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Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Zafer Nurlu
Head of Department,Mathematics

Prof. Dr. Mustafa Korkmaz
Supervisor, Department of Mathematics, METU

Prof. Dr. John B. Etnyre
Co-supervisor, School of Mathematics, Georgia Institute of Technology

Examining Committee Members:

Prof. Dr. Yıldıray Ozan
Department of Mathematics, METU

Prof. Dr. Mustafa Korkmaz
Department of Mathematics, METU

Assoc. Prof. Dr. Tolga Etgü
Department of Mathematics, Koç University
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ABSTRACT

LEGENDRIAN KNOTS AND OPEN BOOK DECOMPOSITIONS

Çelik Onaran, Sinem

Ph.D., Department of Mathematics

Supervisor : Prof. Dr. Mustafa Korkmaz

Co-Supervisor : Prof. Dr. John B. Etnyre

July 2009, 46 pages

In this thesis, we define a new invariant of a Legendrian knot in a contact manifold using an

open book decomposition supporting the contact structure. We define the support genus sg(L)

of a Legendrian knot L in a contact 3-manifold (M, ξ) as the minimal genus of a page of an open

book of M supporting the contact structure ξ such that L sits on a page and the framings given

by the contact structure and the page agree. For any topological link in S 3 we construct a planar

open book decomposition whose monodromy is a product of positive Dehn twists such that the

planar open book contains the link on its page. Using this, we show any topological link, in

particular any knot in any 3-manifold M sits on a page of a planar open book decomposition of

M and we show any null-homologous loose Legendrian knot in an overtwisted contact structure

has support genus zero.

Keywords: contact structures, Legendrian knots, open book decompositions
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ÖZ

LEGENDRIAN DÜĞÜMLER VE AÇIK KİTAPLAR

Çelik Onaran, Sinem

Doktora, Matematik Bölümü

Tez Yöneticisi : Prof. Dr. Mustafa Korkmaz

Ortak Tez Yöneticisi : Prof. Dr. John B. Etnyre

Temmuz 2009, 46 sayfa

Bu tezde, kontakt yapıları destekleyen açık kitapları kullanarak kontakt çokkatlılar içindeki

Legendrian düğümler için yeni değişmezler tanımladık. Kontakt 3-boyutlu çokkatlı (M, ξ)

içindeki bir Legendrian L düğümünün sg(L) ile gösterdiğimiz cinsini, kontakt yapı ξ’yi destek-

leyen, L’ yi bir sayfasında içeren ve sayfasının L’ ye verdiği çatı kontakt çatıya eşit olan açık ki-

tapların sayfa cinslerinin en küçüğü olarak tanımladık. S 3 içinde verilen her topolojik link için

monodromisi pozitif Dehn burgularından oluşan ve verilen linki sayfasında içeren düzlemsel

açık kitaplar oluşturduk. Bu sonucu kullanarak, 3-boyutlu her çokkatlı içindeki her linkin

çokkatlının düzlemsel bir açık kitabının bir sayfası içinde kalacağını kanıtladık. Ayrıca, aşırı

dönen kontakt yapılar içinde homolojisi sıfır olan her gevşek Legendrian düğümün cinsinin

sıfır olduğunu gösterdik.

Anahtar Kelimeler: kontakt yapılar, Legendrian düğümler, açık kitaplar
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CHAPTER 1

INTRODUCTION

One of the most striking results of contact geometry is a theorem of Giroux which gives a char-
acterization of contact 3-manifolds in terms of open book decompositions. Giroux has shown
that there is a one to one correspondence between isotopy classes of contact structures on a
closed orientable 3-manifold M and suitable equivalence classes of open book decompositions
of M, [20]. This result allows us to treat contact structures as topological objects. In another
direction, one may study Legendrian knots to study contact structures. Legendrian knots is
important in contact geometry since they reveal the geometry and topology of the underlying
3-manifold. For example, Legendrian knots are used to distinguish contact structures [24], to
detect topological properties of knots [34] and to detect overtwistedness of contact structures
[14]. In this thesis, we study Legendrian knots in contact 3-manifolds using open book de-
compositions. We first study the topological properties of knots sitting on pages of open book
decompositions and then we study the contact geometric properties of knots sitting on pages of
open book decompositions.

In Chapter 2, we give a review of background information on contact structures, Legendrian
knots in contact manifolds and open book decompositions.

In Chapter 3, for a given topological link in S 3 we present an explicit algorithm to construct a
planar open book decomposition whose monodromy is a product of positive Dehn twists and
contains the given link on its page. Using this, we prove a general property for topological
links, in particular for knots. We prove that any topological link in a closed, orientable 3-
manifold sits on a planar page of an open book decomposition. It is well known that, [2],
every closed orientable 3-manifold has an open book decomposition; in fact has a planar open
book decomposition, [33]. Different ways of constructing open book decompositions for 3-
manifolds are known for a long time. Alternatively, using the ideas for constructing planar open
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books for knots and links we construct explicit planar open books for any closed orientable 3-
manifolds.

In [16], given any contact 3-manifold, Etnyre and Ozbagci defined new invariants of contact
structures in terms of open book decompositions supporting the contact structure. One of the
invariants is the support genus of the contact structure which is defined as the minimal genus
of a page of an open book that supports the contact structure. In a similar fashion, we define
the support genus sg(L) of a Legendrian knot L in a contact 3-manifold (M, ξ) as the minimal
genus of a page of an open book of M supporting the contact structure ξ such that L sits on a
page and the framings of L given by the contact structure and the page agree. This definition is
originally due to Etnyre.

In the last chapter, we show any null-homologous loose Legendrian knot in an overtwisted con-
tact 3-manifold has support genus sg(L) = 0. We construct examples of non-loose Legendrian
knots having support genus zero or non-zero. We list several observations related to Legen-
drian knots in contact 3-manifolds. We observe that for any given knot type K in (S 3, ξstd),
there is a Legendrian representative L of K such that sg(L) = 0. We show the existence of Leg-
endrian knots with non-zero support genus in weakly fillable contact structures. Moreover, we
observe that for a non-zero rational number r ∈ Q, any contact 3-manifold which is obtained
by a contact r-surgery on a support genus zero Legendrian knot has support genus zero.
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CHAPTER 2

BACKGROUND

In this chapter we review the basics of contact geometry. In Section 2.1, we define contact
structures and give some examples that will be used throughout the thesis. Section 2.2 dis-
cusses Legendrian knots in contact 3-manifolds. Finally, in Section 2.3, we define open book
decompositions and we discuss the relation between open book decompositions of 3-manifolds
and contact structures.

2.1 Contact Structures

Contact structures on odd dimensional manifolds are very natural objects. We restrict ourself
to contact structures on 3-manifolds. For more information see [10], [19], [31].

Definition 2.1.1. A contact structure ξ on an oriented 3-manifold M is a maximally non-
integrable 2-plane field.

The non-integrability condition implies that ξ is not everywhere tangent to any surface. Locally
there is a 1-form α such that ξ = kerα and α ∧ dα ! 0. If ξ is orientable, in this case 1-form α
exists globally and the 1-form α is called a contact form. We denote a contact 3-manifold as
(M, ξ).

Definition 2.1.2. Two contact manifolds (M1, ξ1) and (M2, ξ2) are contactomorphic if there is
a diffeomorphism ψ : M1 → M2 such that ψ∗(ξ1) = ξ2. Two contact structures ξ1 and ξ2 on a
3-manifold M are isotopic if there is a contactomorphism ψ : (M, ξ1) → (M, ξ2) such that ψ is
isotopic to the identity.

There are two types of contact structures on 3-manifolds, tight and overtwisted.
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Definition 2.1.3. A contact structure ξ on M is overtwisted if it contains an overtwisted disk,
that is, an embedded disk D in M such that ∂D is tangent to ξ and the contact framing of ∂D
coincides with the framing given by the disk D. If ξ does not contain an overtwisted disk, then
ξ is called tight.

Example 2.1.4. Let α = dz − ydx in Cartesian coordinates. The contact structure ξstd = kerα
is the standard tight contact structure on R3. Note that α ∧ dα = dx ∧ dy ∧ dz ! 0 and ξ is
spanned by { ∂∂y ,

∂
∂x + y

∂
∂z }. See Figure 2.1(a). Also, consider α = cosrdz − rsinrdθ in R3 with

cylindrical coordinates. The contact structure ξot = kerα is an overtwisted contact structure on
R3. Note that in this case α ∧ dα = (1 + sinrcosr

r )rdr ∧ dθ ∧ dz ! 0 and for r ! 0 ξot is spanned
by { ∂∂r , cosr

∂
∂θ − rsinr

∂
∂z }. See Figure 2.1(b).

Figure 2.1: (a) The standard tight contact structure on R3, (b) An overtwisted contact structure
on R3.

All contact structures look the same near a point.

Theorem 2.1.5 (Darboux’s theorem). For a given contact 3-manifold (M, ξ) and a point x ∈ M,
there is a neighborhood U of x in M such that (U, ξ |U) is contactomorphic to (V, ξstd |V ) for
some open set V in (R3, ξstd).

Example 2.1.6. The standard tight contact structure ξstd on the 3-sphere S 3 in R4 is given by
the kernel of the 1-form α = x1dy1 − y1dx1 + x2dy2 − y2dx2 |S 3 with Cartesian coordinates
(x1, y1, x2, y2) in R4. Note the standard tight contact structure on S 3 with one point removed is
contactomorphic to the standard tight contact structure on R3, see [19] for an explicit contac-
tomorphism.

Example 2.1.7. The standard overtwisted contact structure ξot on S 3 is obtained from ξstd by
performing a simple Lutz twist along a transverse knot in (S 3, ξstd). A transverse knot T in a
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contact 3-manifold (M, ξ) is a knot which is everywhere transverse to the contact planes. A
simple Lutz twist along a transverse knot T is an operation replacing the contact structure on a
tubular neighborhood S 1×D2 of T with a contact structure ξ′ given by the kernel of the 1-form
β = h1(r)dθ + h2(r)dϕ where θ is the S 1 coordinate and (r, ϕ) are the polar coordinates on D2

and h1, h2 : [0, 1]→ R smooth functions satisfying:

1. h1 = −1, h2 = −r2 near r = 0,

2. h1 = 1, h2 = r2 near r = 1,

3. (h1, h2) is never parallel to (h′1, h
′
2) when r ! 0,

4. (h1, h2) does not intersect the positive y axis.

Note that a simple Lutz twist results in an overtwisted contact 3-manifold and in general it
changes the homotopy type of the contact structure.

Theorem 2.1.8 (Eliashberg, [9]). Two overtwisted contact structures are isotopic if and only
if they are homotopic as oriented 2-plane fields. Moreover, every homotopy class of oriented
2-plane fields contains an overtwisted contact structure.

In general, for two oriented 2-plane fields to be homotopic we have:

Theorem 2.1.9 (Gompf, [21]). Two oriented 2-plane fields are homotopic if and only if their
2-dimensional invariants d2 and 3-dimensional invariants d3 are equal.

For the notation we use here for the 2-dimensional invariants d2 and the 3-dimensional in-
variants d3, see [19]. Notice that we can regard a contact structure ξ on a 3-manifold M as a
complex line bundle and in this way we can consider its first Chern class c1(ξ) ∈ H2(M,Z). The
2-dimensional invariant d2 is determined by the spinc structure associated to ξ and if H2(M,Z)
has no 2-torsion then d2 is also determined by c1(ξ). If (X, J) is an almost complex 4-manifold
with ∂X = M, then the almost complex structure J naturally induces a 2-plane field on M
by taking the complex tangencies of J along ∂X. If c1(ξ) is torsion then the 3-dimensional
invariant d3(ξ) can be computed as

d3(ξ) =
1
4
(c12(X, J) − 3(σ(X)) − 2χ(X))

where X is an almost complex 4-manifold with ∂X = M such that the oriented 2-plane field
induced by complex tangencies is homotopic to the contact structure ξ on M. Here, σ(X)

5



denotes the signature of X and χ(X) denotes the Euler characteristic of X. For the computation
of c12(X, J) see [21], [6].

Finally, we recall the fillability of contact structures. A contact 3-manifold (M, ξ) is called
weakly symplectically fillable if M is the oriented boundary of a symplectic manifold (X, ω)
such that ω |ξ> 0.

Theorem 2.1.10 (Eliashberg [8], Gromov [22]). Any weakly symplectically fillable contact
3-manifold (M, ξ) is tight.

2.2 Legendrian Knots

Legendrian and transverse knots are very natural objects in contact 3-manifolds and they play
an important role in the theory. For more information see [12].

Definition 2.2.1. A knot L in a contact 3-manifold (M, ξ) is called Legendrian if it is every-
where tangent to ξ, that is, TxL ∈ ξx for all x ∈ L.

There are two types of Legendrian knots in overtwisted contact structures, loose and non-loose.

Definition 2.2.2. A Legendrian knot in an overtwisted contact 3-manifold M is called loose if
its complement is also overtwisted. We call a Legendrian knot non-loose if its complement is
tight.

The classical invariants of Legendrian knots are the topological knot type, the Thurston-Benne-
quin invariant tb(L) and the rotation number rot(L). The Thurston-Bennequin invariant tb(L)
measures the framing of L given by the contact planes with respect to the framing given by the
Seifert surface of L. The rotation number rot(L) of an oriented null-homologous Legendrian
knot L can be computed as the winding number of TL after trivializing ξ along a Seifert surface
for L.

Let L be a Legedrian knot in R3 with its standard contact structure ξstd given by kernel of
the 1-form α = dz − ydx. The front projection of L is the image of L, π(L), under the map
π : R3 → R2 : (x, y, z) )→ (x, z). Using front projections, one can compute the Thurston-
Bennequin invariant tb(L), and the rotation number rot(L) of a Legendrian knot L by using the
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following formulas:

tb(L) = writhe(L) −
1
2
(#cups),

rot(L) =
1
2
(#down cusps − #up cusps).

where the writhe of L is the sum of the signs of the crossings of L.

Example 2.2.3. In Figure 2.2 we show a front diagram of a Legendrian trefoil knot with tb(L) =
1 and rot(L) = 0. Notice that, the front projection has no vertical tangencies, instead there are
cusps. In addition, at a crossing the strand with a smaller slope lies in front of the strand with
a larger slope.

Figure 2.2: Legendrian Trefoil knot.

Definition 2.2.4. The positive stabilization S +(L) and the negative stabilization S −(L) of a
Legendrian knot L in the standard contact structure ξstd on R3 is obtained by modifying the
front projection of L by adding a down cusp and an up cusp as in Figure 2.3, respectively.

Figure 2.3: The positive stabilization S +(L) and the negative stabilization S −(L) of L.
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Since stabilizations are done locally, by Darboux’s theorem this defines stabilizations of Legen-
drian knots in any contact 3-manifold (M, ξ). After stabilizing a Legendrian knot the classical
invariants change as tb(S ±(L)) = tb(L) − 1 and rot(S ±(L)) = rot(L) ± 1.

By looking at the characteristic foliation we may see how to destabilize a Legendrian knot. The
characteristic foliation Σξ is the singular foliation induced on Σ from ξ where Σξ(p) = ξp∩TΣp,
p ∈ Σ. The singular points are the points where ξp = TΣp. Any surface Σ may be perturbed so
that its characteristic foliation Σξ has only generic isolated singularities, elliptic singularities
and hyperbolic singularities. The singularity is positive if the orientation on ξp agrees with
the orientation of TΣp. If the orientation on ξp disagrees with the orientation of TΣp, then the
singularity is negative.

Recall that a closed oriented surface Σ in a contact manifold (M, ξ) is called convex if there
is a contact vector field v, that is a vector field whose flow preserves the contact structure ξ,
transverse to Σ. Given a convex surface Σ in (M, ξ) with a contact vector field v, the dividing
set ΓΣ of Σ is defined as

ΓΣ = {x ∈ Σ : v(x) ∈ ξx}.

The dividing set ΓΣ is a multi curve, that is a properly embedded smooth 1-manifold, possibly
disconnected and possibly with boundary. The isotopy class of ΓΣ does not depend on the
choice of the contact vector field v.

A properly embedded curve C on a convex surface Σ is non-isolating if C is transverse to
ΓΣ and every component of Σ − (ΓΣ ∪ C) intersects ΓΣ. The next theorem gives a criteria to
determine whether a given curve or a collection of disjoint curves on a convex surface Σ can be
made Legendrian.

Theorem 2.2.5 (Legendrian Realization Principle, [25], [23]). If C is a properly embedded
non-isolating curve on a convex surface Σ then C can be made Legendrian, that is there exists
an isotopy φs of Σ, s ∈ [0, 1], such that φ0 = id |Σ, φs(Σ) is convex for all s, φ1(ΓΣ) = Γφ1(Σ) and
φ1(C) is Legendrian.

Given an oriented Legendrian knot L, the positive stabilization S +(L) of L and the Legendrian
knot L cobound a convex disk D where tb(∂D) = −1 and D ∩ L contains two negative elliptic
and one negative hyperbolic singularities and D∩S +(L) contains the same two negative elliptic
singularities and one positive elliptic singularity. Similarly, the negative stabilization S −(L) of
L and the Legendrian knot L cobound a convex disk D where tb(∂D) = −1 and D ∩ L contains
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two positive elliptic and one positive hyperbolic singularities and D∩ S −(L) contains the same
two positive elliptic singularities and one negative elliptic singularity. Such a disk is called a
stabilizing disk for L or a bypass for L and S ±(L). See Figure 2.4. Note that all the singularities
of Dξ have the same sign except one which indicate us whether we are positively or negatively
stabilizing the Legendrian knot L. For a detailed discussion of stabilizations and bypass disks
see [12], [15].

Figure 2.4: A bypass for L and L′ = S ±(L). The curve Γ is the dividing curve of D.

2.3 Open Book Decompositions

Alexander proved that every closed orientable 3-manifold has an open book decomposition,
[2]. Thus open book decompositions provide us another way of studying 3-manifold topology.

Definition 2.3.1. An open book decomposition of a closed, oriented 3-manifold M is a triple
(B, S , π) where B is an oriented link in M and π is a fibration of the complement M − B over
the circle whose fibers are the interior of Seifert surfaces of B. The link B is called the binding
and the fiber surface S is called the page of the open book decomposition.

The genus of an open book decomposition is defined as the genus of the page. In particular,
planar open book decompositions are genus zero open book decompositions.

An alternative definition of an open book decomposition can be given as follows:

Definition 2.3.2. An abstract open book decomposition of a closed, oriented 3-manifold M is
a pair (S , ϕ) where S is an oriented compact surface with boundary link B and ϕ is a diffeomor-
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phism of S such that ϕ is identity on a neighborhood of the boundary ∂S and

M − B = S × [0, 1]/(1, x) ∼ (0, ϕ(x)).

The map ϕ is called the monodromy of the open book decomposition.

Definition 2.3.3. Positive stabilization of an open book decomposition (S , ϕ) is the open book
decomposition (S ′, ϕ◦ta+1) where S ′ = S ∪(1-handle) and ta is a right handed Dehn twist along
the closed curve a in S ′ running over the 1-handle and intersecting the co-core of the 1-handle
once. Instead of a right handed twist ta if we use a left handed twist t−1a along the closed curve a
in S ′ then the resulting open book decomposition (S ′, ϕ◦ ta−1) is called a negative stabilization
of (S , ϕ).

Definition 2.3.4. An open book decomposition of M and a contact structure ξ on M are com-
patible if after an isotopy of the contact structure, there is a contact form α for ξ such that
α > 0 on the binding B, in other words the binding B is a positive transverse link, and dα > 0
on every page of the open book decomposition.

Example 2.3.5. Consider the open book decomposition (A, ϕ = tα) of S 3 where the binding
H+ is the positive Hopf link, the page A is an annulus and the monodromy ϕ is a right-handed
Dehn twist along the middle curve α. The open book decomposition (A, ϕ = tα) is compatible
with the standard tight contact structure ξstd on S 3. See Figure 2.5(a).

Also, consider the open book decomposition (A, ϕ = t−1α ) of S 3 where the binding H− is the
negative Hopf link, the page A is an annulus and the monodromy ϕ is a left-handed Dehn twist
along the middle curve α. The open book decomposition (A, ϕ = t−1α ) is compatible with the
standard overtwisted contact structure ξot on S 3. See Figure 2.5(b).

Open book decompositions and contact structures are closely related. An open book decompo-
sition of a 3-manifold M naturally gives rise to a contact structure on M and the isotopy classes
of contact structures are in one to one correspondence with suitable equivalence classes of open
book decompositions of M.

Theorem 2.3.6 (Thurston and Winkelnkemper [36]). Every open book decomposition of a 3-
manifold admits a compatible contact structure.

Theorem 2.3.7 (Giroux, [20]). Every contact structure is compatible with some open book
decomposition and there is a one to one correspondence between oriented contact structures
up to isotopy and open book decompositions up to positive stabilization.
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Figure 2.5: (a) The open book decomposition compatible with the standard tight contact struc-
ture on S 3, (b) The open book decomposition compatible with the standard overtwisted contact
structure on S 3.

The plumbing of open book decompositions is a special case of a more general operation called
Murasugi sum which is a method for constructing manifolds with open book decompositions.

Definition 2.3.8. Let (S 1, ϕ1) and (S 2, ϕ2) be open book decompositions for M1 and M2, re-
spectively. The plumbing of open books (S 1, ϕ1) and (S 2, ϕ2) is an open book decomposition
(S 1 ∗ S 2, ϕ1 ◦ ϕ2) for the connected sum M1.M2 where the pages S 1 ∗ S 2 is obtained by gluing
S 1 to S 2 along a rectangular neighborhood Ri = si × [−1, 1] of properly embedded arcs si in
S i, i = 1, 2.

Theorem 2.3.9 (Gabai [18], Torisu [37]). Let (S 1, ϕ1) and (S 2, ϕ2) be open book decompo-
sitions compatible with the contact 3-manifolds (M1, ξ1) and (M2, ξ2), respectively. Then, the
plumbing (S 1 ∗ S 2, ϕ1 ◦ ϕ2) of the open books (S 1, ϕ1) and (S 2, ϕ2) is compatible with the
contact 3-manifold (M1.M2, ξ1.ξ2).

The next lemma is useful and gives the relation between the stabilizations of open book de-
compositions and the stabilizations of Legendrian knots sitting on a page of an open book
decomposition.

Lemma 2.3.10. Let (S , ϕ) be an open book decomposition for a closed oriented 3-manifold M
compatible with a contact structure ξ on M. Let L be a Legendrian knot sitting on a page of
the open book.

(1) Positive (resp. negative) stabilization S +(L) (resp. S −(L)) of the Legendrian knot L can
be realized on the page of the open book by first stabilizing the open book positively and
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then pushing the knot L over the 1-handle that we use to stabilize the open book. See
Figure 2.6(a) and (b).

(2) If we first negatively stabilize the open book and then push the knot L over the 1-handle
that we use to stabilize the open book, then the negatively stabilized open book is no
longer compatible with the contact structure ξ, but the curve L on the page gives a
Legendrian knot L′ in the new contact structure and Legendrian knots L′+ and L′− in
Figure 2.6(c) and (d) are positive and negative destabilizations of L′, respectively.

Figure 2.6: (a) Positive stabilization S +(L) of L, (b) Negative stabilization S −(L) of L, (c)
Positive destabilization of L′, S +(L′+) = L′, (d) Negative destabilization of L′, S −(L′−) = L′.

Proof. (1) To prove (1) we find a stabilizing disk for each case as we discussed in previous
Section 2.2. See Figure 2.4. First, positively stabilize the open book as in Figure 2.6(a) and
push the Legendrian knot L over the 1-handle that is used to stabilize the open book positively,
call the new curve L+. We will show that L+ is a positive stabilization S +(L) of L.

Notice the Legendrian unknot a with tb(a) = −1 in Figure 2.6(a). Legendrian unknot a bounds
a disk D in M. Since tb(a) = −1, D is convex and the dividing curves intersect ∂D twice. Now,
we can think L+ as the knot obtained from pushing L across D. Note that D is a bypass for L
and L+. See Figure 2.7(a), the curve Γ denotes the diving curve of D. A singularity along ∂D is
positive or negative depending on whether the contact planes passing D are twisting in a right
handed fashion or a left handed fashion. The sign of the singularities is determined by using
the orientation of L which determines the orientation of D near the boundary. See Figure 2.7(a)
again.
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Figure 2.7: (a) Positive stabilization L+ = S +(L) of L, (b) Negative stabilization L− = S −(L)
of L.

The negative stabilization S −(L) of the Legendrian knot L can be realized on a page of the
open book decomposition in a similar way. This time we use the Legendrian unknot b with
tb(b) = −1 in Figure 2.6(b) and the convex disk that b bounds in M. See Figure 2.7(b).

(2) We prove (2) for null-homologous Legendrian knots only. First, negatively stabilize the
open book as in Figure 2.6(c) and then push the knot L over the 1-handle that is used to stabilize
the open book negatively, call the new curve L′+.

Note that in general the negative stabilization of an open book decomposition changes the
contact structure ξ. However, in this case the curve L on the page gives a Legendrian knot L′

in the new contact structure. We will show that L′+ in Figure 2.6(c) is a positive destabilization
of L′.

We want to remark that the Legendrian unknot c with tb(c) = +1 in Figure 2.6(c) bounds a
disk D in M. Since D is not convex unlike in the proof of (1) we can not use this disk to
find a bypass. Instead, we positively stabilize the open book as in Figure 2.8(c) and push the
Legendrian knot L′+ over the 1-handle that we use to stabilize the open book positively. By
(1), the resulting Legendrian knot is a positive stabilization S +(L′+) of L′+. We will show that
S +(L′+) is Legendrian isotopic to L′. Note that the curve α in Figure 2.8(c) is a Legendrian
unknot with tb(α) = 0. In fact, Legendrian unknot α bounds an overtwisted disk which is
disjoint from L′+ in M. Legendrian knots L′ and S +(L′+) have the same classical invariants,
that is, they have the same knot type, same Thurston-Bennequin invariant and same rotation
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number, and since they have a common overtwisted disk in their complement by [7], L′ and
S +(L′+) are Legendrian isotopic.

Figure 2.8: (c) Positive destabilization of L′, S +(L′+) = L′, (d) Negative destabilization of L′,
S −(L′−) = L′.

Similarly, the negative destabilization L′− of the Legendrian knot L′ can be realized on a page
of the open book decomposition. We stabilize the open book as in Figure 2.8(d) and push the
Legendrian knot L′− over the 1-handle to get negative stabilization S −(L′−) of L′−. We conclude
that S −(L′−) and L′ are Legendrian isotopic by using the Legendrian unknot β in Figure 2.8(d).

!

We also use the following lemma later.

Lemma 2.3.11. Let M be a closed oriented 3-manifold and let (S , ϕ) be an open book decom-
position for M.

(1) If K is a knot in M intersecting each page S transversely once, then the result of a
0-surgery along K gives a new manifold with an open book decomposition having a
page S ′ = S−{open disk} and having the knot K as one of the binding components. In
particular, if the knot K = {x} × [0, 1]/ ∼ in the mapping torus Mϕ = M − B in M for a
fixed point x ∈ S of ϕ and if ϕ |{open disk}= id then the new monodromy ϕ′ after a 0-surgery
along K is ϕ′ = ϕ |S ′ .
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(2) If K is a knot in M sitting on a page S of the open book decomposition, then ±1-surgery
along K with respect to the page framing gives a new manifold with an open book de-
composition (B, S , ϕ◦ t∓1K ) where t

+1
K / t

−1
K denotes right/ left handed Dehn twists along the

knot K.

A proof of above Lemma 2.3.11 and more information on open book decompositions and
contact structures can be found in [13].
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CHAPTER 3

TOPOLOGICAL LINKS AND OPEN BOOK
DECOMPOSITIONS

In this chapter, we study the topological properties of links sitting on the pages of open book
decompositions. In the following section, we define some terminology and we state a funda-
mental lemma that we use to prove the main theorems. In Section 3.2, we study links on pages
of open book decompositions of S 3. Finally, in the last section, we study links on pages of
open book decompositions of arbitrary 3-manifolds.

3.1 Pure braided plat of Links

It is well known that any link L of k components L1, . . . , Lk, in particular any knot K, can be
represented as a 2n-plat, see Figure 3.1(a), [4].

Definition 3.1.1. The shifted 2n-plat of the link L of k components L1, . . . , Lk is defined as the
closure of a 2n-braid as shown in Figure 3.1(b). We say a shifted 2n-plat of the link L is pure
braided 2n-plat if its associated 2n-braid is a pure braid.

To prove the main theorems, we need the following lemma.

Lemma 3.1.2. (1) Every knot can be represented as a pure braided plat.

(2) Every link of k components L1, . . . , Lk can be represented as a pure braided plat.

Proof. (1)We may isotope a shifted 2n-plat of the knot K to get a pure braided 2n-plat for K
as follows: First orient the knot K and label the lower and the upper end points of the strands
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Figure 3.1: Shifted 2n-plat of the link L.

of associated 2n-braid b and pair them as in Figure 3.2. We have the following list of pairs: for
the lower end points (2n, 1), (2, 3), . . . , (2n − 2, 2n − 1) and for the upper end points (1′, 2′),
. . . , ((2n − 1)′, (2n)′). Also, denote the permutation in the permutation group S 2n on the set
{1, . . . , 2n} associated to 2n-braid b of the shifted 2n-plat by σ.

Figure 3.2: From a shifted 2n-plat to a pure braided plat.

Now, start in the lower left strand with a labeled 1 lower end point. This strand connects to
its upper point j′ = σ(1). Isotope ( j′, ( j + 1)′) to the left as in Figure 3.3(a) so that the first
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labeled upper point at the top is j′ = σ(1). Now relabel upper end points as 1′, 2′, . . . , (2n)′

and without loss of generality denote the permutation associated to new 2n-braid as σ again.
Next, find where the strand whose upper end point is 2′ connects at the bottom, its lower end
point will be σ−1(2′) = k where k is an element from the set {2, . . . , 2n − 1}. Note that k ! 2n,
otherwise the knot K would be a link. Isotope (k, k + 1) to the left as in Figure 3.3(b) to be the
second labeled strand at the bottom. Relabel the lower end points as 1, 2, . . . , 2n and without
loss of generality denote the permutation associated to new 2n-braid as σ again. Note that we
have σ(1) = 1′, σ(2′) = 2. Find σ(3) and isotope similarly to be the third labeled strand at the
top. Continuing in this manner, we will obtain a pure braid giving a pure braided 2n-plat of the
knot K.

Figure 3.3: Pure braided plat.

(2) First of all, given a link L of k components L1, . . . , Lk we can present the link L as a
plat. From this plat we can obtain a shifted 2n-plat of L such that it has the same form as in
Figure 3.1(b) with an associated braid b which is not necessarily a pure braid. However, the
algorithm described in proof of (1) extends to convert a shifted 2n-plat of L into a pure braided
2n-plat. !
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3.2 Knots and Links in 3-sphere

Theorem 3.2.1. Any knot K in S 3 is planar, that is, K sits on a page of a planar open book
decomposition for S 3.

Before the proof of Theorem 3.2.1, let us give an illustrative example. The proof will follow
exactly the same scheme.

Example 3.2.2. The figure eight knot K is planar. The aim here is to present the figure eight
knot K as a pure braided plat as in Figure 3.6(a) and using this pure braided plat and the ideas
in Lemma 2.3.11 to construct a planar open book which contains the figure eight knot on its
page.

Figure 3.4: Braid representative of the figure eight knot.

We start with a minimum braid representation of the figure eight knot K as in Figure 3.4.
Throughout this example σi, i = 1, . . . , n − 1, stand for the standard generators of the braid
group Bn on n-strands. Note that K has braid index 3 and its associated braid word is b =
σ−12 σ1σ

−1
2 σ1. As seen in Figure 3.5(a), we can represent K by a 6-plat associated to a 6-braid

b0b̃b0−1 where b0 = (σ2σ3σ4σ5)(σ3σ4) and b̃ is the 6-braid obtained from b by adding 3
trivially braided strands.

Now isotope the diagram in Figure 3.5(a) to obtain a shifted 6-plat as in Figure 3.5(b) and using

19



Figure 3.5: Pure braided plat presentation of the figure eight knot.

the algorithm given in Lemma 3.1.2 continue isotoping to obtain a pure braided 6-plat for the
figure eight knot as in Figure 3.5(c).

Next, we decompose the pure braided 6-plat of the figure eight knot in standard generators of
the pure braid group on 6-strands as in Figure 3.6(a). Now to obtain the open book decompo-
sition which contains the figure eight knot K, we unknot K using the diagram in Figure 3.6(a).
We unknot K by blowing up twists. See Figure 3.6(b). We get a link LK of unknots linking K
whose components have framing ±1. We continue blowing up to ensure that each component
of LK links K exactly once. See Figure 3.6(c). Notice that we add new ±1-framed components
to the link LK and the components of LK link each other as the Hopf link and link the knot K
only once. We continue blowing up as in Figure 3.7 to remove each linking between the com-
ponents. We need to be careful with the resulting ±1-framed unknots linking the components
of LK . To be more precise, at each linking crossing between the components of LK we have dif-
ferent choices where to blow up as explained in the proof of Theorem 3.2.1 below. We always
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choose the one that guarantees that after blowing up, the resulting ±1-framed unknots linking
the components of LK can be isotoped to sit on the page of the open book decomposition at the
end. See Figure 3.7 again.

Figure 3.6: Unknotting the figure eight knot.

Finally, we blow up again as in Figure 3.8 so that each component of the link LK has framing
coefficient 0.

Now, using Lemma 2.3.11 we are in a position to see the open book decomposition explicitly.
Note that we obtain a planar open book decomposition for S 3 where the figure eight knot K and
each 0-framed components of LK are the binding components of the open book decomposition
and each ±1-framed unknots linking the components of LK sits on the page and contributes
negative/ positive Dehn twists to the monodromy of the open book decomposition respectively.
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Figure 3.7: The unknotted knot K bounds a disk.
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Figure 3.8: Page of a planar open book decomposition containing the figure eight knot, pages
are disk with 16 punctures.

23



We are now ready for the proof of one of the main theorems of this chapter.

Proof.of Theorem 3.2.1. Given a knot K in S 3, we construct a planar open book of S 3 such
that K is one of the binding components. We then push the knot K onto one of the pages.

First, present the knot K as a pure braided plat using the algorithm given in Lemma 3.1.2. Next,
decompose the pure braided plat of K in terms of standard generators of the pure braid group.
A generating set of braids Ai j, 1 ≤ i < j ≤ 2n, for the pure braid group on 2n-strands is shown
in Figure 3.9.

Figure 3.9: Generator Ai j for the pure braid group.

Note to unknot the knot K using a decomposed pure braided plat presentation of K, we only
need to remove full twists. We remove twists and unknot K by blowing up. Note also that there
is not a unique way to do so. The different ways of blowing up are shown in Figure 3.10.

Figure 3.10: Different ways of blowing up to remove twists.

The idea of the proof is that using a pure braided plat presentation of the knot K, unknot K by
blowing up several times in such a way that at the end K is the unknot which we denote by UK
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and the resulting link of unknots LK = L0 ∪ L± coming from the blow ups linking UK satisfy:

1. Each component of LK links UK only once,

2. The components of LK are pairwise unlinked or linked as the Hopf link,

3. If the components of LK linked as the Hopf link, then continue blowing up to remove the
linking and get ±1-framed unknots L± linking the components of LK ,

4. L± does not link UK and each can be isotoped to sit on a disk that UK bounds,

5. The component of LK linking UK only once has 0-framing, we denote such components
by L0.

The knot UK has a natural open book decomposition in S 3 coming from the disk it bounds.
The 0-framed link L0 of unknots puncture each disk page transversely once and we can isotope
±1-framed link L± of unknots linking L0 components onto one of the punctured disk pages.
Thus, after performing surgeries UK will be isotopic to the knot K and by Lemma 2.3.11 we
will get a planar open book of S 3 where the knot UK and the 0-framed link L0 of unknots
form the binding components and each ±1-framed link L± of unknots sitting on the punctured
disk page contributes to negative/ positive Dehn twist to the monodromy of the new open book
decomposition respectively.

Note that it is enough to verify we can do this for the set of generators and their inverses
given in Figure 3.11. All the generators fall in one of the five cases given in Figure 3.11. We
explain one complicated case, (2) Ai+1 j+1, in Figure 3.12 and we give a summary for all cases
in Figure 3.13 and their inverses in Figure 3.14.

We want to remark that a pure braided plat presentation of the knot K of the type in Fig-
ure 3.1(b) allows us to isotope ±1-framed curves onto a page.
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Figure 3.11: Generators: Aii+1, Ai+1 j+1, Ai j+1, Ai+1 j, Ai j.

Figure 3.12: Case (2) Ai+1 j+1.
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Figure 3.13: Generators: Aii+1, Ai+1 j+1, Ai j+1, Ai+1 j, Ai j.

Figure 3.14: Inverses: A−1ii+1, A
−1
i+1 j+1, A

−1
i j+1, A

−1
i+1 j, A

−1
i j .
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!

Theorem 3.2.3. If L is a link of k components L1, . . . , Lk in S 3, then L is planar, that is, L sits
on a page of a planar open book decomposition for S 3.

Proof. Here, we mimic the proof of the Theorem 3.2.1. The only modification required is at
the end. Using a pure braided plat presentation of the link L, repeatedly blow up to unknot the
given link L and arrange the framing of the unknots linking L only once to be 0 and remove each
linking between the unknots linking L to get the middle ±1-framed curves. After performing
the 0-surgeries, the page of the open book can be constructed by taking the connected sum of
components L1, . . . , Lk of the link L as shown in Figure 3.15.

Figure 3.15: Construct the page of the open book by taking connected sum of the components
L1, . . . , Lk of the link L.

Hence, we can isotope the middle ±1-framed curves onto a page using the bands connecting
the components. Clearly, the link L sits on a page of this planar open book. !

Remark 3.2.4. Note that other than the unknots with 0-framing coming from resolving the
generators (1) Aii+1, (3) Ai j+1, (4) Ai+1 j in the proof of Theorem 3.2.1, we have only −1-framed
unknots. In these cases, −1-framed unknots contribute positive Dehn twists to the monodromy
of the new open book. We want to remark that we can arrange this to be the case for all
generators and their inverses. Namely, by blowing up in different ways we can make sure that
other than 0-framed unknots, each case contains only −1-framed knots. Thus, at the end we
will have an open book decomposition for S 3 whose monodromy is a product of only positive
Dehn twists and contains the given knot or link on its page. We discuss the cases (2) A−1i+1 j+1 and
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(3) A−1i j+1 in Figure 3.16 in detail. Other cases can be worked out similarly, we give a summary
for the remaining cases in Figure 3.17.

Figure 3.16: Resolving the cases (2) A−1i+1 j+1 and (3) A
−1
i j+1 in such a way that the cases contribute

only positive Dehn twists to monodromy.

As a consequence, we have

Theorem 3.2.5. Any topological knot or link in S 3 sits on a planar page of an open book
decomposition for S 3 whose monodromy is a product of positive Dehn twists. !

3.3 Knots and Links in 3-manifolds

Theorem 3.3.1. Let L be a link of k components L1, . . . , Lk in a closed orientable 3-manifold
M. Then L is planar, that is, L sits on a page of a planar open book for M.

Proof. It is known, see [26] and [38], that any closed orientable 3-manifold M may be obtained
by ±1 surgery on a link LM of unknots in S 3. Given a link L of k components L1, . . . , Lk in a 3-
manifold M, we may think of L as a link in S 3 which is disjoint from the surgery link LM . Now
using the algorithm described in Theorem 3.2.3 we can find a planar open book decomposition
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Figure 3.17: Other than 0-framed knots each remaining case contains only −1-framed knots.

for S 3 such that the link L 0 LM sits on its page. Also, using a similar idea in Lemma 2.3.10
we can arrange framing of each component of LM sitting on a page to be ±1 with respect to the
page framing by first stabilizing the open book and then pushing the knot L over the 1-handle
that we use to stabilize the open book. Then away from the link L, we can perform ±1 surgeries
on LM which yield a planar open book for the 3-manifold M containing the link L on its page.
Moreover, this new open book has a monodromy which is the old monodromy composed with
negative/ positive Dehn twists along each ±1-framed component of the link LM . !

Corollary 3.3.2. Any knot K in a 3-manifold M is planar, that is, K sits on a page of a planar
open book for M.

Remark 3.3.3. It is well known that any closed, orientable 3-manifold M has an open book
decomposition, [2], in particular has a planar open book decomposition, [33]. Different ways
of constructing open book decompositions for 3-manifolds are known for a long time. In fact,
by Theorem 3.3.1 a planar open book for a link L in a closed orientable 3-manifold M gives
a planar open book decomposition for M. Here we want to remark that using the idea in the
proof of Theorem 3.2.1 an alternative way of constructing explicit planar open books for any
given 3-manifold M can be given. Namely, we can determine the monodromy of the planar
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open book for M.

Theorem 3.3.4. Every closed orientable 3-manifold has a planar open book decomposition.

Proof. Assume that given 3-manifold M is obtained by ±1-surgery on a link LM of n unknots.
We can present the link LM as the closure of a n-braid as in Figure 3.18. Notice that since we
have a link of n unknots, n-braid in Figure 3.18 is a pure braid. Now, decompose the pure braid
in terms of standard generators of the pure braid group on n-strands.

Figure 3.18: ±1-surgery on a link LM of n unknots giving the 3-manifold M.

Consider the unknot U in Figure 3.18. We will construct a planar open book for M using the
planar open book (U,D, ϕ = I) of S 3 where the binding is the unknot U, pages are disk D and
the monodromy ϕ is the Id. We remove each linking between the components of the surgery
link LM by blowing up so that the resulting ±1-framed unknots can be isotoped to sit the disk
that U bounds. Note each component of the link LM punctures transversely once the disk that
U bounds. We continue blowing up to arrange the framing coefficient of each component of
LM to be zero. Then by Lemma 2.3.11, we will have a planar open book for M where the pages
are disk with n-punctures and the monodromy is a product of negative/ positive Dehn twists
along the ±1- framed surgery curves on the punctured disk that U bounds. !

Example 3.3.5. Consider the Poincaré homology sphere Σ(2, 3, 5) which can be given by a
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surgery on the Borromean link as in Figure 3.19.

Figure 3.19: Surgery on a Borromean link giving the Poincaré homology sphere.

We construct a planar open book for Σ(2, 3, 5) using the given surgery diagram as follows: First
we present the Borremean link as a pure 3-braid and we decompose the pure braid in terms
of standard generators of the pure braid group on 3-strands. Next, we remove each linking
between the components of the Borromean link by blowing up and we continue blowing up to
arrange the framing of each component of the Borromean link to be 0. See Figure 3.20.

Figure 3.20: Pure braid representation of Borromean link and a way of resolving the twists.

Now, using the unknotU given in Figure 3.20 and using its natural fibration in S 3, we construct
a planar open book decomposition for Σ(2, 3, 5). We slide the surgery curves on to the disk that
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U bounds and we perform the surgeries on the page. By Lemma 2.3.11, after performing 0-
framed surgeries, each component of the Borremean link becomes a binding component δ1, δ2
and δ3. Note that we set the notation for binding components from inner component to outer
component. By Lemma 2.3.11 again, we know that each ±1-framed surgery curve contribute
negative/ positive Dehn twist to the monodromy of the starting open book which in this case is
the identity. Hence, the monodromy of the open book is given by ϕ = t−1β t

−1
α tβtαt−1δ1 tδ2 t

−1
δ3
.

Figure 3.21: A planar open book for the Poincaré homology sphere, the monodromy ϕ is
ϕ = t−1β t

−1
α tβtαt−1δ1 tδ2 t

−1
δ3
.
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CHAPTER 4

LEGENDRIAN KNOTS AND OPEN BOOK DECOMPOSITIONS

In this chapter, we study the contact geometric properties of knots sitting on the pages of open
book decompositions. In Section 4.1, we define the support genus of Legendrian knots. In
the following sections, first we study the support genus of Legendrian knots in overtwisted
contact 3-manifolds and then in tight contact 3-manifolds. Finally, we study the support genus
of Legendrian knots in arbitrary contact 3-manifolds. We list several observations related to
support genus of knots.

4.1 Support Genus of Legendrian Knots

Definition 4.1.1. The support genus sg(L) of a Legendrian knot L in a contact 3-manifold
(M, ξ) is the minimal genus of a page of an open book decomposition of M supporting ξ such
that L sits on a page of the open book and the framings given by ξ and the page agree.

Given a Legendrian knot L in a contact 3-manifold (M, ξ), one can always find an open book
decomposition compatible with ξ containing L on a page such that the contact framing of L
is equal to the framing given by the page. Such an open book decomposition for (M, ξ) can
be constructed by an application of Giroux’s algorithm, using a contact cell decomposition of
(M, ξ) and including the given Legendrian knot L in the 1-skeleton of the contact cell decom-
position, [20]. For Legendrian knots in (S 3, ξstd) an alternative algorithm that uses the front
projection of Legendrian knots can be found in [1], cf. also [3]. Thus the support genus sg(L)
of a Legendrian knot L is well defined.

We want to remark that definition of support genus for Legendrian knots can be extended to
Legendrian links.
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Example 4.1.2. Consider the Legendrian unknot L in (S 3, ξstd) as shown in Figure 4.1. The
Legendrian unknot L sits on the page of an open book decomposition (H+, A, ϕ = tα) of
(S 3, ξstd). Thus, the support genus of L is zero.

Figure 4.1: Legendrian unknot L, tb(L) = −1, rot(L) = 0, sg(L) = 0.

4.2 Legendrian Knots in overtwisted contact structures

Recall that there are two types of Legendrian knots in overtwisted contact structures: loose
Legendrian knots and non-loose Legendrian knots.

4.2.1 Loose Legendrian Knots

Theorem 4.2.1. If L is a null-homologous Legendrian loose knot in an overtwisted contact
3-manifold (M, ξot), then sg(L) = 0.

Proof. It is known that if two null-homologous Legendrian loose knots L1 and L2 in a knot type
K have the same Thurston-Bennequin invariant and the same rotation number, then there is a
contactomorphism ψ of (M, ξot) such that ψ(L1) = L2, [17]. Here, we show that we can realize
any pair of integers (m, n) with m±n odd as (tb(L), r(L)) for a null-homologous loose knot L in
a knot type K that sits on a planar open book (S , ϕ) supporting (M, ξot). By Theorem 3.3.1, we
know there is a planar open book decomposition, say (S K , ϕK), for M such that K lies on a page
of the open book. The planar open book (S K , ϕK) is compatible with some contact structure ξ′

on M. If necessary we can negatively stabilize the open book in such a way that the resulting
open book is still planar and it is overwisted. Furthermore, following [11] we can assume that
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ξ′ is the same as the overtwisted contact structure ξot. Briefly, by performing necessary Lutz
twists and taking plumbing of (S K , ϕK) with an appropriate overtwisted open book for S 3, we
can arrange the 2-dimensional invariants d2 and the 3-dimensional invariants d3 of ξ′ and ξot
to be the same. Thus, the two contact structures will be homotopic, [21]. Then, by Eliashberg
[9] two overtwisted contact structures will be isotopic. Note that we can do this keeping the
open book planar and keeping the given knot K on the page. For the details of how to arrange
invariants of overtwisted contact structures, see the proof of Theorem 3.5 in [11].

Now, we can assume that the planar open book (S K , ϕK) containing the knot K on its page is
compatible with the overtwisted contact structure ξot on M. If necessary by stabilizing the open
book positively and pushing the knot K over the 1-handle, we may assume K is non-separating
and we may Legendrian realize the knot K on the page, say it has a Thurston-Bennequin in-
variant t′ and a rotation number r′. To realize any pair (tb(L), r(L)) for any Legendrian repre-
sentative of the knot K from the pair (t′, r′), first realize the appropriate Thurston-Bennequin
invariant tb(L). If t′ > tb(L), then to decrease the Thurston-Bennequin invariant stabilize the
knot positively or negatively on the page by using Lemma 2.3.10(1). Modify the open book
as in Figure 2.6(a) or (b), both will decrease tb(L). Note, this modification alters neither the
contact structure nor the genus of the open book. Now, if t′ < tb(L), then to increase the
Thurston-Bennequin invariant we need to destabilize the knot positively or negatively on the
page by using Lemma 2.3.10(2). Note, this modification alters the contact structure. However,
as before, away from the knot by taking plumbing of this new open book of M with an appro-
priate overtwisted open book of S 3, we can make sure that the resulting overtwisted contact
structure is still isotopic to ξot.

Now, once we realize the pair (tb(L), r′′), to complete the proof we only need to realize any
possible rotation number rot(L) from r′′. To increase or decrase the rotation number, we will
use Lemma 2.3.10 again and stabilize the knot positively or negatively on the page. Recall that
a positive and a negative stabilization of a knot increase and decrease the rotation number by 1,
respectively and also recall that both stabilizations decrease the Thurston-Bennequin invariant
tb(L) by 1. Thus, every time we increase or decrease r′′, we need to make sure that tb(L) stays
the same. Clearly, this is possible since to increase the rotation number if we first positively
stabilize the knot on the page as in Figure 2.6(a) and then negatively destabilize the knot on
the page as in Figure 2.6(d), the rotation number will increase by 2 and tb(L) stays the same.
Note after negatively stabilizing the open book, we again perform a plumbing operation to
keep the contact structure same as ξot. Similarly, to decrease the rotation number, we first
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modify the open book as in Figure 2.6(b) and then as in Figure 2.6(c), this time the rotation
number will decrease by 2 and tb(L) stays the same. Since tb(L)± rot(L) is odd, we can realize
any pair (tb(L), rot(L)). Thus, for any null-homologous loose Legendrian representative of the
knot K we can find a planar open book decomposition supporting ξot such that the Legendrian
representative sits on the page. !

4.2.2 Non-loose Legendrian Knots

There are examples of support genus zero non-loose knots in overtwisted contact structures.

Example 4.2.2. The contact 3-manifold given by the surgery diagram in Figure 4.2 is an over-
twisted (S 3, ξn) with d3(ξn) = 1 − np(p − 1). The Legendrian knot Ln in (S 3, ξn) is non-loose
with support genus zero and topologically a (p, pn + 1) positive torus knot. When p = 2,
Legendrian non-loose knots of knot type (2, 2n + 1) positive torus knots first appeared in [28].
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Figure 4.2: Legendrian Torus knots.

Let X denote the 4-manifold obtained by viewing the integral surgeries as 4-dimensional 2-
handle attachments to B4. With the help of X, we can compute the 3-dimensional invariant
d3(ξn) of the contact structure ξn. From Figure 4.3, the signature of X is σ(X) = −n − p + 1
and the Euler characteristic of X is χ(X) = n + p + 1. Also, using a second cohomology class
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c ∈ H2(X,Z) defined by the rotation number, we compute c2 = −n(2p − 1)2 − (p − 1). From
the formula:

d3(ξ) =
1
4
(c2 − 3(σ(X)) − 2χ(X)) + q,

where q denotes the number of +1-contact surgeries, we compute the 3-dimensional invariant
of ξn as d3(ξn) = 1−np(p−1). Note that ξn is overtwisted since d3(ξn) < 0. Note also that Ln is
non-loose since Legendrian surgery along Ln cancels one of the +1-surgeries in Figure 4.2 and
results in a tight contact structure. By a similar argument used in [35], the surgery link together
with the Legendrian knot Ln given in Figure 4.2 can be put on a page of a planar open book of
(S 3, ξst). After performing surgeries, we will get (S 3, ξn) compatible with a planar open book
containing the Legendrian knot Ln on its page. Therefore, sg(Ln) = 0.
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There are examples of support genus non-zero non-loose knots in overtwisted contact struc-
tures.

Example 4.2.3. Consider a Legendrian knot L with a Thurston-Bennequin invariant tb(L) >
0 in (S 3, ξstd). Let (M, ξ) denote the contact 3−manifold results from a +1-contact surgery
along a positive stabilization S +(L) of the Legendrian knot L. (M, ξ) is overtwisted by [30],
also by [27]. Since tb(S +(L)) ≥ 0 according to Remark 4.3.2 below, sg(S +(L)) > 0. Note
the image S +(L)′ of S +(L) in the surgered overtwisted contact manifold (M, ξ) is a non-loose
Legendrian knot with a non-zero support genus. The Legendrian knot S +(L)′ is non-loose
since the complement of S +(L)′ in (M, ξ) is contactomorphic to the complement of S +(L) in
(S 3, ξstd) and sg(S +(L)′) > 0, otherwise this would contradict to the fact that sg(S +(L)) > 0.

Remark 4.2.4. As we discussed in Example 4.2.3 above, in overtwisted contact structures there
are examples of non-loose knots having support genus non-zero. Let L be a null-homologous,
support genus non-zero, non-loose Legendrian knot of knot type K in an overtwisted contact
manifold (M, ξot). We can find a loose knot L̃ of knot type K in (M, ξot) such that L̃ has the
same classical invariants as L. Moreover, by Theorem 4.2.1 it follows that sg(L̃) = 0. Thus,
we have examples of knots having the same classical invariants but different support genus in
overtwisted contact structures.

4.3 Legendrian Knots in tight contact structures

In Chapter 3, we showed that any topological knot or link in S 3 sits on a planar page of an open
book decomposition of S 3. Moreover, we showed that we can arrange the monodromy of the
open book decomposition to be a product of positive Dehn twists only. In [20], Giroux showed
that a contact 3-manifold is Stein fillable if and only if there is a compatible open book de-
composition for the contact manifold whose monodromy is a product of positive Dehn-twists.
Since there is a unique tight contact structure on S 3, the planar open book we constructed for
a given knot or link in S 3 will be compatible with (S 3, ξstd). For a given knot K in S 3 after
putting the knot K on a page of a planar open book with positive monodromy, we may Legen-
drian realize the knot K on the page. If necessary first we may arrange K to be non-separating
on the page by stabilizing the open book positively and pushing the knot K over the 1-handle
and then we may Legendrian realize the knot K on the page. As a consequence, we have

Theorem 4.3.1. Given a knot type K in (S 3, ξstd), there is a Legendrian representative L of K
such that sg(L) = 0.
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It is easy to find examples of support genus non-zero Legendrian knots in weakly fillable tight
contact structures.

Lemma 4.3.2. If L is a Legendrian knot in a weakly fillable tight contact structure with a
Thurston- Bennequin invariant tb(L) > 0, then sg(L) > 0. In particular, any Legendrian knot
L in (S 3, ξstd) with Thurston-Bennequin invariant tb(L) ≥ 0 has sg(L) > 0.

Proof. In [11], Etnyre gives constraints on contact structures having support genus zero. In
particular, according to [11] a contact 3-manifold (M, ξ) obtained by a Legendrian surgery
along a Legendrian knot L in a weakly fillable contact structure having Thurston-Bennequin
invariant tb(L) > 0 has sg(ξ) > 0. If a Legendrian knot with tb(L) > 0 had support genus
sg(L) = 0, then performing a Legendrian surgery along L sitting on a planar page would yield
a contact 3-manifold (M, ξ) with support genus sg(ξ) = 0, which is not the case. Therefore,
such a Legendrian knot has sg(L) > 0. The Legendrian knots with tb(L) = 0 has sg(L) > 0
follows from [32]. !

4.4 Legendrian Knots in contact structures

As explained in Lemma 2.3.10(1), if a Legendrian knot L sits on a page of an open book
decomposition, then positive or negative stabilization of L can be seen on the page of the open
book as in Figure 2.6(a) and (b). Note that we add 1-handles in such a way that the resulting
open book still has the same genus. As a result, we have

Theorem 4.4.1. If a Legendrian knot L has support genus sg(L) = n, then the stabilizations
S n1+ S

n2
− (L) of L have the support genus sg(S

n1
+ S

n2
− (L)) ≤ n.

By the above Theorem 4.4.1, given a knot type K, if all Legendrian knots realizing K without
maximal Thurston-Bennequin invariant destabilize and the Legendrian knots with maximal
Thurston-Bennequin invariant has support genus zero, then all Legendrian knots of the knot
type K has support genus zero. For example, all Legendrian unknots in (S 3, ξstd) are planar.

Remark 4.4.2. Note that the support genus of a Legendrian knot gives an upper bound on the
support genus of a contact structure, that is, sg(L) ≥ sg(ξ). So, if there is a Legendrian knot L
in a contact 3-manifold (M, ξ) having support genus zero, then sg(ξ) = 0.

Recall that for a non-zero rational number r ∈ Q, a contact r-surgery on a Legendrian knot L
in a contact 3-manifold (M, ξ) is a topological r-surgery with respect to the contact framing.
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The resulting manifold is a new contact 3-manifold (M′, ξ′) where the contact structure ξ′ is
constructed by extending ξ from the complement of a standard contact neighborhood of L to a
tight contact structure on the glued solid torus, [5]. Such an extension always exists and it is
unique when r = 1

k , k ∈ N, [23].

Theorem 4.4.3. Let L be a Legendrian knot in a contact 3-manifold (M, ξ) such that sg(L) = 0.
Then, the contact 3-manifold (M′, ξ′) obtained from M by a contact r-surgery along L has
sg(ξ′) = 0.

We want to remark that rational contact surgeries on a Legendrian link in (S 3, ξstd) on pages of
open book decompositions first discussed in [29].

Proof. Case 1. Contact r-surgery with r < 0: Consider a continued fraction expansion of
r − 1

[r1, r2, . . . , rn] = r1 −
1

r2 − 1
···− 1

rn

with integers ri ≤ −2, i = 1, . . . , n. Let L1 be the |r1+1| times stabilization of the front projection
of the Legendrian knot L and let Li be the Legendrian push off of Li−1 with additional |ri + 2|
stabilizations, i = 2, . . . , n. Then following [5], we can replace contact r-surgery along L by
a sequence of contact −1-surgeries along L1, . . . , Ln. Since the support genus sg(L) = 0, by
Lemma 2.3.10(1) and by keeping the page of the open book planar we can realize each Li on
a planar open book containing L on its page. Again by using Lemma 2.3.10(1) we can arrange
framing of each Li sitting on a planar page to be −1 with respect to the page framing. After
performing contact surgeries, we will obtain a support genus zero contact 3-manifold.

Case 2. Contact r-surgery with r = p
q > 0, (p, q) = 1: According to [5], a contact r =

p
q -surgery along L corresponds to k contact +1-surgeries along k Legendrian push offs of L
followed by a contact r′ = p

q−kp -surgery along a Legendrian push off of L for any integer
k ∈ N such that q − kp < 0. By starting with a planar open book containing the Legendrian
knot L on its page, we can easily see k Legendrian push offs of L on the page and by using
Lemma 2.3.10(1) we can arrange the framings of each push off of L sitting on a planar page
to be +1 with respect to the page framing. Hence to complete the proof we only need to show
that we can perform r′ < 0 surgery on a Legendrian push off of L on the page also, but this can
be easily arranged as we did in Case 1. !
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TEACHING EXPERIENCE

Teaching Assistant Calculus I-II, Department of Mathematics,
Middle East Technical University, Fall 2006, Spring 2007

Teaching Assistant Calculus I-II, Department of Secondary Science and Mathematics Education,
Baskent University, Fall 2005, Spring 2006

Teaching Assistant Differential Geometry, Department of Mathematics,
Middle East Technical University, Spring 2004

Teaching Assistant Basic Algebraic Structures, Department of Mathematics,
Middle East Technical University, Fall 2004
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