Fibered knots
 AND THE
 Bennequin Bound

John Etnyre ${ }^{1}$ Jeremy Van Horn-Morris ${ }^{2}$

${ }^{1}$ School of Mathematics
Georgia Institute of Technology
${ }^{2}$ CIRGET
Université du Québec à Montréal

Perspectives in Analysis, Geometry, and Topology

Outline

(1) Introduction

(2) Contact Geometry
(3) Transverse Knots
(4) Bennequin Bounds
(5) Open Book Decompositions
(6) Main Theorems
(7) Proof

Contact Geometry

The Basics

- Let M be closed oriented 3-manifolds.
- An oriented hyperplane field ξ on M is a contact structure if there is a 1 -form α such that

$$
\xi_{x}=\operatorname{ker}\left(\alpha_{x}: T_{x} M \rightarrow \mathbb{R}\right)
$$

for all $x \in M$ and

$$
\alpha \wedge d \alpha>0
$$

Contact Geometry

Standard Example

ExAMPLE

On \mathbb{R}^{3}
with coordinates (x, y, z)

Contact Geombtry

Standard Example

ExAMPLE

On \mathbb{R}^{3}
with coordinates (x, y, z)

$$
\xi_{s t d}=\operatorname{ker}(\underbrace{d z-y d x}_{\alpha})
$$

at $(0,0,0)$ we have the span of

$$
\left\{\partial_{x}, \partial_{y}\right\}
$$

Contact Geombtry

Standard Example

ExAMPLE

On \mathbb{R}^{3}
with coordinates (x, y, z)

$$
\xi_{s t d}=\operatorname{ker}(\underbrace{d z-y d x}_{\alpha})
$$

at $(0,-1,0)$ we have the span of

$$
\left\{\partial_{x}-\partial_{z}, \partial_{y}\right\}
$$

Contact Geometry

Standard Example

Example

On \mathbb{R}^{3}
with coordinates (x, y, z)

$$
\xi_{s t d}=\operatorname{ker}(\underbrace{d z-y d x}_{\alpha})
$$

at $(0,-t, 0)$ we have the span of

$$
\left\{\partial_{x}-t \partial_{z}, \partial_{y}\right\}
$$

Contact Geometry

Standard Example

ExAMPLE

On \mathbb{R}^{3}
with coordinates (x, y, z)

$$
\xi_{s t d}=\operatorname{ker}(\underbrace{d z-y d x}_{\alpha})
$$

Contact Geometry

Standard Example

ExAMPLE

$$
\begin{aligned}
& \text { On } \mathbb{R}^{3} \\
& \text { with coordinates }(x, y, z) \\
& \qquad \xi_{\text {std }}=\operatorname{ker}(\underbrace{d z-y d x}_{\alpha})
\end{aligned}
$$

Darboux: All contact structures are locally diffeomorphic to this one.

Contact Geometry

Tight vs. Overtwisted

- An overtwisted disk in ξ is an embedded disk D such that

$$
T_{x} D=\xi_{x},
$$

for all $x \in \partial D$.

- We call ξ overtwisted if there is an overtwisted disk in ξ otherwise ξ is called tight.

Contact Geometry

Standard Overtwisted Example

EXAMPLE

THEOREM [BENNEQUIN 1983]
 $\left(\mathbb{D}^{3}, \xi_{s t d}\right)$ is tight.

Contact Geometry

Standard Overtwisted Example

EXAMPLE

Theorem [BENNEQUIN 1983]

$\left(\mathbb{R}^{3}, \xi_{s t d}\right)$ is tight.

Transverse Knots
 Definition

A transverse knot in a contact manifold (M, ξ) is an embedded circle $K \subset M$ that is transverse to ξ for all $x \in K$,

$$
T_{x} K \oplus \xi_{x}=T_{x} M
$$

(We orient K so that the above equality is as oriented vector spaces.)

Transverse knots in $\left(\mathbb{R}^{3}, \xi_{s t d}\right)$

Transverse Knots

Definition

A transverse knot in a contact manifold (M, ξ) is an embedded circle $K \subset M$ that is transverse to ξ for all $x \in K$,

$$
T_{x} K \oplus \xi_{x}=T_{x} M
$$

(We orient K so that the above equality is as oriented vector spaces.)

TRANSVERSE KNOTS IN $\left(\mathbb{R}^{3}, \xi_{s t d}\right)$

If $t \mapsto(x(t), y(t), z(t))$ parameterizes a transverse knot in

$$
\xi_{s t d}=\operatorname{ker}(d z-y d x)
$$

then we must have

$$
z^{\prime}(t)-y(t) x^{\prime}(t)>0
$$

Transverse Knots

Definition

A transverse knot in a contact manifold (M, ξ) is an embedded circle $K \subset M$ that is transverse to ξ for all $x \in K$,

$$
T_{x} K \oplus \xi_{x}=T_{x} M
$$

(We orient K so that the above equality is as oriented vector spaces.)

TRANSVERSE KNOTS IN $\left(\mathbb{R}^{3}, \xi_{s t d}\right)$

So projections to the $x z$-plane must not have regions like

any other regions OK.

Transverse Knots

Self-Linking Number

- Let K is a null-homologous knot in M, so there is an oriented surface $\Sigma \subset M$ such that $\partial \Sigma=K$.
- Suppose K is transverse to ξ.
- The ξ restricted to Σ is a trivial bundle

$$
\left.\xi\right|_{\Sigma}=\Sigma \times \mathbb{R}^{2} .
$$

- Choose a non-zero vector v in $\left.\xi\right|_{\Sigma}$.
- The self-linking number of $K, s l(K)$, is the difference between the framings of K given by v and Σ.
- Notice that this number might depend on the relative homology class of Σ, so we should denote the invariant $s l(K,[\Sigma])$.

Transverse Knots

Examples in \mathbb{R}^{3}

In the $x z$-projection of a transverse knot in $\left(\mathbb{R}^{3}, \xi_{\text {std }}\right)$ the self-linking number is given by

$$
s l(K)=\text { writhe }(K)
$$

ExAMPLE

Transverse Knots

Examples in \mathbb{R}^{3}

In the $x z$-projection of a transverse knot in $\left(\mathbb{R}^{3}, \xi_{\text {std }}\right)$ the self-linking number is given by

$$
s l(K)=\text { writhe }(K)
$$

Example

$$
s l(K)=\text { writhe }(K)=-1
$$

Transverse Knots

Stabilization

We can modify the $x z$-projection of a knot K by:

> This results in a transverse knot $S(K)$ in the same knot type but with $s l(S(K))=s l(K)-2$.

> Thus the self-linking numbers of transverse knots in a given knot type cannot be bounded below.

Transverse Knots

Stabilization

We can modify the $x z$-projection of a knot K by:

This results in a transverse knot $S(K)$ in the same knot type but with

$$
s l(S(K))=s l(K)-2
$$

Thus the self-linking numbers of transverse knots in a given knot type cannot be bounded below.

Transverse Knots

We can modify the $x z$-projection of a knot K by:

This results in a transverse knot $S(K)$ in the same knot type but with

$$
s l(S(K))=s l(K)-2
$$

Thus the self-linking numbers of transverse knots in a given knot type cannot be bounded below.

Bennequin Bound

The Birth of contact topology!

Theorem (Bennequin '82 and Eliashberg '92)

If (M, ξ) is a tight contact manifold and $K=\partial \Sigma$ is a transverse knot then

$$
s l(K) \leq-\chi(\Sigma)
$$

- Bennequin proved this for knots in $\left(\mathbb{R}^{3}, \xi_{s t d}\right)$
- Eliashberg, after defining the notion of tight, proved this for a general tight manifold (need result of Eliashberg and Gromov to prove $\left(\mathbb{R}^{3}, \xi_{\text {std }}\right)$ is tight independent of Bennequin's result).
- This result was in some real sense the birth of contact topology! It establishes subtle connections between topology (eg. genus of a knot) and contact geometry (eg. the self-linking number).

Bennequin Bound

THE BIRTH OF CONTACT TOPOLOGY!

Theorem (Bennequin '82 and Eliashberg '92)

If (M, ξ) is a tight contact manifold and $K=\partial \Sigma$ is a transverse knot then

$$
s l(K) \leq-\chi(\Sigma)
$$

- Bennequin proved this for knots in $\left(\mathbb{R}^{3}, \xi_{s t d}\right)$.
- Eliashberg, after defining the notion of tight, proved this for a general tight manifold (need result of Eliashberg and Gromov to prove ($\mathbb{R}^{3}, \xi_{s t d}$) is tight independent of Bennequin's result).
- This result was in some real sense the birth of contact topology! It establishes subtle connections between topology (eg. genus of a knot) and contact geometry (eg. the self-linking number)

Bennequin Bound

```
The BIRTH OF CONTACT TOPOLOGY!
```


Theorem (Bennequin '82 and Eliashberg '92)

If (M, ξ) is a tight contact manifold and $K=\partial \Sigma$ is a transverse knot then

$$
s l(K) \leq-\chi(\Sigma)
$$

- Bennequin proved this for knots in $\left(\mathbb{R}^{3}, \xi_{s t d}\right)$.
- Eliashberg, after defining the notion of tight, proved this for a general tight manifold (need result of Eliashberg and Gromov to prove ($\mathbb{R}^{3}, \xi_{s t d}$) is tight independent of Bennequin's result).
- This result was in some real sense the birth of contact topology! It establishes subtle connections between topology (eg. genus of a knot) and contact geometry (eg. the self-linking number).

Bennequin Bound

The Birth of contact topology!

Theorem (Bennequin '82 and Eliashberg '92)

If (M, ξ) is a tight contact manifold and $K=\partial \Sigma$ is a transverse knot then

$$
s l(K) \leq-\chi(\Sigma)
$$

- Bennequin proved this for knots in $\left(\mathbb{R}^{3}, \xi_{s t d}\right)$.
- Eliashberg, after defining the notion of tight, proved this for a general tight manifold (need result of Eliashberg and Gromov to prove ($\mathbb{R}^{3}, \xi_{\text {std }}$) is tight independent of Bennequin's result).
- This result was in some real sense the birth of contact topology! It establishes subtle connections between topology (eg. genus of a knot) and contact geometry (eg. the self-linking number).

Bennequin Bound

AND OTHER BOUNDS ON THE SELF-LINKING NUMBER

- In 1997, Fuchs and Tabachnikov showed for knots in $\left(\mathbb{R}^{3}, \xi_{s t d}\right)$

$$
s l(K) \leq d_{P_{K}}
$$

where $d_{P_{K}}$ is the lowest degree in the variable z for the multi-variable Jones polynomial P_{K} satisfying

$$
\frac{1}{v} P_{K_{+}}-v P_{K_{-}}=z P_{P_{0}}
$$

Thus the Bennequin bound is not always sharp, eg for the left handed trefoil we see

- In 1997, Kanda also showed the Bennequin bound can be arbitrarily bad for certain pretzel knots in $\left(\mathbb{R}^{3}, \xi_{s t d}\right)$.

Bennequin Bound

And other bounds on the self-Linking number

- In 1997, Fuchs and Tabachnikov showed for knots in $\left(\mathbb{R}^{3}, \xi_{s t d}\right)$

$$
s l(K) \leq d_{P_{K}}
$$

where $d_{P_{K}}$ is the lowest degree in the variable z for the multi-variable Jones polynomial P_{K} satisfying

$$
\frac{1}{v} P_{K_{+}}-v P_{K_{-}}=z P_{P_{0}}
$$

Thus the Bennequin bound is not always sharp, eg for the left handed trefoil we see

$$
s l \leq-5 .
$$

- In 1997, Kanda also showed the Bennequin bound can be arbitrarily bad for certain pretzel knots in $\left(\mathbb{R}^{3}, \xi_{s t d}\right)$.

Bennequin Bound

And other bounds on the self-Linking number

- In 1997, Fuchs and Tabachnikov showed for knots in $\left(\mathbb{R}^{3}, \xi_{s t d}\right)$

$$
s l(K) \leq d_{P_{K}}
$$

where $d_{P_{K}}$ is the lowest degree in the variable z for the multi-variable Jones polynomial P_{K} satisfying

$$
\frac{1}{v} P_{K_{+}}-v P_{K_{-}}=z P_{P_{0}}
$$

Thus the Bennequin bound is not always sharp, eg for the left handed trefoil we see

$$
s l \leq-5 .
$$

- In 1997, Kanda also showed the Bennequin bound can be arbitrarily bad for certain pretzel knots in $\left(\mathbb{R}^{3}, \xi_{\text {std }}\right)$.

Bennequin Bound

And other bounds on the self-Linking number

There are many other bounds proved by various people, such as Akbulut-Matveyev, Rudolph, Lisca-Matic, we highlight:

- In 2006, Ng gave a bound (on a "Legendrian" analog of self-linking) using Khovanov homology that is sharp for all alternating knots.
- In 2007, Hedden gave a bound involving Heegaard-Floer theory.
\square Question
For which knots is the Bennequin bound sharp?
- We give an answer to this question for a large class of knots, but first we need one more idea

Bennequin Bound

And OTHER BOUNDS ON THE SELF-LINKING NUMBER

There are many other bounds proved by various people, such as Akbulut-Matveyev, Rudolph, Lisca-Matic, we highlight:

- In 2006, Ng gave a bound (on a "Legendrian" analog of self-linking) using Khovanov homology that is sharp for all alternating knots.
- In 2007, Hedden gave a bound involving Heegaard-Floer theory.
\square For which knots is the Bennequin bound sharp?
- We give an answer to this question for a large class of knots, but first we need one more idea

Bennequin Bound

And other bounds on the self-Linking number

There are many other bounds proved by various people, such as Akbulut-Matveyev, Rudolph, Lisca-Matic, we highlight:

- In 2006, Ng gave a bound (on a "Legendrian" analog of self-linking) using Khovanov homology that is sharp for all alternating knots.
- In 2007, Hedden gave a bound involving Heegaard-Floer theory.

Question

For which knots is the Bennequin bound sharp?

> We give an answer to this question for a large class of knots, but first we need one more idea.

Bennequin Bound

There are many other bounds proved by various people, such as Akbulut-Matveyev, Rudolph, Lisca-Matic, we highlight:

- In 2006, Ng gave a bound (on a "Legendrian" analog of self-linking) using Khovanov homology that is sharp for all alternating knots.
- In 2007, Hedden gave a bound involving Heegaard-Floer theory.

Question

For which knots is the Bennequin bound sharp?

- We give an answer to this question for a large class of knots, but first we need one more idea.

Open Book Decompositions

Definitions

An open book decomposition of a closed 3-manifold M is a pair (B, π) where

- B is an oriented link in M and
- $\pi:(M \backslash B) \rightarrow S^{1}$ is a fibration of the complement of B such that

$$
\Sigma_{\theta}=\overline{\pi^{-1}(\theta)}
$$

has boundary B.
We call B the binding of the open book and any Σ_{θ} a page of the open book.

Open Book Decompositions

Examples

- Let U be the unknot in S^{3} then $S^{3} \backslash U=S^{1} \times \mathbb{R}^{2}$ and $\partial\left(\overline{\theta \times \mathbb{R}^{2}}\right)=U$.
- If H is the Hopf link in S^{3} then $S^{3} \backslash H=T^{2} \times \mathbb{R}$ which can be fibered by $(1,1)$-curves in T^{2} times \mathbb{R}.
- Let $f: \mathbb{C}^{2} \rightarrow \mathbb{C}$ be a polynomial that vanishes at $(0,0)$ and has no critical points inside S^{3} except possibly $(0,0)$. Then $B=f^{-1}(0) \cap S^{3}$ gives an open book of S^{3} with fibration

$$
\pi_{f}: S^{3} \backslash B \rightarrow S^{1}:\left(z_{1}, z_{2}\right) \mapsto \frac{f\left(z_{1}, z_{2}\right)}{\left|f\left(z_{1}, z_{2}\right)\right|}
$$

This is called the Milnor fibration of the hypersurface singularity $(0,0)$.

FACT [AleXANDER]

All closed oriented 3-manifold have (many) open book decompositions.

Open Book Decompositions

Examples

- Let U be the unknot in S^{3} then $S^{3} \backslash U=S^{1} \times \mathbb{R}^{2}$ and $\partial\left(\overline{\theta \times \mathbb{R}^{2}}\right)=U$.
- If H is the Hopf link in S^{3} then $S^{3} \backslash H=T^{2} \times \mathbb{R}$ which can be fibered by $(1,1)$-curves in T^{2} times \mathbb{R}.
critical points inside S^{3} except possibly $(0,0)$. Then $B=f^{-1}(0) \cap S^{3}$ gives an open book of S^{3} with fibration

This is called the Milnor fibration of the hypersurface singularity $(0,0)$

[^0]
Open Book Decompositions

Examples

- Let U be the unknot in S^{3} then $S^{3} \backslash U=S^{1} \times \mathbb{R}^{2}$ and $\partial\left(\overline{\theta \times \mathbb{R}^{2}}\right)=U$.
- If H is the Hopf link in S^{3} then $S^{3} \backslash H=T^{2} \times \mathbb{R}$ which can be fibered by $(1,1)$-curves in T^{2} times \mathbb{R}.
- Let $f: \mathbb{C}^{2} \rightarrow \mathbb{C}$ be a polynomial that vanishes at $(0,0)$ and has no critical points inside S^{3} except possibly $(0,0)$. Then $B=f^{-1}(0) \cap S^{3}$ gives an open book of S^{3} with fibration

$$
\pi_{f}: S^{3} \backslash B \rightarrow S^{1}:\left(z_{1}, z_{2}\right) \mapsto \frac{f\left(z_{1}, z_{2}\right)}{\left|f\left(z_{1}, z_{2}\right)\right|}
$$

This is called the Milnor fibration of the hypersurface singularity $(0,0)$.

Open Book Decompositions

Examples

- Let U be the unknot in S^{3} then $S^{3} \backslash U=S^{1} \times \mathbb{R}^{2}$ and $\partial\left(\overline{\theta \times \mathbb{R}^{2}}\right)=U$.
- If H is the Hopf link in S^{3} then $S^{3} \backslash H=T^{2} \times \mathbb{R}$ which can be fibered by $(1,1)$-curves in T^{2} times \mathbb{R}.
- Let $f: \mathbb{C}^{2} \rightarrow \mathbb{C}$ be a polynomial that vanishes at $(0,0)$ and has no critical points inside S^{3} except possibly $(0,0)$. Then $B=f^{-1}(0) \cap S^{3}$ gives an open book of S^{3} with fibration

$$
\pi_{f}: S^{3} \backslash B \rightarrow S^{1}:\left(z_{1}, z_{2}\right) \mapsto \frac{f\left(z_{1}, z_{2}\right)}{\left|f\left(z_{1}, z_{2}\right)\right|}
$$

This is called the Milnor fibration of the hypersurface singularity $(0,0)$.

FACT [ALEXANDER]

All closed oriented 3-manifold have (many) open book decompositions.

Open Book Decompositions

The Giroux correspondence

A contact structure ξ on M is supported by an open book decomposition (B, π) if there is a contact form α for ξ such that

- $\alpha(v)>0$ for all $v \in T_{x} B$ pointing in the positive direction and
- $\pi^{*}(d \theta) \wedge d \alpha>0$ where θ is the coordinate on S^{1}.

THEOREM [THURSTON-WINKELNKEMPER 1975]

Every open book decomposition of M supports a contact structure.
It is easy to prove the supported contact structure is unique.

Open Book Decompositions

The Giroux correspondence

Theorem [Giroux 2000]

Every contact structure is supported by some open book decomposition. In fact there is a one to one correspondence between
\{oriented contact structures up to isotopy\} and
\{open book decompositions up to isotopy and positive stabilization\}

Main Theorems

```
Exactness of the Bennequin bound
```

We call a link L in M fibered if it is the binding of an open book. Notice that this is a slightly more restricted definition of fibered that usual.

Giroux torsion is an embedding of

for some n.

Main Theorems

Exactness of the Bennequin bound

We call a link L in M fibered if it is the binding of an open book. Notice that this is a slightly more restricted definition of fibered that usual.

Theorem [E - Van Horn-Morris]

Let M be a closed 3-manifold and ξ a tight contact structure on M.
A fibered link (L, Σ) realizes the Bennequin bound in (M, ξ) if and only if
ξ is supported by the open $\operatorname{book}(L, \Sigma)$ or ξ is obtained from $\xi_{(L, \Sigma)}$ by adding Giroux torsion.

Giroux torsion is an embedding of

for some n.

Main Theorems

Exactness of the Bennequin bound

We call a link L in M fibered if it is the binding of an open book. Notice that this is a slightly more restricted definition of fibered that usual.

Theorem [E - Van Horn-Morris]

Let M be a closed 3-manifold and ξ a tight contact structure on M.
A fibered link (L, Σ) realizes the Bennequin bound in (M, ξ) if and only if
ξ is supported by the open $\operatorname{book}(L, \Sigma)$ or ξ is obtained from $\xi_{(L, \Sigma)}$ by adding Giroux torsion.

Giroux torsion is an embedding of

$$
\left(T^{2} \times[0,1], \operatorname{ker}(\cos 2 n \pi t d x+\sin 2 n \pi t, d y)\right)
$$

for some n.

Main Theorems

Corollaries

Corollary

Let M be a closed atoroidal 3-manifold and ξ is a tight contact structure on M.

A fibered link (L, Σ) realizes the Bennequin bound in (M, ξ) if and only if
ξ is supported by the open book (L, Σ).

Main Theorems

Corollary

Let M be a closed atoroidal 3-manifold and ξ is a tight contact structure on M.

A fibered link (L, Σ) realizes the Bennequin bound in (M, ξ) if and only if ξ is supported by the open book (L, Σ).

COROLLARY

If the "enhanced Milnor invariant" (a.k.a. "Hopf invariant") of a fibered link L in S^{3} does not vanish then the Bennequin bound is not sharp for links transverse to $\xi_{\text {std }}$ in the link type L.

Main Theorems

UNIQUENESS

Theorem [E - Van Horn-Morris]

If K is a fibered knot type in $\left(S^{3}, \xi_{s t d}\right)$ and there is a transverse representative of K with $s l=-\chi(K)$ then all transverse knots in the knot type K with $s l=-\chi(K)$ are transversely isotopic.

> Notice that it is still hard to classify such fibered knots. For example the $(2,3)$-cable of the $(2,3)$-torus knot has a unique transverse representative with $s l \neq 3$ (note must be ≤ 7) and exactly two representatives with $s l=3$

Main Theorems

UniQueness

Theorem [E - Van Horn-Morris]

If K is a fibered knot type in $\left(S^{3}, \xi_{s t d}\right)$ and there is a transverse representative of K with $s l=-\chi(K)$ then all transverse knots in the knot type K with $s l=-\chi(K)$ are transversely isotopic.

Notice that it is still hard to classify such fibered knots. For example the $(2,3)$-cable of the $(2,3)$-torus knot has a unique transverse representative with $s l \neq 3$ (note must be ≤ 7) and exactly two representatives with $s l=3$.

Main Theorems

Work In Progress [E]

If M is an atoroidal oriented 3 -manifold and ξ is an overtwisted contact structure then there are many fibered knot types K such that the transverse knots in this knot type (up to contactomorphism) with $s l=-\chi(K)$ are in one to one correspondence with $\mathbb{Z} \cup\{p\}$.
The knot corresponding to p has overtwisted complement and the rest have tight complement.
(Only one has non-trivial Heegaard-Floer invariant by a result of Vela-Vick).

The Proof

- It is easy to see that if a link L is the binding of an open book supporting ξ then it is naturally a transverse knot with $s l=-\chi(L)$.
- So we prove the other direction. Suppose that L is a fibered, transverse link in (M, ξ) with $s /(L)=-\chi(L)$.
- Let Σ be a fiber of the fibration of $M \backslash L$ (used to compute s/).
- Now a Heegaard splitting of M is given by

$$
M=V_{0} \cup V_{1}
$$

where $V_{0}=\Sigma \times[0,1]$ is a neighborhood of Σ and $V_{1}=\Sigma \times[1,2]$ is the closure of $M \backslash V_{0}$.

- We focus on $S=\partial V_{0}$.

The Proof

- It is easy to see that if a link L is the binding of an open book supporting ξ then it is naturally a transverse knot with $s l=-\chi(L)$.
- So we prove the other direction. Suppose that L is a fibered, transverse link in (M, ξ) with $s /(L)=-\chi(L)$.
- Let Σ be a fiber of the fibration of $M \backslash L$ (used to compute sl).
- Now a Heegaard splitting of M is given by

$$
M=V_{0} \cup V_{1}
$$

where $V_{0}=\Sigma \times[0,1]$ is a neighborhood of Σ and $V_{1}=\Sigma \times[1,2]$ is

- We focus on $S=\partial V_{0}$.

The Proof

- It is easy to see that if a link L is the binding of an open book supporting ξ then it is naturally a transverse knot with $s l=-\chi(L)$.
- So we prove the other direction. Suppose that L is a fibered, transverse link in (M, ξ) with $s /(L)=-\chi(L)$.
- Let Σ be a fiber of the fibration of $M \backslash L$ (used to compute $s l$).
- Now a Heegaard splitting of M is given by

$$
M=V_{0} \cup V_{1}
$$

> where $V_{0}=\Sigma \times[0,1]$ is a neighborhood of Σ and $V_{1}=\Sigma \times[1,2]$ is

- We focus on $S=\partial V_{0}$.

The Proof

- It is easy to see that if a link L is the binding of an open book supporting ξ then it is naturally a transverse knot with $s l=-\chi(L)$.
- So we prove the other direction. Suppose that L is a fibered, transverse link in (M, ξ) with $s l(L)=-\chi(L)$.
- Let Σ be a fiber of the fibration of $M \backslash L$ (used to compute $s l$).
- Now a Heegaard splitting of M is given by

$$
M=V_{0} \cup V_{1}
$$

where $V_{0}=\Sigma \times[0,1]$ is a neighborhood of Σ and $V_{1}=\Sigma \times[1,2]$ is the closure of $M \backslash V_{0}$.

The Proof

- It is easy to see that if a link L is the binding of an open book supporting ξ then it is naturally a transverse knot with $s l=-\chi(L)$.
- So we prove the other direction. Suppose that L is a fibered, transverse link in (M, ξ) with $s l(L)=-\chi(L)$.
- Let Σ be a fiber of the fibration of $M \backslash L$ (used to compute $s l$).
- Now a Heegaard splitting of M is given by

$$
M=V_{0} \cup V_{1}
$$

where $V_{0}=\Sigma \times[0,1]$ is a neighborhood of Σ and $V_{1}=\Sigma \times[1,2]$ is the closure of $M \backslash V_{0}$.

- We focus on $S=\partial V_{0}$.

The Proof

Convex surfaces

- A surface S is called convex if there is a vector field v transverse to it such that its flow preserves ξ.
- The dividing set of a convex surface is

The Proof

- A surface S is called convex if there is a vector field v transverse to it such that its flow preserves ξ.
- The dividing set of a convex surface is

$$
\Gamma=\left\{p \in S: v_{p} \in \xi_{p}\right\} .
$$

THEOREM [TORISU]
 With notation as above L supports ξ if and only if $\Gamma=L$ and $\xi \mid v$ is tight.

The Proof

CONVEX SURFACES

- A surface S is called convex if there is a vector field v transverse to it such that its flow preserves ξ.
- The dividing set of a convex surface is

$$
\Gamma=\left\{p \in S: v_{p} \in \xi_{p}\right\}
$$

THEOREM [TORISU]

With notation as above L supports ξ if and only if $\Gamma=L$ and $\xi \mid v_{i}$ is tight.

The Proof

The self Linking number

- We can make Σ, the fiber of the fibration of $M \backslash L$, convex and take $V_{0}=\Sigma \times[0,1]$ to be an invariant neighborhood of Σ.
- This naturally makes $S=\partial V_{0}$ convex too.
- The condition that $s l(L)=\chi(\Sigma)$ implies that the dividing set of Σ looks like:
- And hence the dividing set of S looks like:

The Proof

The self Linking number

- We can make Σ, the fiber of the fibration of $M \backslash L$, convex and take $V_{0}=\Sigma \times[0,1]$ to be an invariant neighborhood of Σ.
- This naturally makes $S=\partial V_{0}$ convex too.
- The condition that $s l(L)=\chi(\Sigma)$ implies that the dividing set of Σ looks like:
- And hence the dividing set of S looks like:

The Proof

The self Linking number

- We can make Σ, the fiber of the fibration of $M \backslash L$, convex and take $V_{0}=\Sigma \times[0,1]$ to be an invariant neighborhood of Σ.
- This naturally makes $S=\partial V_{0}$ convex too.
- The condition that $s l(L)=\chi(\Sigma)$ implies that the dividing set of Σ looks like:

- And hence the dividing set of S looks like:

The Proof

The self Linking number

- We can make Σ, the fiber of the fibration of $M \backslash L$, convex and take $V_{0}=\Sigma \times[0,1]$ to be an invariant neighborhood of Σ.
- This naturally makes $S=\partial V_{0}$ convex too.
- The condition that $s /(L)=\chi(\Sigma)$ implies that the dividing set of Σ looks like:

- And hence the dividing set of S looks like:

The Proof

Convex surfaces

- Thus we are left to get rid of the "extra dividing curves".
- We use bypasses for this. A bypass for a convex surface S is a disk as below:

The Proof

Convex surfaces

- Thus we are left to get rid of the "extra dividing curves".
- We use bypasses for this. A bypass for a convex surface S is a disk as below:

The Proof

- Pushing a convex surface across a bypass changes the dividing curves as shown:

- We can use the product structure in V_{1} to find bypasses to attach to S (assuming M is atoroidal).

The Proof

Convex surfaces

- Pushing a convex surface across a bypass changes the dividing curves as shown:

- We can use the product structure in V_{1} to find bypasses to attach to S (assuming M is atoroidal).

The Proof

Convex surfaces

- With work we can use these bypasses to reduce the number of dividing curves on Σ. For, a very easy, example

The End
 Thank You!

[^0]: Fact Alexander]
 All closed oriented 3-manifold have (many) open book decompositions.

