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Contact Geometry
The Basics

Let M be closed oriented 3-manifolds.

An oriented hyperplane field ξ on M is a contact structure if there is
a 1-form α such that

ξx = ker(αx : TxM → R)

for all x ∈ M and
α ∧ dα > 0
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Contact Geometry
Standard Example

Example

On R3

with coordinates (x , y , z)

ξstd = ker(dz − y dx︸ ︷︷ ︸
α

)
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Contact Geometry
Standard Example

Example

On R3

with coordinates (x , y , z)

ξstd = ker(dz − y dx︸ ︷︷ ︸
α

)

at (0, 0, 0) we have the span of

{∂x , ∂y}.
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Contact Geometry
Standard Example

Example

On R3

with coordinates (x , y , z)

ξstd = ker(dz − y dx︸ ︷︷ ︸
α

)

at (0,−1, 0) we have the span
of

{∂x − ∂z , ∂y}.
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Contact Geometry
Standard Example

Example

On R3

with coordinates (x , y , z)

ξstd = ker(dz − y dx︸ ︷︷ ︸
α

)

at (0,−t, 0) we have the span
of

{∂x − t∂z , ∂y}.
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Contact Geometry
Standard Example

Example

On R3

with coordinates (x , y , z)
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Contact Geometry
Standard Example

Example

On R3

with coordinates (x , y , z)

ξstd = ker(dz − y dx︸ ︷︷ ︸
α

)

Darboux: All contact struc-
tures are locally diffeomorphic
to this one.
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Contact Geometry
Tight vs. Overtwisted

An overtwisted disk in ξ is an embedded disk D such that

TxD = ξx ,

for all x ∈ ∂D.

We call ξ overtwisted if there is an overtwisted disk in ξ otherwise ξ is
called tight.
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Contact Geometry
Standard Overtwisted Example

example

On R3

with coordinates (x , y , z)

ξot = ker(cos r dz + r sin r dx)

Then D = {r ≤ π, z = 0} is
tangent to ξot , so ξot is
overtwisted.

Theorem [Bennequin 1983]

(R3, ξstd) is tight.
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Transverse Knots
Definition

A transverse knot in a contact manifold (M, ξ) is an embedded circle
K ⊂ M that is transverse to ξ for all x ∈ K ,

TxK ⊕ ξx = TxM.

(We orient K so that the above equality is as oriented vector spaces.)

Transverse knots in (R3, ξstd)
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Transverse Knots
Definition

A transverse knot in a contact manifold (M, ξ) is an embedded circle
K ⊂ M that is transverse to ξ for all x ∈ K ,

TxK ⊕ ξx = TxM.

(We orient K so that the above equality is as oriented vector spaces.)

Transverse knots in (R3, ξstd)

If t 7→ (x(t), y(t), z(t)) parameterizes a transverse knot in

ξstd = ker(dz − ydx)

then we must have
z ′(t)− y(t)x ′(t) > 0.
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Transverse Knots
Definition

A transverse knot in a contact manifold (M, ξ) is an embedded circle
K ⊂ M that is transverse to ξ for all x ∈ K ,

TxK ⊕ ξx = TxM.

(We orient K so that the above equality is as oriented vector spaces.)

Transverse knots in (R3, ξstd)

So projections to the xz-plane must not have regions like

any other regions OK.
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Transverse Knots
Self-linking Number

Let K is a null-homologous knot in M, so there is an oriented surface
Σ ⊂ M such that ∂Σ = K .

Suppose K is transverse to ξ.

The ξ restricted to Σ is a trivial bundle

ξ|Σ = Σ× R2.

Choose a non-zero vector v in ξ|Σ.

The self-linking number of K , sl(K ), is the difference between the
framings of K given by v and Σ.

Notice that this number might depend on the relative homology class
of Σ, so we should denote the invariant sl(K , [Σ]).
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Transverse Knots
Examples in R3

In the xz-projection of a transverse knot in (R3, ξstd) the self-linking
number is given by

sl(K ) = writhe(K ).

Example

sl(K ) = writhe(K ) = −1
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Transverse Knots
Stabilization

We can modify the xz-projection of a knot K by:

This results in a transverse knot S(K ) in the same knot type but with

sl(S(K )) = sl(K )− 2.

Thus the self-linking numbers of transverse knots in a given knot type
cannot be bounded below.
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Bennequin Bound
The birth of contact topology!

Theorem (Bennequin ’82 and Eliashberg ’92)

If (M, ξ) is a tight contact manifold and K = ∂Σ is a transverse knot then

sl(K ) ≤ −χ(Σ)

Bennequin proved this for knots in (R3, ξstd).

Eliashberg, after defining the notion of tight, proved this for a general
tight manifold (need result of Eliashberg and Gromov to prove
(R3, ξstd) is tight independent of Bennequin’s result).

This result was in some real sense the birth of contact topology! It
establishes subtle connections between topology (eg. genus of a knot)
and contact geometry (eg. the self-linking number).
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Bennequin Bound
And other bounds on the self-linking number

In 1997, Fuchs and Tabachnikov showed for knots in (R3, ξstd)

sl(K ) ≤ dPK
,

where dPK
is the lowest degree in the variable z for the multi-variable

Jones polynomial PK satisfying

1

v
PK+ − vPK− = zPP0 .

Thus the Bennequin bound is not always sharp, eg for the left handed
trefoil we see

sl ≤ −5.

In 1997, Kanda also showed the Bennequin bound can be arbitrarily
bad for certain pretzel knots in (R3, ξstd).
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Bennequin Bound
And other bounds on the self-linking number

There are many other bounds proved by various people, such as
Akbulut-Matveyev, Rudolph, Lisca-Matic, we highlight:

In 2006, Ng gave a bound (on a “Legendrian” analog of self-linking)
using Khovanov homology that is sharp for all alternating knots.

In 2007, Hedden gave a bound involving Heegaard-Floer theory.

Question

For which knots is the Bennequin bound sharp?

We give an answer to this question for a large class of knots, but first
we need one more idea.
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Open Book Decompositions
Definitions

An open book decomposition of a closed 3-manifold M is a pair (B, π)
where

B is an oriented link in M and

π : (M \ B) → S1 is a fibration of the complement of B such that

Σθ = π−1(θ)

has boundary B.

We call B the binding of the open book and any Σθ a page of the open
book.
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Open Book Decompositions
Examples

Let U be the unknot in S3 then S3 \ U = S1 × R2 and
∂(θ × R2) = U.

If H is the Hopf link in S3 then S3 \ H = T 2 × R which can be
fibered by (1, 1)-curves in T 2 times R.

Let f : C2 → C be a polynomial that vanishes at (0, 0) and has no
critical points inside S3 except possibly (0, 0). Then B = f −1(0) ∩ S3

gives an open book of S3 with fibration

πf : S3 \ B → S1 : (z1, z2) 7→
f (z1, z2)

|f (z1, z2)|
.

This is called the Milnor fibration of the hypersurface singularity
(0, 0).

Fact [Alexander]

All closed oriented 3-manifold have (many) open book decompositions.
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Open Book Decompositions
The Giroux correspondence

A contact structure ξ on M is supported by an open book decomposition
(B, π) if there is a contact form α for ξ such that

α(v) > 0 for all v ∈ TxB pointing in the positive direction and

π∗(dθ) ∧ dα > 0 where θ is the coordinate on S1.

Theorem [Thurston-Winkelnkemper 1975]

Every open book decomposition of M supports a contact structure.

It is easy to prove the supported contact structure is unique.
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Open Book Decompositions
The Giroux correspondence

Theorem [Giroux 2000]

Every contact structure is supported by some open book decomposition.
In fact there is a one to one correspondence between

{oriented contact structures up to isotopy}

and

{open book decompositions up to isotopy and positive stabilization}
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Main Theorems
Exactness of the Bennequin bound

We call a link L in M fibered if it is the binding of an open book.
Notice that this is a slightly more restricted definition of fibered that usual.

Theorem [E – Van Horn-Morris]

Let M be a closed 3-manifold and ξ a tight contact structure on M.

A fibered link (L,Σ) realizes the Bennequin bound in (M, ξ)
if and only if

ξ is supported by the open book (L,Σ) or
ξ is obtained from ξ(L,Σ) by adding Giroux torsion.

Giroux torsion is an embedding of

(T 2 × [0, 1], ker(cos 2nπt dx + sin 2nπt, dy))

for some n.
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Main Theorems
Corollaries

Corollary

Let M be a closed atoroidal 3-manifold and ξ is a tight contact structure
on M.

A fibered link (L,Σ) realizes the Bennequin bound in (M, ξ)
if and only if

ξ is supported by the open book (L,Σ).

Corollary

If the “enhanced Milnor invariant” (a.k.a. “Hopf invariant”) of a fibered
link L in S3 does not vanish then the Bennequin bound is not sharp for
links transverse to ξstd in the link type L.
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Main Theorems
Uniqueness

Theorem [E – Van Horn-Morris]

If K is a fibered knot type in (S3, ξstd) and there is a transverse
representative of K with sl = −χ(K ) then all transverse knots in the knot
type K with sl = −χ(K ) are transversely isotopic.

Notice that it is still hard to classify such fibered knots.
For example the (2, 3)-cable of the (2, 3)-torus knot has a unique
transverse representative with sl 6= 3 (note must be ≤ 7) and exactly two
representatives with sl = 3.
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Main Theorems
Overtwisted contact manifolds

Work In Progress [E]

If M is an atoroidal oriented 3-manifold and ξ is an overtwisted contact
structure then there are many fibered knot types K such that the
transverse knots in this knot type (up to contactomorphism) with
sl = −χ(K ) are in one to one correspondence with Z ∪ {p}.
The knot corresponding to p has overtwisted complement and the rest
have tight complement.
(Only one has non-trivial Heegaard-Floer invariant by a result of
Vela-Vick).
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The Proof

It is easy to see that if a link L is the binding of an open book
supporting ξ then it is naturally a transverse knot with sl = −χ(L).

So we prove the other direction. Suppose that L is a fibered,
transverse link in (M, ξ) with sl(L) = −χ(L).

Let Σ be a fiber of the fibration of M \ L (used to compute sl).

Now a Heegaard splitting of M is given by

M = V0 ∪ V1

where V0 = Σ× [0, 1] is a neighborhood of Σ and V1 = Σ× [1, 2] is
the closure of M \ V0.

We focus on S = ∂V0.
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Now a Heegaard splitting of M is given by

M = V0 ∪ V1

where V0 = Σ× [0, 1] is a neighborhood of Σ and V1 = Σ× [1, 2] is
the closure of M \ V0.

We focus on S = ∂V0.
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The Proof
Convex surfaces

A surface S is called convex if there is a vector field v transverse to it
such that its flow preserves ξ.

The dividing set of a convex surface is

Γ = {p ∈ S : vp ∈ ξp}.

Theorem [Torisu]

With notation as above L supports ξ if and only if Γ = L and ξ|Vi
is tight.
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The Proof
The self linking number

We can make Σ, the fiber of the fibration of M \ L, convex and take
V0 = Σ× [0, 1] to be an invariant neighborhood of Σ.

This naturally makes S = ∂V0 convex too.

The condition that sl(L) = χ(Σ) implies that the dividing set of Σ
looks like:

And hence the dividing set of S looks like:
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The Proof
Convex surfaces

Thus we are left to get rid of the “extra dividing curves”.

We use bypasses for this. A bypass for a convex surface S is a disk as
below:
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The Proof
Convex surfaces

Pushing a convex surface across a bypass changes the dividing curves
as shown:

We can use the product structure in V1 to find bypasses to attach to
S (assuming M is atoroidal).

Etnyre (Ga Tech) Exactness of the Bennequin Bound Short Occasion 26 / 28



The Proof
Convex surfaces

Pushing a convex surface across a bypass changes the dividing curves
as shown:

We can use the product structure in V1 to find bypasses to attach to
S (assuming M is atoroidal).

Etnyre (Ga Tech) Exactness of the Bennequin Bound Short Occasion 26 / 28



The Proof
Convex surfaces

With work we can use these bypasses to reduce the number of
dividing curves on Σ. For, a very easy, example
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.

The End
Thank You!
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