Braids & Contact Topology

John Etnyre
(Georgia Tech)
Outline

I Intro to Contact Structures
II Braids and Bennequin
III Positivity in the Braid group
IV Contact Geometry and Positivity
V Open Book Decompositions
VI Monoids and Geometry
VII Generalized Braids
Intro To Contact Structures

A hyperplane field ξ^{2n} on a manifold M^{2n+1} is called a contact structure if there is (at least locally) a 1-form α such that

$$\xi = \ker \alpha$$

$$\alpha \wedge d\alpha \wedge \ldots \wedge d\alpha \neq 0$$

n times

Example:

On \mathbb{R}^{2n+1} let $\alpha = dz - \sum_{i=1}^{n} y_i \, dx_i$, and $\xi_{\text{std}} = \ker \alpha$

$$= \text{span} \left\{ \frac{\partial}{\partial y}, \frac{\partial}{\partial x_i} + \frac{\partial}{\partial x_i} \right\}$$

Darboux:

All contact structures look locally like this one
let \((M,i)\) be a contact manifold

\[L^n \subset M^{2n+1} \] is a **Legendrian submanifold** if

\[T_x L \subset T_x M \quad \forall x \in L \]

Example: in \((\mathbb{R}^3, i_{\text{std}})\) project \(L\) to the \(xz\)-plane

\[\gamma = \frac{dz}{dx} \quad \text{on} \quad L \]

this is called the front projection (notice resemblance to wave fronts)

Thm: any arc in a contact 3-manifold can be \(C^0\)-approximated by a Legendrian curve (rel end pts)
A natural occurrence of contact structures

consider the configuration space of a skate (or front wheel of a car)

\[(x, y)\] determine the position of the skate in the plane
\[\theta\] determines the angle it forms with the \(x\)-axis

so the configuration space is

\[\mathcal{W} = \mathbb{R}^2 \times S^1\]

note:
1) At a fixed point the skate can point in any direction
2) Skate can only move in the direction it is pointing
 (we assume it does not scrape)
So if \(\gamma(t) = (x(t), y(t), \theta(t)) \) is a motion of the skate then
\[
\frac{y'(t)}{x'(t)} = \tan \theta(t)
\]
if we set \(\mathfrak{F} = \ker(\cos \theta dy - \sin \theta dx) \)
then \(\mathfrak{F} \) is a contact structure on \(W \) and
\(\gamma \) is the motion of a skate
\(\iff \)
\(\gamma \) parameterizes a Legendrian curve

Application:
You can always (in theory) parallel park your car.

Legendrian approximation

desired path
Other Occurrences of Contact Structures

- **PDE** (Sophus Lie 1872)

 given \(F : \mathbb{R}^{2n+1} \rightarrow \mathbb{R} \)

 finding \(z : \mathbb{R}^n \rightarrow \mathbb{R} \) solving

 \[
 F(x_1, \ldots, x_n, \frac{\partial z}{\partial x_1}, \ldots, \frac{\partial z}{\partial x_n}, z) = 0
 \]

 is equivalent to finding

 \(u : \mathbb{R}^n \rightarrow \mathbb{R}^{2n+1} \) s.t.

 \[
 F_{ou} = 0
 \]

 \(\text{Image}(u) \) is Legendrian in \(\mathbb{R}^{2n+1} \)

- **Riemannian Geometry**

 \(g \) metric on \(M \)

 \[
 T^*M \cong T^M \quad \text{under } g
 \]

 \[
 S(TM) \quad \text{Geodesic flow}
 \]

 \[
 S(T^*M) \quad \text{Reeb flow}
 \]
• **Optics** via Huygen's Principle

• **Thermodynamics** by work of Gibbs

• **Low-dimensional Topology**

 we will see lots of examples later, but we note a few results here

 recall: **Dehn Surgery** on a knot $K \subset \mathbb{S}^3$

 - remove a nbhd $N(K)$ of K from \mathbb{S}^3

 - glue back $\mathbb{S}^1 \times D^2$ so that

 \[\partial \mathbb{S}^1 \times \partial D^2 \text{ goes to a curve } \gamma \subset \partial (\mathbb{S}^3 \setminus N(K)) \]

 denote the result $\mathbb{S}^3(K)$
Kronheimer-Mrowka proved

Non trivial Knots have property P

i.e. $\pi_1(S^3_\lambda(K)) = 1$

$\Rightarrow \lambda = \mu$ or $K = \text{unknot}$

Ozsváth and Szabó proved

If L is \bigcirc, $\bigcirc\bigcirc$, or $\bigcirc\bigcirc\bigcirc$

then $S^3_\rho(K) \cong S^3_\rho(L)$ for any ρ

implies $K = L$

the $L = O$ was conjectured by Gordon in the 1970's and was originally proven by Kronheimer-Mrowka-Ozsváth-Szabó
Recall \mathbb{R}^3 has a contact structure
$$\xi_{std} = \ker (dz + r^2 d\theta)$$

Question: Is there another?

Consider $$\xi_{ot} = \ker (\cos r dz + \sin r d\theta)$$

This looks "different" but how do we know there is no diffeomorphism $\Phi: \mathbb{R}^3 \to \mathbb{R}^3$ taking ξ_{std} to ξ_{ot}?

Bennequin's Answer: Use braid theory!

(and in the process give birth to contact topology and initiate tools in Braid theory independently developed by Birman-Menasco) more fully!)
Outline Of Proof:

A knot \(K \) in a contact manifold \((M,\xi)\) is called **transverse** if

\[
T_xK \not\subset \xi_x \quad \forall x \in K
\]

Step 1: such a \(K \) in \((\mathbb{R}^3, \xi_{\text{std}})\) can be braided

Step 2: define the **self-linking number** of \(K \): \(sl(K) \)

compute \(sl(K) \) using

- Seifert surface \(\Sigma \) for \(K \)
- braid representation of \(K \)

Step 3: analyze the Birman–Menasco braid foliations on \(\Sigma \) to prove

\[
sl(K) \leq -\chi(\Sigma)
\]

Step 4: Notice in \((\mathbb{R}^3, \xi_{\text{tot}})\) there is a transverse unknot with \(sl = 1 \)

\[\text{Bennecquin inequality}\]
Some Details of Proof

Step 1: notice that for large r the contact planes
$$\{s_{\theta} = \text{span} \{ \frac{\partial}{\partial r}, \frac{r^2 \partial}{\partial \theta} - \frac{\partial}{\partial \theta} \}$$
are almost tangent to the constant θ half-planes $H_{\theta_0} = \{(r, \theta, z) : \theta = \theta_0\}$

Since braids are \mathcal{A} to the H_{θ_0}'s

we see (closed) braids naturally give \mathcal{A} knots

Thm (Bennequin '82)

Any transverse knot in $(\mathbb{R}^3, \tau_{std})$ can be isotoped through \mathcal{A} knots to a closed braid.
one can prove this by observing that the proof that any knot can be braided can easily be adapted to this situation.

Fact (Orevkov–Shevchishin, Wrinkle’03):

To closed braids representing in $(\mathbb{R}^3, 3_{std})$ are isotopic as transverse knots \iff they are related by

1) conjugation in braid group (i.e. braid isotopy)

2) positive Markov moves

Recall:

So classifying transverse knots in $(\mathbb{R}^3, 3_{std})$ can be done purely in terms of braids!
Step 2: The **Self-linking number**

Note: there is a never zero vector field \mathbf{v} in \mathbb{R}^2. To see this notice $\pi : \mathbb{R}^3 \to \mathbb{R}^2 : (x, y, z) \mapsto (x, y)$ gives $d\pi|_p : T_p \mathbb{R}^2 = \mathbb{R}^2 \\ \pi(p)$ on isomorphism for all p so $\exists!$ vector field \mathbf{v} in \mathbb{R}^2 such that $d\pi(\mathbf{v}) = \frac{\partial}{\partial x}$ in \mathbb{R}^2

Now if K is a transverse knot let $K' = K + \varepsilon \mathbf{v}$ for some small ε

The self-linking number of K is

$$SL(K) = \text{linking } (K, K')$$

Exercise: $SL(K)$ is independent of ε
Recall: any n-strand braid can be represented by a word in $\sigma_1 \ldots \sigma_{n-1}$ and $\sigma_1^{-1} \ldots \sigma_{n-1}^{-1}$ where...

\[\{ \text{strands} \} \]

Lemma: If the transverse knot K is given as the closure of the n-braid $B = \sigma_1^{\varepsilon_1} \ldots \sigma_k^{\varepsilon_k}$ where $\varepsilon_i = \pm 1$ Then $\ell(K) = a(B) - n(B)$

algebraic length \quad braid index

\[\sum \varepsilon_i \]

Proof

- get -1 for each strand
- get writhes from B
let Σ be an oriented surface such that $\partial \Sigma = \mathcal{K}$

for each $x \in \Sigma$ let $l_x = T_x \Sigma \cup T_x \mathcal{K}$

at most points l_x is a line but at some points $l_x = T_x \Sigma = T_x \mathcal{K}$

these are called singular points

exercise: There is a singular 1-dimensional foliation Σ_1 whose tangents are given by l_x. We call Σ_1 the characteristic foliation

note that since $\mathcal{K} = \partial \Sigma$ is \mathcal{A} to \mathcal{K} we see
Exercise: Can perturb Σ, rel $\partial \Sigma$, so that all singular points "look like"

- elliptic
- hyperbolic

Ω is oriented (by $2\pi dr d\theta$) and so is Σ so to each singular point we can assign a sign

+ if orientations agree
- if they disagree

We get an induced orientation of I_x and Σ

Exercise: if an elliptic point is + then

![Diagram](image) if - then

![Diagram](image)
given \(\Sigma \) let
\[
\begin{align*}
\tau_+ = & \# \left\{ \text{elliptic moduli in } \Sigma \right\} \\
\tau_- = & \# \left\{ \text{hyperbolic moduli in } \Sigma \right\}
\end{align*}
\]

Lemma:

If \(K = \partial \Sigma \) then
\[
(1) \quad s\ell(K) = -(\tau_+ - \tau_-) + (\tau_- - \tau_+)
\]

Exercise: prove this

Hint:

Let \(w \) be a vector field along \(\Sigma \) that is tangent to \(\Sigma \) and points out of \(\Sigma \) along \(\partial \Sigma \)

Note \(\text{link}(K, K + \epsilon w) = 0 \)

Show the difference between \(v \) and \(w \) along \(K \) is given in terms of \(\tau_+, \tau_- \).
notice that \(w \) is a vector field tangent to \(\Sigma \) and pointing out \(\partial \Sigma \) so by Poincaré–Hopf we have

\[\chi(\Sigma) = e_+ + e_- - h_+ - h_- \]

(2)

if we add (1) and (2) we get

\[\mathfrak{s} \mathfrak{l}(K) + \chi(\Sigma) = 2(e_- - h_-) \]

thus if we can show that \(\Sigma \) can be isotoped, rel \(\partial \Sigma \), so that \(e_- = 0 \) then we will have shown

\[\text{Th}^{\mathfrak{m}}(\text{Benoquin '82}): \]

\[\mathfrak{s} \mathfrak{l}(K) \leq -\chi(\Sigma) \]

to do this we need...
Step 3: Braid Foliations

Let K be a closed braid Σ a surface s.t. $\partial \Sigma = K$

Recall $\mathbb{R}^3 - (z\text{-axis})$ is foliated by $H_a = \{(r, \theta, z) : \theta = a\}$ $a \in \mathbb{R}$

This induces a singular foliation on Σ called the braid foliation and denoted \mathcal{F}_3
Examples:

1)

2)

Note/exercise:

1) near Σ

2) can assume Σ (z-axis) so finitely many points like
3) Can orient \(F_\Sigma \) (as we did \(\Sigma \)) then if \(z \)-axis positively transverse to \(\Sigma \) then also near \(\partial \Sigma \) otherwise

4) Can perturb \(\Sigma \) so that the only singularities of \(F_\Sigma \) (away from \(z \)-axis) are hyperbolic center
5) If you keep expanding a center singularity you see (more or less)

replace

with

\[\mathbb{R} \]
so we can isotopy so that there are no center singularities!

6) You can isotopy so that
\[\mathcal{Z}_2 \text{ is very close to } \mathcal{Z}_3 \]
thus you can read off \(e_\pm h_\uparrow \) from \(\mathcal{Z}_2 \)
and prove the inequality by isotoping \(\Sigma \) so that it does not \(\land \) \(z \)-axis negatively!

From now on let \(K \) be an unknot and \(\Sigma \) be a disk it bounds

consider a negative singularity so \(\mathcal{Z}_3 \)

let \(\mathcal{B}_s = \{ \text{all leaves of } \mathcal{Z}_3 \text{ limiting to } s \} \)
note: B_s is disjoint from Σ

(since we can't have $\exists 2e$

so B_s is

or

or

or...

if the "sack" is empty then replace Σ with

evaluating s!
If the "sack" is not empty then you can empty it via exchange moves.
note: this does not change the braid index or algebraic length of the braid.
so does not change $sl(K)$

exercise: show this can be done without changing γ_s
we can then eliminate s

exercise: think about more general B_s (can always reduce to the above)

Continuing this analysis we will prove that for any transverse unknot K
we can isotope a disk D with $\partial D = K$
so that $e_-= 0$
thus $SL(K) \leq -\chi(D) = -1$
Note: let \(D = \{ (r, \theta, z): \theta \leq \pi + \varepsilon \} \)
\[z = 0 \]
\[K = \partial D \]
\[\ln I_{ot} = \ker \{ \cos r d r d \theta + r \sin r d \theta \} \]
the knot \(K \) is transverse

Perturb \(D \) to get

so \(\xi_c(K) = 1 \)

Thus we see \(I_{std} \) and \(I_{ot} \) are indeed different contact stras! with more work you can extend the Bennequin inequality for unknots in \(I_{std} \) to any knot (or link)
There are 2 ways to continue the above work:

I. Contact geometry
tight vs. overtwisted
(Elashberg)

II. Braid theory
(Birman-Menasco)

we first discuss contact geometry

Definition: We call a contact structure \(I \) overtwisted if there is a disk \(D \) such that \(T_x D = \mathbb{R}^2 \) for all \(x \in \partial D \) otherwise call \(I \) tight (this definition due to Eliashberg)
Note: If I is overtwisted then (by extending D as above) we get a transverse unknot K with $\mathfrak{s}l(K) = 1$, so Bennequin's bond does not hold.

Theorem (Eliashberg +3, '92): Let (M, ξ) be a contact manifold. The following are equivalent:

I. I is tight

II. $\mathfrak{s}l(K) \leq -\chi(\Sigma)$ for all K and $\Sigma = K$

III. $\mathfrak{s}l(K)$ is bounded above for all knots

IV. $\mathfrak{s}l(K)$ is bounded above for all knots in a fixed topological knot type (for example unknots)
In braid theory Birman–Menasco have proven many things using the braid foliation analysis.

a sample of results:

3-braids: A link L that is the closure of a 3-braid has a unique 3-braid representative (up to conjugation) except for

1) Unknot: $\sigma_1 \sigma_2, \sigma_1 \sigma_2^{-1}, \sigma_1 \sigma_2^{-1}$

2) $(2,1)$ torus knot: $\sigma_1^2 \sigma_2, \sigma_1^2 \sigma_2^{-1}$

3) Links that are the closure of $\sigma_1 \sigma_2^2 \sigma_1 \sigma_2^{-1}, \sigma_1 \sigma_2^2 \sigma_1 \sigma_2^{-1}$

where p,q,r distinct, abs vol ≥ 2

$s = \pm 1$

Markov Theorem Without Stabilizations:

"For each n there are a finite set of "moves" so if two braids of index $\leq n$ represent the same link then you can get from one to the other with these moves"
Transverse "Non-simple" knots:

Let K_1 and K_2 be the closures of the 3-braids

\[
\begin{array}{c}
\begin{array}{c}
2p+1 \\
2q
\end{array}
\begin{array}{c}
2r
\end{array}
\end{array}
\]

and

\[
\begin{array}{c}
\begin{array}{c}
2q
\end{array}
\begin{array}{c}
2r
\end{array}
\begin{array}{c}
2p+1
\end{array}
\end{array}
\]

where $p+1 \neq q \neq r$, $p, q, r > 1$

then K_1 and K_2 are transverse knots that are

1) topologically isotopic

2) have same SL

3) are not transversely isotopic

Note: these were the first such examples!

(see also E- Honda...)