverse surgery on the binding

component of an open book decomposition. We create integral open books that support the

contact manifolds resulting from any inadmissible transverse surgery, and from admissible

surgeries where the surgery coefficient is smaller than the page slope. At this point we are

unable to create open books for admissible surgery larger than the page slope.

3.1 Background

We recall the definition of an open book, and what it means for an open book to support a

contact structure. See [18] for more background.

A manifoldM has an (integral) open book (Σ, φ), for Σ a surface with non-empty bound-

ary, and φ ∈ Diff+(Σ, ∂Σ), if M is diffeomorphic to

Σ× [0, 1]

(x, 1) ∼ (φ(x), 0)

⋃(⋃(
S1 ×D2

))
,

where there are as many S1 ×D2 factors as there are boundary components of Σ, and each

solid torus is glued such that S1×{∗ ∈ ∂D2} gets mapped to a distinct boundary component

of Σ×{∗} and {∗ ∈ S1}×∂D2 gets mapped to {∗ ∈ ∂Σ}×S1. Each Σ admits an extension

so that its boundary lies on the cores of the glued-in S1 × D2; we also call this extension

Σ. We call each copy of Σ a page, and the image of ∂Σ (ie. the cores of the glued-in tori) is

called the binding. We say that (Σ, φ) supports a contact structure (M, ξ) if there exists a

contact 1-form α for ξ′ isotopic to ξ such that:

• dα is a positive area form on each page,

• α > 0 on the binding.

There is a unique contact structure supported by a given open book [31, 59]. We also

have an operation called positive stabilisation, which creates a new open book supporting
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the same manifold with the same contact structure. This operation takes (Σ, φ) to (Σ′, φ′),

where Σ′ is Σ plumbed with an annulus, and φ′ = φ◦Dγ , where Dγ is a positive Dehn twist

along the core of the annulus. The core of the annulus intersected with the original page

Σ defines an arc, called the stabilisation arc. The stabilised open book supports the same

manifold and the same contact structure as did (Σ, φ). With this, we can formulate:

Theorem 3.1.1 (Giroux [31]). Let M be a closed 3-manifold. Then there is a bijection

between

{open books of M}
positive stabilisation

and
{contact structure on M}

contactomorphism
.

Baker, Etnyre, and van Horn-Morris [2] have also formulated a notion of a rational open

book, where the gluing of the solid tori results in the pages approaching the binding in a curve

that may not be a longitude. In general, the binding may be a rationally null-homologous

link in M . They proved that a rational open book, just like its integral cousin, supports a

unique contact structure up to isotopy.

3.2 Surgery on Binding Components of Open Books

Given an open book (Σ, φ), and a knot K in the binding, we define the page slope to be

the curve traced out by the boundary of the page on ∂N , where N is a neighbourhood of

K. When (Σ, φ) is an integral open book, this gives rise to a coordinate system on ∂N ,

or equivalently a framing of K, where the longitude λ is chosen to be the page slope. We

orient K as the boundary of Σ, and we let µ ⊂ ∂N be an oriented meridian of K linking it

positively. This gives us coordinates (λ, µ) on ∂N . The curve pµ + qλ corresponds to the

slope p/q, so the page slope is slope 0. Any negative slope with respect to this framing is

an admissible surgery slope (cf. [6, Lemma 5.3]). If (Σ, φ) is an integral open book (or at

least, if it is integral at the binding component K), then doing Dehn surgery on K with a

negative surgery coefficient (with respect to the page slope) induces an rational open book

on the resulting manifold. We have the following.

Theorem 3.2.1 (Baker–Etnyre–van Horn-Morris [2]). The induced rational open book from

27



Dehn surgery on K less than the page slope supports the contact structure coming from

admissible surgery on the transverse knot K.

In this section, we prove Theorem 1.2.1, which is an extension of Theorem 3.2.1 to

positive surgeries. We begin with recalling the following proposition, see [18, Theorem 5.7].

Proposition 3.2.2. Let K be a knot on the page of an open book (Σ, φ) for (M, ξ). The open

book (Σ, φ ◦D±1
K ) is an open book for the manifold given by ∓1-surgery on K, with respect

to the framing given by Σ, where DK is a positive Dehn twist about a curve on Σ isotopic to

K. Moreover, if K is Legendrian, then this open book supports the contact structure coming

from contact (∓1)-surgery on K.

To prove Theorem 1.2.1, we split the process into the following steps. First, we prove that

for n > 0 an integer, the open book coming from 1/n surgery on the boundary component

corresponding to K supports the result of inadmissible transverse 1/n-surgery on K. Then

we note that all other inadmissible slopes greater than 0 can be achieved by a combination

of an inadmissible transverse 1/n-surgery followed by an admissible surgery, and invoking

Theorem 3.2.1 completes the proof. We will first give a proof of the first step when Σ has

multiple boundary components (Theorem 3.2.3) and then a proof for an arbitrary number

of boundary components (Theorem 3.2.4).

Theorem 3.2.3. If (Σ, φ) is an open book, |∂Σ| ≥ 2, and n > 0 is an integer, then the

open book induced by topological 1/n-surgery on a binding component K (where the surgery

coefficient is with respect to the page slope) supports the contact structure coming from in-

admissible transverse 1/n-surgery on K. In particular, the new open book is (Σ, φ ◦D−nK ).

Proof. Recall that Baldwin and Etnyre [6, Lemma 5.3] showed that if |∂Σ| ≥ 2, then we can

find a standard neighbourhood of any binding component contactomorphic to S1
ε , for some

ε > 0 (with respect to the page slope). Thus we know that there is a neighbourhood of K,

whose boundary is a pre-Lagrangian torus with slope 0, where each leaf of the foliation on the

boundary is a Legendrian sitting on a page of the open book. We know from Proposition 3.2.2

that contact (+1)-surgery on a knot on the page of an open book, which is the same as (+1)-

surgery with respect to the page slope, is equivalent to changing the monodromy of the open
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book by a negative Dehn twist. We know from Proposition 2.3.3 and Ding and Geiges’s

description [9] of contact surgery that doing contact (+1)-surgery on n leaves of slope 0 is

equivalent to doing inadmissible transverse 1/n-surgery on K. The result follows.

Proof of Theorem 1.2.1 for |∂Σ| ≥ 2. Given an inadmissible slope p/q > 0, choose a positive

integer n such that 1/n < p/q. By Lemma 2.3.5, we know that inadmissible transverse

p/q-surgery is equivalent to doing inadmissible transverse 1/n-surgery, followed by some

admissible transverse surgery. Combining Theorem 3.2.3 and Theorem 3.2.1 gives the result.

In order to extend this result to the case of a single boundary component, we construct

an explicit contact form that is supported by the induced open book and whose kernel is

isotopic to the contact structure of inadmissible transverse surgery.

Theorem 3.2.4. If (Σ, φ) is an open book (with any number of binding components), then

the open book induced by topological 1/n-surgery on a binding component K (where the

surgery coefficient is with respect to the page slope) supports the contact structure coming

from inadmissible transverse 1/n-surgery on K. In particular, the new open book is (Σ, φ ◦

D−nK ), where DK is a positive Dehn twist about a curve parallel to the binding component

K.

Proof. We need to show that the contact structure ξ1/n = kerα1/n coming from inadmissible

transverse 1/n-surgery on K is supported by the open book coming from 1/n-surgery on

K. Notice that outside a neighbourhood of K, ξ1/n agrees with ξ, the contact structure

supported by (Σ, φ), and so we only need to look at a neighbourhood of K. Let the page

slope be the curve λ. Then after surgery, we have a coordinate system (λ′, µ′), where λ′ = λ

and µ′ = nλ+ µ.

There is a regular neighbourhood of K such that the contact form on S1×D2 is given by

f(r) dz+ g(r) dθ, where z ∼ z+ 1 is the coordinate on S1, (f, g) is (1, r2) near r = 0, and as

r increases, f tends to 0 (in particular, we can use S0
0 from Definition 2.3.1). The change of

coordinates coming from surgery gives a map Φ : S1 ×D2 → S1 ×D2, which sends (z, r, θ)
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to (z − n
2πθ, r, θ). Think of this as sending µ to µ′ − nλ′. Thus, we require a contact form

β = h(r) dz + k(r) dθ on S1 ×D2 (representing a neighbourhood after surgery) for which

• h(r)k′(r)− k(r)h′(r) > 0,

• (h, k) = (1, r2) near r = 0,

• (h, k) = (f, g − n
2πf) for r ≥ r1 for some r1 > 0,

• h′(r) < 0 for r > 0.

The first condition is the contact condition, and the third condition is to ensure that the

contact planes match the original ones for r ≥ r1. These conditions are possible to meet.

Note that the third condition is possible to meet because as r increases, f approaches 0, so

the condition is a small perturbation of the achievable condition (f, g). This allows us to

define a contact form α′ = Φ∗(β) = h(r) dz + (k(r)− n
2πh(r)) dθ on S1 ×D2 which patches

in with α (the contact form defining ξ), and kerα′ = ξ1/n.

It remains to check that this contact form is supported by the open book in S1 × D2.

We see that α′ restricted to the binding is positive, as in the new coordinate system, β

near the binding is dz + r2 dθ. Notice that on a page, θ is constant, so dθ = 0, and so

dα′|page = h′(r) dr ∧ dz = −h′(r) dz ∧ dr > 0. Thus the open book supports the contact

structure ξ1/n.

Proof of Theorem 1.2.1. Given Theorem 3.2.4, the rest of the proof is identical to the case

of multiple boundary components.

3.3 Constructions of Open Books

We use the Farey graph to track operations on open books is as follows. The three operations

that we perform on a binding component of an open book (corresponding to a knot K) are

the following:

1. positively stabilise with a boundary parallel stabilisation arc,

2. do (+1)-surgery (with respect to the page slope), or
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3. do (−1)-surgery (with respect to the page slope).

We will always treat the West point of the Farey graph as the meridian slope, and the

East point as the page slope. Whenever one of these quantities changes (the page slope as

a result of stabilisation, and the meridian slope as a result of surgery), we will adjust the

labeling of the Farey graph accordingly. Thus the labels on the Farey graph will always

correspond to slopes measured with respect to the original page slope and meridian slope.

The results of the three operations are shown in Figure 5.

The result of (1), positive stabilisation, is to keep the meridian fixed, but lower the

page slope by 1. This has the effect on the labeling of the Farey graph of keeping West’s

label fixed, moving North’s label to East, East’s label to South, and South’s label to South-

West (along with the resulting change of all other labels). When we stabilise, we add a new

boundary component together with a positive Dehn twist parallel to the new boundary (this

boundary component corresponds to a new unknot component in the binding which links

K). When doing further operations on the binding, we ignore this new boundary component

and focus on the boundary component which did not acquire a positive Dehn twist. This

boundary component is isotopic to the original knot we were considering. The result of (2),

(+1)-surgery on the binding, is to keep the page slope fixed, but change the meridian slope.

This has the effect on the labeling of the Farey graph of keeping East’s label fixed, moving

South’s label to West, West’s label to North, and North’s label to North-East. Finally, the

result of (3), (−1)-surgery on the binding, is similar to (+1)-surgery, where East’s label is

fixed, but now North’s label moves to West, West’s label moves to South, and South’s label

to South-East. For more details on the effect of stabilisation and surgery on the open book,

see [18].

Example 3.3.1. Starting from the standard labeling, if we do a positive stabilisation fol-

lowed by a (−1)-surgery with respect to the new page slope, East’s label will read −1, West’s

label will read −2, North’s label will read −3/2, and South’s label will read ∞. Thus if we

modify our open book in this way, we will have performed a −2 surgery (with respect to

the original page slope) on the binding component, and the new page slope is −1, measured
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< ∞−1
(1)

0 >
(3)

−1
> (2)

1

∞

∞ 0

−1−2 −1/2

0 ∞
1 1

1 0

−1

1/2

Figure 5: The results of operations (1), (2), and (3) on the labels of the Farey graph, where
we start with the standard labeling. The new locations of the original labels for the four
cardinal directions are shown, as well as the new labels for those four spots. The rest of the
labels for the Farey graph can be inferred from the given labels, as in Section 2.1.1.
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with respect to the original page slope.

3.3.1 Open books compatible with admissible transverse surgery

Although there are natural rational open books for transverse surgeries on a binding compo-

nent, as in Theorem 1.2.1, we would prefer to have an integral open book that supports the

same contact structure as the rational open book. We start by constructing an open book

compatible with admissible transverse r-surgery on a binding component K, where r < 0 is

with respect to the page slope. We write r as a negative continued fraction.

We first prove some easy lemmata about the Farey graph.

Lemma 3.3.2. The rational number [a1 + 1, a2, . . . , an] for ai ≤ −2 and n > 1 is given by

[a1 + 1, a2, . . . , an] = |an + 1| · [a1 + 1, a2, . . . , an−1]⊕ [a1 + 1, a2, . . . , an−1 + 1].

Proof. We prove this by induction on n. For n = 2,

[a1 + 1, a2] = a1 + 1− 1

a2
=
a1a2 + a2 − 1

a2
.

We calculate,

|a2 + 1| · [a1 + 1]⊕ [a1 + 1 + 1] = (−a2 − 1) ·
(
−1− a1

−1

)
⊕
(
−2− a1

−1

)
=

(
a1a2 + a1 + a2 + 1

a2 + 1

)
⊕
(
−2− a1

−1

)
=
a1a2 + a2 − 1

a2
= [a1 + 1, a2],

where the abundant negative signs are because ai ≤ −2, and the denominator of the fraction

associated to a negative number on the Farey graph must be negative.

For n > 2, we consider the numbers

p

q
= [a2, . . . , an−1]

and
p′

q′
= [a2, . . . , an−1 + 1].

From our induction hypothesis, we know that

r

s
= [a2, . . . , an] = |an+1|·[a2, . . . , an−1]⊕[a2, . . . , an−1+1] = |an+1|·

(
p

q

)
⊕
(
p′

q′

)
=
|an + 1|p+ p′

|an + 1|q + q′
.
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We now adjust the left hand side so that it represents the number we want, that is

[a1 + 1, a2, . . . , an] = a1 + 1− 1

r/s
=
a1r + r − s

r
.

We then can calculate

|an + 1| · [a1 + 1, a2, . . . , an−1]⊕ [a1 + 1, a2, . . . , an−1 + 1]

= |an + 1|
(
a1 + 1− 1

p/q

)
⊕
(
a1 + 1− 1

p′/q′

)
= |an + 1| ·

(
a1p+ p− q

p

)
⊕
(
a1p
′ + p′ − q′

p′

)
=
|an + 1|a1p+ |an + 1|p− |an + 1|q

|an + 1|p
⊕ a1p

′ + p′ − q′

p′

=
(|an + 1|pa1 + p′a1) + (|an + 1|p+ p′)− (|an + 1|q + q′)

|an + 1|p+ p′

=
a1r + r − s

r
= [a1 + 1, a2, . . . , an].

Lemma 3.3.3. Points on the standard Farey graph with labels [a1 + 1, a2, . . . , an] and [a1 +

1, a2, . . . , an + 1], where ai ≤ −2, are connected by a geodesic.

Proof. We induct on n. When n = 1 this is clear. When n > 1, we see from Lemma 3.3.2

that

[a1 + 1, a2, . . . , an] = |an + 1| · [a1 + 1, a2, . . . , an−1]⊕ [a1 + 1, a2, . . . , an−1 + 1].

Since by our inductive hypothesis [a1 + 1, a2, . . . , an−1] and [a1 + 1, a2, . . . , an−1 + 1] are

connected by a geodesic, we see also that the three numbers [a1 + 1, a2, . . . , an−1], [a +

1, a2, . . . , an−1, an−1 + 1] and [a1 + 1, a2, . . . , an−1,−2] form the endpoints of a geodesic

triangle, as the latter term is the sum of the two former terms, by Lemma 3.3.2. We now

add |an + 1| − 1 additional copies of [a1 + 1, a2, . . . , an−1] to [a1 + 1, a2, . . . , an−1,−2] to

arrive at [a1 + 1, a2, . . . , an]. The proof is concluded by noting that as long as two numbers

a and b are connected by a geodesic, so are b and a⊕ b.

In the following, we will be stabilising and changing the monodromy of an open book.

Throughout this process, we will track a single boundary component, calling it K at every
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stage, even though we will be changing the manifold. When stabilising the boundary compo-

nent K along a boundary-parallel stabilisation arc, the result has two boundary components

where previously there was only one; the boundary component without a parallel positive

Dehn twist will be called K. When adding Dehn twists to the monodromy that are parallel

to K, we change the manifold, but we still call that same boundary component K. With

this abuse of notation in mind, we are now ready to construct open books corresponding to

transverse surgery.

Proposition 3.3.4. Let r < 0 be a rational number, with r = [a1 + 1, a2, . . . , an]. The open

book supporting admissible transverse r-surgery with respect to the page slope on the binding

component K is obtained by, for each i = 1, . . . , n in order, stabilising K positively |ai + 2|

times and adding a positive Dehn twist about K.

Proof. We first show that this topologically supports the manifold we are interested in, and

then we will show that it supports the contact structure coming from admissible transverse

surgery. We prove the topological statement by induction on n, showing that in addition,

the page slope after surgery is [a1 + 1, a2, . . . , an + 1]. If n = 1, then r is a negative integer,

and we can see that positively stabilising K, |r + 1| = |a1 + 2| times starting from the

standard Farey graph will move the label r + 1 to East, and North’s label will be r. Then

(−1)-surgery on the binding component K in the new page will give us r surgery on K,

with respect to the original page slope. This (−1)-surgery corresponds to adding a positive

Dehn twist about the binding, by Theorem 3.2.4. Note also that the page slope after this

process is equal to r + 1.

If n > 1, then let r′ = [a1 + 1, a2, . . . , an−1], and let r′′ = [a1 + 1, a2, . . . , an−1 + 1]. Then

r′ < r < r′′, and there is a geodesic in the Farey graph between r′ and r′′, and between r′

and r, by Lemma 3.3.2 and Lemma 3.3.3. Applying the induction hypothesis to r′, we can

do r′ surgery using the construction, and in the process, send r′′ to the page slope. We claim

that in this new coordinate system, r gets sent to the negative integer an + 1. Indeed, note

that since r′ gets sent to ∞ (the meridional slope), and r′′ gets sent to 0 (the page slope), r

gets sent to |an + 1| · (∞)⊕ (0/(−1)), which is an + 1. Now we can lower the page slope to
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an + 2 by doing |an + 2| stabilisations of K, and then do (−1)-surgery with respect to the

new page slope, which corresponds to adding a negative Dehn twist around the boundary.

Thus the open book topologically supports the manifold coming from r-surgery on K, with

respect to the page slope.

We now show that the supported contact structure is that coming from admissible trans-

verse surgery. The algorithm consists of sequences of stabilisations and surgeries on the knot

K (which we have tracked through this process, as in the discussion before this proposition).

Note that the transverse knot K before any stabilisation is transverse isotopic to the binding

component K after stabilisation. In addition, admissible surgery on a knot K, followed by

admissible surgery on the dual knot to K, ie. the core of the surgery torus, is equivalent to

a single admissible surgery on K. Thus, since stabilisation does not change the transverse

knot type of K, the algorithm consists of a series of surgeries on successive dual knots.

It is enough to show that each of these surgeries corresponds to an admissible transverse

surgery to show that the entire algorithm corresponds to an admissible transverse surgery.

But each individual surgery (that is, adding a boundary-parallel positive Dehn twist to

the monodromy) is topologically a (−1)-surgery with respect to the page slope, and thus by

Theorem 3.2.1 and Proposition 3.2.2, the resulting open book supports the contact structure

coming from admissible transverse surgery on the binding component.

Remark 3.3.5. Compare our construction to Baker, Etnyre, and van Horn-Morris [2], who

construct open books for the result of admissible transverse surgery by resolving the induced

rational open book using cables of the binding. Our construction consists of taking a cable

at each step (ie. for each i in Proposition 3.3.4). Our construction agrees with theirs when

the surgery coefficient is a negative integer.

Example 3.3.6. We can calculate that −8/5 = [−3 + 1,−3,−2]. Thus, given a knot

K in the binding of an open book, to perform admissible transverse −8/5-surgery on K

with respect to the page slope, we would stabilise once, add a positive Dehn twist around

K, stabilise once, and then add two positive Dehn twists about K. To see this, we track

the labels on West and East through this process, via an ordered pair (West,East). We
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start with (West,East) = (∞, 0), the standard labeling. The initial stabilisation creates

the labeling (∞,−1). The (−1)-surgery (corresponding to adding the positive Dehn twist)

changes the labeling to (−2,−1). Another stabilisation keeps West’s label fixed and creates

the labeling (−2,−3/2). The (−1)-surgery changes the labels to (−5/3,−3/2). At this point,

North’s label is −8/5. Finally, the last (−1)-surgery creates the labeling (−8/5,−3/2). See

Figure 6, where if you ignore the negative Dehn twists, the open book on the left is admissible

transverse −8/5-surgery on the maximum self-linking right-handed trefoil in (S3, ξstd).

3.3.2 Open books compatible with inadmissible transverse surgery

If r > 0 with respect to the page slope, pick the least positive integer n such that 1/n ≤ r.

Then by Lemma 2.3.5, doing inadmissible 1/n surgery followed by admissible r′-surgery,

for some r′ < 0, is equivalent to doing inadmissible r-surgery. This corresponds to adding

D−nK to the monodromy before working out the open book for admissible r′-surgery, by

Theorem 3.2.4.

To work out r′, note that if 1/n ≤ r = p/q < 1/(n− 1), then

p

q
= a ·

(
1

n

)
⊕ b ·

(
1

n− 1

)
=

a+ b

an+ b(n− 1)

for some positive integers a and b. This doesn’t directly correspond to operations on the

Farey graph itself, but is purely an algebraic assertion. We can write this asq
p

 =

n n− 1

1 1


a
b

 .

The matrix is invertible, so we see that a = q + p− np, and b = np− q.

After doing inadmissible 1/n-surgery, we note that on the Farey graph, the label 1/n

has moved to West, the label 1/(n− 1) has moved to North. The label we have called r′ is

at the point in between West and North corresponding to how r was sitting relative to 1/n

and 1/(n− 1). We can conclude that r′ = a · (∞)⊕ b · (−1), or more explicitly,

r′ = a ·
(

1

0

)
⊕ b ·

(
1

−1

)
=

(q + p− np)(1) + (np− q)(1)

(q + p− np)(0) + (np− q)(−1)
=

p

q − np
.

Proposition 3.3.7. Let r = p/q > 0 be a rational number, and let n be a positive integer

such that 1/n < r. The open book supporting inadmissible transverse r-surgery with respect to
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the page slope on the binding component K is obtained by first adding n positive Dehn twists

about K, and then performing transverse admissible r′-surgery on K (as in Prop 3.3.4),

where r′ = p
q−np .

Remark 3.3.8. In the case of integer surgery, our open books are identical to those of Lisca

and Stipsicz [48]. In addition, although he does not explicitly construct such examples,

our open books for integer surgery can be constructed using the fibre sum operation of

Klukas [42]. The construction of Baker, Etnyre, and van Horn-Morris in [2] does not cover

the case r > 0.

Remark 3.3.9. Since the construction depends on the page slope, lowering the page slope by

positive stabilisations prior to beginning the construction will give alternative open books

for the same inadmissible surgery. Note that by stabilising sufficiently many times, we can

ensure that the page slope is smaller than any given slope. Thus this construction allows

us to create open books for any inadmissible transverse surgery, even if the slope is smaller

than the original page slope. Of course, if the inadmissible surgery coefficient is lower than

the original page slope, the result is overtwisted.

Example 3.3.10. If we stabilise 3 times, the effect on the Farey graph labeling is to keep

West’s label fixed, to change East’s label to −3, and to change South’s label to −2. Thus,

performing (+1)-surgery with respect to the new page slope relabels West with−2, and hence

is the same as performing inadmissible transverse −2-surgery on the binding component.

Example 3.3.11. In Figure 6, we see an open book for inadmissible transverse 8/11-surgery

on the right-handed trefoil in (S3, ξstd) with self-linking 1. We see this by noticing that

1/2 < 8/11 < 1, so we start by performing two negative Dehn twists around the binding.

After that, we follow the process for admissible transverse −8/5-surgery, as 8
11−2·8 = −8

5 .

This then follows the same steps as in Example 3.3.6.

Example 3.3.12. We can describe half and full Lutz twists using inadmissible transverse

surgery. A half Lutz twist is given by inadmissible transverse ∞-surgery, that is, adding

a π rotation of the contact planes onto M\K. A full Lutz twist is two half Lutz twists.
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Figure 6: On the left, an open book for inadmissible transverse 8/11-surgery on the max-
imum self-linking right-handed trefoil in (S3, ξstd). Positive Dehn twists are red and un-
marked, and negative Dehn twists are blue and marked with a minus sign. The Farey graph
leading to 8/11 is on the right. Without the negative Dehn twists, this corresponds to
admissible transverse −8/5-surgery on the same knot.

We can create an open book for 0-surgery on a binding component by (a) stabilising, and

then (b) doing a (+1)-surgery with respect to the page. This gives a “quarter" Lutz twist.

Doing this twice with a positive stabilisation in between will be a half Lutz twist, and four

times with positive stabilisations separating each application will be a full Lutz twist. The

positive stabilisation in the middle serves to set the new page slope to either 0 or∞, so that

0-surgery (ie. page slope surgery) will add another π rotation to the contact structure

While doing a quarter Lutz twist, before doing step (a), we can do 1/n surgery on the

binding component with respect to the page, for any integer n 6= 0, and then perform steps

(a) and (b). This gives a family of open books for a quarter Lutz twist all with the same

page. The Dehn twists involved in this 1/n surgery correspond to contact (±1)-surgery on

boundaries of overtwisted discs, which do not change the manifold or the isotopy class of the

contact structure. Note, though, that if we want to compose quarter Lutz twists, instead

of performing a positive stabilisation before repeating steps (a) and (b), the normalisation

required to make the page slope equal to the original meridian slope will depend on n.

Thus, we can produce a family of open books for a half and full Lutz twist, many with the

same page. Ozbagci and Pamuk [53], based on work of Ding, Geiges, and Stipsicz [11] and

Etnyre [17], have also obtained open books for a Lutz twist, based on a contact surgery

39



diagram. Our construction differs from theirs, and produces not easily comparable open

books, as they do a Lutz twist on the transverse push-off of a Legendrian knot lying in the

page of an open book, whereas our transverse knot is in the binding.

3.4 Comparing Transverse Surgery to Contact Surgery

Proof of Theorem 1.1.2. Baker, Etnyre, and van Horn-Morris [2, Lemma 6.5] discuss how

to take any transverse knot K ⊂ (M, ξ) and put it in the binding of an open book com-

patible with (M, ξ). If K is the unique binding component, do a boundary-parallel positive

stabilisation on the open book. Now a push-off L of the binding can be Legendrian realised

on this new page, with contact framing number given by the new page slope. Notice that if

we stabilise the open book (again, if we had to stabilise at the beginning) at the boundary

corresponding to K, a Legendrian approximation L′ realised on the page of the doubly sta-

bilised open book is isotopic to a negative Legendrian stabilisation of the Legendrian knot

L. We can see that this stabilisation is negative by noticing that L and L′ are Legendrian

approximations of the same transverse knot: negative stabilisation preserves the isotopy

class of the transverse push-off, whereas positive stabilisation does not.

Proposition 3.2.2 shows that adding to the monodromy a positive (resp. negative) Dehn

twist on a push-off of the binding, after Legendrian realisation, is equivalent to contact

(−1)-surgery (resp. contact (+1)-surgery). Thus the open book construction from Proposi-

tion 3.3.4, is a sequence of contact (±1)-surgeries on a Legendrian approximation of K and

its negative stabilisations.

We check that the sequence of surgeries and stabilisations provided by Proposition 3.3.7

for r-surgery (r > 0 with respect with to the page slope) is the same as that provided

by Ding and Geiges [9] in Construction 2.2.2 for contact r-surgery on L, with all negative

bypass layers:

• the contact (+1)-surgeries performed at the beginning of Construction 2.2.2 correspond

by Theorem 3.2.3 to adding negative Dehn twists to the monodromy around K,

• the surgery coefficient (with respect to the contact framing) with which we have to

negative contact surgery in Construction 2.2.2 is exactly the same surgery coefficient

40



r′ (which is with respect to the page slope),

• negatively stabilising a push-off (resp. performing contact (−1)-surgery on a push-off)

in Construction 2.2.2 corresponds to stabilising the open book (operation (1) from

Section 3.3) (resp. operation (2), adding a boundary-parallel positive Dehn twist) in

Proposition 3.3.4,

Finally, we see that the surgeries on Legendrian knots in Construction 2.2.2 and corre-

sponding open book operations in Proposition 3.3.7 are performed in the same order, and

so the equivalence follows.

Having identified inadmissible transverse surgery and positive contact surgery (with the

choices that give ξ−), we can now easily see that Corollary 1.1.3 follows from Theorem 1.1.2.

Proof of Corollary 1.1.3. Given a Legendrian L in (M, ξ), let L− be a single negative sta-

bilisation of L, and let K be a positive transverse push-off of L. Given any r 6= 0, The-

orem 1.1.2 implies that contact r-surgery on L (with all negative stabilisation choices in

Construction 2.2.2) is equivalent to transverse fL + r-surgery on K (where fL is the contact

framing on L, and the surgery is admissible if r < 0 and inadmissible if r > 0). Also accord-

ing to Theorem 1.1.2, (in)admissible transverse fL+ r-surgery on K is equivalent to contact

(fL + r − fL−)-surgery on L−, which is contact (r + 1)-surgery on L− (with all negative

stabilisation choices).
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CHAPTER IV

TIGHT SURGERIES

In this section, we will use results from Heegaard Floer homology to prove Theorem 1.3.1.

Our results also allow us to say more about some contact geometric invariants, namely the

contact width and the tight transverse surgery interval. We comment on these at the end

of this section.

4.1 Heegaard Floer Homology

We outline the relevant constructions involved in Heegaard Floer homology, as well as a few

theorems. See [54,55] for more details.

Given a closed 3-manifoldM , we choose a Heegaard decomposition (Σ,α,β) ofM . Here,

Σ is a genus g surface, α = {α1, . . . , αg} and β = {β1, . . . , βg} are homologically-independent

collections of essential simple closed curves on Σ such that αi ∩ αj = βi ∩ βj = ∅ for i 6= j.

Furthermore, we recoverM by attaching 2-handles to Σ×[0, 1] along the α×{0} and β×{1}

curves, and adding 3-handles to the resulting boundary.

Given such a Heegaard decomposition, we choose a point z ∈ Σ\ (α ∪ β) . The Heegaard

Floer chain group ĈF (Σ,α,β, z) is generated by g-tuples of intersections of α with β,

such that there is one intersection point on each of the α and each of the β curves. The

differential is provided by counting holomorphic curves in the g-fold symmetric product of

M . The homology of this complex is independent of all choices. It is called the Heegaard

Floer homology of M , and is written ĤF (M).

Given an intersection point x, we induce a Spinc structure on M by defining a non-

vanishing vector field v on M . Recall that Turaev [60] re-interpreting Spinc structures on 3-

manifolds as non-vanishing vector fields up, where two vector fields are equivalent if they are

homotopic in the complement of finitely many 3-balls. Consider the Morse function f giving

the Heegaard decomposition, and its negative gradient −∇f . Let N be a neighbourhood of

the flow lines of −∇f from the level 2 critical points to the level 1 critical points that pass
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through the points defining x and of the flow line from the (unique) level 3 critical point

to the (unique) level 0 critical point passing through z. In the complement of N , we let

the vector field v be −∇f . This can be uniquely extended to a non-zero vector field on M ,

and thus defines a Spinc structure sz(x). The Heegaard Floer homology groups split across

Spinc structures on M , as

ĤF (M) =
⊕

s∈Spinc(M)

ĤF (M, s).

Additionally, a non-zero vector field induces a 2-plane field on M , and so we can define the

first Chern class c1 of a Spinc structure to be the first Chern class of the induced plane field.

Given a cobordism W : M → N , where ∂W = −M ∪ N , it induces a map FW :

ĤF (M) → ĤF (N). This map can be seen by counting certain holomorphic triangles in

a symmetric product of the Heegaard surface (Σ,α,β,γ, z). Here, (Σ,α,β, z) defines M ,

and (Σ,α,γ, z) defines N . The map FW induced by the cobordism satisfies the following

adjunction inequality. (The actual result is more refined than we present it here, but this is

all we will need.)

Theorem 4.1.1 (Ozsváth–Szabó [57]). If W contains a homologically non-trivial closed

surface S with genus g(S) ≥ 1 such that [S] · [S] > 2g(S)− 2, then FW = 0.

There is a conjugation map J : Spinc(M) → Spinc(M), taking a Spinc structure s

represented by the vector field v to the structure J (s) represented by −v. The first Chern

class of the conjugate is c1(J (s)) = −c1(s). This induces an isomorphism on Heegaard

Floer homology, by J : ĤF (M, s) → ĤF (M,J (s)). In particular, we take the Heegaard

diagram (Σ,α,β, z) to (−Σ,β,α, z). Then the differentials are the same, but the Spinc

structure induced by each intersection point is the conjugate of the one induced on the

original Heegaard diagram. Given a cobordism W , the induced map FW behaves well under

conjugation; in particular, JFWJ = FW , by [57].

Given an open book decomposition (Σ, φ) for (M, ξ), we can define a Heegaard de-

composition of −M and an element c(ξ) ∈ ĤF (−M) distinguished up to sign. This was

originally defined by Ozsváth and Szabó [56], but our presentation will follow the descrip-

tion of Honda, Kazez, and Matić [37]. Let Σ′ = Σ0 ∪−Σ1/2 be the Heegaard surface, where
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Σt = Σ × {t} ⊂ Σ × [0, 1] in the mapping torus construction of M from the open book.

Choose a basis of arcs γ1, . . . , γk for Σ0, and for each i, let γ′i be a push-off of γi, where the

endpoints are pushed in the direction of the orientation on the boundary of Σ. We let the α

curves be αi = γi ∪ γi, where the first γi is sitting on Σ0, and the second on −Σ1/2. We let

βi = γ′i ∪ φ−1(γ′i), where again the first γ′i is sitting on Σ0, and φ−1(γ′i) is sitting on −Σ1/2.

Place z in Σ0. Then (Σ,β,α, z) is a Heegaard diagram for −M , where we switch the roles

of α and β to get the correct orientation.

For each i, the curves αi and βi intersect each other exactly once inside Σ0, at the point

ci. It can be shown that the generator c = {c1, . . . , ck} is a cycle, and thus it defines a

class c ∈ ĤF (−M). Honda, Kazez, and Matić [37] identify this class with a class previously

defined by Ozsváth and Szabó [56]. Ozsváth and Szabó show that this class is independent

of the choice of open book decomposition for (M, ξ), and defines the Heegaard Floer contact

invariant c(ξ) of (M, ξ).

Theorem 4.1.2 (Ozsváth–Szabó [56]). The Heegaard Floer contact invariant c(ξ) of (M, ξ)

satisfies the following properties.

• If (M, ξ) is overtwisted, then c(ξ) = 0.

• If (M, ξ) is strongly or Stein fillable, then c(ξ) 6= 0.

• If W : (M, ξ)→ (N, ξ′) is the cobordism induced by contact (+1)-surgery on a Legen-

drian knot, then F−W (c(ξ)) = c(ξ′).

Given an open book (Σ, φ) supporting (M, ξ), and a component of ∂Σ, we can create

a new open book (Σ′, φ′) supporting (M ′, ξ′) by capping off the binding component, ie. by

letting Σ′ be Σ union a disc glued along the binding component, and where φ′ is an extension

of φ by the identity over the disc (see [5]). If (Σ, φ ◦D−1
∂ ) supports (M ′′, ξ′′), where D−1

∂ is

a negative Dehn twist around the boundary component that was capped off, then Ozsváth

and Szabó have proved the following.

Theorem 4.1.3 (Ozsváth–Szabó [54]). The following sequence is exact.
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ĤF (−M ′) ĤF (−M)

ĤF (−M ′′).

Baldwin has proved the following.

Theorem 4.1.4 (Baldwin [5]). If (Σ, φ) supports (M, ξ), and capping off a boundary com-

ponent gives (Σ′, φ′) supporting (M ′, ξ′), then c(ξ) 6= 0 implies c(ξ′) 6= 0.

4.2 Heegaard Floer contact invariant of surgeries

Hedden and Plamenevskaya [34] track the non-vanishing of the Heegaard Floer contact

invariant after surgery on the binding component of an open book. In light of Theorem 1.2.1,

we can restate their result in terms of inadmissible transverse surgery.

Theorem 4.2.1 (Hedden–Plamenevskaya [34]). If K is an integrally fibred knot in a closed

3-manifold M , and the contact structure ξ supported by the open book with binding K is such

that c(ξ) 6= 0, then c(ξr) 6= 0 for all r ≥ 2g, where ξr is the contact structure on Mr(K)

coming from inadmissible transverse r-surgery on K.

We will extend that result to prove that c(ξr) 6= 0 for all r > 2g − 1, and then use this

to prove Theorem 1.3.1. To do this, we will use our open books for inadmissible surgery

created in Section 3 along with the following theorem. The line about tightness follows from

a recent paper of Wand [61].

Theorem 4.2.2 (Baker–Etnyre–van Horn-Morris [2], Baldwin [4]). Fix a surface Σ with

boundary. The set of monodromies φ ∈ Diff+(Σ, ∂Σ) defining contact structures with a fixed

property from the following list form a monoid in Diff+(Σ, ∂Σ):

• tight,

• non-vanishing Heegaard Floer invariant,

• weakly fillable,
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• strongly fillable,

• Stein fillable.

The proof of Theorem 1.3.1 will be as follows: we will consider model open books relevant

to r-surgery on the connected binding of a genus g open book; we will show that for r > 2g−1,

these open books have non-vanishing Heegaard Floer contact invariant, and in particular, are

tight; finally, Theorem 4.2.2 will allow us to prove the result for a generic monodromy that

supports a tight contact structure. The proof of the non-vanishing of the Heegaard Floer

contact invariants of the model open books is based on proofs of Lisca and Stipsicz [45].

−· · ·
g                                                  

k − 1}

· · · K

Figure 7: For an integer k ≥ 1, this is the open book supporting inadmissible transverse
k-surgery on the binding K of the genus g open book with connected binding and trivial
monodromy. The unmarked red curves are positive Dehn twists and the blue curve marked
with a negative sign is a negative Dehn twist. The upper boundary component represents
the dual knot to K, ie. the core of the surgery torus. We also call this knot K.

Let (Mg, ξg) be the contact manifold supported by the open book (Σ1
g, idΣ1

g
), where the

page has genus g and a single boundary component. The manifold Mg is a connect sum

of 2g copies of S1 × S2, and ξg is the unique tight contact structure on Mg. Note that

c(ξg) 6= 0 ∈ ĤF (−Mg). Let the binding of this open book be K.

Consider the open book in Figure 7 (with k = 2g) for inadmissible transverse 2g-surgery

onK. From Theorem 4.2.1, we can conclude that these support tight contact structures with

non-vanishing Heegaard Floer invariant. We will use these open books, and the Heegaard

Floer exact triangle, to show that the following model open books (Σg,n, φg,n) in Figure 8

have non-vanishing Heegaard Floer invariant.
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Lemma 4.2.3. The open book (Σg,n, φg,n) in Figure 8 supports the contact structure coming

from inadmissible transverse (2g− 1 + 1/n)-surgery on the binding of the connected binding

genus g open book with trivial monodromy.

Proof. We start with the open book (Σ1
g, idΣ1

g
), where Σ1

g is a once-punctured genus g surface.

The binding K has page slope 0, as the page represents a Seifert surface for the binding.

After doing 1-surgery with respect to the page slope, we have done inadmissible transverse 1-

surgery, and the in the Farey graph, West is labeled 1, while East is still labeled 0. Stabilising

K once labels the Farey graph with 1 on West, ∞ on East, and +2 on North. If g > 1, then

we do −1/(2g − 2)-surgery with respect to the page slope, that is, we add 2g − 2 boundary

parallel positive Dehn twists to K; West is now labeled 2g − 1, leaving ∞ at East, and 2g

at North. Note that

n · 2g − 1

1
⊕ 2g

1
=

(2g − 1)n+ 2g − 1 + 1

n+ 1
= 2g − 1 +

1

n+ 1
.

Thus doing n−1 positive stabilisations brings the label 2g−1+1/n to North, and so adding

a positive Dehn twist around K will bring the label 2g− 1 + 1/n to West. Since West is the

meridian slope, this open book is inadmissible transverse (2g − 1 + 1/n)-surgery on K.

−

· · ·


ng                                                  

2g − 2}

· · ·

K

...

Figure 8: The open book (Σg,n, φg,n), where the unmarked red curves are positive Dehn
twists and the blue curve marked with a negative sign is a negative Dehn twist. The upper
boundary component represents the original binding K.

Let (Mg,n, ξg,n) denote the contact manifold obtained from the open book (Σg,n, φg,n)

in Lemma 4.2.3. Let (Mg,∞, ξg,∞) denote the manifold obtained by adding a negative Dehn
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twist along K in (Σg,n, φg,n). Note that this destabilises, and hence is independent of n.

The supported manifold is inadmissible transverse (2g − 1)-surgery on K. See Figure 7 for

k = 2g − 1.

By capping off the boundary component of (Σg,n+1, φg,n+1) immediately under K in

Figure 8 when n ≥ 1, Theorem 4.1.3 gives us the exact sequence

ĤF (−Mg,n) ĤF (−Mg,n+1)

ĤF (−Mg,∞).

F−Xn

F−Yn

Here, F−Xn and F−Yn are the maps induced by reversing the orientation on the 4-

manifold cobordisms Xn and Yn, which are between Mg,n and Mg,n+1, and Mg,∞ and Mg,n,

respectively.

Lemma 4.2.4. F−Yn : ĤF (−Mg,∞)→ ĤF (−Mg,n) is the 0 map.

Proof. Recall that Mg,∞ is the result of inadmissible tranvserse 2g − 1-surgery on the knot

K ⊂Mg which is the binding of the open book (Σ1
g, idΣ1

g
). Let K ′ ⊂Mg,∞ denote the knot

surgery dual to K, ie. the core of the surgery torus. Now, Yn is the cobordism from Mg,∞

to Mg,n given by some surgery on K ′.

Since Mg,∞ is topologically (2g − 1)-surgery on K, we see that K ′ is a rationally null-

homologous knot with a rational Seifert surface Σ of genus g. In order to figure out what

surgery on K ′ will give us Mg,n, we look at the labeling of the Farey graph that results from

doing inadmissible transverse 2g− 1-surgery on K to get Mg,∞. By following the algorithm

described in Section 3.3.2, we see that after doing 2g− 1 surgery on the binding component

K, West is labeled 2g − 1, East is labeled ∞, and the point that gets labeled 0 is the point

that on the standard labeling gets the label 1/(2g − 1). The point that is currently labeled

2g − 1 + 1/n would get labeled −n in the standard labeling. Thus, (−n)-surgery on K ′

with respect to the page slope will set the meridian to 2g − 1 + 1/n, which corresponds to

inadmissible transverse (2g− 1 + 1/n)-surgery on the original knot K, ie. will give us Mg,n.
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Since the label 0 corresponds to the slope of the Seifert surface Σ forK inMg, the rational

Seifert surface for K ′ in Mg,∞ has slope 1/(2g − 1) with respect to the page slope of the

open book for Mg,∞ in Figure 7, ie. its intersection with the boundary T of a neighourhood

of K ′ is a (2g − 1, 1) curve, with respect to the (λ, µ) coordinates, where λ comes from the

page of the open book (Σg,∞, φg,∞). Note that the open book in Figure 7 is an integral open

book, and so the page slope indeed defines a framing for K ′.

Let K ′′ ⊂ T be the (2g− 1, 0) cable of K ′ (with respect to the same framing), that is, a

link of 2g − 1 copies of of the framing λ, which is homologically the same as the boundary

of the rational Seifert surface Σ minus a meridian. To find a Seifert surface for K ′′, we take

a meridional disc for K ′ with boundary on T , and we think of the surface Σ as also having

boundary on T . We create a new surface Σ′ by resolving all the intersections of the meridional

disc and Σ using negative bands. The number of bands corresponds to the absolute value

of the intersection number of [∂Σ] with [∂Σ′]. Notice that since ∂Σ′ = (2g − 1)[λ] (where λ

is isotopic to K ′), the surface Σ′ has 2g− 1 boundary components. Since we are adding one

0-handle (the compressing disc) and 2g − 1, 1-handles (the bands), we see that

χ(Σ′) = χ(Σ) + 1− (2g − 1) = (1− 2g) + 1− 2g + 1 = 3− 4g = 2− 2g − (2g − 1).

Thus Σ′ is a genus g surface with 2g − 1 boundary components.

In the cobordism Yn, we take a collar neighbourhood Mg,∞ × [0, 1], and let Σ′ be a

surface in the collar neighbourhood, with boundary in Mg,∞×{1}. We build the cobordism

Yn by attaching a 2-handle to this collar neighbourhood. Take 2g − 1 copies of the core of

the 2-handle with boundary on Mg,∞ × {1}, and attach them to the 2g − 1 copies of K ′ in

the boundary of Σ′. We will glue these to get a closed genus g surface Σ′′ with transverse

double points. We claim that there are n ·
(

2g−1
2

)
double points. Indeed, note that each core

intersects each other core n times (actually −n, but only the geometric intersection number

is relevant here), and that there are
(

2g−1
2

)
pairs of cores to consider. Thus, resolving these

double points gives a surface Σ̃′′ of genus g + n ·
(

2g−1
2

)
.

To calculate the self-intersection of Σ̃′′, we note that since resolving the double points

is a homologically trivial operation, and self-intersection depends only on homology class,
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we can calculate the self-intersection of Σ′′ before resolving the double points. We take a

pushoff of Σ′′ to calculate the self-intersection. A push-off of each copy of the core of the

2-handle intersects each of the 2g − 1 copies of the core of the 2-handle in Σ′′ a total of −n

times. There are (2g − 1)2 pairs of cores to consider, so

[Σ̃′′] · [Σ̃′′] = [Σ′′] · [Σ′′] = −n · (2g − 1)2.

This is the self-intersection in Yn, so in −Yn, the self-intersection of Σ̃′′ is n · (2g − 1)2.

Then we calculate in −Yn:

[Σ̃′′] · [Σ̃′′]− (2g(Σ̃′′)−2) =
[
n · (2g − 1)2

]
−
[
2g + 2n ·

(
2g − 1

2

)
− 2

]
= (2g−1)n− (2g−2).

This is 1 for n = 1, and is increasing in n for g ≥ 1. Thus, this is positive for all g, n ≥ 1.

Since −Yn contains a surface Σ̃′′ with self-intersection greater than 2g(Σ̃′′) − 2, the

adjunction inequality of Theorem 4.1.1 implies that F−Yn is the 0 map.

Before we go further, we prove a vanishing result about the first Chern class of the

contact structure ξg,n.

Proposition 4.2.5. For the contact manifold (Mg,n, ξg,n), c1(ξg,n) = 0.

Proof. The surgery diagram for (Mg,n, ξg,n) is given by surgery on the link L∪L1∪· · ·∪L2g

in the connect sum of S1 × S2, defined as follows. Let K be the binding of the open book

(Σ1
g, idΣ1

g
). After stabilising the open book once, the boundary component corresponding to

K has page slope −1. Let L be a Legendrian realisation of this boundary component. Note

that tb(L) = −1, and since sl(K) = 2g− 1 = tb(L)− rot(L), we see that rot(L) = −2g. Let

L1, . . . , L2g−1 each be a negative Legendrian stabilisation of L. Thus, rot(Li) = −2g − 1,

for i = 1, . . . , 2g− 1. Finally, let L2g be an n-fold negative Legendrian stabilisation of L, so

rot(L2g) = −2g − n. We perform contact (+1)-surgery on L, and contact (−1)-surgery on

L1, . . . , L2g. This corresponds exactly to the open book (Σg,n, φg,n).

From [10], we know that

PD c1(ξg,n) = rot(L)[µL] +

2g∑
i=1

rot(Li)[µLi ],
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Figure 9: Topological Kirby diagram of Mg,n, after handle-sliding Li over L, for i =
1, . . . , 2g.

where [µL] and [µLi ] are the homology classes of the meridians of L and Li, respectively.

Note that we can still use this formula in the presence of 1-handles in the base manifold,

since L,L1, . . . , L2g are all null-homologous. Note that after pushing Li over L, we get the

topological surgery diagram in Figure 9. From this diagram, we can see that [µLi ] = −[µL]

for i = 1, . . . , 2g − 1, and that n[µL2g ] = −[µL]. Thus, re-writing PD c1(ξg,n) in terms of

[µL2g ], we get

PD c1(ξg,n) = −2g((2g − 1)n+ 1)[µL2g ] = 0,

since [µL2g ] is a generator of the torsion first-homology summand introduced by the surgery,

and the order of [µL2g ] is (2g − 1)n + 1. Since PD is an isomorphism, we conclude that

c1(ξg,n) = 0.

Gompf [33, Corollary 4.10] showed that a contact structure ξ is homotopic to its reverse

orientation if and only if c1(ξ) = 0. Since the first Chern class and the half-Euler class,

which are used in the proof in [33], are homotopy obstructions over the 2-skeleton, the same

result applies to Spinc structures. Thus, if s is a Spinc structure, then J (s) = s if and only

if c1(s) = 0. Proposition 4.2.5 implies that J (sξg,n) = sξg,n .

We will now prove the induction step for the proof of Lemma 4.2.7 under the additional

assumption that J (c(ξg,n)) = c(ξg,n).

Lemma 4.2.6. If c(ξg,n) 6= 0 and J (c(ξg,n)) = c(ξg,n), then c(ξg,n+1) 6= 0 and J (c(ξg,n+1)) =

c(ξg,n+1).

Proof. From Lemma 4.2.4 and the Heegaard Floer exact triangle, we see that F−Yn = 0

implies that F−Xn is injective. We will show that the image of c(ξg,n) under F−Xn is
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c(ξg,n+1) plus another term c′.

Consider the Heegaard triple (Σ,α,β,γ, z) for the cobordism −Xn, where (Σ,α,β, z)

comes from the Honda, Kazez, and Matić construction [37] of the Heegaard diagram for

−Mg,n+1 with a basis for Σg,n as in Figure 10, and γ is a small push-off of β except around

the boundary that will be capped off, where we take γ1 to be a curve parallel to the boundary.

· · ·

...

Figure 10: A basis of arcs for Σg,n. Every boundary component above the bottom is
connected to the one below it by an arc, and all arcs that go around the topology of the
surface go to the bottom boundary component. Only the top of the surface is shown; the
curve that seems to stop at the holes actually traces the mirror image on the underside of
Σg,n.

Let c(ξg,n+1) be represented by the point c = {c1, . . . , ck} in the Heegaard diagram.

Baldwin [5, Proposition 2.3] shows that the image of c(ξg,n) under the cobordism F−Xn

only contains points w such that wi = ci for i = 2, . . . , k, and w1 is such that there is a

holomorphic triangle ∆ with corners x1, θ1, and w1 ∈ α1 ∩ β1 such that nz(∆) = 0. See

Figure 11.

In our situation, the only possible triangles are between x1, θ1, and c1 (ie. w = c) or x1,

θ1, and c′1, so F−Xn(c(ξg,n)) = c+ c′, where c′1 = c′1, and c′i = ci for i = 2, . . . , k.

Since J (c(ξg,n)) = c(ξg,n), we know that

c+ c′ = F−Xn(c(ξg,n)) = JF−Xn (J (c(ξg,n))) = JF−Xn(c(ξg,n)) = J (c) + J (c′).

We claim that c1(sz(c
′)) 6= 0, and so in particular, that c and c′ induce different Spinc
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c′1 c1

θ1

x1· · · α1

β1 γ1

Figure 11: The Honda, Kazez, and Matić description of the Heegaard triple (Σ,α,β,γ, z)
near the boundary component (on the right) which is being capped off. The empty black
circles are boundary components of the open book. The blue curves are α curves, the red
and green curves are β curves (with the green ones being uninvolved in the holomorphic
triangles) and the purple curve is part of γ. The two holomorphic triangles involving x1 and
θ1 are shaded in yellow.

structures, and that c′ and J (c′) induce different Spinc structures. We know that J (c) ∈

ĤF (−Mg,n+1, sz(c)), as c1(ξg,n+1) = 0, by Proposition 4.2.5. Thus J (c) = c, and we

must have J (c′) = c′. However, since c1(sz(c
′)) 6= 0, the two points induce different Spinc

structures, and so c′ must be 0 in ĤF (−Mg,n+1). Thus, since c+ c′ 6= 0, we conclude that

c 6= 0 ∈ ĤF (−Mg,n+1), and hence c(ξg,n+1) 6= 0.

To prove the claim, we will show that c1(sz(c
′)) = 2PD [γ1]. To this end, let ε(c, c′) be

the collection of curves on Σ connecting c to c′, as in the notation of [55]. Since c′i = ci for

i 6= 1, we see that ε(c, c′) is a simple closed curve on Σ isotopic to γ1. From [55, Lemma

2.19], we see that

sz(c
′)− sz(c) = PD [γ1],

and thus

c1(sz(c
′)) = c1(sz(c)) + 2PD [γ1] = 2PD [γ1].

We notice that γ1 is isotopic to the boundary component of (Σg,n+1, φg,n+1) corresponding

to the surgery dual to K. This is homologous to 2g − 1 copies of the meridian of K, where

the meridian is thought of as a knot in −Mg,n+1 generating H1(−Mg,n+1). Since this has

order (2g − 1)(n+ 1) + 1 in H1(−Mg,n+1) (and this is at least 3, as g ≥ 1, and n ≥ 1), we
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conclude that 2[γ1] 6= 0.

Lemma 4.2.7. The contact invariant c(ξg,n) 6= 0 for all g, n ≥ 1.

Proof. When n = 1, Mg,1 is 2g − 1 + 1/1 = 2g surgery on K. From Theorem 4.2.1, we

know that this has non-vanishing contact invariant, that is, c(ξg,1) 6= 0. We need to show

that J (c(ξg,1)) = c(ξg,1). Capping off the upper-most boundary component of (Σg,1, φg,1) in

Figure 8 will give us the manifold M , which is the connected sum of 2g copies of S1 × S2

with unique tight contact structure ξ, and c(ξ) 6= 0. If the cobordism from M to Mg,1 is

denoted by X0, then a similar argument to that in the proof of Lemma 4.2.6 will show that

F−X0(c(ξ)) = c(ξg,1) +
∑

xi,

where the Spinc structures induced by the xi are not sξg,1 .

We claim that J (c(ξ)) = c(ξ). Indeed, ĤF (−S1 × S2) is generated by the contact

element c(ξstd) of the standard tight contact structure on S1×S2. In ĤF (−M), the contact

element c(ξ) is represented by the class c(ξstd)⊗· · ·⊗c(ξstd), and conjugation acts term-wise

(see [54, Section 6]). Thus, since F−X0(c(ξ)) = JF−X0(J (c(ξ))) = JF−X0(c(ξ)), we see

that

c(ξg,1) +
∑

xi = J (c(ξg,1)) +
∑
J (xi).

Since c1(ξg,1) = 0, the Spinc structure induced by J (c(ξg,1)) is the same as that induced by

c(ξg,1). Thus we conclude that J (c(ξg,1)) = c(ξg,1). Finally, we use Lemma 4.2.6, and see

that c(ξg,n) 6= 0 for all n ≥ 1.

Here we present an alternative (shorter) proof of Lemma 4.2.7 that does not use the

Heegaard diagram or the conjugation map J .

Second Proof of Lemma 4.2.7. Consider the Legendrian knot L in Figure 12 with tb(L) =

2g − 1 (cf. [46, Figure 1]). Note that L is topologically isotopic to K ⊂ (Mg, ξg), the

binding of (Σ1
g, idΣ1

g
). Etnyre and Van Horn-Morris [25, Theorem 1.6] show that if T is a

positive transverse push-off of L, then there is a contactomorphism of (Mg, ξg), the contact

manifold supported by (Σ1
g, idΣ1

g
), such that T is identified with K. Thus, inadmissible

54



transverse surgery on K is contactomorphic to inadmissible transverse surgery on T , which

by Theorem 1.1.2 is identified with contact surgery on L. By the proof of the invariance of the

contact invariant, its non-vanishing is preserved under contactomorphism. Hence, to show

that c(ξg,n) 6= 0, it is enough to show that contact (+1/n)-surgery on L has non-vanishing

contact invariant.

Contact (+1/n)-surgery on L can be realised as contact (+1)-surgeries on n push-offs

of L. In addition, although T might not be actually transverse isotopic to K, they are

topologically isotopic, so the exact triangle of Heegaard Floer groups using the cobordisms

−Xn and −Yn apply to surgery on T as well, and hence to surgeries on L. We can thus

realise F−Xn from ĤF (−Mg,n) to ĤF (−Mg,n+1) as being induced by contact (+1)-surgery,

and thus F−Xn(c(ξ−1/n(L))) = c(ξ−1/(n+1)(L)). By Lemma 4.2.4, F−Xn is an injective map.

By Theorem 4.2.1, c(ξ−1 (L)) 6= 0, as (Mg,1, ξ
−
1 (L)) is contactomorphic to (Mg,1, ξg,1), and

that is inadmissible transverse 2g-surgery on K. The lemma follows by induction on n.

Note that with a little extra effort, we can re-prove the non-vanishing of c(ξg,1), by

showing that F−X0 is injective, where F−X0 is as in the exact triangle:

ĤF (−Mg) ĤF (−Mg,1)

ĤF (−Mg,∞).

F−X0

F−Y0

For this, we consider the cobordism −Y0 backwards, as a cobordism fromMg toMg,∞. This

is given by attaching a 2-handle to K with framing 2g − 1. Thus, by gluing the core of the

2-handle to a Seifert surface for K, we create a surface Σ with genus g and self-intersection

2g − 1. By Theorem 4.1.1, F−Y0 is identically 0, and hence F−X0 is injective.

Proof of Theorem 1.3.1. It is sufficient to prove that inadmissible transverse (2g−1 + 1/n)-

surgery is tight for all n ≥ 1, as given r > 2g−1, there is some n such that r > 2g−1+1/n,

and then inadmissible transverse r-surgery on K is inadmissible transverse (2g − 1 + 1/n)-

surgery on K followed by negative contact surgery on some link, and negative contact

surgery preserves tightness, by Wand [61]. For the statement about the Heegaard Floer
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......

Figure 12: The Legendrian knot L with tb(L) = 2g− 1 in (Mg, ξg). Each sphere on the left
is identified with the corresponding sphere on the right, and there are 2g such pairs. This
image is a reproduction of [46, Figure 1].
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contact invariant, we note that Ozsváth and Szábo [56] proved that negative contact surgery

preserves non-vanishing of the contact invariant.

Let (Σ, φ) be the genus g open book for (M, ξ) with connected binding K, and assume

that ξ is tight (resp. c(ξ) 6= 0). If we plumb Σ with an annulus, and extend φ over this annulus

by the identity, we have an open book for
(
M#

(
S1 × S2

)
, ξ′
)
, where ξ′ = ξ#ξstd, and ξstd

is the unique tight contact structure on S1 × S2. Since ξstd is tight (resp. c(ξstd) 6= 0), we

see that ξ′ is tight (resp. c(ξ′) 6= 0). So we can plumb enough copies of (S1× [0, 1], idS1×[0,1])

onto (Σ, φ) such that our new surface Σ′ is homeomorphic to Σg,n, our new monodromy

is φ′, and our new supported contact structure ξ′ is tight (resp. has non-vanishing contact

invariant).

Since both ξ′ and ξg,n are tight (resp. c(ξ′) 6= 0 and c(ξg,n) 6= 0), Theorem 4.2.2 says that

the open book (Σg,n, φ
′ ◦ φg,n) supports a tight contact structure (resp. with non-vanishing

contact invariant). But this is exactly the open book supporting inadmissible transverse

(2g − 1 + 1/n)-surgery on K.

4.3 Inadmissible Surgery on Links

Let (Σ, φ) be an open book with multiple binding components supporting a tight contact

structure. Based on the Theorem 1.3.1, it is natural to ask whether sufficiently large surgeries

on all the binding components of (Σ, φ) would result in a tight manifold. We show that this

is in general not the case. We will show that the model open books for surgery on multiple

binding components are overtwisted.

To see this, we first define our model open books. We start with (Σn
g , idΣn

g
), where Σn

g is

a surface of genus g with n boundary components K1, . . . ,Kn. This is an open book for the

connect sum of 2g + n− 1 copies of S1 × S2, supporting the unique tight contact structure

ξ that is Stein fillable, and c(ξ) 6= 0. Given rational numbers r1, . . . , rn, let (Σn
g (r), φ(r))

be the open book supporting the result of inadmissible transverse ri-surgery on Ki, for each

i = 1, . . . , n.

Theorem 4.3.1. The contact structure supported by (Σn
g (r), φ(r)) for n ≥ 2 is overtwisted

for every r = (r1, . . . , rn).
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Proof. If ri ≤ 0 for some i, then the contact manifold is already overtwisted. Indeed, in the

contact manifold supported by (Σn
g , idΣn

g
), there is a Legendrian knot L in a neighbourhood

of Ki with contact framing invariant equal to ri (in fact, it is topologically a cable of

Ki): we can find a Legendrian representative of Ki with contact framing equal to the page

slope by realising a push-off of Ki on the page, and this implies (by looking at a standard

neighbourhood of Ki) that any contact framing less than this can also be realised in the knot

type of some cable of Ki. Thus, since after performing transverse inadmissible ri-surgery on

Ki (with respect to the page slope), L will bound an overtwisted disc, the contact manifold

supported by (Σn
g (k), φ(k)) is overtwisted.

So assume that ri > 0 for each i. Given r, we define r′ as follows. Fix two distinct

indices i 6= j, and let r′i = ri − 1, r′j = rj + 1, and let r′l = rl for all l 6= i, j. We claim that

(Σn
g (r′), φ(r′)) supports the same contact manifold as (Σn

g (r), φ(r)). The proof is contained

in Figure 13 in the case that r is a collection of integers (although the proof is the same, the

open book is more complicated when ri is non-integral). Note that inadmissible transverse

rj-surgery on Kj can be written in multiple ways, either directly (as in Figure 7) or by first

stabilising Kj , and performing (rj + 1)-surgery with respect to the new page slope. The

boundary component created by stabilisation can now be thought of as coming from the ri-

surgery on Ki, thus changing the surgery coefficients as claimed. We can decrease ki in this

way until it is less than or equal to 0, and then we are done, as in the first paragraph.

4.4 Contact Width and Other Invariants

The contact width w(K) of a topological knot K in a contact manifolds (M, ξ) is the supre-

mum of the slopes of the dividing curves of the convex boundaries of regular neighbourhoods

of transverse knots in the knot type K. This has been in general tough to calculate, and

has been worked out only in very specific cases (for example, torus knots in (S3, ξstd)). Our

results allow us to easily calculate the contact width of a large class of knots.

Proof of Corollary 1.6.1. Since there is a Legendrian approximation L of K with tb(L) =

2g − 1, and a regular neighbourhood of L with convex boundary with dividing curve slope

2g − 1 is a regular neighbourhood of K, we know that w(K) ≥ 2g − 1. If w(K) > 2g − 1,
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}ri − 1 }ri − 1

}rj

}rj

−

−

− −Ki

Kj

Ki

Kj

Figure 13: On the left, we have performed ri-surgery on Ki, and rj-surgery on Kj with
respect to the page slope, although each is expressed in different ways. After moving the
bottom boundary component in the left picture to be in the middle in the right picture, we
see that open book is the same as that for (ri − 1)-surgery on Ki and (rj + 1)-surgery on
Kj . In these open books, the red unmarked curves represent positive Dehn twists and the
blue curves marked with a minus sign represent negative Dehn twists.

then K would have a regular neighbourhood S with convex boundary with dividing curves

of slope s > 2g − 1. Theorem 1.3.1 implies that inadmissible transverse r-surgery on S

is tight for all r > 2g − 1. In particular, inadmissible transverse s-surgery on K is tight.

But the Legendrian divides on ∂T now bound an overtwisted disc in Ms(K), which is a

contradiction.

Remark 4.4.1. The knots that are closures of positive braids in (S3, ξstd) are fibred and have

Legendrian representatives with tb = 2g − 1, see [40]. Corollary 1.6.1 then implies that the

contact width of all these knots is 2g − 1. Specific examples outside of S3 are plentiful,

but it is unclear what large families of knots are easily describable. Note that for knots in

(S3, ξstd), we could use results of Lisca and Stipsicz [45] instead of Theorem 1.3.1 to prove

Corollary 1.6.1.

In another direction, Baldwin and Etnyre [6] have defined an invariant t(K) of a trans-

verse knot K in a contact manifold (M, ξ). Given a standard neighbourhood N of K with
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boundary slope a, we extend their definition to include inadmissible transverse surgery and

define

t(K,N) = {r ∈ Q | admissible (resp. inadmissible) transverse r-surgery

on K using N is tight, where r < a (resp. r ≥ a)}.

When either the result is independent of the neighbourhood N , or N is understood, we leave

it off, and just right t(K).

From Lisca and Stipsicz [45], we know examples in S3 where t(K,N) = R\tb(L); for

example, knots who have Legendrian approximations with tb(L) = 2g(L) − 1, like the

positive torus knots, and N is a neighbourhood of a maximum tb representative of K. The

inadmissible half of t(K,N) follows from [45], and the admissible half follows from work

of Etnyre, LaFountain, and Tosun [26] in the cases where the surgery is not representable

by negative contact surgery. Given Theorem 6.2.1, we now have examples inside S3 where

t(K,N) is not almost all of R; for example, with Remark 6.2.2 for negative torus knots, we

see that t(K) = [−∞, tb(K)) (the negative torus knots are uniformly thick, see [24], and so

the result is independent of N). Thanks to Corollary 1.6.1, we have more information on

this invariant for knots outside of S3.

60



CHAPTER V

FILLABILITY AND UNIVERSAL TIGHTNESS

Having seen that the model open books constructed in Section 4 are tight, and have non-

vanishing Heegaard Floer contact invariant, we now ask about their other properties, namely,

fillability and universal tightness.

5.1 Fillability

A contact 3-manifold (M, ξ) is weakly fillable if there exists a symplectic 4-manifold (X,ω)

with a compatible almost-complex structure J such that (M, ξ) is orientation-preserving

contactomorphic to (∂X, T∂X ∩ J(T∂X)), and ω restricted to T∂X ∩ J(T∂X) is positive.

We say that it is weakly semi-fillable if it is the weak convex boundary of a 4-manifold that

may have other convex boundary components. We say that (M, ξ) is strongly fillable if there

is a weak filling (X, J, ω), where (X,ω) is a symplectic 4-manifold, and there is a vector-field

v pointing transversely out of X along M , such that ξ = ker ιvω, and the flow of v preserves

ω. It is Stein fillable if (X, J, ω) is Stein.

We know from Theorem 4.2.2 that there are monoids in mapping class group for mon-

odromies corresponding to the different fillability conditions listed above. If the model open

books we constructed were weak (resp. strongly, Stein) fillable, then large enough positive

surgeries on fibred knots supporting weakly (resp. strongly, Stein) fillable contact structures

would be weakly (resp. strongly, Stein) fillable as well. We show that these open books

are not weakly fillable, and hence not strongly or Stein fillable. Since these open books

correspond to positive surgeries on the standard tight contact structures on connect sums of

copies of S1×S2, which are Stein fillable, we see that no fillability condition on the original

contact structure is enough by itself to guarantee fillability of the surgered manifold.

We begin by noting that the binding K of the genus g open book with connected binding

and trivial monodromy (Σ1
g, idΣ1

g
) is a transverse knot in the contact structure supported

by the open book with sl(K) = 2g − 1 (see Figure 14). By the discussion in the proof of
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· · ·

Figure 14: The open book (Σ1
g, idΣ1

g
) with trivial monodromy.

Lemma 4.2.7, inadmissible transverse surgery on K is contactomorphic to positive contact

surgery on the Legendrian knot L in Figure 12. We will show that contact (n−2g+1)-surgery

on L is not weakly fillable for any odd integer n ≥ 2g, and since fillability is preserved by

contactomorphism, the same is true of inadmissible transverse n-surgery on K. This will be

enough for us to conclude that inadmissible transverse r-surgery on K is not weakly fillable

for any rational r > 0.

Since L has tb(L) = 2g − 1 and rot(L) = 0, inadmissible transverse n-surgery on K is

contactomorphic to contact (n−2g+1)-surgery on L, for n ≥ 2g. Using Construction 2.2.2,

we take L1, a negatively stabilised push-off of L, and L2, . . . , Ln−2g, push-offs of L1, and

perform contact (+1)-surgery on L and contact (−1)-surgery on Li, i = 1, . . . , n− 2g.

We will calculate the homotopy invariants of the contact structure obtained by this

surgery. The formulae used here are from Ding, Geiges, and Stipsicz [10], based on work of

Gompf [33].

Proposition 5.1.1. If (M, ξ) is the contact manifold resulting from contact (n − 2g +

1)-surgery on L (with all negative stabilisation choices), for n ≥ 2g, then the homotopy

invariants of ξ are PD c1(ξ) = (n− 2g)[µL] and d3(ξ) = 4g2−3n+n2

4n .

Proof. Let (M, ξ) be the resulting manifold. The Poincaré dual of c1(ξ) is given by

PD c1(ξ) = rot(L)[µL] +

n−2g∑
i=1

rot(Li)[µLi ] = −
n−2g∑
i=1

[µLi ].

Since the topological surgery diagram is given by Figure 16, we see that [µLi ] = −[µL] in

H1(M), and so

PD c1(ξ) = (n− 2g) [µL].
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2g − 1

full twists
...

...

L

L1

Ln

2g

2g − 3

2g − 3

>
>

>

Figure 15: Kirby diagram description of M .

To work out the three-dimensional invariant d3(ξ), we consider the almost-complex man-

ifold (X, J) with boundary (M, ξ) obtained by taking B3, attaching 2g, 1-handles (corre-

sponding to the connect sum of S1×S2 supported by the open book in Figure 14), and then

attaching n− 2g + 1, 2-handles along L,L1, . . . , Ln−2g with framings 2g, 2g − 3, . . . , 2g − 3,

see Figure 15.

From the construction, we see that χ(X) = 1 − 2g + (n − 2g + 1) = 2 − 4g + n. The

linking matrix for the 2-handle surgeries is given by

N =



2g 2g − 1 2g − 1 · · · 2g − 1 2g − 1

2g − 1 2g − 3 2g − 2 · · · 2g − 2 2g − 2

2g − 1 2g − 2 2g − 3 · · · 2g − 2 2g − 2

...
...

...
. . .

...
...

2g − 1 2g − 2 2g − 2 · · · 2g − 3 2g − 2

2g − 1 2g − 2 2g − 2 · · · 2g − 2 2g − 3


.

We claim that this matrix has signature 1−(n−2g), and thus that σ(X) = 1−n+2g. Indeed,

by handle-sliding Li over L, for i = 1, . . . , n− 2g, we get the topological surgery picture in

Figure 16. After handlesliding L over the −1 framed unknots, we get n−2g unlinked copies

of a −1 framed unknot, and n surgery on L. Note that this calculation is valid even in the

presence of 1-handles, as all knots involved in the calculation are null-homologous.

L
2g

L1

−1

L2

−1

L3

−1

· · · Ln−2g

−1

>

> > > >

Figure 16: Kirby diagram description ofM after handle-sliding Li over L, for i = 1, . . . , n−
2g.
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To calculate c2
1(X, J), we first note that n ·PD c1(ξ) = 0, and thus n ·PD c1(ξ) is in the

image of N restricted to the domain Zn+1. We can check that

N−1 (n · PD c1(ξ)) =



(n− 2g)(1− 2g)

2g

...

2g


.

Thus we calculate

c2
1(X, J) =

1

n2



(n− 2g)(1− 2g)

2g

...

2g


·



0

−n
...

−n


=

4g2 − 2gn

n
.

We combine these results to calculate

d3(ξ) =
1

4

(
c2

1(X, J)− 3σ(X)− 2χ(X)
)

+ 1 =
4g2 − 3n+ n2

4n
,

where the plus 1 comes from the contact (+1)-surgery on L.

Theorem 5.1.2. If (Mr, ξr) is the contact structure coming from inadmissible transverse r-

surgery on K, then ξr is not weakly fillable for any rational r > 0. In particular, inadmissible

transverse surgery does not preserve fillability.

Proof. Let (M ′n, ξ
′
n) be the contact manifold coming from contact (n−2g+ 1)-surgery on L,

as in Proposition 5.1.1. The values of c1(ξ′n) and d3(ξ′n) calculated in Proposition 5.1.1 are

the same as those calculated by Lisca and Stipsicz [46] for Honda’s examples [36] of circle

bundles over Σg with Euler number n. For n odd, we can conclude that our examples are

in the same Spinc structure as their ξ0 (whereas for n even, there is a 2:1 correspondence of

c1 to Spinc structures, and so we cannot conclude anything). Lisca and Stipsicz [46] proved

that a contact structure in this Spinc structure and with this d3 invariant cannot be weakly

fillable, or even weakly semi-fillable.

By [6], ξ′n is achievable by negative contact surgery on a link in ξr for any rational

0 < r < n, and negative contact surgery preserves weak fillability [22]. Thus, the fact that
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ξ′n is not weakly fillable for any odd integer n implies that ξr is not weakly fillable for any

rational r > 0.

5.2 Universal Tightness

Recall that given a cover M ′ → M and a contact structure ξ on M , there is an induced

contact structure ξ′ on M ′. We say (M, ξ) is universally tight if ξ is tight and the induced

contact structure on every cover is also tight; otherwise, (M, ξ) is virtually overtwisted. Since

the fundamental group of a compact 3-manifold is residually finite (by geometrization),

universal tightness is equivalent to requiring that all finite covers of (M, ξ) remain tight [35].

Remark 5.2.1. Honda has classified [36] tight contact structures on S1 bundles over T 2 with

Euler class n, and shown that there are exactly one (resp. two) virtually overtwisted contact

structures when n = 2 (resp. n > 2). Van Horn-Morris [39] has shown that all the universally

tight contact structures that Honda classifies are weakly fillable. Thus, by Theorem 5.1.2,

we can conclude that the contact manifolds resulting from inadmissible transverse n-surgery

on the binding of (Σ1
1, idΣ1

g
) support virtually overtwisted contact structures for any integer

n ≥ 2.

Theorem 5.2.2. The result of inadmissible transverse r-surgery on the binding of (Σ1
g, idΣ1

g
)

is virtually overtwisted for any r > 0. In particular, inadmissible transverse surgery does

not preserve universal tightness.

Proof. Let (Σ, φ) be an open book for (M, ξ) with binding L. Given a finite cover π : M ′ →

M , the link π−1(L) ⊂M ′ is fibred, and induces an open book with page Σ′ = π−1(Σ) with

induced monodromy φ′ on Σ′. We will show that the open books for inadmissible transverse

r-surgery on the binding K of the open book (Σ1
g, idΣ1

g
) in Figure 14 are virtually overtwisted

for any r > 0.

First note that for g > 0, the surface Σ = Σ1
g admits a double cover by Σ′ = Σ2

2g−1.

Let K be the binding component in (Σ, idΣ), and let K1 and K2 be the induced binding

components in (Σ′, idΣ′). It is not hard to see that taking the double cover of the open book

resulting from inadmissible transverse r-surgery on K is the same as doing inadmissible

transverse r-surgery on each of K1 and K2 with respect to the framings induced by Σ′.
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By the proof of Theorem 4.3.1, the contact manifold resulting from inadmissible trans-

verse r-surgery on each of K1 and K2 is the same as that resulting from inadmissible trans-

verse (r−n)-surgery onK1 and inadmissible transverse (r+n)-surgery onK2, for any integer

n. In particular, if n > r, then we can explicitly find an overtwisted disc in a neighbourhood

of the dual knot to K1 in the surgered manifold, and thus the result is overtwisted.

Since this contact manifold is induced by a double cover of the contact manifold obtained

by inadmissible transverse r-surgery on K, we conclude that the latter contact manifold is

virtually overtwisted. We have proved the following result.
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CHAPTER VI

OVERTWISTED SURGERIES

In this section, we prove Theorem 1.5.1 and its generalisations. We have the following

classification, due to Golla, of when inadmissible transverse surgery on a transverse knot T

in (S3, ξstd) has non-vanishing contact Heegaard Floer invariant.

Theorem 6.0.3 (Golla [32]). Let T ⊂ (S3, ξstd) be a transverse knot of smooth knot type

K. Then the Heegaard Floer contact invariant of inadmissible transverse n-surgery on T is

non-vanishing for an integer n if and only if all the following hold:

1. sl(T ) = 2τ(K)− 1

2. n ≥ 2τ(K)

3. τ(K) = ν(K).

Note that Golla’s original paper was in the context of positive contact surgeries on Leg-

endrian knots, and can be converted back to the original formulation by replacing sl with

tb − rot and n with n − tb. There is currently no example of a transverse knot (S3, ξstd)

where inadmissible transverse surgery is tight, yet T does not satisfy the conditions of Theo-

rem 6.0.3. The natural question is whether those surgeries whose contact invariant vanishes

are indeed overtwisted. Theorem 1.5.1 gives examples where the surgery is overtwisted,

lending support to a positive answer to the following question.

Question 6.0.4. Is the tightness of surgeries on transverse knots in S3 characterised by the

contact class of the surgered manifold?

Given a Legendrian L ⊂ (M, ξ), consider the core of the surgery torus L∗ in (Mtb(L)+1(L),

ξ(+1)(L)). This is naturally a Legendrian knot, and its contact framing agrees with the

contact framing of L in (M, ξ). A single negative (resp. positive) stabilisation of L∗ gives

us L∗− (resp. L∗+). To work out the contact framing of L∗± measured by the meridian and
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contact framing of L, we pass to the Farey graph. Indeed, although the Farey graph was

described in Section 3.3 with reference to transverse knots in the binding of open books,

the same operations can be used to describe the meridional slope and contact framing of

Legendrian knots: a negative stabilisation of L is operation (1), while contact (+1)-surgery

(resp. (−1)-surgery) on L correspond to operation (2) (resp. (3)), cf. Proposition 3.2.2.

For L, we set∞ to be the meridian slope (West’s label), and 0 to be the contact framing

(East’s label). Thus contact (+1)-surgery moves the label 1 to West, and keeps East’s label

fixed. The labels of the points that in the standard labeling of the Farey graph that are

labeled with integers (East, North, North-West, West-North-West, . . ., South, South-West,

West-South-West, . . .) are possible contact framings for the knot type of L∗. Since the

contact framing of L∗ is 0, and that label is at East, a stabilisation will take the next largest

contact framing (with respect to the new labeling), which is at North. This is labeled ∞,

and hence it is the slope that corresponds to the meridian of L.

Thus, the complement of a standard neighbourhood of L∗− (resp. L∗+) with convex bound-

ary is the manifold obtained from the complement of L by attaching a negative (resp. pos-

itive) bypass to get to the meridian slope ∞ as the slope of the dividing curves. We claim

that if these sutured manifolds are overtwisted, then all positive contact surgeries on L are

overtwisted. This is because when performing positive contact surgery, the first step is to

add a bypass layer to get to the meridian slope. This manifold embeds into the surgered

manifold, thus if it is overtwisted, then so is the surgered manifold. If we can only show that

the complement of a standard neighbourhood L∗− is overtwisted, then we can show that all

inadmissible transverse surgeries are overtwisted (corresponding to negative bypass layers),

but not all positive contact surgeries in general.

To show that these manifolds with boundary are overtwisted, we use tools previously

used to detect loose Legendrian knots, that is, Legendrian knots where the complement

of a standard neighbourhood is overtwisted. To do this, we follow the lead of Baker and

Onaran [3], using the calculation tools of Lisca, Ozsváth, Stipsicz, and Szábo [44].
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6.1 Invariants of Rationally Null-Homologous Legendrian Knots

In this section, we define the rational Thurston–Bennequin tbQ(L) and the rational rotation

number rotQ(L) of a rationally null-homologous Legendrian knot L. See [1] for more details

and properties.

Given a rationally null-homologous Legendrian knot L ⊂ (M, ξ), where M is a rational

homology sphere, let Σ be a rational Seifert surface for L with connected binding. That

is, ∂Σ is connected and is homologous to r · [L], where r is the smallest positive integer

such that r · [L] = 0 ∈ H1(M ;Z). Given another Legendrian knot L′, we define the rational

linking to be

lkQ(L,L′) =
1

r
[Σ] · [L′].

Consider the framing of the normal bundle of L induced by ξ|L. Let the Legendrian knot L′

be a push-off of L in the direction of this framing. Then we define the rational Thurston–

Bennequin number of L to be

tbQ(L) = lkQ(L,L′).

Let ι : Σ → M be an embedding on the interior of Σ. We choose a trivialisation τ of

the pull-back bundle ι∗(ξ) over Σ. Along ∂Σ, τ gives an isomorphism of the bundle to

∂Σ×R2.The tangent vector to ∂ι(Σ) gives a framing of ξ|L, so its pullback v gives a framing

of ι∗(ξ) along ∂Σ. We define the rational rotation number of L to be

rotQ(L) =
1

r
windτ (v),

where windτ (v) measures the winding number of v in R2 with respect to the trivialisation

τ .

A Legendrian knot L in an overtwisted contact manifold is called loose if the complement

of a standard neighbourhood of L is overtwisted; otherwise, it is called non-loose.

Lemma 6.1.1 (Świątkowski [12], Etnyre [20], Baker–Onaran [3]). If L ⊂ (M, ξ) is a ratio-

nally null-homologous Legendrian knot such that the complement of a regular neighbourhood

of L is tight, then

−|tbQ(L)|+ |rotQ(L)| ≤ −χ(L)

r
,
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where r is the order of [L] in H1(M ;Z).

In fact, Baker and Etnyre showed [1] that for a rationally null-homologous Legen-

drian knot in a tight contact manifold, the rational homotopy invariants satisfy tbQ(L) +

|rotQ(L)| ≤ −χ(L)/r. This gives in some cases a better inequality than that from Lemma 6.1.1,

but this does not improve the results of this section.

The following lemma has been proved by Lisca, Ozsváth, Stipsicz, and Szábo [44] and

Geiges and Onaran [29] for surgeries in (S3, ξstd). We extend it to surgeries in a more general

contact manifold.

Lemma 6.1.2. Let L0 ∪ · · · ∪ Ln ⊂ (M, ξ) be a collection of null-homologous Legendrian

knots, where c1(ξ) is torsion. Perform contact (±1)-surgery on Li, for i = 1, . . . , n (the sign

need not be the same for each i), and let ai be the topological surgery coefficient. Assume

that the resulting manifold (M ′, ξ′) has the same rational homology as M . Let N = (Nij)

for 1 ≤ i, j ≤ n be the matrix given by

Nij =

 ai i = j,

lk(Li, Lj) i 6= j,

and let N0 = ((N0)ij) for 0 ≤ i, j ≤ n be the matrix given by

(N0)ij =


0 i = j = 0,

ai i = j ≥ 1,

lk(Li, Lj) i 6= j.

Then the rational classical invariants for L, the image of L0 in (M ′, ξ′), are

tbQ(L) = tb(L0) +
detN0

detN
,

and

rotQ(L) = rot(L0)−

〈
rot(L1)

...

rot(Ln)

 , N−1


lk(L0, L1)

...

lk(L0, Ln)


〉
.

Proof. We give a sketch of the argument, paying attention to where the details differ from

[29, Lemma 2]. For each i = 0, . . . , n, let λi and µi be the Seifert framing and meridian

70



respectively for Li in M . Because each Li is null-homologous, we can conclude that

H1(M ′\L) ∼= H1(M)⊕
(
Z〈µ0〉 ⊕ · · · ⊕ Z〈µn〉

)
/〈aiµi +

n∑
j=0
j 6=i

lk(Li, Lj)µj = 0, i = 1, . . . , n〉.

From the Mayer-Vietoris sequence of M ′ = M ′\L ∪ L, we get the short exact sequence

0→ Z〈µ0〉 ⊕ Z〈λ0〉 → H1(M ′\L)⊕H1(L)→ H1(M ′)→ 0.

Note that Z〈λ0〉 → H1(L) is an isomorphism, and µ0 maps to 0 in H1(L). Note also that the

H1(M) summand in H1(M ′\L) maps isomorphically onto the H1(M) summand in H1(M ′),

and the other summands of H1(M ′\L) map into the other summands of H1(M ′). Thus we

can get the short exact sequence

0→ Z〈µ0〉 → H1(M ′\L)/H1(M)→ H1(M ′)/H1(M)→ 0.

Since H1(M ′;Q) = H1(M ;Q), the preceding exact sequence considered with rational coef-

ficients implies that the residue of PD c1(ξ′, L) in H1(M ′\L;Q)/H1(M ;Q) is some rational

multiple of µ0.

To get a formula for PD c1(ξ,
n⋃
i=0

Li), we start with a non-zero vector field v over Li.

Given Seifert surfaces Σ0, . . . ,Σn for L0, . . . , Ln in M , we extend v over Σi such that there

are rot(Li) zeroes over Σi. Finally, we extend over the rest of M . The zero set of v tells us

that

PD c1(ξ,
n⋃
i=0

Li) =
n∑
i=0

rot(Li)µi + x,

where x is the push-forward of some class in H1(M) that by construction does not intersect

Σi.

We claim that we can construct a rational Seifert surface Σ for L in M ′ such that x acts

trivially on Σ. We then calculate that in (M ′, ξ′), if L is order r in H1(M ′), then

r · rotQ(L) = PD c1(ξ′, L) · [Σ].

Notice that PD c1(ξ′, L) is the push-forward of PD c1(ξ,
n⋃
i=0

Li), and x acts trivially on Σ.

Thus with rational coefficients, the only free part left that could act non-trivially on Σ is

generated by µ0, and since µ0 · [Σ] = r, it must be rotQ(L)µ0.
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With rational coefficients, the summand of PD c1(ξ,

n⋃
i=0

Li) corresponding to the µi can

be written as an element of the Q summand of H1(M ′;Q) generated by µ0. Thus we have

the equation
n∑
i=0

rot(Li)µi = rotQ(L)µ0

in H1(M\L0;Q). Note that the surgery gives a cobordism X : M → M ′, where H2(X) =

H2(M)⊕ Zn and H2(X,M) = Zn. Thus the long-exact sequence of the pair (X,M) gives

H2(M)→ H2(X)→ H2(X,M),

where the first map is an isomorphism into the H2(M) summand of H2(X), and the second

map is 0 on the H2(M) summand, and acts as the matrix N on the Zn summand. Thus

we see that N is an injective map, and thus with rational coefficients, we can invert it. The

formula for rotQ(L) then follows.

Let Σ̃i be Σi minus the interior of N(L0)∪ · · ·N(Ln). To prove the claim, we construct

a surface Σ̃ in M in a neighbourhood of Σ̃0 ∪ · · · ∪ Σ̃n such that its image in M ′ can be

capped off (by meridians of the surgery duals to L1, . . . , Ln) to a rational Seifert surface Σ

for L. Since x acts trivially on each Σi, it will also act trivially on Σ̃.

First note that for every positive intersection of Li and Σj , the intersection of ∂N(Li)

with Σ̃j is −µi, a meridian that in M links Li once negatively, see Figure 17. We start with

r copies of Σ̃0, and we would like to pick |ki| copies of Σ̃i, i = 1, . . . , n, such that

kiλi −

r · lk(L0, Li) +

n∑
j=1
j 6=i

kj · lk(Li, Lj)

µi = ki (λi + aiµi) .

If ki < 0, we reverse the orientation of Σ̃i. This system of equations corresponds to the

intersection of the collection of surfaces with ∂N(Li), for each i. Comparing the coefficients

of µi in each equation, we see that

n∑
i=1

ki · lk(Li, Lj) = −r · lk(L0, Li),

72



where we define lk(Li, Li) to be ai. Notice that this is the same as the equation

N


k1

...

kn

 =


−r · lk(L0, L1)

...

−r · lk(L0, Ln)

 .

Since N is invertible, we can solve for ki. We claim that each ki is an integer. To see this,

first note that the order r of L is the order of [L] =
n∑
i=1

lk(L0, Li)µi in H1(M ′;Z). Since

−r ·
n∑
i=1

lk(L0, Li)µi = 0

in H1(M ′;Z), we know that it is a sum of the relations

aiµi +

n∑
j=0
j 6=i

lk(Li, Lj)µj .

Putting these quantities in vector form, this is equivalent to
−r · lk(L0, L1)

...

−r · lk(L0, Ln)


being an integer linear combination of the columns of N , where the coefficients of the linear

combination are exactly ki.

The boundary of the 2-complex given by the union of r copies of Σ̃0 and ki copies of

Σ̃i, i = 1, . . . , n is homologous to an (r, s) curve on ∂N(L), for s =

n∑
i=0

ki · lk(L0, Li), and

ki copies of a (1, ai) curve on ∂N(Li). Thus we can find some smooth embedded surface

Σ̃ in a neighbourhood of Σ̃0 ∪ · · · ∪ Σ̃n with boundary given by the oriented resolution of

the boundary of the 2-complex. The boundary components of Σ̃ on ∂N(Li), i = 1, . . . , n,

bound discs in M ′, and capping off these components gives a rational Seifert surface Σ for

L in M ′.

Finally, we calculate tbQ(L), by computing the intersection of the contact framing of

L in (M ′, ξ′) (which is the same as that of L0 in (M, ξ)) and the rational Seifert slope,

which is given by a0µ0 + rλ0, where a0 is the unique integer such that the Seifert slope is

null-homologous in H1(M ′\L). The details are exactly the same as in [29, Lemma 2].
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Σj

Li

Lj

−µi

>

>

<

Figure 17: When Li and Lj link positively, the intersection of Σj with the boundary of a
neighbourhood of Li is −µi.

Remark 6.1.3. If c1(ξ) is non-torsion, then rotation numbers may depend on the relative ho-

mology class of the Seifert surfaces that are chosen. Thus, given Seifert surfaces Σ0, . . . ,Σn,

and using rot(Li,Σi) in the formulae, the same proof will calculate rotQ(L,Σ), where Σ is

constructed from Σ0, . . . ,Σn as in the proof. For all our results in this section, the ratio-

nal Seifert surface is constructed using a cabling process from the original Seifert surface.

However, for clarity, we state all our results in the context of c1(ξ) torsion.

Remark 6.1.4. The proof of the formula for tbQ(L) is entirely topological. Thus, if we

consider the contact surgery diagram as a smooth surgery diagram, and perform Kirby

calculus moves on the diagram, then using the M and M0 from the new diagram will give

the same value for tbQ(L). The calculations for rotQ(L), however, are contact geometric in

nature, and so must respect the contact surgery diagram chosen.

6.2 Overtwisted Positive Contact Surgeries

In this section, we prove Theorem 1.5.1 and its generalisations. In particular, Theorem 1.5.1

is a combination of Theorem 6.2.1 and the n = 1 case of Theorem 6.2.4.

The proof of the following theorem was inspired by (and runs similarly to) [3, Theorem

4.1.8].
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Theorem 6.2.1. If K is a null-homologous transverse knot in (M, ξ), c1(ξ) is torsion, and

sl(K) < −2g(K)− 1, then all inadmissible transverse surgeries on K are overtwisted. If L

is a Legendrian approximation of K, and in addition rot(L) ≤ 0, then all positive contact

surgeries on L are overtwisted.

Proof. Let L be a Legendrian approximation of K. Consider contact (+1)-surgery on L,

and let L∗ be the surgery dual. This is topologically equivalent to (tb(L) + 1)-surgery on

K. Consider a Legendrian push-off L0 of L. This is topologically a (1, tb(L)) curve on the

boundary of a neighbourhood of L, where the longitude is given by the Seifert framing.

In particular, L0 is parallel to the dividing curves on the convex boundary of a standard

neighbourhood of L. Thus L∗0, the image of L0 after surgery on L, is still parallel to the

dividing curves on the boundary of a standard neighbourhood of L∗, and thus is Legendrian

isotopic to L∗. Hence we conclude that

χ(L∗0) = χ(L∗) = χ(L) = 1− 2g(L).

We use Lemma 6.1.2 to work out the rational Thurston–Bennequin and rotation numbers

of L∗0. We have

N = (tb(L) + 1)

and

N0 =

 0 tb(L)

tb(L) tb(L) + 1

.
Thus since tb(L0) = tb(L), rot(L0) = rot(L), and lk(L0, L) = tb(L), we calculate

tbQ(L∗0) = tb(L0) +
detN0

detN

= tb(L)− tb(L)2

tb(L) + 1

=
tb(L)

tb(L) + 1
,

rotQ(L∗0) = rot(L0)− rot(L) ·N−1lk(L0, L)

= rot(L)− rot(L) ·
(

1

tb(L) + 1

)
(tb(L))

=
rot(L)

tb(L) + 1
.
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Consider L∗+ and L∗−, the positive and negative stabilisations of L∗0. As discussed above,

the complement of L∗± is exactly the complement of L in N with a positive or negative

basic slice added to the boundary to take the dividing curves of the boundary torus to

meridional curves. Thus, to show that the latter sutured manifolds are overtwisted, we

show that L∗± are loose under the hypotheses of the theorem. If adding a negative bypass

to the complement of L is overtwisted, then all inadmissible transverse surgeries on K are

overtwisted. This is because the overtwisted sutured manifold embeds into all inadmissible

transverse surgeries on K, as the surgeries correspond to choices of negative stabilisations in

performing contact surgery (in particular, the first stabilisation is negative). If adding the

positive bypass and adding the negative bypass are both overtwisted, then any first choice of

stabilisation in contact surgery will lead to an overtwisted sutured manifold, so all positive

contact surgeries on L are overtwisted.

We prove first that L∗− is loose by using Lemma 6.1.1. We see that

tbQ(L∗−) =
tb(L)

tb(L) + 1
− 1 =

−1

tb(L) + 1
,

rotQ(L∗−) =
rot(L)

tb(L) + 1
− 1 =

rot(L)− tb(L)− 1

tb(L) + 1
= −sl(K) + 1

tb(L) + 1
.

Plugging these into Lemma 6.1.1, our assumption that sl(K) < −2g − 1 tells us that

−|tbQ(L∗−)|+ |rotQ(L∗−)| = |sl(K) + 1| − 1

|tb(L) + 1|
>

2g − 1

|tb(L) + 1|
= −

χ(L∗−)

|tb(L) + 1|
,

and so L∗− is loose.

Looking now at L∗+, we calculate

tbQ(L∗+) =
tb(L)

tb(L) + 1
− 1 =

−1

tb(L) + 1
,

rotQ(L∗+) =
rot(L)

tb(L) + 1
+ 1 =

rot(L) + tb(L) + 1

tb(L) + 1

so to break the bound of Lemma 6.1.1, we need

|rot(L) + tb(L) + 1| > 2g.

The left-hand side of this inequality is equal to |sl(K)+1+2rot(L)|. Thus, if rot(L) ≤ 0,

then this inequality is satisfied, as sl(K) < −2g − 1. So both L∗− and L∗+ are loose, as

required.
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Remark 6.2.2. There are numerous classes of knots that fall in this category. For example, a

non-trivial negative torus knot (−p, q) in (S3, ξstd), where p, q ≥ 2, has maximal self-linking

sl = −pq, and 2g − 1 = pq − p − q. Since p, q ≥ 2, we see that −pq < −pq + p + q − 2 =

−(2g − 1) − 2 = −2g − 1. Note that the overtwistedness of contact (+1)-surgery on these

knots was previously known, by a result of Lisca and Stipsicz [47].

Remark 6.2.3. The figure-eight knot in (S3, ξstd) has maximum self-linking −3, so it is not

covered by Theorem 6.2.1. However, it can be shown using convex surface theory that L∗−

and L∗+ are loose Legendrian knots, and thus that all positive contact surgeries on any

figure-eight in (S3, ξstd) are overtwisted. See Section 6.3.

In the following theorem, we look at contact (+n)-surgeries for some knots which are

not covered by Theorem 6.2.1.

Theorem 6.2.4. Fix a positive integer n ≥ 1. If L is a null-homologous Legendrian knot in

(M, ξ), c1(ξ) torsion, where L is genus g, tb(L) ≤ −n−1, and |n · rot(L)− (n−1) · tb(L)| >

n(2g − 1) + tb(L), then contact (+n)-surgery on L is overtwisted.

Remark 6.2.5. For n = 1, this inequality is simply |rot(L)| > 2g − 1 + tb(L). Compare this

result to that obtained by Lisca and Stipsicz [47, Proposition 1.4], which shows that contact

(+1)-surgery on L in (S3, ξstd) has vanishing contact invariant when tb(L) ≤ −2. Note also

that for fixed g, the region in the (tb, rot)-plane that is excluded by the hypotheses of this

theorem contains finitely many points.

Proof. Let L be a Legendrian knot with tb(L) = t and rot(L) = r. We will deal with

the negatively stabilised flavour of contact (+n)-surgery (note that the positively stabilised

variety is equivalent to the negatively stabilised surgery on the reverse orientation of L).

Let L1 and L′2 be push-offs of L. Stabilise L′2 once negatively to get L2, and let L3, . . . , Ln

be push-offs of L2. Contact (+n)-surgery on L is equivalent to contact (+1)-surgery on L1

and contact (−1)-surgery on L2, . . . , Ln. Let L∗ be the image of L after the surgeries on

L1, . . . , Ln. According to Remark 6.1.4, we only need a topological diagram of the surgery

to calculate tbQ(L∗). Thus, we can assume we are doing topological t+n surgery on a single
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knot K that has linking t with L. Thus we can set

N = (t+ n) and N0 =

0 t

t t+ n

.
So we calculate that

tbQ(L∗) = t+
detN0

detN
= t− t2

t+ n
=

tn

t+ n

In order to calculate rotQ(L∗), however, we must use the N that comes from the contact

surgery diagram. Thus we have the n× n matrix given by

N =



t+ 1 t t · · · t t

t t− 2 t− 1 · · · t− 1 t− 1

t t− 1 t− 2 · · · t− 1 t− 1

...
...

...
. . .

...
...

t t− 1 t− 1 · · · t− 2 t− 1

t t− 1 t− 1 · · · t− 1 t− 2


.

It can be verified that its inverse is given by

N−1 =
1

t+ n



n− (n− 1)t t t · · · t t

t 1− n− t 1 · · · 1 1

t 1 1− n− t · · · 1 1

...
...

...
. . .

...
...

t 1 1 · · · 1− n− t 1

t 1 1 · · · 1 1− n− t


.

We can then calculate that

r

r − 1

r − 1

...

r − 1


·N−1



t

t

t

...

t


=

1

t+ n



r

r − 1

r − 1

...

r − 1


·



tn

−t

−t
...

−t


=

(r + n− 1) · t
t+ n

.
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Finally, we can conclude that

rotQ(L∗) = r − (n+ r − 1) · t
t+ n

=
rn− tn+ t

t+ n
.

We now consider k positive or negative stabilisations L∗±k of L∗, and plug the Thurston–

Bennequin number and rotation number of L∗±k into Lemma 6.1.1 to show that that the

complement of L∗±k is overtwisted, and hence that the result of surgery on L is overtwisted..

Let L∗k be the k-fold stabilisation of L∗ with stabilisation sign equal to the sign of rotQ(L∗)

(with any choice if the rotation vanishes). Then for large k,

−|tbQ(L∗k)|+ |rotQ(L∗k)| = |rotQ(L∗)|+ k − |tbQ(L∗)− k|

=
|rn− tn+ t|
|t+ n|

+ k −
(
k − |tn|
|t+ n|

)
=
|rn− tn+ t|+ |tn|

|t+ n|
.

The first equality is true because the sign of the stabilisation is chosen to agree with the

sign of rotQ(L∗), and the second equality is true because k is large and tbQ(L∗) is positive.

We now need to work out the genus of L∗k, ie. the genus of L∗, in order to calculate

χ(L∗). We see that in M , L is a (1, t) cable of K, the single knot on which we performed

topological (t+n)-surgery above to get the same manifold as contact surgery on L1, . . . , Ln

(an (r, s)-cable is a cable composed of r longitudes and s meridians). Although topologically

L is isotopic to K, in general, the image L∗ of L in Mt+n(K) is not isotopic to K∗, the

surgery dual knot to K; if n = 1, then it is true that a push-off of a Legendrian knot gives

a framing to the surgery dual to contact (+1)-surgery on the original Legendrian (and this

is also true for contact (−1)-surgery), but this is false for general n. We claim that L∗ is in

fact a (−n, 1)-cable of K∗. This can be seen by calculating the image of the cable under the

map gluing the surgery torus into M\N(K), in the coordinate system where the longitude

of K∗ is the meridian of K.0 1

1 t+ n


−11

t

 =

−t− n 1

1 0


1

t

 =

−n
1

 .

Letting m = gcd(n, |t + n|), we see that this knot has order |t + n|/m in H1(Mt+n(K);Z).

Note also, that the boundary of the Seifert surface traces a
(−t−n

1

)
=
(
|t+n|

1

)
curve on the
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boundary of a neighbourhood of K∗. So we write

|t+ n|
m

·

−n
1

 =
−n
m
·

|t+ n|

1

− t

m
·

0

1

 ,

where on the right, the first summand is copies of the Seifert surface, and the second sum-

mand is copies of the meridian of K∗. Thus, a rational Seifert surface for L∗ is composed

of n/m copies of the rational Siefert surface Σ for K∗ and |t|/m copies of a meridional

compressing disc for K∗, with bands corresponding to the intersections of
(−n

1

)
with the

|t|/m meridians. So

χ(L∗) =
n

m
χ(Σ) +

|t|
m
− |nt|

m
=
n(1− 2g) + nt− t

m
,

since t < 0 and n > 0. Thus if

|rn− tn+ t|+ |tn|
|t+ n|

> −
χ(L∗k)

|t+ n|/m
=
n(2g − 1) + t− nt

|t+ n|
,

then L∗k is loose and the contact structure on Mt+n(K) is overtwisted. Then our inequality

is equivalent to requiring

|rn− tn+ t| > n(2g − 1) + t.

Hence under our hypotheses, L∗k is loose as required.

Corollary 6.2.6. For every genus g and every positive integer n ≥ 2, there is a negative

integer t such that if L is a null-homologous Legendrian knot of genus g and tb(L) ≤ t, then

contact (+n)-surgery on L is overtwisted.

The following conjecture is motivated by the desire to remove the bounds on rotation

number in the above theorems.

Conjecture 6.2.7. If L is a null-homologous Legendrian knot with tb(L) ≤ −2, then contact

(+n)-surgery on L is overtwisted, for any positive integer n < |tb(L)|.

In contrast to the above results, we present an infinite family of Legendrian knots with

arbitrarily low maximum Thurston–Bennequin number that admit tight positive contact

surgeries. These surgeries are topological 0-surgeries, and so don’t fit into the hypotheses of

Conjecture 6.2.7.
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Proposition 6.2.8. For every positive integer t, there is an infinite class of null-homologous

Legendrian knots in (S3, ξstd) with tb = −t, such that contact (+t)-surgery on each knot is

tight.

Proof. We use Theorem 6.0.3 to prove that surgeries are tight. We look for knots that are

slice (ie. g4 = 0), as this implies that τ = ν = 0, and so the only requirement to have a

positive contact surgery that is tight is that sl = 2τ−1 = −1. If tb = −t, then Theorem 6.0.3

says that contact (+t)-surgery is tight (and has non-vanishing contact invariant).

For t = 1, the slice knot 946 has a Legendrian representative with tb = −1 and rot = 0.

For t = 2, the slice knot 820 has a Legendrian representative with tb = −2 and rot = −1.

Now consider the knots

Km,n =

(
m
# 820

)
#

(
n
# 946

)
for non-negative integers m and n, where the connect sum of 0 objects is taken to be

the unknot. Under connect sum, the slice genus is additive, so Km,n is slice for all m,n.

According to [23], the rotation number of Legendrian knots under connect sum is additive,

and the Thurston–Bennequin number adds like

tb(K1 #K2) = tb(K1) + tb(K2) + 1.

Thus

tb(Km,n) = −m− 1

and there is a Legendrian representative with maximal Thurston–Bennequin and

rot = −m.

Thus sl(Km,n) = −1, as required.

6.3 The Figure-Eight Knot

Let K be the figure-eight knot in S3 (see Figure 18). Although by Theorem 6.2.4 we know

that contact (+1)- and (+2)-surgery on the maximal Thurston–Bennequin representative of

K is overtwisted, we would like to show that all positive contact surgeries on the figure-eight

knot are overtwisted.
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Figure 18: On the left is a smooth figure-eight knot K. On the right is a Legendrian
representative L of K with tb(L) = tb(K) = −3. We omit choices of orientation, since
K and L with any orientation are (Legendrian) isotopic to the same knot with the reverse
orientation.

We begin by recalling the hat flavour of the LOSS invariant, see [7, 44, 58] for details.

The LOSS hat invariant of a Legendrian knot L is an element L̂(L) in ĤFK(−S3, L); it is

identified (in [58]) with the EH invariant of the induced contact sutured manifold obtained

from S3 by removing a Legendrian neighbourhood of L, and attaching a negative basic slice

along the boundary such that the dividing curves on the outer boundary are meridional

for L. Here, the EH invariant is the analogue of the contact invariant for manifolds with

sutured boundary, see [38], which maps onto the contact invariant of any closed contact

manifold into which it embeds.

This invariant can be combinatorially calculated, and can be shown to vanish for the

maximal Thurston–Bennequin figure-eight knot (see [44], for example, on its calculation).

Since the sutured manifold involved in the second definition of L̂(L) sits naturally inside

every inadmissible transverse surgery on a transverse push-off of L, we show that the mani-

folds resulting from any positive contact surgery on the figure-eight knot L with tb(L) = −3

(see Figure 18) are all overtwisted by showing that this contact manifold with boundary

that embeds inside them is overtwisted. This is the same approach we took in proving

Theorem 6.2.1.

Using this approach, it is clear that all positive contact surgeries (with negative stabili-

sation choices) on a Legendrian representative of K are overtwisted when tb(L)− rot(L) <
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−3 = sl(K). This is because by [21], K is a Legendrian simple knot (ie. Legendrian knots

in the knot type of K are classified up to isotopy by their tb and rot), so any such L is a

positive stabilisation of some L′. But then gluing a negative basic slice to the complement

of L to get to the meridional slope is the same as first gluing a positive basic slice to the

complement of L′ followed by a negative basic slice. These two basic slices glue together to

give one basic slice, but since they have opposite signs, the contact structure on this basic

slice is overtwisted, by [35]. Then, since K is amphichiral, positive contact surgeries with

positive stabilisation choices on L are identical to positive contact surgeries with negative

stabilisation choices on L with reversed orientation.

Thus, we only need to investigate positive contact surgeries with negative stabilisation

choices on the Legendrian representative L of K with tb(L)−rot(L) = −3, and in particular

to the one with tb(L) = −3, by Corollary 1.1.3. Let M be the manifold S3\N(K), and let ξ

be the contact structure on M coming from adding a negative basic slice to the complement

of N(L) ⊂ (S3, ξstd) such that ∂M is convex with two meridional dividing curves. We will

prove the following result.

Theorem 6.3.1. All positive contact surgeries on the maximum Thurston–Bennequin figure-

eight knot L in S3 are overtwisted.

Sketch of Proof. Assuming ξ is tight, we will show that (M, ξ) is contactomorphic to one

of two possible contact manifolds. We will then construct these two possibilities, and show

that they have vanishing contact invariant EH. However, since L̂(L) = 0, we know that

EH(ξ) = 0, and so we arrive at a contradiction. Therefore, (M, ξ) is overtwisted, and since

(M, ξ) embeds into the contact manifolds coming from positive contact surgery on L, we

conclude that positive contact surgery on L results in an overtwisted contact manifold.

Given a Seifert surface Σ for K, we first wish to normalise the dividing curves of Σ in

(M, ξ).

The manifold M is fibred over S1 with fibre Σ, and the monodromy (after choosing a
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basis for Σ) is given by

φ =

 2 1

1 1


up to twisting along the boundary of Σ. We choose the representative without any boundary

twisting.

Figure 19: Possible dividing curves on the annulus extending Σ. The tops are identified
with the bottoms, and the left-hand side sits on ∂M .

Lemma 6.3.2. Assuming (M, ξ) is tight, there is an isotopic copy of Σ in (M, ξ) such that

the dividing curves are either:

1. One arc and one closed curve, parallel to ( 0
1 ), or

2. One boundary-parallel arc.

Proof. Etnyre and Honda show [21] that there exists a copy of Σ in the complement of the

figure-eight knot L with tb = −3 in (S3, ξstd) such that Σ has dividing curves consisting of

three arcs, one each parallel to ( 0
1 ), ( 1

1 ), and ( 1
2 ).

After adding the bypass to the boundary of M = S3\N(L) to get (M, ξ), we extend Σ

to the new boundary by gluing on an annulus A whose dividing curves are of one of the

forms given in Figure 19, a translate of one of those forms (ie. the right-hand side endpoints
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are shifted up/down in the S1 direction from what is shown in the figure), or the image of

one of those forms in a power of a Dehn twist along the core of the annulus. Note that we

have already excluded from our list of possibilities the cases where the dividing curves on A

trace a boundary-parallel curve along ∂M . In these cases, the dividing curves on Σ would

consist of a boundary-parallel curve and a contractible curve. Since we are assuming that

(M, ξ) is tight, these cases would contradict Theorem 2.1.7.

In any of the remaining cases, the resulting dividing curves on Σ∪A (which we call again

simply Σ) consist either of a single boundary-parallel arc or one arc and one closed curve,

parallel to one of ( 0
1 ), ( 1

1 ), or ( 1
2 ), possibly with some boundary twisting (ie. holonomy of

the dividing curves along the annulus A). This holonomy can be removed, as in Honda’s

classification of tight contact structures on basic slices, see [35, Proof of Proposition 4.7].

In the second case, it remains to show that we can remove boundary twisting, and if the

dividing curves are parallel to ( 1
1 ) or ( 1

2 ), we can find an isotopic copy of Σ such that the

dividing curves are parallel to ( 0
1 ).

Note that we can can swing Σ around S1 direction of the fibration M → S1 to find an

isotopic copy of Σ with dividing curves changed by φ or φ−1. Since φ−1 ( 1
1 ) = ( 0

1 ), we can

go from curves parallel to ( 1
1 ) to curves parallel to ( 0

1 ).

Given Σ with dividing curves consisting of an arc and a curve parallel to ( 1
2 ), using φ,

we can find an embedded Σ× [0, 1] such that Σ×{0} is convex with dividing curves parallel

to ( 1
2 ) and Σ×{1} is convex with dividing curves parallel to φ ( 1

2 ) = ( 4
3 ). Let γ be a closed

( 5
4 )-curve on Σ, and consider the annulus A′ = γ × [0, 1] ⊂ Σ × [0, 1]. The boundary of

A′ intersects the dividing set of Σ× {0} twelve times, while it intersects the dividing set of

Σ × {1} only twice. Thus, after making A′ convex with Legendrian boundary, we use the

Imbalance Principle, Theorem 2.1.10, to find a bypass for Σ× {0} along A′. A bypass from

the front for Σ × {0} changes the slope of the dividing curves to ( 1
1 ), by Theorem 2.1.8.

Then using φ as above, we can find an isotopic copy of Σ whose dividing curves are parallel

to φ−1 ( 1
1 ) = ( 0

1 ), as desired.

Lemma 6.3.3. Up to contactomorphism, there are at most two tight contact structures on
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M inducing a convex boundary with two meridional dividing curves and such that there exists

a copy of Σ with dividing curves of one of the two forms described in Lemma 6.3.2.

Proof. We will show that in each of the two possible cases of normalised dividing curves for

Σ given in Lemma 6.3.2, there is a unique tight contact structure up to contactomorphism.

These two resulting tight contact structures might themselves be contactomorphic, hence

we can only conclude that there are at most two tight contact structures on M .

First, given either of the two cases of dividing curves on Σ, we claim we can switch the

signs of the regions Σ± of Σ. Indeed, since φ = (−id) ◦ φ ◦ (−id)−1, we can apply −id to Σ,

which keeps the same dividing curves, but switches the signs of the regions.

Given Σ with fixed dividing curves Γ and signs of the regions Σ\Γ, this uniquely de-

termines a tight vertically-invariant contact structure on some neighbourhood N(Σ) of Σ.

We will show that there exists a unique tight contact structure on M\N(Σ), for each of the

two possible choices of Γ on Σ. Then, given two tight contact structures on M inducing

the same dividing curves on Σ with the same signs, a contactomorphism of N(Σ) can be

extended to a contactomorphism on all of M .

Σ× {0} Σ× {1}

Figure 20: In each picture, the top and bottom are identified, as are the left and right sides.
The dotted lines represent the dividing curves. The solid lines represent the intersection of
the boundaries ∂Di of the compressing discs with Σ× {0, 1}.
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Note that M\N(Σ) ∼= Σ× [0, 1] is a genus 2 handlebody with convex boundary obtained

by rounding edges, where the dividing curves on Σ× {0} are Γ, those on Σ× {1} are φ(Γ),

and those on ∂Σ × [0, 1] are two copies of {pt} × [0, 1]. We will look for compressing discs

D1 and D2 such that their boundaries are Legendrian with tb = −1. After making the

compressing discs convex, there will be a unique choice of dividing curves for Di, since their

dividing curves intersect the boundary of the disc at exactly two points, by Theorem 2.1.6,

and by Theorem 2.1.7, there can be no contractible dividing curves. This allows us to

uniquely define the tight contact structure in a neighbourhood of ∂ (M\N(Σ)) ∪D1 ∪D2.

The complement of this neighbourhood is diffeomorphic to B3, and both contact structure

induce the same characteristic foliation on S2 = ∂B3. By Theorem 2.1.11, there is a unique

tight contact structure on B3 with this characteristic foliation on the boundary.

(1) Γ has one arc and one closed curve parallel to ( 0
1 ): The dividing curves on Σ×{0, 1}

are shown as dotted lines in Figure 20. The compressing discs are shown as solid lines. As

the curves ∂Di pass from Σ × {0} to Σ × {1} through the region ∂Σ × [0, 1], they do not

intersect any dividing curves, but they do switch which side of the dividing curves they are

on; figure 21 shows the dividing curves in this region. Thus ∂Di intersects the dividing

curves exactly twice for each i = 0, 1, as required.

Σ× {0}

Σ× {1}

∂Σ× [0, 1]

Figure 21: The left and right sides are identified in this picture. The dotted lines represent
the dividing curves. The annulus in the middle is the region ∂Σ × [0, 1], and the grey
regions above and below are interpolating regions representing how the dividing curves get
connected while smoothing the boundary of M\N(Σ).
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Σ× {0} Σ× {1}

Figure 22: In each picture, the top and bottom are identified, as are the left and right sides.
The dotted lines represent the dividing curves. The solid lines represent the intersection of
the boundaries ∂Di of the compressing discs with Σ× {0, 1}.

(2) Γ has one boundary-parallel arc: This case is even easier, as the monodromy φ does

not change the dividing curves. The dividing curves in a neighbourhood of ∂Σ× [0, 1] behave

again as in Figure 21, and the boundaries of Di intersect Σ × {0, 1} as in Figure 22. Thus

∂Di intersects the dividing curves exactly twice for each i = 0, 1, as required.

We now exhibit both of these contact structures, and show that in each case, the contact

invariant EH(ξ) is non-vanishing.

6.3.1 Bypass Along Σ

Consider the open book for S3 given by the figure-eight knot K. The supported contact

structure on S3 is overtwisted, but Etnyre–Vela-Vick have shown [27] that L̂(L) is non-

vanishing, where L is a Legendrian approximation of the binding component of the open

book. After gluing a negative basic slice to the complement of L, we arrive at M with a

contact structure ξbyp such that EH(ξbyp) 6= 0, since L̂(L) 6= 0. In (M, ξbyp), there exists

an isotopic copy of a page of the open book, which is a copy of Σ, with dividing curves

consisting of one boundary-parallel arc, as shown in [27]. We have thus exhibited the unique
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tight contact structure onM such that a fibre surface Σ is convex with one boundary-parallel

dividing curve arc, with non-vanishing EH invariant.

6.3.2 No Bypass Along Σ

Consider the contact structure ξ0 on the torus bundle Tφ over S1 with monodromy φ that

has no Giroux torsion, ie. created by taking a basic slice T 2 × [0, 1] with dividing curves

on the boundary of slopes s0 = −∞ and s1 = −2 and gluing T × {1} to T × {0} via φ.

The contact manifold (Tφ, ξ0) was shown to be Stein fillable by van Horn-Morris [39], so in

particular, the contact invariant c(ξ0) 6= 0.

Thinking of this as an S1-bundle over T 2, we pick a regular fibre and realise it as a

Legendrian knot L. We claim that we can do this in a manner such that the contact planes

do not twist along L when measured with respect to the fibration structure. Indeed, the

diffeomorphism φ is isotopic to one which fixes the neighbourhood of a point p in T 2. Then

the knot L = p × [0, 1] ⊂ (Tφ, ξ0) is Legendrian. By Honda’s classification [36, Table 2] of

tight contact structures on Tφ, we see that in the minimally twisting one (ie. the one with

no Giroux torsion), the contact planes twist less than π in the S1 direction.

Thus, the dividing curves on the boundary of N(L) cannot twist around the meridional

direction, and so must give the product framing for the knot, ie. the dividing curves on

the convex torus ∂N(L) are slope 0 when measured with respect to the fibration. However,

this corresponds to slope ∞ with respect to a Seifert surface Σ = T 2\
(
T 2 ∩N(L)

)
⊂M ∼=

Tφ\N(L). If we pick p to be a point on the dividing curves of T 2 × {0}, then the dividing

curves on Σ ⊂ (M, ξ0|M ) consist of one arc and one curve parallel to ( 0
1 ). Since this embeds

into (Tφ, ξ0), we conclude that EH(ξ0|M ) 6= 0.

Proof of Theorem 6.3.1. All positive contact surgeries begin by adding either a positive or

negative basic slice to the complement of L. Both of these choices give a contact sutured

manifold with vanishing EH invariant, as L̂(L) = 0 and L is amphichiral. Since we know

that all tight contact structures on this sutured manifold have non-vanishing EH invariant,

we conclude that the we are dealing with overtwisted sutured manifolds. Since in the contact

manifold resulting from from any positive contact surgery on L we can find an embedding of
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at least one of the two overtwisted sutured manifolds, we conclude that all positive contact

surgeries on L are overtwisted.
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