A Duality Exact Sequence for Legendrian Contact Homology
Joint work with Tobias Ekholm and Joshua Sabloff,
Duke Math.\ J. 150 (2009), 1--75.
We establish a long exact sequence for Legendrian submanifolds L in P x R, where P is an exact symplectic manifold, which admit a Hamiltonian isotopy that displaces the projection of L off of itself. In this sequence, the singular homology H_* maps to linearized contact cohomology CH^* which maps to linearized contact homology CH_* which maps to singular homology. In particular, the sequence implies a duality between the kernel of the map (CH_*\to H_*) and the cokernel of the map (H_* \to CH^*). Furthermore, this duality is compatible with Poincare duality in L in the following sense: the Poincare dual of a singular class which is the image of a in CH_* maps to a class \alpha in CH^* such that \alpha(a)=1. The exact sequence generalizes the duality for Legendrian knots in Euclidean 3-space [24] and leads to a refinement of the Arnold Conjecture for double points of an exact Lagrangian admitting a Legendrian lift with linearizable contact homology, first proved in [6].
You may download a pdf version of this paper.
You may download the published version of this paper. (Access may be restricted.)
You may download the version of this paper at the arxiv.
Return to my home page.
|